
[image: image1.wmf]Network Load Balancing

[image: image2.wmf]Agenda

n

Architecture

n

Deployment Issues

l

Infrastructure

l

Management Considerations

l

Applications

n

Troubleshooting, Tools, API’s, SDK’s, and other

resources

What was called the Windows® Load Balancing Service in Windows NT® 4.0 is now known as Network Load Balancing in Microsoft® Windows 2000 Advanced Server and Windows 2000 Datacenter Server.

This module provides an overview of the Network Load Balancing architecture, explores some deployment issues, and wraps up by pointing out some tips to help you in your deployment of Network Load Balancing.

[image: image3.wmf]n

Windows NT 4.0, Enterprise Edition,

IIS 4.0, WLBS, SQL Server

™

6.5/7.0, DCOM

n

Web hosts: 30 NLB

-

clustered 2

-

way Xeon

n

Back End: four 2

-

node server clusters (4

-

way

Xeon

)

n

Availability for massive online classified

advertisement hosting

n

Efficient use of network capacity

n

99.7% annual uptime

n

Fully distributed Web hosting

n

Load

-

tested at 1M 3

-

page ads

Solution

Requirement

Benefit

Internet Service Provider

NLB Usage Scenario

To give you an idea of what Network Load Balancing (NLB) can do for Internet service providers, consider the real-life example of the service provider UIT, which runs Network Load Balancing on Windows NT 4.0 Enterprise Edition with 30 clustered hosts, each of them two-way Zeon machines.

The question that always arises is, Does it really scale? And the answer is, yes, it really does scale. Network Load Balancing is designed to scale to 32 hosts, and this example shows an ISP with a 30-way, 30-host cluster.

[image: image4.wmf]Business

-

logic:

shopping cart app

Web server farm

Front

-

End Cluster

Serving up Web pages/content

App health monitoring tool

Identical copies of Web pages

Staging server w/ replication

Content staging server

—

non

-

production, use CRS

CLB

Router Server

(clustered)

Middle

-

tier Cluster

Cluster Svc for redundant routers

Shopping cart application

(COM

-

based)

SQL Server database

Back

-

End Cluster

Database and file shares

Shared FibreChannel storage

4

-

node option with Datacenter

Server

A Bit More Graphical View…

What’s more, UIT has a multitiered, three-way clustering implementation. This diagram shows how a request moves through the middle-tier business logic and then to the back-end database. (In a typical two-way clustering solution in Windows 2000, the business logic shown in this diagram on the middle tier would be placed on the back-end or the front-end cluster.) The load balancing component shown in this diagram, COM+ load balancing, has been moved into the App Center product, so it’s not part of Windows 2000 Advanced Server.

Microsoft has discovered that customers prefer to have Network Load Balancing functionality in multiple tiers, not just the back-end tier, so that they can manage each tier separately. In all likelihood, Microsoft will continue to implement clustering in multiple tiers, because Network Load Balancing can’t do what Microsoft Cluster Service does and Cluster Service can’t do what NLB does. The technology for back-end clustering is designed for managing high availability of data, whereas NLB in the front end helps ensures high availability of front-end services, such as the Web service. In this way, they complement each other nicely: While Network Load Balancing scales out across a set of hosts, the back end, Cluster Service cluster provides high availability and failover for the database.

Note: This diagram also points to an important deployment issue that arises when you’re running Network Load Balancing on every host in the cluster. If the front end is running a Web service, for example, on each host, any updates to shared data must be properly synchronized to an inventory database. Because Network Load Balancing doesn’t know what’s running at the application layer, it can’t handle that synchronization. Therefore, when you roll out a clustered solution with Network Load Balancing, you must provide for any synchronization between the instances of the front-end service. Typically, such synchronization is handled by pushing the front-end service to the business logic (running on the front end or in the middle tier), which in turn eventually synchronizes updates to a back-end database.

The key point to remember is that the role of Network Load Balancing is to “spray” connections across the host and the cluster, not to handle synchronization and other application management issues.

[image: image5.wmf]Overview

Network Load Balancing

n

Scales IP services across up to 32 nodes

n

Fully

-

distributed, installs on each node

l

No single point of failure

l

No performance bottleneck

n

Clients use one IP address to access cluster

n

Supports multi

-

homed Web servers

n

Supports wide variety of IP

-

based services

l

Web services (IIS, FTP)

l

Virtual Private Networking (VPN)

l

Streaming Media (WMT)

l

Proxy services

n

Does not require specialized hardware

n

Full remote control from any Windows 2000 system

(encrypted password access)

Now that you’ve seen the typical situations in which Network Load Balancing is implemented, it’s time to move on to the features of Network Load Balancing and what strengths they bring to a deployment:

· First of all, the purpose of Network Load Balancing is to scale IP services across as many as 32 nodes, or hosts, in a cluster.

· Microsoft chose a fully distributed implementation for NLB. The primary advantage of a fully distributed software solution is that it runs on every host in parallel, which means that you could lose all but one of the hosts and the cluster will continue to run.

Another advantage is that this kind of implementation does not introduce an a priori performance bottleneck. Network-style solutions tend to use a hardware dispatcher or employ one host as the software dispatcher. Because any kind of centralized dispatcher possesses a performance limitation, it presents a bottleneck.

NLB, on the other hand, leverages the ability of switches and hubs to deliver traffic in parallel to all the clustered hosts. By running in parallel and then filtering out unwanted traffic on any given host, Network Load Balancing can deliver much higher throughput than any centralized solution can, given equivalent technology.

· Network Load Balancing enables you to assign a virtual IP address to the cluster, which presents a single system image of the cluster to the clients. Similarly, Network Load Balancing also supports multiple home Web servers, so that even though the cluster has a single virtual IP address, you can assign multiple virtual IP addresses to it.

This feature is implemented using dedicated and virtual IP addresses. For a dedicated IP address, you tell NLB the IP address for a particular host, and you load the TCP/IP properties for that host. Whenever NLB sees traffic for that address, it sends the traffic on up the stack. Network Load Balancing then assumes that any other address is a virtual IP address and balances the load according to the load balancing policy that you establish.

· Although primarily for Web services, NLB also supports virtual private networking (VPN), streaming media in the form of Windows Media™ technology, and proxy services. Microsoft also supports NLB for use with the Microsoft Terminal Services component built into Windows 2000 Server.

· Another advantage gained from Network Load Balancing being a fully distributed software solution is that it doesn’t require any specialized hardware.

· Remote control enables you to start and stop individual hosts or the cluster as a whole from any system running Windows 2000 Advanced Server or Windows 2000 Datacenter Server. You can also enable and disable port rules, which describe the load-balancing policy on a per-port basis.

[image: image6.wmf]n

Integrated with Windows 2000 Networking Architecture

l

Standard part of install/setup process

n

Updated setup and administration user interface

n

Unattended install support

n

No reboots necessary

n

Backwards compatible with Windows NT

®

4.0

cluster nodes

Enhancements for Windows 2000

Network Load Balancing

While Network Load Balancing is a mature technology, Microsoft has made some significant enhancements to it in the Windows 2000 operating system:

· First of all, it’s been integrated with the Windows 2000 networking architecture. As a result, it is easier to use and set up than it was under Windows NT.

One of the key improvements is that Network Load Balancing no longer appears as a virtual NIC in a driver, but rather as an optional service to a LAN connection. In Windows 2000 Advanced Server or Windows 2000 Datacenter Server, when you bring up the properties for a LAN connection, you’ll see a check box for Network Load Balancing. It’s already installed; you just have to enable it and set the properties for it.

Note: In Windows 2000, Setup doesn’t prompt you to make sure that you’ve updated the TCP/IP properties. For example, in order for the Web server to respond, the IP addresses have to be loaded in TCP/IP, independent of NLB.

· Support for unattended installation has been added. The key change is that you no longer have to reboot when you change parameters. For example, now if you change the cluster IP address, which changes the MAC (media access control) address, you don’t have to reboot. Instead, the NIC driver is reloaded, there’s a 15- to 20-second delay, and then you’re running again.

· Finally, NLB is fully backward compatible with Windows Load Balancing Service in Windows NT. Therefore, you can run mixed clusters, as well as do rolling upgrades to bring a Windows 2000–based cluster up from a Windows NT–based cluster.

[image: image7.wmf]NLB Network Architecture

n

NLB runs as a filter on every cluster host:

n

Advantages: no central bottleneck, N

-

way

failover

Server

Application

NLB Driver

Cluster Host

NIC Driver

TCP/IP

Win 2000 Kernel

NIC

Server

Application

NLB Driver

Cluster Host

NIC Driver

TCP/IP

Win 2000 Kernel

NIC

.3

.1

.3

.2

VIP

DIP

MAC

A

A

As this diagram of an NLB implementation indicates, Network Load Balancing is an intermediate driver above the NIC driver and below TCP/IP. As you can see, each of the two hosts has an individual, dedicated IP (or “DIP”), shown here as .1 and .2. The two hosts share a common, virtual IP (or “VIP”) of .3.

By default, Network Load Balancing runs in Unicast mode. In Unicast mode, the MAC address is set to the same value on both hosts, shown here as A. In this way, packets are delivered in parallel, and then Network Load Balancing filters out the packets that are not intended for that particular host.

[image: image8.wmf]Internet/Intranet

Clients

Dedicated IP: 1.1.1.5

Virtual IP: 1.1.1.1

Dedicated IP: 1.1.1.2

Virtual IP: 1.1.1.1

Dedicated IP: 1.1.1.3

Virtual IP: 1.1.1.1

Dedicated IP: 1.1.1.4

Virtual IP: 1.1.1.1

Client TCP request #1

Accept? No

Accept? No

Accept? No

Accept? Yes

Client TCP request #2

Accept? No

Accept? Yes

Accept? No

Accept? No

n

Virtual IP for entire cluster +

dedicated

IPs

n

Algorithm at each node applies port

rules + convergence results to drop

or accept request

n

With no affinity set, each subsequent

client request is also load balanced

How NLB Works

This diagram gives a high-level picture of how Network Load Balancing works. In short, traffic is sent to all the hosts, but only one host decides to pick it up.

The process uses something called hashing (also called statistical mapping). Hashing looks at the source IP and source port and then converts them to a host ID. All the hosts perform that hash in parallel. The host ID that matches a particular host will accept the packet, while the others drop it. Because every host is assigned a unique host priority (1, 2, 3, 4, and so on), you can actually identify particular hosts through remote control. This unique host priority also establishes the failover priority for traffic that you don’t want to load balance.

To illustrate an instance of load balancing, imagine that you want to load balance Port 80. By default, all the ports would be load balanced, but you can constrain that to just Port 80. Then traffic for any other port will go to the host with the highest priority (which is indicated by the lowest number, of course). In the diagram above, host one, at the top, would take all the traffic for SMTP, for example, and if host one went down, host two would take it.

Note: In Windows 2000 Server, the default load balancing ports have been changed to 0 to 65535 (it had been 1-2 in Windows NT). Therefore, when you do a rolling upgrade, be sure that you make the port rules the same for all hosts.

The diagram also touches on affinity modes, which are covered in more detail later in this module. This example shows how, with no affinity set, each client request is load balanced, in that it might be picked up by any host.

The statistical mapping of client IP addresses and IP ports to hosts results in a very even load balance; a good figure is to have all your load-balanced servers running the same load, ±5 percent. But in addition to an even load, you also need a very fast, very efficient load-balancing algorithm so that you can maintain high throughput. Network Load Balancing meets these requirements by precisely sending a particular client to a particular host.

And the mechanism that Network Load Balancing uses to determine which host to send traffic to is the hashing algorithm mentioned above. This algorithm contains state information from the history of the cluster, referred to as convergences.

[image: image9.wmf]Internet/Intranet

Clients

Client TCP requests

n

Once/second heartbeat broadcast

n

Uses same NIC as incoming traffic

n

Heartbeat uses minimal bandwidth

25%

25%

25%

25%

Heartbeat

NLB Failure Recovery/Convergence

To understand convergence and failure recovery, you first have to know that once a second, every host broadcasts a heartbeat message conveying the state of that host, the state of its logic, and its port rule policy. The other hosts examine these messages to verify a consistent membership of the cluster.

As you can see, the LAN resources that the heartbeats occupies is very small—in fact, measured in the tens of kilometers—because the broadcast is only one packet per second per host. It’s an n-fold algorithm, not an n2 algorithm.

[image: image10.wmf]Internet/Intranet

Clients

Client TCP requests

n

5 missed in a row (5 seconds) cluster

initiates “convergence”

n

Within 3 seconds cluster redistributes workload

according to port rules and algorithm

33%

33%

33%

Heartbeat

NLB Failure Recovery/Convergence

If, over a five-second period, any host recognizes that another host has dropped out or a new member has been added, that host will enter the convergence process. In that process, the host will double the rate of heartbeat messages. During the convergence process, the other hosts continue to respond to client requests.

However, the clients that would have been targeted to the failed host do not see any response. Their existing connections die, and any new connections they produce that map to that failed host are not serviced. Instead, within a 10-second period, these clients are remapped to the other hosts.

In short, within a 10-second period, a failover can be achieved, or a newly added host will be recognized by the cluster.

It’s important to understand that the cluster doesn’t stop servicing traffic during the convergence process. For example, say you add a new Windows 2000–based host to an existing Windows NT–based cluster. Because you forgot to change the default port rules, that new port will be inconsistent with the Windows NT–based cluster (see the note on page 9). In this case, convergence will just continue until you pull that inconsistent host out of the cluster and fix its port rules. And while this may seem odd, it’s the only way to ensure consistent load balancing across the hosts.

[image: image11.wmf]Internet/Intranet

Clients

Dedicated IP: 1.1.1.5

Virtual IP: 1.1.1.1

Dedicated IP: 1.1.1.2

Virtual IP: 1.1.1.1

Dedicated IP: 1.1.1.3

Virtual IP: 1.1.1.1

Dedicated IP: 1.1.1.4

Virtual IP: 1.1.1.1

Client TCP session

Accept? No

Accept? No

Accept? No

Accept? Yes

n

“Single” or “Class C” Affinity set

n

Initial client request is distributed

according to standard rules + algorithm

n

Each subsequent client request

accepted by the same server by client IP

address

NLB Session Support

As mentioned previously, Network Load Balancing session support utilizes something called client affinity. You can establish two types of client affinity: Single or Class C. These two types help maintain client sessions. (For the purpose of this discussion, a session is defined as a set of connections that are part of one logical session with the client.)

Client affinity works by having Network Load Balancing look at only the source IP address and not the source port information. Therefore, a client with a given IP address will always map to a particular cluster host, and any session state that’s maintained in that cluster host will persist across those connections. The client won’t suddenly be mapped to another host at connection boundaries.

With Single affinity, Network Load Balancing goes a step further and pins that client to a particular host without setting a timeout limit; this mapping is in effect until the cluster set changes. The trouble with single affinity is that in a large site with multiple proxy servers, a client can appear to come from different IP addresses. To address this, Network Load Balancing also includes Class C affinity, which specifies that all clients within a given Class C address space will map to a given cluster host.

Of course, Class C affinity doesn’t address situations in which proxy servers are placed across Class C address spaces. Although Microsoft is working on this problem, for the time being the only solution is to handle it at the ASP level.

[image: image12.wmf]NLB Implementation

n

Strengths

l

Simplicity of installation and deployment

l

Minimal infrastructure impact

l

Provides serviceability, availability, and scalability

l

Integration within the host OS

n

Weaknesses

l

Creates infrastructure issues (routers, switch flooding)

l

Lacks centralized remote administration

l

Lacks application monitoring

At this point, the primary strengths of Network Load Balancing are apparent: It’s very simple, very lean, and very fast. The parallel packet delivery method results in high speed, and tight integration with the operating system makes Network Load Balancing extremely reliable and easy to deploy.

It does have some weaknesses, however, which are important to understand in order to minimize their impact:

· The primary weakness is that this parallel delivery method pushes the burden of traffic delivery to the switch, which can contribute to switch flooding.

· Network Load Balancing has some incompatibility issues in Multicast mode, which will be discussed in more detail later. For this reason, Unicast is the default mode.

· Finally, Network Load Balancing does not implement application monitoring. This is actually by design; Microsoft believes that the only way to understand whether an application is running correctly is to write a monitor that understands the application’s semantics. Therefore, this release of NLB employs third-party application monitors.

To illustrate the rationale behind this decision, imagine you have an application monitor running on a remote load balancer that just hits a Web server to see if elicits a response. Even if that application monitor gets a 404 Page Not Found error, the Web server will continue to allow traffic to be directed to that Web server, because the monitor doesn’t really understand the error message.

Therefore, NLB does not include application monitoring—not because Microsoft views this function as trivial, but because in order to be effective, the application monitor has to truly understand what “working correctly” means.

[image: image13.wmf]Deployment Considerations

NLB

n

Hardware

l

Heterogeneous hosts OK (no HCL)

l

Ethernet or FDDI

All hosts on one broadcast subnet

Level 2 switch or hub/repeater

l

No SAN required

l

Two

NIC’s

per host preferred:

One NIC for cluster traffic & heartbeats

One NIC for replication / backend access

[image: image14.wmf]Deployment Considerations

NLB

n

Unicast

vs. multicast mode

l

Unicast

mode by default

Eliminates router compatibility issues

Requires two

NIC’s

per host

Needs front end hub to avoid switch flooding

l

Optional multicast mode

Requires static ARP entry in Cisco routers

Allows one NIC per host

Enables VLAN in switch to avoid flooding (IGMP,

GMRP)

Unicast Mode

As mentioned previously, Unicast mode is the default mode. And having Unicast as the default requires you to change the station address. Although this approach eliminates router compatibility issues, it also means that the two hosts within a cluster cannot communicate with each other, which in turn causes the packets to loop back.

Therefore, you need two NICs (network interface cards) per host. Typically this requirement is no problem. Most organizations have this anyway, because they have a front-end Internet and a back-end corporate network.

Multicast Mode

Although Microsoft would prefer to have Multicast mode be the default, an incompatibility with Cisco routers precludes that choice. Because many customers use Cisco routers, we opted to use Unicast mode as the default.

Cisco routers require an ARP (address resolution protocol) entry for every virtual IP address. While Network Load Balancing uses Level 2 Multicast for the delivery of packets, Cisco’s interpretation of the RFCs is that Multicast is for IP Multicast. So, when the router doesn’t see a Multicast IP address, it does not automatically create an ARP entry, and you have to add it.

Once this issue is addressed, the default may switch to Multicast mode, because it allows you to run a single NIC. In the meantime, if you don’t have a Cisco router in front of the cluster, you can use Multicast mode and avoid this so-called single-NIC limitation.

Mode Choice and Switch Flooding

Unicast mode induces switch flooding so that the packets will be delivered. This approach can become a problem if you have multiple clusters on a given switch or if you have other traffic on that same switch. Then the inbound traffic, which is a small but significant percentage of the total, will flood those ports. This flooding can become a serious problem if you change your upstream pipes to gigabit but keep 100-megabit pipes to the host.

This issue can’t be addressed in Unicast mode. In Multicast mode, however, IGMP (Internet Group Management Protocol) and GMRP (Generic Multicast Registration Protocol) can be used. Currently, Microsoft is testing an IGMP solution for programming the switch to avoid flooding. Although there have been no announcements, Microsoft plans to release a solution for switch flooding in the near future.

[image: image15.wmf]Scaling Out Across a Cluster

1300

2800

4000

6000

0

1000

2000

3000

4000

5000

6000

Concurrent Users

1 Server

2 Servers

3 Servers

4 Servers

Concurrent Users vs. Number of Application Servers

(at 1 second avg. per page response time)

1

-

4 Node front

-

end cluster tested by NSTL

—

near linear

scalability

This benchmark diagram shows the linear scalability of a four-way cluster with a large number of clients—about 300—generating a synthetic load.

[image: image16.wmf]CPU Overhead

Web load: GET requests for 10KB static web pages

NLB Filtering Overhead

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0

20.0

40.0

60.0

80.0

100.0

Total Throughput (Mbps)

CPU %

Because Network Load Balancing examines incoming packets and drops them as appropriate, it does consume some CPU overhead. This graph shows that pulling 10-KB static Web pages at 100 megabits a second takes about 4 percent of a 450-MHz CPU—a very small amount of CPU overhead.

By pulling a host out of the cluster and stopping it, you can actually measure the residual CPU, because even though NLB is no longer handling traffic, it’s still filtering and dropping packets. The measurement of this residual CPU usage is the overhead, and this is what, ultimately, would become the scalability bottleneck. For example, if the CPU overhead is approximately 10 percent and the CPU speed increased up to a full gigabit per second, the CPU overhead might creep up to half of one CPU.

At some point, this overhead becomes prohibitive. Therefore, it’s important to understand that the amount of work being done relative to the amount of traffic is what determines how many hosts you need. For example, pulling small, static Web pages, which is a very network-centric load, will rapidly take up CPU capacity with network overhead. For this situation you would need relatively few hosts in a cluster.

On the other hand, a large application server processing (ASP) application doing a lot of work per transaction would rapidly consume CPU resources with the business logic behind that Web server. In this case, you would need many more hosts in the cluster.

In all cases, the amount of overhead is a function of the incoming data rate, not of the number of hosts in the cluster. For that reason, you tune the number of hosts in a cluster independently of the bandwidth, based on the amount of CPU load per request. Therefore, if a particular cluster processes heavy business logic, you might need 15 hosts to handle the incoming data, whereas if the cluster is just pulling static Web pages, you need many fewer hosts to achieve the same rate.

It’s a common misconception that adding hosts to a load-balanced cluster increases the overhead. In fact, overhead for Network Load Balancing is mathematically the same as for all load-balancing solutions. And the overhead of Network Load Balancing is a function of the incoming packet rate, not of how many hosts are in a cluster.

For example, figure that the CPU overhead of one host handling Web traffic at 80 megabits is roughly 3 percent of the CPU resources. You can add 30 more hosts to the cluster, and you will see there’s no change. All the hosts are filtering the same number of packets per second; they’re not even aware that other hosts are dropping the packets. In a sense, the overhead grows because the packet rate increases as the number of hosts grows. However, if you hold the packet rate steady, it doesn’t matter how many hosts you have—the overhead remains the same.

[image: image17.wmf]Troubleshooting Issues

n

Cannot ping virtual/dedicated IP address:

l

IP addresses also must be entered in TCP/IP.

n

Cannot ping another cluster host:

l

No intra

-

cluster communication in

unicast

mode

n

All traffic goes to one host:

l

Missing port rule

l

Switch learned MAC address in

unicast

mode

l

Server

-

side firewall

proxying

client IP addresses

n

Web server fails to respond on one host:

l

Configuration error with multiple instances

n

Load

-

balance is uneven:

l

Testing with few clients; partitioning is statistical

These are the top troubleshooting issues that organizations encounter. Typically, these are configuration issues. For example, a customer couldn’t access the DNS server and thought it was due to Network Load Balancing. As it turned out, the subnet mask was set incorrectly for DNS. There are a lot of these little configuration issues that can appear to be Network Load Balancing problems. If you have a problem, the best thing to do is disable Network Load Balancing and try to repeat the problem. Often the problem has nothing to do with load balancing.

© 2000 Microsoft Corporation. All rights reserved.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Microsoft, Windows, Windows Media, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Windows 2000 Hosting Deployment
16
Network Load Balancing
1

_1013073437.ppt

A Bit More Graphical View…

Business-logic:

shopping cart app

Web server farm

Front-End Cluster

Serving up Web pages/content

App health monitoring tool

Identical copies of Web pages

Staging server w/ replication

Content staging server

—non-production, use CRS

CLB

Router Server

(clustered)

Middle-tier Cluster

Cluster Svc for redundant routers

Shopping cart application

(COM-based)

SQL Server database

Back-End Cluster

Database and file shares

Shared FibreChannel storage

4-node option with Datacenter Server

_1013073439.ppt

Agenda

		Architecture

		Deployment Issues

		Infrastructure

		Management Considerations

		Applications

		Troubleshooting, Tools, API’s, SDK’s, and other resources

Overview			6 min 	3 slides

Clustering Service architecture	10 min	5 slides

How it works			10 min	5 slides

Deployment issues		10 min	5 slides

Cluster installation		12 min	6 slides

Cluster configuration		15 min	9 slides

Troubleshooting		15 min	9 slides

Q&A			12 min	1 slide

Total			90 min	43

_1013073440.ppt

Network Load Balancing

_1013075548.ppt

CPU Overhead

Web load: GET requests for 10KB static web pages

Chart1

			8.8976

			22.2968

			32.9688

			34.868

			43.28904

			64.55088

			70.10248

CPU Filtering Overhead

Total Throughput (Mbps)

CPU %

NLB Filtering Overhead

1.5

1.85

2.8

2.7

3.05

4.07

4.36

Sheet1

			NLB Bld 2183

																		Host w/0 load

			Clients			Threads			Sockets			Hits/s			CPU%			CPU%			CPU/hit			CPU xfr %			total ovhd			H/s			H/day			KBS/s			KBR/s			TTFB			TTLB			TT			MbpsS			MbpsR			MbpsTotal			R/S Ratio			H/TP ratio

			1			1			1			106.6			14.8			1.5			0.01407			1.5			3			106.5			9,201,600			21.6			1090.6			5.11			6.07			0.96			0.2			8.7			8.9			50.5			12.0

			1			1			5			267.2			31.9			1.9			0.00692			1.8			3.6			266.9			23,060,160			54.2			2732.9			7.28			15.48			8.2			0.4			21.9			22.3			50.4			12.0

			1			2			5			395.1			46.5			2.8			0.00709			4.8			7.6			394.7			34,102,080			80.2			4040.9			10.4			21.08			10.68			0.6			32.3			33.0			50.4			12.0

			1			4			5			417.5			49.9			2.7			0.00647			5.4			8.1			417.4			36,063,360			84.8			4273.7			20.9			40.64			19.74			0.7			34.2			34.9			50.4			12.0

			2			1			5			518.4			59.8			3.1			0.00588			5.7			8.75			518.2			44,772,480			105.2			5305.93			7.53			15.93			8.4			0.8			42.4			43.3			50.4			12.0

			2			2			5			773			87.5			4.1			0.00527			9.0			13.1			772.7			66,761,280			156.96			7911.9			10.8			21.445			10.645			1.3			63.3			64.6			50.4			12.0

			2			4			5			836			95.9			4.4			0.00522			10.5			14.9			839.2			72,506,880			170.47			8592.34			21.09			40.42			19.33			1.4			68.7			70.1			50.4			12.0

																		5.8						15.6						1197.1			103,429,836																		1.9			98.1			100			50.4			12.0

			No NLB															12.9						38.3						2992.8			258,574,590																		4.9			245.1			250			50.4			12.0

			Clients			Threads			Sockets			Hits/s			CPU%									Delta TTFB						H/s						KBS/s			KBR/s			TTFB			TTLB			TT			MbpsS			MbpsR			MbpsTotal

			1			1			1			107.67			11.8									-0.04						106.37						21.61			1089.12			5.15			6.2			1.05			0.2			8.7			8.9

			1			1			5			270.9			28.3									-0.11						271.03						55.05			2775.26			7.39			15.27			7.88			0.4			22.2			22.6

			1			2			5			399.5			38.9									0.15						398.67						80.98			4082.3			10.25			20.87			10.62			0.6			32.7			33.3

			1			4			5			420.6			41.8									0.18						424.71						86.27			4348.4			20.72			40.44			19.72			0.7			34.8			35.5

			2			1			5			531.4			51.05									0.22						531.33						107.92			5440.4			7.305			15.55			8.245			0.9			43.5			44.4

			2			2			5			789.5			74.4									0.315						788.8						160.23			8076.87			10.485			21.07			10.585			1.3			64.6			65.9

			2			4			5			840.4			81									0.275						841.7						171			8528.51			20.815			40.47			19.655			1.4			68.2			69.6

												10K web pages																		419.4						85.2			4294.51			20.95			40.76

												1 host, 450 Mhz CPU																		422.3						85.8			4234			20.68			40.18

												2nd host, 450 Mhz CPU, with load % = 0																		841.7						171			8528.51			20.82			40.47

												For 2 host			45.785

Sheet1

			

CPU Filtering Overhead

Total Throughput (Mbps)

CPU %

NLB Filtering Overhead

Sheet2

			

CPU Transfer Overhead

Total Throughput (Mbps)

CPU %

NLB Transfer Overhead

Sheet3

			

			

NLB Filtering Overhead

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 20.0 40.0 60.0 80.0 100.0

Total Throughput (Mbps)

CPU %

_1013073438.ppt

NLB Usage Scenario

		Windows NT 4.0, Enterprise Edition,

IIS 4.0, WLBS, SQL Server™ 6.5/7.0, DCOM

		Web hosts: 30 NLB-clustered 2-way Xeon

		Back End: four 2-node server clusters (4-way Xeon)

		Availability for massive online classified advertisement hosting

		Efficient use of network capacity

		99.7% annual uptime

		Fully distributed Web hosting

		Load-tested at 1M 3-page ads

Solution

Requirement

Benefit

Internet Service Provider

TomPh:

Bohdan, can you advise what the hell these guys are doing?

Waiting for details from kevin

At a very high level it is described in the following slide

_1013073433.ppt

How NLB Works

Internet/Intranet

Clients

Dedicated IP: 1.1.1.5

Virtual IP: 1.1.1.1

Dedicated IP: 1.1.1.2

Virtual IP: 1.1.1.1

Dedicated IP: 1.1.1.3

Virtual IP: 1.1.1.1

Dedicated IP: 1.1.1.4

Virtual IP: 1.1.1.1

Client TCP request #1

Client TCP request #2

Accept? No

Accept? Yes

Accept? No

Accept? No

		Virtual IP for entire cluster +

dedicated IPs

		Algorithm at each node applies port rules + convergence results to drop or accept request

		With no affinity set, each subsequent client request is also load balanced

Accept? No

Accept? No

Accept? No

Accept? Yes

_1013073435.ppt

Enhancements for Windows 2000

Network Load Balancing

		Integrated with Windows 2000 Networking Architecture

		Standard part of install/setup process

		Updated setup and administration user interface

		Unattended install support

		No reboots necessary

		Backwards compatible with Windows NT® 4.0

cluster nodes

_1013073436.ppt

Overview

Network Load Balancing

		Scales IP services across up to 32 nodes

		Fully-distributed, installs on each node

		No single point of failure

		No performance bottleneck

		Clients use one IP address to access cluster

		Supports multi-homed Web servers

		Supports wide variety of IP-based services

		Web services (IIS, FTP)

		Virtual Private Networking (VPN)

		Streaming Media (WMT)

		Proxy services

		Does not require specialized hardware

		Full remote control from any Windows 2000 system

(encrypted password access)

_1013073434.ppt

NLB Network Architecture

		NLB runs as a filter on every cluster host:

		Advantages: no central bottleneck, N-way failover

Tomph:

Bill has slide detailing role of virtual IP

.3

.1

.3

.2

VIP

DIP

MAC

A

A

Server Application�

Win 2000 Kernel�

NLB Driver�

Server Application�

NLB Driver�

Cluster Host�

NIC Driver�

TCP/IP�

Win 2000 Kernel�

NIC�

�

Cluster Host�

NIC�

NIC Driver�

TCP/IP�

Server

Application

NLB Driver

Cluster Host

NIC Driver

TCP/IP

Win 2000 Kernel

NIC

Server

Application

NLB Driver

Cluster Host

NIC Driver

TCP/IP

Win 2000 Kernel

NIC

_1013073429.ppt

NLB Implementation

		Strengths

		Simplicity of installation and deployment

		Minimal infrastructure impact

		Provides serviceability, availability, and scalability

		Integration within the host OS

		Weaknesses

		Creates infrastructure issues (routers, switch flooding)

		Lacks centralized remote administration

		Lacks application monitoring

_1013073431.ppt

NLB Failure Recovery/Convergence

Internet/Intranet

Clients

Client TCP requests

		5 missed in a row (5 seconds) cluster

initiates “convergence”

		Within 3 seconds cluster redistributes workload according to port rules and algorithm

33%

33%

33%

Heartbeat

_1013073432.ppt

NLB Failure Recovery/Convergence

Internet/Intranet

Clients

Client TCP requests

		Once/second heartbeat broadcast

		Uses same NIC as incoming traffic

		Heartbeat uses minimal bandwidth

25%

25%

25%

25%

Heartbeat

_1013073430.ppt

NLB Session Support

Internet/Intranet

Clients

Dedicated IP: 1.1.1.5

Virtual IP: 1.1.1.1

Dedicated IP: 1.1.1.2

Virtual IP: 1.1.1.1

Dedicated IP: 1.1.1.3

Virtual IP: 1.1.1.1

Dedicated IP: 1.1.1.4

Virtual IP: 1.1.1.1

Client TCP session

		“Single” or “Class C” Affinity set

		Initial client request is distributed according to standard rules + algorithm

		Each subsequent client request accepted by the same server by client IP address

Accept? No

Accept? No

Accept? No

Accept? Yes

_1013073427.ppt

Deployment Considerations

NLB

		Unicast vs. multicast mode

		Unicast mode by default

Eliminates router compatibility issues

Requires two NIC’s per host

Needs front end hub to avoid switch flooding

		Optional multicast mode

Requires static ARP entry in Cisco routers

Allows one NIC per host

Enables VLAN in switch to avoid flooding (IGMP, GMRP)

		

_1013073428.ppt

Deployment Considerations

NLB

		Hardware

		Heterogeneous hosts OK (no HCL)

		Ethernet or FDDI

All hosts on one broadcast subnet

Level 2 switch or hub/repeater

		No SAN required

		Two NIC’s per host preferred:

One NIC for cluster traffic & heartbeats

One NIC for replication / backend access

_1013073426.ppt

Scaling Out Across a Cluster

1-4 Node front-end cluster tested by NSTL—near linear scalability

Chart8

			1 Server

			2 Servers

			3 Servers

			4 Servers

Concurrent Users

Concurrent Users vs. Number of Application Servers
(at 1 second avg. per page response time)

1300

2800

4000

6000

6400_1Server

			

			Number of Virtual Users Tested			200			600			1000			1400			1800			2200			2600

			Active Virtual Users

			Virtual Users with Errors

			Total Iterations

			Total Iterations with Errors

			Hits per second

			Hits per day

			Kilobytes per second

			Transactions per second

			Transactions per day

			25PercentBrowseBuy(Average)			1.3			1.54			2.09			22.97			48.59			63.6			96.27

						0.065			0.077			0.1045			1.1485			2.4295			3.18			4.8135

6400_1Server

			0

			0

			0

			0

			0

			0

			0

Concurrent Users

Avg. Per Page Response Times (sec)

Response Times vs. Users
(1 Application Server)

0

0

0

0

0

0

0

6400_2Servers

			

			Number of Virtual Users Tested			200			600			1000			1800			2600			3200			3600			4400			4800			5200			5600

			Active Virtual Users			8			65			105			185			265			325			365			445			485			525			570

			Virtual Users with Errors			0			0			0			0			0			0			0			0			0			0			0

			Total Iterations			1947			2007			1784			2651			1529			1416			1863			1244			1385			1333			1372

			Total Iterations with Errors			0			0			0			0			0			0			0			0			0			0			0

			Hits per second			70.89			84.85			92.95			90.02			53.37			49.44			47.84			47.49			46.5			46.67			46.64

			Hits per day			6124493			7330691			8031255			7778092			4611586			4271879			4133160			4102760			4017930			4032222			4029942

			Kilobytes per second			267.97			324.34			357.15			350.69			214.99			200.4			194.12			192.96			189.07			189.73			189.68

			Transactions per second			3.54			4.24			4.65			4.5			2.67			2.47			2.39			2.37			2.33			2.33			2.33

			Transactions per day			306224			366534			401563			388905			230579			213594			206658			205138			200896			201611			201497

			25PercentBrowseBuy(Average)			1.4382			1.3515			1.3699			1.9694			14.3044			29.9453			38.7307			61.6729			75.6358			90.2703			103.6091

						0.07191			0.067575			0.068495			0.09847			0.71522			1.497265			1.936535			3.083645			3.78179			4.513515			5.180455

6400_2Servers

			0

			0

			0

			0

			0

			0

			0

			0

			0

			0

			0

Concurrent Users

Avg. Per Page Response Times (secs)

Response Times vs. Users
(2 Application Servers)

0

0

0

0

0

0

0

0

0

0

0

6400_3Servers

			

			Number of Virtual Users Tested			200			1000			2600			4000			5200			5600			6400			6800			7200

			Active Virtual Users			25			105			265			405			525			565			645			685

			Virtual Users with Errors			0			0			0			0			0			0			0			0

			Total Iterations			2436			9			4194			1986			1929			2037			1991			1861

			Total Iterations with Errors			0			0			0			0			0			0			0			0

			Hits per second			80.42			95.06			97.18			68.88			66.33			67.67			65.47			64.7

			Hits per day			6947967			8213285			8396239			5951496			5730643			5846519			5656195			5590438

			Kilobytes per second			305.48			365.32			382.41			278.25			269.19			274.91			266			263.08

			Transactions per second			4.02			4.82			4.86			3.44			3.32			3.38			3.27			3.24

			Transactions per day			347399			416659			419812			297575			286532			292326			282810			279522

			25PercentBrowseBuy(Average)			1.3187			1.3179			2.0759			20.8933			43.7306			49.3599			69.1901			111.6415			126

						0.065935			0.065895			0.103795			1.044665			2.18653			2.467995			3.459505			5.582075

6400_3Servers

			0

			0

			0

			0

			0

			0

			0

			0

Page Response Times (seconds)

Concurrent Users

Response Times

Response Times vs. Users
(3 Application Servers)

0

0

0

0

0

0

0

0

6400_4Servers

			

			Number of Virtual Users Tested			200			1000			2600			4000			5200			5600			6400			6800			7200			7600

			Active Virtual Users

			Virtual Users with Errors

			Total Iterations

			Total Iterations with Errors

			Hits per second

			Hits per day

			Kilobytes per second

			Transactions per second

			Transactions per day

			25PercentBrowseBuy(Average)			1.29			1.43			2.07			6.94			11.1			15.12			26.79			36.4			57.34

						0.0645			0.0715			0.1035			0.347			0.555			0.756			1.3395			1.82			2.867

			Maximum Users - 1 Second Response Time

			1 Server			1300

			2 Servers			2800

			3 Servers			4000

			4 Servers			6000

						Users			wips 1 Server			wips 2 Servers			wips 3 Servers			wips 4 Servers

						200												118.75

						1000												286.58

						2600												607.12

						4000												769.15

						5200												850.32

						5600												880.48

						6400												868.78

						6800												863.98

						7200												862.32

6400_4Servers

			0

			0

			0

			0

			0

			0

			0

			0

			0

			0

Concurrent Users

Avg. Per Page Response Time (secs)

Response Times vs. Users
(4 Application Servers)

0

0

0

0

0

0

0

0

0

0

			0

			0

			0

			0

Concurrent Users

Concurrent Users vs. Number of Application Servers
(at 1 second avg. per page response time)

			0			0			0			0

			0			0			0			0

			0			0			0			0

			0			0			0			0

			0			0			0			0

			0			0			0			0

			0			0			0			0

			0			0			0			0

			0			0			0			0

wips 1 Server

wips 2 Servers

wips 3 Servers

wips 4 Servers

Concurrent Users

wips

Web Interactions Per Second

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

			0

			0

			0

			0

			0

			0

			0

			0

			0

.07 sec/page response time

.1 sec/page response time

.35 sec/page response time

.76 sec/page response time

2.87 sec/page response time

wips 4 Servers

Concurrent Users

wips

Web Interactions Per Second
(4 Application Servers, 1 Database Server)

0

0

0

0

0

0

0

0

0

1300

2800

4000

6000

0

1000

2000

3000

4000

5000

6000

Concurrent Users

1 Server 2 Servers 3 Servers 4 Servers

Concurrent Users vs. Number of Application Servers

(at 1 second avg. per page response time)

_1013073424.ppt

Troubleshooting Issues

		Cannot ping virtual/dedicated IP address:

		IP addresses also must be entered in TCP/IP.

		Cannot ping another cluster host:

		No intra-cluster communication in unicast mode

		All traffic goes to one host:

		Missing port rule

		Switch learned MAC address in unicast mode

		Server-side firewall proxying client IP addresses

		Web server fails to respond on one host:

		Configuration error with multiple instances

		Load-balance is uneven:

		Testing with few clients; partitioning is statistical

