[image: image3.png]'Y




Implementing License Revocation with Windows Media DRM 10

Andrea Pruneda and Jay Loomis

Microsoft Corporation
January 2005
 
Applies to:
   Microsoft® Windows Media® Rights Manager 10 SDK

   Microsoft Windows Media Format 9.5 SDK
 

Summary: Describes two scenarios for removing Windows Media DRM licenses for digital media content from a client computer. This article assumes the reader is familiar with the Windows Media Rights Manager SDK and the Windows Media Format SDK.
Contents

1Introduction

How License Revocation Works
1
Implementing License Revocation
4
Developing a Client Component
4
Component Setup and Configuration
5
Generating the License Revocation Challenge
5
Getting the Revocation Response
6
Removing the Licenses from the License Store
6
Handling the License Revocation Acknowledgement
6
Handling Content Catalog Updates (Scenario 2)
6
Handling Multiple Responses (Scenario 2)
7
Creating a License Revocation Service
7
Issuing Licenses that Can Be Revoked
7
Deactivating a Computer (Scenario 1)
8
Updating the Content Catalog (Scenario 2)
13
Appendix A: the CLicenseRevoker Class
15
Overview of the CLicenseRevoker Class
15
Class Definition
16
Class Implementation
17
For More Information
27



Introduction

License revocation is a feature that digital media content providers can implement to remove digital media licenses from users' computers. License revocation is implemented by using the Microsoft® Windows Media® Rights Manager 10 SDK and the Windows Media Format 9.5 SDK. The most common need for this feature is by a music subscription service that wants to deactivate its service on a subscriber's computer. For example, a subscription service might allow subscribers to register a limited number of computers on which to play digital media content from the service. If the subscriber decides to use a new computer, the subscription service can deactivate the old one by removing all of the licenses for the subscription content. Then the subscriber can register the new computer, and licenses will be issued to it. 
Content providers can also decide to revoke licenses for other reasons. For example, a record label can request the removal of licenses for a particular album. Or, a content provider might want to give users the ability to return purchased content, which would require the removal of the corresponding license.

To implement this feature, the content provider must develop an application or plug-in for the client computer, and a license revocation process on the licensing server. This article describes how license revocation works, and provides sample code illustrating simple end-to-end scenarios that implement license revocation. 

How License Revocation Works
When revoking licenses, the content provider specifies criteria to identify which licenses to delete. For example, if the user wants to deactivate a user's computer, the content provider could revoke all licenses that the service issued to a specific user ID. Or, if a particular album needs to be removed from the content library, the content provider would revoke licenses corresponding to those items. Regardless, the content provider can delete only licenses that were issued by its own licensing server, so a value that identifies this licensing service is always one of the criteria for license revocation. When a license is revoked, only the license is deleted; the content remains on the computer. 
To be able to revoke licenses, the content provider must develop a client-side component using methods provided by the Windows Media® Format 9.5 SDK. The content provider must distribute the component to subscribers when they activate the service. It is the client-side component that actually removes the licenses from the license store, and it must communicate with the content provider's license revocation service during the process. At this time, licenses cannot be revoked from a portable device or on Macintosh computers—this feature is supported only on personal computers. 
The basic process of revoking licenses is as follows, using a subscription scenario as an example. The numbered steps in this list correspond to numbers in the diagram that follows the list.
1. The user signs up with the subscription service. The subscription service gathers customer information, and assigns the user a user ID (UID) to identify the user, and a machine ID (MID) to identify the user's current computer. The content provider then installs a software component on the user's computer. 
2. The user downloads content from the subscription service and receives licenses for these items. Each license contains the following information: 
· KID. The key ID, which is a value that identifies the key that is used to unlock a specific content item. 
· UID. The user ID, which identifies the user. 
· LGPUBKEY. The public key that identifies the licensing server. 

3. The process of license revocation is initiated by the client-side component. For example, the user requests deactivation of her computer through a menu command in a content provider plug-in. 
· The client-side component creates a license revocation challenge, which contains the machine ID, user ID, a transaction ID, and the client computer's public key. The client component then sends this challenge to the license revocation service. 

· The license revocation service, using the information in the challenge, creates a license revocation response that indicates which licenses to delete, and sends it back to the client. This response always contains the LGPUBKEY identifying the licensing server that issued the license, and additional values can further define the revocation criteria. For example, to deactivate a user's computer, a UID is specified. Or to delete a license for a specific item, a KID is specified. 

4. The client component processes this response by searching the license store and deleting the licenses that meet the conditions that were specified in the response. Only licenses that meet all the criteria are deleted. Then, the client component generates a license revocation acknowledgement and sends it back to the license revocation service to confirm that the licenses were deleted.
[image: image2.png]al sign-up and registration

® Component
o
o

s Provir

Signupand
Regitstianpage

Cient_—

Content download and license

acquisition

s Provir

Coment
dounioadpage

e —| O

o [

uo
LoPutke

s Provir

Loensing sever

Request for license revocation

Chatenge Fesponse.

B

Cient_—

s Provir

Revscationpage

Revocation acknowledgement

Cient_—

s Provir

Revscationpage





Implementing License Revocation
This article discusses how to implement license revocation for the following scenarios.
· Scenario 1: Deactivating a computer
In this scenario, we assume that a content provider limits the number of computers on which a user can play subscription content. The user requests deactivation of his current computer, which then initiates the license revocation process. All licenses that were issued to the user by the subscription service are deleted from the current computer. The criteria for deleting licenses are the UID and LGPUBKEY attributes. 

· Scenario 2: Updating the content catalog
In this scenario, the content provider needs to remove certain items from its catalog. For example, a record label discontinues support for an artist and those albums must be removed from the subscription service catalog. The content provider must then revoke the corresponding licenses from all of its subscribers' computers. 
Because it is the client that initiates the license revocation process, the client component must periodically check with the license revocation service to find out whether any licenses need to be revoked. The criteria used for deleting licenses are the KID and LGPUBKEY.
The remainder of this article describes how to implement the two license revocation scenarios, first on the client component and then on the server.
Developing a Client Component
The license revocation process requires that a special component be installed on the client computer. The component can be implemented as part of a custom player application, as a plug-in for Windows Media® Player, or in some other way depending on the licensing scenario.
This article provides an example solution in the form of a C++ class. (This example code is in Appendix A.) Because the example class could be used in any type of component implementation, specific implementation issues are not discussed.

The main tasks required in the implementation of the client component of license revocation are:

5. Create a license revocation challenge.
6. Get the license revocation response message from the server, parsing multiple responses if needed.
7. Remove the licenses from the license store.

8. Generate an acknowledgement to send to the server.

The client component needs to communicate with the license revocation service's Web site. The specific techniques used to perform this communication are not described in this article, although the example code for both the client and server assumes an HTTP form post. You can use whatever networking solution you prefer.
This section describes how to make your code perform the four client tasks for scenario 1, deactivating a computer, and for scenario 2, updating the content catalog. All the subtopics in this client section apply to both scenarios except the last two topics, which are identified in their topic titles as being only for scenario 2.
Component Setup and Configuration

The following tasks must be performed on the client computer when the user signs up for the subscription service:

· Install the client component and prepare it for use. The specific steps required for installation will vary depending on the type of component.
· Securely store the subscriber information locally. The required information includes the user ID and the machine ID, both of which are determined by the service. You can store this information however you like. For example, you could create an encrypted value in the registry.

· Store the relevant server and Web page information locally. To support both scenarios described in this article, you should store the paths for the machine deactivation page, the catalog update page, and the acknowledgement page. This information can be stored in the same place as the subscriber information or can be separate, as it applies to all users.
Generating the License Revocation Challenge

The license revocation challenge is created by the DRM components of the Windows Media Format SDK when you call the IWMLicenseRevocationAgent::GetLRBChallenge method. The ProcessChallenge method of the example class shows how to use GetLRBChallenge. (See Appendix A.)
The GetLRBChallenge method requires the machine ID that was generated when the user registered with the subscription service. In addition, you must provide the user ID in a variable referenced by the pChallenge parameter. Any values can be used for machine ID and user ID, but you should convert non-string values to strings before passing them to GetLRBChallenge.
The pChallenge parameter can include other information, such as the key IDs of specific licenses to revoke. To simplify the extraction of values from the challenge data on the server side, you should include data as name-value pairs. For example, pass user ID as "UID=<user ID>" instead of passing the user ID by itself.
Like many methods in the Windows Media Format SDK, GetLRBChallenge should be called twice. On the first call, pass NULL for the pChallengeOutput parameter. The method will set the value of pdwChallengeOutputLength to the number of bytes required to hold the challenge output. This call differs from most calls to methods that return buffer sizes in the Windows Media Format SDK in the following ways:
· The HRESULT value returned is not S_OK. Instead, the method returns 0x8007007A, which is not a value that is defined in any of the public headers of the SDK. The easiest way to handle this return value is to include the following definition in a header file, as it is in the CLicenseRevoker.h file:

// Definition for the error code for insufficient buffer.
#define DRM_E_BUFFERTOOSMALL (0x8007007AL)
You can then check the return value against the constant, DRM_E_BUFFERTOOSMALL, in your logic.
· The value set in pdwChallengeOutputLength does not include a the terminating NULL character. Even though pChallengeOutput is a BYTE pointer, the data returned is an ASCII string. You do not need to create the buffer with room for the terminating NULL, but being able to treat the challenge as a standard string will make processing the challenge easier. The ProcessChallenge method implementation creates a buffer big enough to include the terminating NULL in the challenge string.
Getting the Revocation Response
The revocation challenge that is returned in the pChallengeOutput parameter of the GetLRBChallenge method must be sent to the revocation service. The example class uses a form post, which requires that the challenge be a named value. The ProcessChallenge method of the example class creates a string to send to the server that begins with "lrchall=" and ends with the challenge output.

You can use whatever networking techniques meet your needs. The code that prepares the data and sends it to the Web page on the server is not included in the example class, as networking operations are beyond the scope of this article.

Whatever technique you use to pass the challenge to the server, you must retrieve the signed response before you can continue the revocation process.
Removing the Licenses from the License Store

The objects of the Windows Media Format SDK do not give you direct access to the license store. To revoke the licenses, you must pass the signed response retrieved from the server to the IWMLicenseRevocationAgent::ProcessLRB method. The RevokeLicenses method of the example class demonstrates how to perform this task.
You must make two calls to the ProcessLRB method. The first call gets the size of the acknowledgement, and the second call gets the acknowledgement. The first call has the same peculiarities that are noted for the GetLRBChallenge method in the Generating the License Revocation Challenge section of this article.
If the ProcessLRB method returns a success code, then the licenses are removed from the license store and an acknowledgement is generated.

Handling the License Revocation Acknowledgement

The IWMLicenseRevocationAgent::ProcessLRB method generates an acknowledgement message that you must send to the license revocation service. Use whatever networking code that you are using to communicate with the service to send the acknowledgement.
When the license revocation service receives the acknowledgement, it should make updates to its license database to reflect the revocation. The Windows Media Rights Manager SDK does not provide any code to manage license and user databases on a server. If you are communicating with the service by using a form post, the acknowledgement Web page will return a response. No specific acknowledgement response is defined by the Windows Media Rights Manager 10 SDK, so a custom response must be defined so that the client component can check it.
You must decide what your client component does if there is a problem processing the acknowledgement on the server. By the time an acknowledgement has been created, the licenses are already revoked, so you cannot cancel the revocation process. Depending on the implementation of the license revocation service, you may want to resend the acknowledgement, or log the failure in a local file, or ignore the response entirely.

Handling Content Catalog Updates (Scenario 2)
The first step in implementing scenario 2 is to check with the license revocation service to determine whether any licenses need to be revoked. The client component should perform this check regularly. It is recommended that the check be made when the client component starts.
You can implement the catalog update check however you like between the service and the client component. The example class and the example service Web pages implement the check as a separate license revocation challenge page. (See Appendix A)The client creates a challenge just as it does for computer deactivation, but sends it to the content catalog update page. The response sent by the page is set to "None" if there are no catalog deletions.

The example class checks for a response of "None" as part of the ParseResponse method.
Handling Multiple Responses (Scenario 2)

Depending on your implementation of content catalog update checking, the server might provide several license revocation responses for a single challenge. Each individual response is an instruction to revoke a single license by key ID.
The license revocation service must combine the license revocation responses into a single response to send to the client. The easiest way to do this is to choose a delimiting character not used in the response string. The license revocation response is a base-64-encoded string except that the asterisk (*) is used instead of the plus sign (+) and the exclamation mark (!) is used instead of the slash (/).
In the example, a dollar sign ($) character is used as a delimiter. Every response from the content catalog update Web page is prefixed with a dollar sign and then concatenated with the other responses (if any). The ParseResponse method of the example class parses the response data into multiple license revocation responses.

If more than one license revocation response is sent, each must be passed to IWMLicenseRevocationAgent::ProcessLRB individually. An acknowledgement for each processed response must also be sent to the server individually.

Creating a License Revocation Service

The Windows Media® Rights Manager 10 SDK, which requires Microsoft Windows® Server 2003, is used to create the license revocation service. The main tasks in setting up the license revocation service are: 

9. Set up your license acquisition process to issue licenses that contain the information that is required for license revocation.
10. Set up a process that receives a license revocation challenge and returns a response indicating which licenses to revoke.
11. Set up a process that receives a license revocation acknowledgement.

The license revocation process also involves database management, the nature of which depends on your business model, and so is referred to only at a high level. 

This section describes how to perform these tasks for the scenarios described earlier. 

Issuing Licenses that Can Be Revoked

For a license to be revoked, it must contain certain information. Licenses can be revoked based on the following criteria: 
· LGPUBKEY. The public key that identifies the licensing server. This value is required.
Before issuing licenses, the license issuer must generate a public-private key pair for license revocation. The public key is included in licenses to identify its licensing server, which ensures that a subscription service can revoke only the licenses it has issued. You can use the WMRMKeys.GenerateSigningKeys method to generate this public-private key pair. 

Then, when issuing licenses, add the licensing server's revocation public key to the license by using the following attribute: 

WMRMLicGen.Attribute("LGPUBKEY") = YourLicenseRevocationPublicKey
Using Windows Media Rights Manager 10 SDK is the only way you can revoke licenses. If a license was issued by an earlier version of Windows Media Rights Manager, it can be revoked only if it contains the LGPUBKEY attribute.
· KID. The key ID, which is a value that identifies the key that is used to unlock a specific content item. This value is already included in all licenses.
· UID. The user ID, which identifies the user. When a user visits the subscription service Web site, she should be authenticated by her user ID. Then, use the following attribute to include the user ID in the licenses you issue to that user: 

WMRMLicGen.Attribute("UID") = UserID
When the content provider revokes licenses, one or more of the preceding three values are specified, determining which licenses to revoke. For example, to revoke one particular license, the LGPUBKEY and KID would be specified. To revoke all licenses issued by the content provider, only the LGPUBKEY would be specified. 
Note   The AllowBackupRestore right should not be enabled in licenses. If users were allowed to back up their licenses, the licenses could be restored after being revoked.
Deactivating a Computer (Scenario 1)
In this scenario, the user initiates computer deactivation, for instance by a menu command in the client component. To deactivate a user’s computer, all licenses issued by the subscription service to that user are revoked. Deactivating a computer requires the following steps:
12. The client component sends a license revocation challenge to the license revocation service.
13. Use the WMRMLicenseRevocationChallenge object to retrieve the information from the challenge. 

First, use the Initialize method to set the challenge information in the object. 
Then, use the following methods to retrieve information: 
· GetMachineId. The machine ID was created by the subscription service when the computer was activated.
· GetTransactionId. A unique transaction ID is created by the client component for each license revocation challenge. Use this value to track the progress of the license revocation process in your database. 
· GetMachinePublicKey. The client’s public key must be saved during the license revocation process because it will be used later to verify the signature on the license revocation acknowledgement.
· GetCustomData. This base64-encoded string can contain any data, but should at least contain the user ID. This string may contain additional information, depending on the business model of the subscription service.
14. Use the WMRMLicenseRevocationResponse object to create the license revocation response. This response contains the criteria for deleting licenses on the client. For the scenario of deactivating a computer, all licenses issued to the user by the subscription service's licensing server should be deleted, based on the following criteria: 
· The user ID, which is set in the CustomData property. (This property does not accept name-value pairs; the only valid value is the value of the UID).
· The license server's revocation public key, which is set in the RevocationPublicKey property.
Sign and generate the license revocation response by using the GenerateSignedResponse method. The license revocation response is signed with the license server's revocation private key and is encrypted with the client's public key.

15. Send the license revocation response to the client, which decrypts it using its own private key, and verifies the signature by using the license revocation public key. 
16. The client component deletes the licenses that meet the conditions specified in the license revocation response and sends back an acknowledgement. Use the WMRMLicenseRevocationAcknowledger object to process the information. 

· Use the Acknowledgement property to retrieve the acknowledgement string. 

· Use the GetTransactionID method to retrieve the transaction ID. 

· Use the Verify method with the client's public key to verify the signature. 

After you have verified that the license revocation process has been completed, you can use the transaction ID to perform your database cleanup and to update the records for the user. 
The following Visual Basic® Scripting Edition (VBScript) code is an example of the ASP page that receives a license revocation challenge from a client and returns a license revocation response. 

<%@ LANGUAGE="VBScript"%>
<%
Response.Buffer = True
Response.Expires = 0
Do
    On Error Resume Next
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Declare variables.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    Dim LSPubkey           ' Revocation public key
    Dim LSPrivkey          ' Revocation private key

    Dim B64Standard        ' The 64 characters used for Base64 encoding

    Dim ClientPKFile       ' File where the client's public key is stored

    Dim LRChall            ' License revocation challenge from the client

    Dim LRChallString      ' License revocation challenge string

    Dim LRChallengeObj     ' WMRMLicenseRevocationChallenge object

    Dim ClientMachineID    ' Machine ID
    Dim ChallTransID       ' Transaction ID sent in the challenge

    Dim ClientPubkey       ' Public key of the client computer

    Dim szData             ' Base64-encoded custom data string

    Dim i                  ' Counter

    Dim j                  ' Counter

    Dim c                  ' Variable used for the base64 decoding process

    Dim nValue             ' Variable used for the base64 decoding process

    Dim index              ' Variable used for the base64 decoding process

    Dim szDecoded          ' Variable used for the base64 decoding process

    Dim cc                 ' Variable used for the base64 decoding process

    Dim B64Decode          ' Variable used for the base64 decoding process

    Dim CustomDataString   ' Custom data included by the client plug-in

    Dim LRResponseObj      ' WMRMLicenseRevocationResponse object

    Dim CustomDataArray    ' Array to hold the custom data

    Dim CustomDataItem     ' Counter

    Dim UIDValue           ' User ID
    Dim LRResponseString   ' License revocation response string

    Dim FileSysObj         ' File system object

    Dim FileObj            ' File object for the client public key file
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Set variables.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    LSPubkey  = "<Replace this with the licensing server’s public key>"
    LSPrivkey = "<Replace this with the licensing server’s private key>"
    B64Standard = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' The client public key must be saved. In actual practice, you might

    ' save this value to a database, but in this example, the public

    ' key is saved to a file. 
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ClientPKFile = "<Replace this with a path and file name of a text file>"
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Get the challenge from the client.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    LRChallString = Request.Form("LRChall")
        If (Err.Number <> 0) Then Exit Do
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Set the license revocation challenge into the

    ' WMRMLicenseRevocationChallenge object. Retrieve the

    ' client computer ID, public key, transaction ID, and custom data.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    Set LRChallengeObj = Server.CreateObject("WMRMObjs.WMRMLicenseRevocationChallenge")
        If (Err.Number <> 0) Then Exit Do
    Call LRChallengeObj.Initialize(LRChallString)
        If (Err.Number <> 0) Then Exit Do
    ClientMachineID = LRChallengeObj.GetMachineId
        If (Err.Number <> 0) Then Exit Do
    ChallTransID = LRChallengeObj.GetTransactionId
        If (Err.Number <> 0) Then Exit Do
    ClientPubkey = LRChallengeObj.GetMachinePublicKey
        If (Err.Number <> 0) Then Exit Do
    szData = LRChallengeObj.GetCustomData()
        If (Err.Number <> 0) Then Exit Do
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Decode the base64-encoded string, szData.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    For i = 1 To Len(szData) Step 4
        nValue = 0
        For j = 0 To 3
            c = mid(szData, i+j, 1)
            If c = "=" then
                nValue = nValue \ 4
            Else
                index = InStr(B64Standard, c)-1
                nValue = nValue*64 + index
            End If

        Next
        szDecoded = ""
        While nValue > 0
            cc = Chr(CByte(nValue And 255))
            szDecoded = cc & szDecoded
            nValue = nValue \ 256
        Wend
        B64Decode = B64Decode & szDecoded
    Next
    CustomDataString = B64Decode
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Create the license revocation response.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    Set LRResponseObj = Server.CreateObject("WMRMObjs.WMRMLicenseRevocationResponse")
        If (Err.Number <> 0) Then Exit Do
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Process your custom data. This example looks for a user ID.
    ' It is assumed that statements are separated by a semicolon (;).

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    CustomDataArray = Split(CustomDataString, ";")
    For Each CustomDataItem in CustomDataArray
        If InStr(CustomDataItem, "UID=") > 0 then
            UIDValue = right(CustomDataItem, Len(CustomDataItem)-Len("UID:"))
            LRResponseObj.CustomData = UIDValue
        End If
    Next
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Specify the licensing server's revocation public key and the 
    ' transaction ID. Generate the license revocation response.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    LRResponseObj.RevocationPublicKey  = LSPubkey
        If (Err.Number <> 0) Then Exit Do
    LRResponseObj.TransactionId = ChallTransID
        If (Err.Number <> 0) Then Exit Do
    LRResponseString = LRResponseObj.GenerateSignedResponse(LSPrivkey, ClientPubkey)
        If (Err.Number <> 0) Then Exit Do
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Save the client public key to file. In actual practice,

    ' you would save this value to a database.
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    Set FileSysObj = Server.CreateObject("Scripting.FileSystemObject")
        If (Err.Number <> 0) Then Exit Do
    Set FileObj = FileSysObj.CreateTextFile(ClientPKFile, True)
        If (Err.Number <> 0) Then Exit Do
    FileObj.Write(ClientPubkey)
        If (Err.Number <> 0) Then Exit Do
    FileObj.Close()
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Send the response to the client.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    Response.Write LRResponseString
Loop while false
%>

The following VBScript code is an example of the ASP page that receives a license revocation acknowledgement from a client and returns a results message.

<%@ LANGUAGE="VBScript"%>
<%
Response.Buffer = True
Response.Expires = 0
Do
    On Error Resume Next
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Declare variables.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    Dim LSPubkey           ' Revocation public key
    Dim LSPrivkey          ' Revocation private key

    Dim ClientPKFile       ' File where the client's public key is stored

    Dim LRAck              ' License revocation acknowledgement from the client

    Dim LRAckString        ' License revocation acknowledgement string

    Dim LRAcknowledgeObj   ' WMRMLicenseRevocationAcknowledger object

    Dim AckTransID         ' Transaction ID
    Dim FileSysObj         ' File System Object

    Dim FileObj            ' File object for the client public key file

    Dim ClientPubkey       ' Public key of the client computer

    Dim Results            ' Results string
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Set variables.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    LSPubkey  = "<Replace this with the licensing server’s public key>"
    LSPrivkey = "<Replace this with the licensing server’s private key>"
    ClientPKFile = "<Replace this with a path and filename of a text file>"
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Retrieve the acknowledgement from the client.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    LRAckString = Request.Form("LRAck")
        If (Err.Number <> 0) Then Exit Do
    Set LRAcknowledgeObj = Server.CreateObject("WMRMObjs.WMRMLicenseRevocationAcknowledger")
        If (Err.Number <> 0) Then Exit Do
    LRAcknowledgeObj.Acknowledgement = LRAckString
        If (Err.Number <> 0) Then Exit Do
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Get the transaction ID.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    AckTransID = LRAcknowledgeObj.GetTransactionId()
        If (Err.Number <> 0) Then Exit Do
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Get the client public key you saved from the challenge.

    ' In actual practice, you might use the transaction ID to

    ' look up this value in a database. For this example,

    ' read the client public key from a text file.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    Set FileSysObj = Server.CreateObject("Scripting.FileSystemObject")
        If (Err.Number <> 0) Then Exit Do
    Set FileObj = FileSysObj.OpenTextFile(ClientPKFile, 1)
        If (Err.Number <> 0) Then Exit Do
    ClientPubkey = FileObj.ReadLine
        If (Err.Number <> 0) Then Exit Do
    FileObj.Close()
    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    ' Verify the signature on the string.

    ' This method fails if the signature is not valid.

    '"""""""""""""""""""""""""""""""""""""""""""""""""""""

    LRAcknowledgeObj.Verify(ClientPubkey)
    If (err.Number = 0) Then
        Results = "Succeed"
    Else
        Results = "Fail"
    End If
Loop while false
%>

Updating the Content Catalog (Scenario 2)
In this scenario, the subscription service needs to remove several items from the catalog, and so must also delete the corresponding licenses from their subscribers' computers. 
Because the client must initiate the process, the client component checks with the license revocation service periodically to find out whether a catalog update is required. In our example, the client sends a license revocation challenge to the license revocation service. If a catalog update is not required, a message ("None") is sent back to the client indicating that an update is not required. If a catalog update is required, the service sends a license revocation response that indicates the key IDs of the licenses that must be removed. 
Only one key ID can be specified per response. Because the client does not know how many responses to expect, you can combine the responses into one string. The code example below uses a dollar sign ($) as a delimiter, because this character is not used in base64-encoded strings. The client component can then parse the combined license revocation response into individual responses.
It is also recommended that you use a unique transaction ID for each individual response, so that you can track the revocation progress of each individual content item. It is not required that you use any particular format for this value, so in the code example below, a value is simply appended to the original transaction ID after the first license response.
The partial example code below shows how to generate a license revocation response that includes three individual responses. 

'"""""""""""""""""""""""""""""""""""""""""""""""""""""
' Retrieve the key IDs for the items to revoke. In actual
' practice, you would retrieve these values from a database.

' However, this example uses hard-coded values.

'"""""""""""""""""""""""""""""""""""""""""""""""""""""
Dim KID1, KID2, KID3            ' Key IDs
KID1 = "<Replace this with a key ID>"

KID2 = "<Replace this with a key ID>"

KID3 = "<Replace this with a key ID>"

'"""""""""""""""""""""""""""""""""""""""""""""""""""""
' Create a separate license revocation response for each license 
' that is to be revoked, and add it to the license response string.
'"""""""""""""""""""""""""""""""""""""""""""""""""""""
Set LRResponseObj = Server.CreateObject("WMRMObjs.WMRMLicenseRevocationResponse")
    If (Err.Number <> 0) Then Exit Do
LRResponseObj.RevocationPublicKey = LSPubkey
    If (Err.Number <> 0) Then Exit Do
LRResponseObj.TransactionId = ChallTransID  
    If (Err.Number <> 0) Then Exit Do
LRResponseObj.KeyId = KID1
    If (Err.Number <> 0) Then Exit Do
LRResponseString = "$" & LRResponseObj.GenerateSignedResponse(LSPrivkey, ClientPubkey) 
    If (Err.Number <> 0) Then Exit Do
LRResponseObj.TransactionId = ChallTransID + "_2"
    If (Err.Number <> 0) Then Exit Do
LRResponseObj.KeyId = KID2
    If (Err.Number <> 0) Then Exit Do
LRResponseString = LRResponseString + "$" & LRResponseObj.GenerateSignedResponse(LSPrivkey, ClientPubkey) 
    If (Err.Number <> 0) Then Exit Do
LRResponseObj.TransactionId = ChallTransID  + "_3" 
    If (Err.Number <> 0) Then Exit Do
LRResponseObj.KeyId = KID3
    If (Err.Number <> 0) Then Exit Do
LRResponseString = LRResponseString + "$" & LRResponseObj.GenerateSignedResponse(LSPrivkey, ClientPubkey) 
    If (Err.Number <> 0) Then Exit Do
Appendix A: the CLicenseRevoker Class

An example implementation of the code that a client application must include to support license revocation is presented here in the form of a C++ class. Structuring this code as a class helps simplify the relationships between logic and data. In your implementation, it may be more effective to include the license revocation code in another class or as individual functions.
The CLicenseRevoker class uses the same conventions as the code examples provided in the Windows Media® Format SDK documentation. This includes the use of the common helper macros: SAFE_RELEASE, SAFE_ARRAY_DELETE, and GOTO_EXIT_IF_FAILED. Refer to the SDK documentation for more information about using code examples.

This example code is not intended to be used in an application in its present form. Error handling has been reduced to a minimum in order to keep the code as simple as possible. You should expand the error handling so that your application responds to errors more effectively.

This class does not include code for network communications. The PostToServer method is prototyped in the class definition, but the implementation is left empty. This is because there are multiple possible approaches to these network transactions and because network communication is outside the scope of this paper.

Overview of the CLicenseRevoker Class

This section provides a brief overview of the members of the CLicenseRevoker class.

Public Methods

The CLicenseRevoker class includes four public methods: Init, RevokeMachine, CtalogUpdate, and Shutdown. To use the class, perform the following steps:
17. Call Init to initialize the member variables.
18. Do one of the following:

· To remove all of the licenses for the user, call RevokeMachine.

· To check the catalog update Web page and revoke licenses if needed, call CatalogUpdate.

19. Repeat step 2 as needed.

20. Call Shutdown to free the resources held by the class.

Private Methods
The CLicenseRevoker class includes five private methods: ProcessChallenge, ParseResponse, RevokeLicenses, PostToServer, and ClearResponses.

The ProcessChallenge method sends a license revocation challenge to the Web page that is specified by the input parameter. It receives the revocation response and parses it into individual responses if needed. To do all this, ProcessChallenge calls PostToServer and ParseResponse. ProcessChallenge is called by both RevokeMachine and CatalogUpdate, each of which passes a different Web page.

The ParseResponse method analyzes a revocation response string and breaks it into multiple strings as needed. This method is called by the ProcessChallenge method.

The RevokeLicenses method processes the revocation responses and removes licenses from the license store as required. It also generates an acknowledgement and sends it to the server. This method is called by both RevokeMachine and CatalogUpdate.
The PostToServer method is not implemented in the example code. It takes a server name and page path as well as challenge data as input parameters and returns the revocation response (or multiple responses combined with delimiting characters) as an output parameter. The specific implementation details will depend on the technique you use for network communications. This method is called by ProcessChallenge and by RevokeLicenses.

The ClearResponses method releases the array of response strings and resets the related data in preparation for another revocation operation. This method is called by Shutdown and by ParseResponse.

Class Definition

The CLicenseRevoker class is defined in a header file called CLicenseRevoker.h. The following is the text of that header file.
// CLicenseRevoker.h /////////////////////////////////////////////////////
// This header file contains the definitions for the license revoker
//  class.

//////////////////////////////////////////////////////////////////////////
#ifndef CLicenseRevoker_h

#define CLicenseRevoker_h

#include <windows.h>

#include <wmsdk.h>   // Windows Media Format SDK definitions.

#include "helper.h"  // Format SDK example code utility macros.

#include <winhttp.h>

// This implementation uses the strsafe functions for safe string
//  handling.

// However, because some of the methods in the CLicenseRevoker class use

//  strlen, set up the header so that old string functions are allowed.

#define  STRSAFE_NO_DEPRECATE 

#include <strsafe.h> 

// Definition for the error code for insufficient buffer.

#define DRM_E_BUFFERTOOSMALL (0x8007007AL)

// Definition for string lengths.

// You may want to change this value for your own implementation.

#define MAX_PAGE_NAME_LENGTH 50

// Definitions for the two tags used when sending data to the server.

const char CHALLENGE_TAG[] = "lrchall=";

const char ACKNOWLEDGE_TAG[] = "lrack=";

// CLASS: CLicenseRevoker ////////////////////////////////////////////////
// This class wraps the methods of the IWMLicenseRevocationAgent interface

// (exposed in the Windows Media Format SDK) to provide more comprehensive

// support for license revocation.

//////////////////////////////////////////////////////////////////////////
class CLicenseRevoker

{

public:

    HRESULT Init();

    HRESULT RevokeMachine();

    HRESULT CatalogUpdate();

    HRESULT Shutdown();

private:

    HRESULT ProcessChallenge(WCHAR* pwszPagePath);

    HRESULT RevokeLicenses();

    HRESULT PostToServer(WCHAR* pwszServer, 

                                      WCHAR* pwszPath, 

                                      char*  pszData, 

                                      char** ppszResponse);

    HRESULT ParseResponse(char* pszResponse);

    void    ClearResponses();

    IWMLicenseRevocationAgent* m_pLicenseRevocationAgent;

    DWORD  m_dwMachineID;

    DWORD  m_dwUserID;

    // Server name and Web page paths.
    WCHAR* m_pwszServerName;

    WCHAR* m_pwszUserChallengePage;

    WCHAR* m_pwszAutoChallengePage;

    WCHAR* m_pwszAckPage;

    char** m_ppResponseArray;

    DWORD* m_cbResponses;

    DWORD  m_cResponses;

};

#endif
Class Implementation

The CLicenseRevoker class is implemented in a C++ file called CLicenseRevoker.cpp. The following is the text of that file.

// CLicenseRevoker.cpp ///////////////////////////////////////////////////

// This file contains the implementation of the license revoker class.

//////////////////////////////////////////////////////////////////////////

#include "CLicenseRevoker.h"

///// METHOD: Init ///////////////////////////////////////////////////////

// This method initializes the member variables.

// You must call this method before using any of the other methods.

//////////////////////////////////////////////////////////////////////////

HRESULT CLicenseRevoker::Init()

{

    HRESULT hr = S_OK;

    // Initialize member variables.

    m_ppResponseArray = NULL;

    m_cbResponses     = NULL;

    m_cResponses      = 0;

    // Create a license revocation agent object.

    hr = WMCreateLicenseRevocationAgent(NULL, &m_pLicenseRevocationAgent);

    GOTO_EXIT_IF_FAILED(hr);

    // In a real-world scenario, the machine ID and user ID should be

    //  securely stored on the client machine (for example, in an

    //  obfuscated file).

    // For this sample, they are hardcoded.

    m_dwMachineID = 16;

    m_dwUserID    = 555;

    // Like the IDs, the server name and page names would normally be

    //  stored on the client machine.

    // In this implementation, the length of the path strings is limited 

    //  to 50 characters.

    m_pwszServerName        = new WCHAR[MAX_PAGE_NAME_LENGTH];

    m_pwszUserChallengePage = new WCHAR[MAX_PAGE_NAME_LENGTH];

    m_pwszAutoChallengePage = new WCHAR[MAX_PAGE_NAME_LENGTH];

    m_pwszAckPage           = new WCHAR[MAX_PAGE_NAME_LENGTH];

    if(m_pwszServerName == NULL ||

       m_pwszUserChallengePage == NULL ||

       m_pwszAutoChallengePage == NULL ||

       m_pwszAckPage == NULL)

    {

        hr = E_OUTOFMEMORY;

        goto Exit;

    }

    // Copy the hard-coded server and page names.

    hr = StringCchCopyW(m_pwszServerName, 

                        MAX_PAGE_NAME_LENGTH, 

                        L"andreapr7");

    GOTO_EXIT_IF_FAILED(hr);

    hr = StringCchCopyW(m_pwszUserChallengePage, 

                        MAX_PAGE_NAME_LENGTH, 

                        L"/wm/LicRevRespHTTP.asp");

    GOTO_EXIT_IF_FAILED(hr);

    hr = StringCchCopyW(m_pwszAutoChallengePage, 

                        MAX_PAGE_NAME_LENGTH, 

                        L"/wm/LicRevRespHTTP_mult.asp");

    GOTO_EXIT_IF_FAILED(hr);

    hr = StringCchCopyW(m_pwszAckPage, 

                        MAX_PAGE_NAME_LENGTH, 

                        L"/wm/LicRevAckHTTP.asp");

    GOTO_EXIT_IF_FAILED(hr);

Exit:

    if(FAILED(hr))

    {

        SAFE_RELEASE(m_pLicenseRevocationAgent);

        SAFE_ARRAY_DELETE(m_pwszServerName);

        SAFE_ARRAY_DELETE(m_pwszUserChallengePage);

        SAFE_ARRAY_DELETE(m_pwszAutoChallengePage);

        SAFE_ARRAY_DELETE(m_pwszAckPage);

    }

    return hr;

}

///// METHOD: RevokeMachine //////////////////////////////////////////////

// This method processes license revocation that is initiated by the user

//  to remove all licenses from the computer that were issued by the

//   provider.

//////////////////////////////////////////////////////////////////////////

HRESULT CLicenseRevoker::RevokeMachine()

{

    HRESULT hr = S_OK;

    // Generate the challenge, get the response, and parse the response.

    hr = ProcessChallenge(m_pwszUserChallengePage);

    GOTO_EXIT_IF_FAILED(hr);

    // Revoke the licenses.

    hr = RevokeLicenses();

Exit:

    return hr;

}

///// METHOD: CatalogUpdate //////////////////////////////////////////////

// This method sends a challenge to a Web page on the server that checks 

//  whether there are any key IDs that need to be revoked. This method 

//  should be run regularly on the client (at startup, for example) in
//  case the content provider has been compelled to revoke some content.

//////////////////////////////////////////////////////////////////////////

HRESULT CLicenseRevoker::CatalogUpdate()

{

    HRESULT hr = S_OK;

    // Generate the challenge, get the response, and parse the response.

    hr = ProcessChallenge(m_pwszAutoChallengePage);

    GOTO_EXIT_IF_FAILED(hr);

    // S_FALSE is passed back through ProcessChallenge if there are no

    //  KIDs to revoke.

    if(hr == S_FALSE)

        goto Exit;

    // Revoke the licenses.

    hr = RevokeLicenses();

Exit:

    return hr;

}

///// METHOD: ProcessChallenge ///////////////////////////////////////////

// This method generates a challenge that uses the user ID as the custom

//  data. 
// The challenge is then sent to the specified Web page, where a 
//  response is generated. In the case of a catalog update, the response 

//  may actually be multiple responses combined by using a delimiting
//  character.

//

// PARAMETERS

//

// pszPagePath (IN):

//    String containing the URL of the Web page that will process the 

//     challenge.

//////////////////////////////////////////////////////////////////////////

HRESULT CLicenseRevoker::ProcessChallenge(WCHAR* pwszPagePath)

{

    HRESULT hr = S_OK;

    char  pszMachineID[10];

    char  pszUserID[10];

    DWORD cchMachineID = 0;

    DWORD cchUserID    = 0;

    char* pszChallenge = NULL;

    DWORD cchChallenge = 0;

    char* pszCompleteChallenge = NULL;

    DWORD cchCompleteChallenge = 0;

    char* pszResponse  = NULL;

    // Check that the object has been initialized.

    if(m_pLicenseRevocationAgent == NULL)

        return E_POINTER;

    // Create string values for the machine ID and user ID.

    hr = StringCchPrintfA(pszMachineID, 10, "%d", m_dwMachineID);

    GOTO_EXIT_IF_FAILED(hr);

    hr = StringCchPrintfA(pszUserID, 10, "UID=%d;", m_dwUserID);

    GOTO_EXIT_IF_FAILED(hr);

    cchMachineID = (DWORD)strlen(pszMachineID);

    cchUserID    = (DWORD)strlen(pszUserID);

    /////

    // Generate the challenge.

    //

    // First get the size of the challenge output.

    hr = m_pLicenseRevocationAgent->GetLRBChallenge((BYTE*)pszMachineID,

                                                    cchMachineID,

                                                    (BYTE*)pszUserID,

                                                    cchUserID,

                                                    NULL,

                                                    &cchChallenge);

    if(FAILED(hr) && hr != DRM_E_BUFFERTOOSMALL)

        goto Exit;

    // Allocate memory for the challenge output.

    pszChallenge = new char[cchChallenge + 1];

    if(pszChallenge == NULL)

    {

        hr = E_OUTOFMEMORY;

        goto Exit;

    }

    // Get the challenge output.

    hr = m_pLicenseRevocationAgent->GetLRBChallenge((BYTE*)pszMachineID,

                                                    cchMachineID,

                                                    (BYTE*)pszUserID,

                                                    cchUserID,

                                                    (BYTE*)pszChallenge,

                                                    &cchChallenge);

    GOTO_EXIT_IF_FAILED(hr);

    //

    /////

    // Null terminate the challenge.

    // GetLRBChallenge does not do this.

    pszChallenge[cchChallenge] = 0;

    /////

    // The challenge must be preceded by an ID tag.

    // Set the size of the challenge including the tag and NULL
    //  terminator.

    cchCompleteChallenge = cchChallenge + strlen(CHALLENGE_TAG) + 1;

    // Allocate memory for the complete challenge.

    pszCompleteChallenge = new char[cchCompleteChallenge];

    if(pszCompleteChallenge == NULL)

    {

        hr = E_OUTOFMEMORY;

        goto Exit;

    }

    // Clear the new string.

    ZeroMemory(pszCompleteChallenge, cchCompleteChallenge);

    // Copy the tag to the new string.

    hr = StringCchCopyA(pszCompleteChallenge, 

                        (size_t)cchCompleteChallenge,  

                        CHALLENGE_TAG);

    GOTO_EXIT_IF_FAILED(hr);

    // Append the challenge data to the tag.

    hr = StringCchCatA(pszCompleteChallenge, 

                       (size_t)cchCompleteChallenge, 

                       pszChallenge);

    GOTO_EXIT_IF_FAILED(hr);

    //

    /////

    // Send the challenge to the server and get the response.

    hr = PostToServer(m_pwszServerName, 

                      pwszPagePath, 

                      pszCompleteChallenge, 

                      &pszResponse);

    // Parse response.

    hr = ParseResponse(pszResponse);  

Exit:

    SAFE_ARRAY_DELETE(pszChallenge);

    SAFE_ARRAY_DELETE(pszCompleteChallenge);

    return hr;

}

///// METHOD: RevokeLicenses /////////////////////////////////////////////

// This method processes revocation responses stored in the object.

// Before you call this method, you must have received a revocation
//  response from the server. 

//////////////////////////////////////////////////////////////////////////

HRESULT CLicenseRevoker::RevokeLicenses()

{

    HRESULT hr = S_OK;

    BYTE* pbAck  = NULL;

    DWORD cbAck  = 0;

    char* pszAck = NULL;

    DWORD cchAck = 0;

    DWORD i      = 0;

    char* pszAckResponse = NULL;

    // Check that the response has been retrieved.

    if(m_cResponses == 0)

        return E_FAIL;

    // Loop through all of the responses, processing each.

    for(i = 0; i < m_cResponses; i++)

    {

        // Get the size of the acknowledgement.

        hr = m_pLicenseRevocationAgent->ProcessLRB((BYTE*)m_ppResponseArray[i],

                                                   m_cbResponses[i] -1, 

                                                   NULL, 

                                                   &cbAck);

        if(FAILED(hr) && hr != DRM_E_BUFFERTOOSMALL)

            goto Exit;

        // Allocate memory for the acknowledgement.

        pbAck = new BYTE[cbAck+1];

        if(pbAck == NULL)

        {

            hr = E_OUTOFMEMORY;

            goto Exit;

        }

        ZeroMemory(pbAck, cbAck + 1);

        // Perform revocation and get the acknowledgement.

        hr = m_pLicenseRevocationAgent->ProcessLRB((BYTE*)m_ppResponseArray[i],

                                                   m_cbResponses[i] -1, 

                                                   pbAck, 

                                                   &cbAck);

        GOTO_EXIT_IF_FAILED(hr);

        pbAck[cbAck] = 0;

        // Set the size for the acknowledgement, including tag and
        //  terminator.

        cchAck = cbAck + strlen(ACKNOWLEDGE_TAG) + 1;

        // Allocate memory for the complete acknowlegement.

        pszAck = new char[cchAck];

        if(pszAck == NULL)

        {

            hr = E_OUTOFMEMORY;

            goto Exit;

        }

        // Clear the new string.

        ZeroMemory(pszAck, cchAck);

        // Copy the tag to the new string.

        hr = StringCchCopyA(pszAck, (size_t)cchAck, ACKNOWLEDGE_TAG);

        GOTO_EXIT_IF_FAILED(hr);

        // Append the acknowledgement data to the tag.

        hr = StringCchCatA(pszAck, (size_t)cchAck, (char*)pbAck);

        GOTO_EXIT_IF_FAILED(hr);

        // Send the acknowledgement to the server.

        hr = PostToServer(m_pwszServerName,

                          m_pwszAckPage,

                          pszAck,

                          &pszAckResponse);

        // Clean up for the next pass.

        SAFE_ARRAY_DELETE(pszAckResponse);

        SAFE_ARRAY_DELETE(pbAck);

        SAFE_ARRAY_DELETE(pszAck);

        cbAck  = 0;

        cchAck = 0;

    }

Exit:

    SAFE_ARRAY_DELETE(pbAck);

    SAFE_ARRAY_DELETE(pszAck);

    SAFE_ARRAY_DELETE(pszAckResponse);

    return hr;

}

///// METHOD: ParseResponse //////////////////////////////////////////////

// This method accepts a license revocation response from the server. The 

//  server may send several responses at once, each with a different key

//  ID.
// This implementation adds a dollar sign ($) before each separate
//  response. If there is only one response, it does not contain any
//  dollar signs.

// Parsed responses are stored in a member array, which is allocated by
//  this method.

//

// PARAMETERS

//

// pszResponse (IN):

//    String containing the response data as sent by the server.

//////////////////////////////////////////////////////////////////////////

HRESULT CLicenseRevoker::ParseResponse(char* pszResponse)

{

    HRESULT hr = S_OK;

    char  chDelimit    = '$';

    char  pszDelimit[] = "$";

    char* pchFoundChar = NULL;

    char* pszToken     = NULL;

    DWORD cTokens      = 0;

    if(pszResponse == NULL)

        return E_POINTER;

    // If there are responses from a previous revocation, clear them.

    if(m_cResponses)

        ClearResponses();

    // If there is no delimiting tag, it is a single response and can be 

    //  assigned as the only response.

    if(pszResponse[0] != chDelimit)

    {

        // The response is set to "None" by the content catalog update

        //  page if no content has been removed from the service's
        //  catalog.

        // If this happens, this method returns S_FALSE.

        if(strcmp(pszResponse, "None") == 0)

        {

            hr = S_FALSE;

            goto Exit;

        }

        // Set up the response info for a single response.

        m_cResponses      = 1;

        m_cbResponses     = new DWORD[1];

        m_ppResponseArray = new char*[1];

        // Allocate a new string to hold the response.

        m_cbResponses[0]  = (DWORD)(strlen(pszResponse) + 1);

        m_ppResponseArray[0] = new char[m_cbResponses[0]];

        if(m_ppResponseArray[0] == NULL)

        {

            hr = E_OUTOFMEMORY;

            goto Exit;

        }

        // Copy the response to the member array.

        hr = StringCchCopyA(m_ppResponseArray[0], 

                            (size_t)m_cbResponses[0], 

                            pszResponse);

        GOTO_EXIT_IF_FAILED(hr);

    }

    // If there is a delimiting tag, parse the individual responses.

    else

    {

        // Find the number of delimiting characters in the response.

        pchFoundChar = pszResponse;

        do

        {  

            // Find the next occurrence of the delimiter.

            pchFoundChar = strchr(pchFoundChar, (int)chDelimit);

            if(pchFoundChar != NULL)

            {

                m_cResponses++;

                pchFoundChar++;

            }

        }while(pchFoundChar != NULL);

        // Check that at least two responses exist.

        if(m_cResponses == 1)

        {

            hr = E_UNEXPECTED;

            goto Exit;

        }

        // Allocate memory for the arrays.

        m_cbResponses     = new DWORD[m_cResponses];

        m_ppResponseArray = new char*[m_cResponses];

        if(m_cbResponses == NULL || m_ppResponseArray == NULL)

        {

            hr = E_OUTOFMEMORY;

            goto Exit;

        }

        // Get the first token in the response.

        pszToken = strtok(pszResponse, pszDelimit);

        while(pszToken != NULL)

        {

            // Increment the token counter and check against the response
            //  count.

            cTokens++;

            if(cTokens > m_cResponses)

            {

                hr = E_UNEXPECTED;

                goto Exit;

            }

            // Set the response size.

            m_cbResponses[cTokens - 1] = (DWORD)strlen(pszToken) + 1;

            // Allocate memory for the individual response.

            m_ppResponseArray[cTokens - 1] = new char[m_cbResponses[cTokens - 1]];

            if(m_ppResponseArray[cTokens - 1] == NULL)

            {

                hr = E_OUTOFMEMORY;

                goto Exit;

            }

            // Copy the token to the new string.

            hr = StringCchCopyA(m_ppResponseArray[cTokens - 1],

                                (size_t)m_cbResponses[cTokens - 1],

                                pszToken);

            GOTO_EXIT_IF_FAILED(hr);

            // Get the next token.

            pszToken = strtok(NULL, pszDelimit);

        }

    }

Exit:

    if(FAILED(hr))

        ClearResponses();

    return hr;

}

///// METHOD: ClearResponses /////////////////////////////////////////////

// This method frees the memory for the response array.

//////////////////////////////////////////////////////////////////////////

void CLicenseRevoker::ClearResponses()

{

    // Delete any memory allocated for the response arrays. 

    for(DWORD i = 0; i < m_cResponses; i++)

        SAFE_ARRAY_DELETE(m_ppResponseArray[i]);

    SAFE_ARRAY_DELETE(m_ppResponseArray);

    SAFE_ARRAY_DELETE(m_cbResponses);

    m_cResponses = 0;

}

///// METHOD: Shutdown ///////////////////////////////////////////////////

// This method releases the resources held by the CLicenseRevoker class.

// You should always call Shutdown before deleting an instance of the
//  class.

//////////////////////////////////////////////////////////////////////////

HRESULT CLicenseRevoker::Shutdown()

{

    // Delete memory used for response arrays.

    ClearResponses(); 

    SAFE_RELEASE(m_pLicenseRevocationAgent);

    // Delete the Web-related strings.

    SAFE_ARRAY_DELETE(m_pwszServerName);

    SAFE_ARRAY_DELETE(m_pwszUserChallengePage);

    SAFE_ARRAY_DELETE(m_pwszAutoChallengePage);

    SAFE_ARRAY_DELETE(m_pwszAckPage);    

    return S_OK;

}

///// METHOD: PostToServer ///////////////////////////////////////////////

// This method connects to the specified server and path and posts the
//  data. It also creates a buffer for the response and returns a pointer
//  to it.

//

// PARAMETERS

//

// pwszServer (IN):

//    The name of the server to connect to in a wide-character string.

//

// pwszPath (IN):

//    The name of the path to the page to connect to in a wide-character 

//    string.

//

// pszData (IN):

//    Character buffer containing the data to post to the page.

//

// ppszResponse (OUT):

//    Address of a pointer that will be set to the buffer containing the 

//    response.  You must release this buffer yourself after you are 
//    finished.

//    The pointer must be set to NULL when passed to the method.

//////////////////////////////////////////////////////////////////////////

{

// TODO //////////////////////////////////////////////////////////////////

// Implement this method using whatever network communications technique //  you prefer.

//////////////////////////////////////////////////////////////////////////

}
For More Information

· For general information about Windows Media® technologies, see the Windows Media Web page (http://www.microsoft.com/windows/windowsmedia/).

· To learn more about the components of the Windows Media 10 SDK, see the Windows Media SDK Components Web page (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwmt/html/wmsdk.asp).
· To request the Windows Media Rights Manager 10 SDK or the Windows Media DRM 10 for Portable Devices Porting Kit, go to the Windows Media Licensing Form Web page (http://wmlicense.smdisp.net/licenserequest/) and submit a License Request Form online. You will receive a License Agreement from Microsoft by e-mail. Sign and return the agreement. You will then be sent a password and a link to download the SDK or the porting kit. 

· To download the Windows Media Format 9.5 SDK, which includes the Windows Media Device Manager 10 SDK, go to the Windows Media Downloads Web page (http://msdn.microsoft.com/library/default.asp?url=/downloads/list/winmedia.asp).

[image: image1.png]l’.. Wind owe Med e






