
[image: image1.wmf]
Microsoft OSS Working Group:
Ushering in a New Generation of OSS/BSS Solutions
with XML and Microsoft Technology

Abstract

Microsoft technology, including Microsoft(Windows(2000, Microsoft SQL Server™ 2000, and Microsoft BizTalk™ Server 2000, provides the ideal platform for developing and deploying XML-based next-generation open and interoperable operations and business support systems (OSS/BSS) solutions.

© 2001 Microsoft Corporation. All rights reserved.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft, Active Directory, BizTalk, Visual Studio, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA

12/00

2Introduction

3The Current State of the OSS/BSS Market

3
Legacy Technologies

4
Standards Bodies

4
The Rise of Distributed Computing

4
Emerging New Services

5
Needed: A New Generation of OSS/BSS Systems

5Enter XML and SOAP

5
The Promise of XML

6
What is XML?

7XML Architecture

7
Data Structure, Namespaces

8
Data Delivery and Manipulation

8
Parsing XML

8
Manipulating and Editing Data Using the Document Object Model

8
Displaying XML-Based Data in HTML

9
Augmenting HTML

9
Transforming and Querying XML

9
Character Set and Encoding

10
White Space

10
The Power of SOAP

10Building on the .NET Framework

11
Enabling Interoperability Between Languages

12
The Role of Microsoft

13Microsoft XML Partners

14Summary

14For More Information

Introduction

Microsoft technology and the Extensible Markup Language (XML) are providing the foundation for a much-needed new generation of open and interoperable operations and business support systems (OSS/BSS) solutions. This is good news for telecom companies and application service providers (ASPs) that need open, flexible, and powerful solutions for managing their operations and business support systems.

There is a huge demand for open, interoperable OSS/BSS systems. Whenever a user makes a telephone call, or performs similar operations involving the telecommunications infrastructure or online services, many operations take place, which are invisible to the user. These invisible functions include important operations, administration, and customer management tasks that are key to how service providers run day-to-day operations.

Operations support systems provide the following services:

· Activation

· Service assurance

· Usage/metering

· Provisioning, including designing, assigning and inventory
Business support systems provide additional services, including:

· Billing, including invoicing, rating, taxation, and collections
· Customer management, including order entry, customer self services, customer care, trouble ticketing, and customer relationship management
As carriers and service providers have come under greater pressure to increase revenues and decrease operating costs in order to survive, the demand for open, interoperable OSS/BSS solutions has grown exponentially.

Microsoft and the OSS Working Group are working together to create open, interoperable OSS/BSS solutions using XML and the Simple Object Access Protocol (SOAP) as standards. SOAP codifies the use of XML as an HTTP payload. The most common application of SOAP is as a remote procedure call (RPC) protocol. SOAP was designed to work well with the emerging XML schema specification, and supports interoperation between COM, CORBA, Perl, Tcl, the Java language, C, Python, or PHP programs running anywhere on the Internet.

The OSS Working Group is striving to ensure that XML-based solutions can effectively "speak" to one another. This means that when telecom vendors, ASPs, or other service providers shop for an OSS/BSS solution, they can select a system that will interoperate with other key systems so they can create best-of-breed deployments.

Using XML as a standard programming format, vendors that develop OSS/BSS applications can extend today's OSS/BSS infrastructures to further enable service providers to focus their investments on deploying new services, instead of costly OSS/BSS applications based on proprietary architectures. Microsoft and OSS Working Group members are currently defining XML schema that can be used by OSS/BSS vendors as they advance their service provisioning, billing, and management applications.

The OSS Working Group makes the results of its work broadly available to the industry through the BizTalk.Org Web site (www.biztalk.org), a community of standards users with the goal of driving the rapid, consistent adoption of XML to enable electronic commerce and application integration.

Microsoft technology, including Microsoft(Windows(2000, Microsoft SQL Server™ 2000, and Microsoft BizTalk™ Server 2000, provides the ideal platform for developing and deploying XML-based next-generation OSS/BSS solutions.
The Current State of the OSS/BSS Market

While the basic concepts of provisioning and billing sound easy, the process has been less straightforward for service providers needing to ensure that the various systems required to offer hosted services, such as ordering and billing, effectively integrate with each other. Because those technologies have traditionally been proprietary—meaning that they conform to no single set of standards—they have not been easily extended to other systems, and service providers have had difficulty selecting OSS/BSS applications that can effectively "talk" to each other. This has often resulted in a lengthy and costly customization process for the service provider, requiring that they either retool their procedures to extend the existing system, or build entirely new applications.

· Legacy Technologies

Increasingly service providers are realizing that it is no longer feasible to create and maintain their own OSS/BSS solutions. While they sometimes do so when absolutely necessary, cost and complexity make this a difficult proposition. A far more economical and efficient choice is to select a vendor that specializes in providing such services. This can be difficult in itself, because of the need to find a vendor that provides the right services at the right price and that has the stability to continuously evolve its products.
Service providers often use a best-of-breed approach, trying to choose the best vendor with the best product or service. However, at some point service providers must integrate the offerings from disparate vendors into a unified whole that meets their particular needs. For years, vendors have been trying to develop and implement standards that would make it easy to integrate applications from multiple vendors, but these efforts have not been very successful.

The most notable standards effort thus far is CORBA, which attempted to provide a common standard, but wasn’t universally adopted and was eroded as a potential standard because different vendors implemented CORBA differently. Carriers were hard pressed to find a standard set of applications from different vendors that would work together. They wanted a standard, but they ended up choosing all their products from a single vendor, which in fact resulted in being locked into a proprietary solution. Carriers today want interoperability, the need for which is even more pressing as corporate mergers force companies to integrate their back offices. For these and other reasons, the proprietary model falls apart, and the momentum behind CORBA is faltering.

Another standards effort was built around Enterprise Java Beans (EJB), but it has faced many of the same challenges as CORBA.

Enterprise application integration (EAI) is intended to allow interoperability. The idea is that one application can use CORBA, for example, while another uses EJB, and they can communicate through this intermediate application. While this model works in principle, as a practical solution it has problems. Vendors of such EAI applications often require development to be targeted toward their proprietary connector “flavors,” so that third-party suppliers are often not able to use industry standard COM, XML, and EJB interfaces, although these exist. Despite these obstacles, several companies compete in this marketplace, and, while still proprietary, EAI is an attempt to bring order from chaos.

· Standards Bodies

The TeleManagement Forum (TMF) is part of the International Telecommunications Union (ITU). The TMF was created to better define the integration of OSS/BSS applications. The lack of useful open standards to build around has limited the TMF’s effectiveness, however. The TMF tried to standardize around CORBA, but this effort was not as fruitful as hoped. Rather than using TMF standards, carriers have been trying to deploy EJB and EAI solutions, which suffer from the limitations already noted. For these reasons, the TMF is now embracing XML.

Another standards group, ATIS, originated as the standardization department of Bellcore, which was the common research and development arm for companies created by the breakup of AT&T. ATIS (www.atis.org) is now the biggest player in OSS/BSS, and has recently defined a number of incubator projects, one of which is the Telecom Markup Language (TML). TML uses XML to provision new services. The OSS Working Group is working with ATIS, helping to guide development of TML into a practical standard. Microsoft is working with partners on several projects related to TML.

· The Rise of Distributed Computing

Another industry challenge is the added chaos brought by the introduction of distributed computing to the service provider OSS infrastructure and the requirement for rapid delivery of new services. This chaos is caused because service providers must work together. For example, one service provider must work out an agreement with another to link their back office OSS/BSS systems together, just to provide a customer with digital subscriber line (DSL) service. Such services nearly always involve multiple carriers who must cooperate to provide delivery, which therefore amounts to a form of distributed computing. To do provisioning, a computer inside the firewall of one company must work with the back office of another company; that back office may run on a different system than the back office of the first company. These companies must be able to facilitate communication in a reliable, timely manner, to provide robust, economical service at a price customers are willing to pay. If a failure does occur, the cause must be found quickly, so that it can be corrected. These problems become more critical over time, as more and more carriers work together.

A loosely coupled integration model is needed to survive under these conditions, and the lack of one causes chaos. The lack of an integrated model today means that if two companies need to work together, they must use the same vendor. Such tightly coupled systems, using the same vendor, are costly and hard to maintain. Loosely coupled is the only way to go in the long run, since it’s the Internet model.

· Emerging New Services

Customers and competitors alike are driving the need for expanded services. In addition, cost containment and customer satisfaction are driving the need for customer self-service systems. It is vital to roll new features out quickly and economically.
This new Internet service model is causing problems, because of the plethora of options it makes available. So many new services can be provided that the OSS/BSS infrastructure must be upgraded to operate on that same technology curve, or service providers are fighting a lost cause.

A huge gap already exists between what can be done on the feature/content side, and what carriers can do on the back office side. That gap is growing as time goes on. The only hope for service providers is to ride the same technology curve that drives powerful new applications over the Internet.

For example, if cars are selling too quickly for the supply chain to provide them, customers get frustrated and go to another dealer. If a horse and buggy were used to transport car parts from suppliers to the automotive plant, this would cause huge problems. The technology made possible by the process should be applied to the process itself. In this analogy, cars, or something as powerful, should be used to produce cars more quickly and easily, by delivering parts to the factories where the cars are being built. By contrast, antiquated technology is being used to provide powerful new services to users, which creates tremendous bottlenecks. It is therefore necessary to leverage the end result back into the process of creating it.

· Needed: A New Generation of OSS/BSS Systems

All the challenges mentioned are driving demand for a new generation of OSS/BSS systems. Companies must evolve away from traditional paradigms that see the carrier space as a group of rigid standards subject to endless debate and modification. Service providers can no longer meet the challenges of this market using standards which have been around for years, and which lack the power, ease, and economy to succeed. For service providers to succeed, they must adopt the Internet model to their back office.

Enter XML and SOAP

To meet these challenges, Microsoft supports the use of XML and SOAP, which together provide the key to low-cost, standardized solutions. XML has been key in delivering a powerful set of tools for effectively managing hosted Web services. Through XML, a standard recognized by the World Wide Web Consortium (W3C), Microsoft and its partners have begun creating open OSS/BSS solutions that can be easily modified and implemented. As a result, service providers now have access to a powerful set of tools for billing and provisioning—tools to address a variety of service needs.

By using XML as a standard for developing OSS/BSS solutions, vendors ensure that the various operations technologies can effectively "speak" to one another. Then, when an ASP shops for an OSS/BSS solution, the ability to select a system that interoperates with other key systems makes the process of hosting more effective.

Partners and their technologies are key to the process. For this reason, Microsoft is leading the OSS Working Group, whose mission is to bring the right partners together with the right technologies, and to find agreement on those technologies that best serve ASPs. The work done by Microsoft and its OSS/BSS partners can be used to manage a range of application services beyond hosted Web services. Using XML as a standard programming format, vendors that develop OSS/BSS applications can extend today's OSS/BSS infrastructures to further enable service providers to focus on deploying new services, instead of costly OSS/BSS applications based on proprietary and closed architectures. Microsoft's OSS Working Group members are currently defining XML schema that can be used by OSS/BSS vendors as they advance their service provisioning, billing and management applications.

· The Promise of XML

The power of XML is that it separates the user interface from the structured data. While Hypertext Markup Language (HTML) specifies how to display data in a browser, XML defines the content. For example, in HTML you use tags to tell the browser to display data as bold or italic; in XML you only use tags to describe data, such as city name, temperature, and barometric pressure. In XML, you use stylesheets such as Extensible Style Language (XSL) and Cascading Style Sheets (CSS) to present the data in a browser, enabling you to display and process the data as you wish by applying different style sheets and applications.

This separation of data from presentation enables the seamless integration of data from diverse sources. Customer Information, purchase orders, research results, bill payments, medical records, catalog data, and other information can be converted to XML on the middle tier, allowing data to be exchanged online as easily as HTML pages display data today. Data encoded in XML can then be delivered over the Web to the desktop. No retrofitting is necessary for legacy information stored in mainframe databases or documents, and because HTTP is used to deliver XML over the wire, no changes are required for this function.
· What is XML?
As the universal language for data on the Web, XML gives you the power to deliver structured data from a variety of applications to the desktop for local computation and presentation. XML enables you to create unique data formats for specific applications; it is also an ideal format for server-to-server transfer of structured data.

XML is an integral part of the Microsoft .NET Platform—the next generation evolution of the Windows DNA Architecture—for data delivery and exchange between multiple tiers. There are many benefits to using XML both on the Web and in the middle tier:

· Delivers data for local computation. Data delivered to the desktop is available for local computation. The data can be read by the XML parser, then delivered to a local application such as a browser for further viewing or processing. Or the data can be manipulated through script or other programming languages using the XML Object Model.

· Gives users an appropriate view of structured data. Data delivered to the desktop can be presented in multiple ways. A local data set can be dynamically presented in the view that is right for the user, based on factors such as user preference and configuration.

· Lets structured data from multiple sources be integrated into common logical views. Typically, agents will integrate data from server databases and other applications on a middle-tier server, making this data available for delivery to the desktop or to other servers for further aggregation, processing, and distribution.

· Describes data from a variety of applications. Because XML is extensible, it can be used to describe data in a variety of applications, from describing collections of Web pages to data records. Because the data is self-describing, data can be received and processed without the need for a built-in description of the data.

· Improves performance through granular updates. XML enables granular updating. You do not have to send the entire structured data set each time there is a change. With granular updating, only the changed element must be sent from the server to the client. The changed data can be presented without refreshing the entire page or table.

To date, Microsoft has actively participated in the W3C creation and standardization of XML and has aggressively delivered XML support in its products. For example, Microsoft Internet Explorer was the industry's first browser software to support XML. For developers, Microsoft provides a standalone, re-distributable version of MSXML, a general purpose XML parser that lets any application easily manipulate XML information. Finally, with dozens of industry partners, customers, and standards bodies, Microsoft has helped develop the BizTalk Framework 2.0 to accelerate the adoption and use of XML for e-commerce and enterprise application integration. The SOAP Toolkit for Visual Studio® 6.0 enables you to easily build and use SOAP Web Services with Visual Studio 6.0.

XML Architecture

The XML language, XML namespaces, and the DOM are W3C recommendations, the final stage in the W3C development and approval process. Because of these stable specifications, you can start tagging and exchanging your data in the XML format. XML offers a robust solution as the underlying architecture for data in three-tier architectures.

XML can be generated from existing databases using a scalable three-tier model. With XML, structured data is maintained separately from the business rules and the display. Data integration, delivery, manipulation, and display are the steps in the underlying process.

· Data Structure, Namespaces

XML namespaces enable you to qualify element names in a recognizable manner to avoid conflicts between elements with the same name. You can define elements referenced in one document, such as a purchase order, in different schemas on the Web.

Tags from multiple namespaces can be mixed, which is essential with data coming from multiple sources across the Web. With namespaces, both elements can exist in the same XML-based document but can refer back to two different schemas, uniquely qualifying their semantics. For instance, in a bookstore purchase order, one "title" element could contain a book title, and another "title" element could contain the author's title.

The W3C has released XML namespaces as a recommendation, allowing elements to be subordinate to a URI. This ensures that names remain unambiguous even if chosen by multiple authors. Just as anyone can publish their own Web page or view those of others, the namespace facility allows users to define private dictionaries of terms, or use a public namespace of common terms.

<orders xmlns:person="http://www.schemas.org/people"

 xmlns:dsig="http://dsig.org">

 <order>

 <sold-to>

 <person:name>

 <person:last-name>Layman</person:last-name>

 <person:first-name>Andrew</person:first-name>

 </person:name>

 </sold-to>

 <sold-on>1997-03-17</sold-on>

 <dsig:digital-signature>1234567890</dsig:digital-signature>

 </order>

</orders>

This example tells a reader that if a name begins with dsig, its meaning is defined by whoever owns the http://www.dsig.org namespace. Similarly, elements beginning with the person: prefix have meanings defined by the http://www.schemas.org/people namespace.

Namespaces ensure that element names do not conflict and clarify who defined which term. They do not give instructions on how to process the elements. Parsers still need to know what the elements mean and decide how to process them. Namespaces simply keep the names straight.

You can specify an element's data type—number, date, and so on—and the format of the string's contents. You can use the dt attribute from the data types namespace at urn:schemas-microsoft-com:datatypes for this purpose, as shown in the following example.
<sold-on dt:dt="date"

 xmlns:dt="urn:schemas-microsoft-com:datatypes">1997-03-17</sold-on>

Here, "date" specifies that the sold-on element's contents are a date in the standard format specified by the dt namespace. As with element names, you will eventually be able to design your own data types, and also use publicly shared types. Microsoft is working with the W3C to define a set of standard types and has provided an initial list as part of XML Schema support in Internet Explorer 5.

· Data Delivery and Manipulation

Because XML is an open, text-based format, it can be delivered through HTTP in the same way HTML can today. Data now on the desktop can be manipulated using the DOM. Agents will also support the ability to generate XML updates, which can be sent in both directions to inform clients of changes made to data on the middle tier or database server and vice versa. Consequently, the agents will be able to receive updates from the client and send them to a storage server.

· Parsing XML

The XML parser in Internet Explorer 5 can read a string of XML data, process it, generate a structured tree, and expose all data elements as objects using the DOM. The parser displays this data using a CSS or XSL style sheet, or makes the data available for further manipulation by script, or hands it to other applications or objects for further processing. Namespaces, data types, queries, and XSL transformations are supported with extended methods available in the DOM.

· Manipulating and Editing Data Using the Document Object Model

The DOM is essentially an application program interface (API) that defines a standard way in which you can interact with the elements of the XML structured tree. The object model controls how you communicate with trees and exposes all tree elements as objects, which can be accessed programmatically without any return trips to the server.

· Displaying XML-Based Data in HTML

An XML document does not itself specify whether or how its information should be displayed. The XML data merely contains the facts, such as who ordered which books at which prices. HTML is an ideal display language for presenting this data to a user. For example, an employee of an online bookstore can visit a Web page to find a list of order entries. On the back end, the individual data records are expressed in XML. However, on the front end, they are presented to the employee as an HTML page. To construct this Web page, either the Web server or the Web browser must convert the XML data records to an HTML presentation, such as a table.

You can use the mechanisms of data binding and style sheets to arrange XML data into a visual presentation and add interactivity. Data binding is an aspect of dynamic HTML (DHTML) that moves individual items of data from an information source, such as an XML document, into an HTML display, allowing HTML to serve as a template for displaying XML data. This is similar to a mail merge in word processing. Microsoft currently ships an XML Data Source Object (XML DSO) as part of Internet Explorer 5. The XML DSO can be invoked declaratively upon XML data islands.

Extensible Stylesheet Language (XSL) adds even greater power to this process. An XSL style sheet contains instructions for pulling information from an XML document and transforming it into another format, such as HTML. The transformation of XML into formats, such as HTML, is done in a declarative way, making it often easier and more accessible than through scripting. In addition, XSL uses XML as its syntax, freeing XML authors from having to learn another markup language.

CSS can still be used for XML data that is simply structured—and in such situations, it is useful. However, CSS does not provide a display structure that deviates from the structure of the data source. With XSL, it is possible to generate presentation structures, in HTML for example, that are different from the original XML data structures. XSL provides both semantic and structural independence of content and presentation.

· Augmenting HTML

Adding semantic information to HTML pages is not easy. Historically, programs have attempted to deal with this problem by using nonstandard tricks, such as hiding data inside HTML comments. However, these comments are awkward and, unlike XML, are not exposed to the object model.

To solve this, the W3C has defined a format for putting XML-based data (data islands) inside HTML pages. Extending HTML through the use of data islands allows a range of applications to use HTML as the primary document or display format and also use XML embedded in these documents to hold data.

An HTML page could therefore include, among other things, specific data about the subject of the page. For instance, if the page displayed an advertisement for an author's most recent novel, the page could also contain XML data concerning that book, such as its ISBN, publisher, or suggested retail price. It is not important that this information be displayed, but it is important that this information be accessible and understandable as data.

· Transforming and Querying XML

With the advent of XML as a standard way to interchange data on the Web, inevitably the need arises for mechanisms to query XML, shaping extracted data, including sorting and filtering, and transforming one XML grammar into another. XSL and the XSL Pattern language that is part of XSL provide a measure of this capability today.

XSL Patterns are a concise syntax for identifying nodes in an XML document, based on the node's type, name, content, and context in relation to other nodes in the tree.

XSL provides a grammar in which the results of XSL Pattern queries are associated with templates to describe the materialization of data in the XML source document as a new XML document. While this forms the basis for transforming data to display formats such as HTML, any XML grammar can be output, providing for sorting and filtering within a single XML grammar, or translating data from one schema to another.

Work on a more powerful query language for XML is being considered by the W3C, but no working group has been formed.

· Character Set and Encoding

All information in XML is Unicode text. This includes the contents of elements and element names themselves. As a result, XML supports representation of all international character sets.

Unicode can be transmitted directly as 16-bit characters, but is more commonly encoded, which is more convenient or compact for certain languages. XML supports a range of encodings (the default is UTF-8), subject only to the restriction that an entire document must share the same one.

· White Space

Unlike HTML, which, in most cases, ignores white space—spaces, tabs, new lines, and so on—XML is for data, and thus has the capability through the reserved xml:space attribute to retain all white space. For example, the following are not equivalent:

<title xml:space="preserve"><composer>Tchaikovsky</composer>'s

 First Piano Concerto</title>

<title xml:space="preserve">

 <composer>Tchaikovsky</composer>'s

 First

 Piano Concerto

</title>

The value xml:space="default" provides some trimming of white space nodes between tags in Internet Explorer 5.

· The Power of SOAP

SOAP is an XML-based protocol that facilitates interoperability. SOAP provides a simple, lightweight mechanism for exchanging structured and typed information between peers in a decentralized, distributed environment using.

The power of SOAP is that it doesn’t define any application semantics such as a programming model or implementation specific semantics. SOAP simply codifies existing practices into an industry standard from which everyone can benefit. SOAP provides a packaging model and mechanisms for encoding data within modules. And SOAP is available to any system supporting HTTP and XML.

Combining HTTP and XML into a single solution gives you a new level of interoperability. For example, using SOAP, clients written in Microsoft® Visual Basic® can easily invoke CORBA services running on UNIX boxes, JavaScript clients can invoke code running on the mainframe, and Macintosh clients can invoke Perl objects running on Linux. The list goes on. While some interoperability is achieved today through cross-platform bridges for specific technologies, once SOAP becomes standard, bridges will no longer be necessary.

SOAP consists of three parts:

· An envelope that defines a framework for describing what is in a message and how to process it

· A set of encoding rules for expressing instances of application-defined datatypes

· A convention for representing remote procedure calls and responses

Distributed applications and communication with partners is greatly simplified because SOAP rides on top of HTTP and passes through any firewall that allows communication through the standard HTTP port 80. Because most firewalls block all but a few ports, all of today's distributed object protocols suffer because they rely on dynamically assigned ports for remote method invocations. This means system administrators must be persuaded to open a range of ports through the firewall, and that any partners you need to communicate with must likewise configure their firewall.

As the industry embraces SOAP, it will open a new world of interoperability that promotes further progress toward developers working together.

Building on the .NET Framework

Traditionally, software developers have had to spend countless hours making different programs communicate—a task made more difficult when they are written in different languages and use different standards and protocols. Microsoft has created the powerful .NET Framework, which allows disparate programs written in any number of programming languages to seamlessly interoperate, enabling a renaissance for software development.

While there has been a strong push within the industry to find such a single-language solution, the business and technology challenges have proved daunting. Microsoft .NET provides a common foundation upon which tools can be built, no matter what languages they are created in.

In addition to uniting programming languages, and easing the complex details developers must manage, the .NET Framework automatically turns every application into a reusable, interoperable Web service. You can use Web-based services to build tomorrow's software applications, much as components are used to build them today. This powerful functionality is optimally suited to telecommunications services and applications.

Microsoft is committed to the vision of delivering software as a service, both over the Internet and the intranet, and Microsoft's new programming environment will improve developer productivity and turn tomorrow's applications into collections of software components (or services). These pieces can be accessed easily over the Internet or corporate network.

· Enabling Interoperability Between Languages

Microsoft is changing the way developers work. Over the past decade applications have increasingly been built with off-the-shelf software components. This has saved programming effort, but the ability to use the optimum programming language, object model, and operating system for each task has been hampered by limited interoperability between components created using different methods. Making these components work together has been a major challenge, so developers have usually restricted themselves to one language, which can limit the functionality of software or increase the time and cost of development and upgrades.

The mix-and-match capability of .NET frees you to use the best programming language for the job. The .NET Framework brings language interoperability to life, enabling you to switch languages and retain your investment. All programming languages, from simple scripting languages to complex high-level languages, are equal in the .NET Framework.

Developers today must use different commands or frameworks with different programming languages, creating a Tower of Babel effect when multiple languages are used. The .NET Framework lets you use a unified set of commands regardless of programming language, eliminating the learning curve of a new language. In addition, a common set of APIs across all languages provides powerful cross-language inheritance, error handling, and debugging.

You can also take advantage of the Internet and intranet and access Web services over networks. By crafting and selling these Web services, you can create a pool of components for others to draw from, making robust, feature-rich applications powerful and easy to build, using any combination of remote services, local services, and custom code.

Web services interact with applications using XML, which has become the lingua franca of the Web. This makes such services self-describing and easy to use. A Web service tells you what data it needs and what service it provides, and shields you from needing to know how parts work internally.

Web services can be seen as applications that live on the Internet or intranet instead of locally. A language translation service, for example, can be built using a Web-based translation engine and can interact with e-mail to translate it transparently between languages.

The .NET Framework eases development in other ways as well. Today, developers must keep track of many details, such as managing memory, starting and killing threads and processes, enforcing security, and satisfying dependencies. Handling such details costs time, effort, and money, and slows the pace at which new software gets to market. By contrast, the .NET Framework enables you to automate many manual tasks. By handling these tasks, the .NET Framework lets you write less code and work faster. Your job becomes simpler, you make fewer mistakes, and any mistakes you do make are less likely to adversely affect other applications.

Creating complex software today takes time and special skills. Because that process has now been built into the technology itself, you can focus more on providing services and less on handcrafting software. For example, vast amounts of scattered boilerplate code must be synchronized for a program to work today. With the .NET Framework, these details are handled by the system, and boilerplate code goes away.

While in the past, a simple program in C might take only a few lines of code to perform a critical task, newer programming languages consume hundreds of lines of code for the same purpose, all to save programming time and expense. Because the .NET Framework allows programs written in multiple languages to interoperate, code written in more compact programming languages can be employed today, with the higher overhead of newer programming languages only being incurred in the areas where those newer languages must be used. This helps you get the value of more modern languages and methods virtually for free.

Developer productivity within the .NET Framework is further increased with new Active Server Pages+ (ASP+), which Microsoft has created to enable an entire infrastructure for building complex, scalable Web applications and services, while requiring you to know only simple HTML. These and other powerful advantages make the .NET Framework and associated technologies the optimum choice for developing powerful Web-based applications and services.

· The Role of Microsoft

Microsoft has an important role in promoting XML as a solution to industry chaos, by helping to drive the development of a new OSS/BSS model that will enable service providers to deploy cost-effective end-to-end OSS/BSS application solutions to address next-generation services.

Microsoft is a leading member of the OSS Working Group, which includes more than three dozen industry-leading independent software vendors (ISVs) and systems integrators. The OSS Working Group is working collectively to define an industry-standard OSS Markup Language (OSSML) that will enable interoperability between a wide range of third-party OSS applications. OSSML will be composed of XML schemas used for OSS application-to-application interoperability for competitive local exchange carriers (CLECs), ASPs, and broadband service providers.

The OSS Working Group seeks a solution to the traditional problem of interoperability between multivendor OSS applications that are often complex, proprietary, or require custom application development. Embracing new, open technologies such as XML, SOAP, and directory services, the OSS Working Group seeks to create common schema or message formats that will enable application-to-application interoperability across major OSS functional areas. By using the Windows 2000 operating system, ISVs can realize the scalability, reliability, and flexibility needed to develop these new OSS/BSS solutions. The benefit to service providers is broader application choice, reduced cost, and the ability to readily adapt OSS applications to support change and a range of new services. Windows 2000, SQL Server, and BizTalk Server provide enhanced scalability features and extensive XML support, which makes them the ideal core building blocks for service providers deploying next-generation OSS/BSS solutions.

Working closely with carriers and service providers to incorporate their unique needs into OSS/BSS solutions, and increasing its focus on the new open solutions technologies, the OSS Working Group is helping ISVs and others employ a common framework for delivering OSS applications that address new application hosting, DSL, cable, and wireless voice and data services. The OSS Working Group makes the results of its work available to the industry through the BizTalk.Org Web site (http://www.biztalk.org/), a community of standards users with the goal of driving the rapid, consistent adoption of XML to enable electronic commerce and application integration. Solutions will also leverage Directory Services as a means to model common subscriber profiles, configuration, and policy data, which lets companies focus on the needs of their customers rather than on the internal effort of programming. Such loosely coupled business applications using XML and Active Directory™ are the most economic way for developers to work together on the same project using different languages and tools.

The OSS Working Group brings together vendors representing all telecommunications management network functional areas to deliver best-of-breed solutions that can be quickly and easily integrated with each other or with legacy systems to create complete solutions for service providers.

The OSS Working Group is part of the OSS/BSS industry initiative within Microsoft's Windows Telecommunications Alliance, an industry program designed to support network equipment providers and ISVs currently engaged in developing Microsoft Windows operating system-based telecommunications solutions for the corporate and service provider markets.

More information, including details about how to participate in the OSS Working Group, is available at http://www.microsoft.com/serviceproviders/solutions/osswg.asp or by e-mail at osswg@microsoft.com.

Microsoft XML Partners

Microsoft is partnering with a diverse group of organizations to create a powerful, open foundation for OSS/BSS solutions. Members of the OSS Working Group include
	· Abatis Systems Corp.

· Andersen Consulting

· BusinessEdge Solutions Inc.

· Ceon Corp.

· CoManage Corp.

· Compaq Computer Corp.

· Deloitte Consulting LLC

· DST-Innovis Inc.

· eQuest Technologies Inc.

· Group1 Software Inc.

· Intertech Management Group Inc.

· MetaSolv Software Inc.

· Minacom International Inc.

· Portal Software Inc.

· TeleKnowledge Inc.

· TransPoint LLC

· Vertel Corp.

· Vroom Technologies Inc.
· Xevo Corp
	· AI Metrix Inc.

· Arkipelago Inc.

· BroadJump Inc.

· Clarify Inc.

· CommTech Corp.

· Daleen Technologies Inc.

· DevelopMentor

· Eftia OSS Solutions Inc.

· Exceleron Software

· Info Directions Inc.

· Mantiss Information Corp.

· Microsoft

· Palm Associates Inc.

· Step 9 Software Corp.

· Telution LLC

· USHA Communications Technology

· Visual Networks Inc.

· XACCT Technologies Inc.

Summary

Microsoft technology, combined with XML and SOAP, provides the ideal platform for carriers, ASPs, and other service providers to use for OSS/BSS solutions. The OSS Working Group assures that XML-based solutions will be interoperable, which allows an array of ISVs and IHVs to participate in the market, creating the opportunity for carriers and service providers to assemble best-of-breed solutions.

XML and the OSS Working Group provide a standard, something the industry has long needed. The absence of a universal standard has left carriers hard pressed to assemble a set of applications from different vendors that would work together. Instead users generally ended up choosing all their products from a single vendor, which essentially locked them into a proprietary solution.

The inability to easily interoperate between proprietary systems has become an even greater roadblock with the rise of distributed computing. OSS/BSS solutions more than ever require the back office of one company to seamlessly communicate with the back office of another company, something that closed legacy systems can’t easily support.

Using XML and SOAP as standards for developing OSS/BSS solutions, vendors ensure that the various operations technologies can effectively communicate with one another. This in turn means that when service providers shop for an OSS/BSS solution, their ability to select a system they know interoperates with other key systems makes the process of hosting much more effective.

Microsoft technology, including Windows 2000, SQL Server 2000, and BizTalk Server 2000, provides the ideal platform for developing and deploying XML-based next-generation OSS/BSS solutions.
For More Information

For information on the OSS Working Group and BizTalk, see http://www.biztalk.org/.
For information on the Microsoft OSS working group, see http://www.microsoft.com/serviceproviders/oss_bss/default.asp.
For information on the Microsoft Windows Telecom Alliance, see http://www.microsoft.com/serviceproviders/windowsta.
For information on IPDR, see http://www.ipdr.org.
For an XML OSS tutorial, see http://www.telossource.com/tsu/xml.pdf.
PAGE

_931945241.wmf

