Data Access – Presentation Transcript

Let's continue our exploration of ASP .NET with a look at data access, how you access back-end databases from ASP .NET Web applications. I'm going to start with a brief, very brief, look at ADO.NET, which is the portion of the .NET Framework that lets all managed applications talk to databases.

Then, we're going to talk about data binding, how you can take a content coming from data sources, such as databases, and provide that content to controls in ASP .NET. Then, we're going to talk specifically about some of the controls that help you do data binding and help you display data-bound content, including the repeater control and the data source controls, a new family of controls in ASP .NET. We'll also look at two other new controls in ASP .NET Version 2.0, named Grid View and Details View. Finally, we'll take a quick look at two-way data binding, how in ASP .NET using the data-binding mechanisms available to you.

Without writing a lot of code, you can not only display the data that comes from your database queries, but edit that data, and propagate the changes back to the database as well. First, ADO.NET. When you're building a Web application that accesses back-end databases, in other words, when you're building data-driven Web sites, you'll need ADO.NET, because it is this part of the .NET Framework that allows you to query your back-end databases and to perform inserts, updates, deletes, and other operations. In essence, ADO.NET is the data access API that managed applications use. Now, there are two distinctly different ways to do virtually anything in ADO.NET. For example, if you're doing queries, you'll use classes named Data Reader if you prefer to do stream-based queries. You can also do queries using a completely different code set by relying on classes named Data Sets and Data Adapters. I'd like to show you a couple of examples of how we do queries in ADO.NET, and let you see the two distinctly different ways in which we can do these queries before we move further on.

Here is one way to query a SQL Server database using ADO.NET. What I'm doing here is first creating a SQL connection object. That is the class in ADO.NET that represents connections to databases. As you can see, we passed the connection string used to open the database into the connection objects constructor. Then we call SQL connection open to physically open a connection to the database. Now that the connection's open, we want to perform an operation on the database. In this example, we want to perform a query, so we create a SQL command object that encapsulates the query that we want to perform, as well as the connection that we'll use to perform it. Then, we call a method on that command object named Execute Reader. That method performs the query and returns to me a SQL data reader object. SQL data reader encapsulates the query results. It is essentially a fast read-only, forward-only cursor-through-the-data. I can call its read method repeatedly to iterate through the records returned in the query. When read returns false, then the while loop that you see here falls through.

Now, after a call to read, I can index this SQL data reader itself to access the data in the columns that came back in the query. For example, here, I'm querying the pub's database that comes with Microsoft SQL Server pulling all the records, all the fields, back from its title table. The title table includes, among others, a field named Title. As I iterate through the records returned by the Call to Execute reader, that is, each time I called reader.read successfully, I can write Reader Title to access the title field of the current record. It's very important to close that database connection when I'm finished with it. Therefore, I do it with a call to connection.close.

Notice that I open the connection in a Try block and I close it in a Finally block. That's good programming practice, because it ensures that that connection will be closed regardless of whether or not an exception is thrown as this code executes. Now, here's a completely different way to accomplish the same thing in ADO.NET. Again, I'm querying the pub's database bringing back a list of the records in its titles table, but I'm doing it a completely different way. Here, I create a SQL data adapter object that encapsulates both the query that I wish to perform and the connection string that I'll perform- that I'll use to perform it. Then, I create a new data set object and call fill on the data adapter passing in a reference to the data set.

Now, if you've never seen data sets before, data sets are among the richer classes in the .NET Framework. A dataset is in many respects an in-memory database. It's a container for data. It can contain multiple data tables, just as a database contains tables. Within the data tables, I have data just as real database tables store data. With data sets, I can even model relationships, and I can apply constraints just as I can in real databases. This code, even though it's shorter than the code on the previous slide, isn't quite as efficient as the code on the previous slide. More code executes inside ADO.NET to do this query and to populate the data set with the results.

Given a choice between using a data set or a data reader, if all other things are equal you should use the data reader instead. That doesn't mean there aren't good reasons to do a query this way and to use a data set. For example, if you're doing a query and you want to pass the results of that query from one tier to another in a multi-tier application, a data set is a very good device for doing that. Whereas, a data set is essentially a snapshot of that database's data. A data reader represents a live connection to the database and is only useful as long as the physical database connection is open.

Now, data binding. In ASP, it's very common to use ADO to query a database and then to use response.right statements to render the contents of that query out into HTML. You can do the same thing in ASP .NET if you want to, but oftentime you don't have to, thanks to data binding. Data binding lets you take controls built into ASP .NET, drop down lists, data grids, repeaters, and others. To connect those controls to an object containing data, typically that object is a data set containing the results of a database query or perhaps some other object containing content retrieved from an XML file.

Regardless of where the content came from, once a control is bound to a data source, the control is then capable of rendering the contents of that data source into HTML. How you render out that content, the contents of the data source, depends on which of the data-binding controls you select to do the rendering for you. As an example of data binding, this is an excerpt from an ASP .NET Web page. On that page I have a data grid declared. Data grids are very rich controls. They're used a lot in ASP .NET. Their job is to take a data source and to render it out as an HTML table. A data grid is a functional replacement for a lot of the code you've probably written in ASP before that queries the database, then uses response.write statements to manually emit an HTML table. You can see the data grid being declared. You can also see the page's page-load method. Recall that this is a very important method, because ASP .NET automatically calls this method if present each and every time the page is requested.

This is generally the right place to query your databases and to bind the query results to controls. In this example, I use a SQL data adapter to perform the query. I capture the query results in a data set, then I bind that data set to the data grid control. Notice how the data binding works. All controls that support data binding have a property named Data Source and a method named Data Bind. To do the data binding,

I set the data grids data source property equal to the data set. I just realized there is a typo in this slide. The first highlighted line should read my data grid.data source equals DS. Then, after binding the control to the data set we call the control's data-bind method. It's inside that method that the control goes out, pulls the data in from the data source, and stores it so that it can render it later in the page's lifecycle. If I were binding to a data reader instead, and yes, a data grid is equally happy to bind to a data set or a data reader, then the code would look like this. I've changed the page-load method here to perform my query using SQL command.execute reader.

Notice here I do bind the reader to the data grid rather than bind the data set to the data grid. The output from the data grid here will be identical to the output from the data grid on the previous slide. The only difference is the data binding is slightly more efficient here, because we have written more efficient ADO.NET code to perform the query. Now, I'd like to do a short demo for you demonstrating data binding just so you can see first hand what data binding looks like in ASP .NET. When it comes to data binding, most of the work is done for you by the controls that you bind to.

Remember that in a data-binding scenario, the control's job is to render the contents of the data source and to HTML. One of the controls in ASP .NET that supports data binding is the repeater control. I want to spend some time looking at this one, because this is one that will probably be very useful to you in writing the site for this study. A repeater's job is very simple. Its job is to bind to a data source, to enumerate all of the items with the records in that data source, and to render each item into HTML. Significantly, or Peter has no user interface of its own. That is, it has no idea how to do that rendering. You tell it how to render items into HTML by providing what we refer to as HTML templates. The repeater supports five different template types.

The only template type that is required is the item template. Let me show you an example or two of how repeater controls are used. This is an excerpt from an ASPX file in which we declare a repeater control. This is a very simple repeater control, but it's also very helpful in demonstrating how we use repeaters. Notice that I've declared a repeater control here. Inside the repeater control, I have an item template element. Inside the item template element, I have some HTML. What I'm doing here is telling the repeater that for each and every record it finds in the data source, I want each record rendered into the HTML specified in the IM template. In this example, we're asking the repeater to render out an ASP .NET label control, one for each record that it finds in the data source. Also note the text that I've highlighted in yellow here.

I'm initializing the text property of the label control that this repeater outputs using a data-binding expression. Data-binding expressions begin with less-than sign percent, pound sign, and they end with percent greater-than sign. In between, they have code that gets executed each time this page is fetched helping the repeater determine exactly what to output. Eval title says to the repeater control that I want the value of the title field in the record that the repeater is currently binding to output in place of this code. That means that the text property of each label control output by this repeater should equal the title- the value of the title field in the record it is currently being bound to. In this example, this is the actual data-binding code. This is the page load method. I'm using ADO.NET to create a data reader encapsulating the results of the query. The query I'm performing is on the SQL Server pub's database. I'm simply asking for a list of all the book titles in the pub's table named Titles, and I'm binding the resulting data reader to the repeater.

If I run that example, here's the output that I get. Remember, that I asked the repeater control through the item template to output a series of label controls, one per record in the data source. Each record in the data source has a title field containing a fictitious book title. In this example here, what I therefore see is a list of label controls, each of whom's title or text property is equal to- has been set equal to the value of a title field in the records that came back. That's a simple use of a repeater control, but remember that item template is just one of five templates types that you can specify. In this example, I've embellished the repeater control used just a few moments ago. This time, I want to output the list of book titles in a bulleted list. I need to include LI tags in each item template. I also need to begin the entire list with a UL tag, enclose it with a /UL tag.

You can see the header template and footer template that I've added here. They output content at the beginning and ending of all the content output by the other templates. Also notice that I've added an LY tag to the item template so the items will be bulleted. In addition, I wanted to modify the repeater's output so that every other book title is colored with a different background color. Specifically, with a light gray background color. I've done that with alternating item template. That's another of the template types that a repeater supports. It allows me to render our HTML for even numbered items differently from, or differently than, the HTML that I used for the odd numbered items. In this case, I've told the repeater that I want alternating items to look exactly like items, but with a background color of Gainsboro, light gray. I don't have to change the data-binding code. In other words, the page-load method stays the same. But, when I refresh the page this is what I see. Note the bullets in the list, courtesy of the LI tags, and notice that in between items, that is, alternating items in repeater parlance have been rendered out with a background color of Gainsboro.

With that, I'd like to take time to do a short demo for you, one involving the repeater control so that you can see firsthand how computer- repeater controls are used in Visual Studio, how you do the data binding, and what the resulting output looks like. One of the many new features introduced in the ASP .NET Version 2.0 is a new family of controls called the Data Source Controls. In ASP .NET 1.0, when we wanted to practice data binding, indeed we had to write code to query the database or open the XML file ourselves, and then we had to write code to bind the resulting data reader, data set, or other data object, to a data-bound control.

In ASP .NET 2.0, we can often eliminate that code. We can get away with writing little or not ADO.NET code whatsoever thanks to the new data-source controls. Their job is to perform database queries for us, or to access other types of data sources. To do so declaratively, so that by dragging and dropping a few controls in Visual Studio .NET, then doing some work to wire those controls together, we can practice data binding and write no code to do it. These are the five data-source controls that will ship with ASP .NET Version 2.0. Two of them will turn out to be very important to almost all ASP .NET programmers. Those are SQL data source and object data source. You'll probably find them useful in implementing a site for this study. We'll also use Site Net data source. I'm not going to talk a lot about that control right now. But, in one of the later modules when we talk about data-driven site navigation in ASP .NET, that Site Net Data Source control is going to be very important to us.

I'd like to start with SQL data source, because SQL data source is a great way to begin understanding declarative data binding in ASP .NET Version 2.0. SQL Data Source's job is to declaratively bind to SQL databases. It could be a SQL Server database. It could be an Oracle database. It could be some other kind of database. SQL Data Source really doesn't care. SQL Data Source is capable of performing two-way data binding. In other words, it can not only query databases, but it can update databases as well. It provides some useful feature for caching of query results. To get the same behavior in an ASP .NET 1.0 app you have to write some code.

In ASP .NET 2.0, thanks to SQL Data Source, once we do a query, with no code at all we can tell it to cache the query results helping to eliminate redundant database accesses on the back end. SQL Data Source also supports parameterized operation, which you'll see an example of shortly. Here's a very first example of SQL Data Source. This is an excerpt from an ASP .NET Web page. In that page I have a data grid declared. Notice that there is no code whatsoever providing content to that data grid. Instead, I'm providing content to it with a SQL Data Source control. I declared the SQL Data Source control on the page.

It doesn't really matter where on the page it is, but because it produces no visible UI it's there only for data binding. I initialize the connection string property of the SQL Data Source with the database connection string, and I initialize SQL Data Source's select command property with the select statement that I wanted to execute against the database. Notice that I've given the SQL Data Source an ID. That ID is titles. What binds the SQL Data Source to the data grid is the Data Source's data source ID property. Data Source ID equals titles tells the data grid control that at runtime, technically at page-load time, it should go to the SQL data source to get its content. By that time, the SQL Data Source has already queried the database, and has an object ready to hand over to the data grid and to any other control that cares to bind to it. SQL Data Source is not a trivial class. It has lots and lots of different properties that you can initialize with attributes in the tag that declares the SQL Data Source Control. These are some of the more important SQL Data Source properties.

Connection string is an important one, because if the SQL Data Source is going to query that database for you, it has to be able to open the database first. Select command is also important, because in order to perform a query the SQL Data Source has to know what the text of that query looks like. When we talk about two-way data binding, we'll talk about the insert command, update command, and delete command properties of the SQL Data Source. Those properties allow you to tell it how you want to modify the database if changes have been made to the data and you want to propagate those changes back. Those are just a few of the properties that SQL Data Source exposes to you. There are others, many others.

The ones you see on this slide here are the ones that relate to caching. Again, a SQL Data Source, and other Data Source controls for that matter, have the inherent ability to cache data once they have retrieved it from a database or other data source. This is a great way to enhance performance in ASP .NET applications. By doing a query once, then satisfying subsequent needs for that data from an in-memory cache rather than going back to the database time after time. To do caching with a SQL Data Source, you simply set its enable caching property to true, and its cache duration property to the number of seconds that the results should be cached. There are other properties that are caching related as you can see here allowing more advanced features of the SQL Data Source to be exploited.

Using a SQL cached attendency property, for example, it's rather easy to create a dependency between the data that the SQL Data Source caches and the database entity that the data came from such that if the content in that database entity, a table for example, changes the cache content can automatically be removed from the cache so that subsequent requests will not serve up stale data to end users. Here's an example of how I would enable caching with a SQL Data Source. Notice the two highlighted attributes. I first set enable caching to true to enable the caching features of the SQL Data Source, then I set cache duration property equal to the number of seconds, in this case 60, that I want the content to be cached. SQL Data Sources also support parameterization. Very often the select statements that you use to initialize a SQL Data Source control have replaceable parameters in them. Parameters that must be filled in at runtime when that SQL Data Source queries the database.

Because the SQL Data Source supports parameterized operation, it's rather easy for me to specify how those parameters should get filled in. I can, for example, tie a given parameter in a query back to the value of a control on the page or to a value being passed in a query stream to the page. What it does is makes SQL Data Sources extremely flexible not only on where they get their data from, but in how they perform queries and other operations on that database even when those operations include parameters. As an example, this is an excerpt from an ASP .NET Web page that shows not only declarative data binding but how I can use the parameterization features of a SQL Data Source. I have two visible controls on this page. One is a drop-down list.

The other is a data grid. I also have two SQL Data Sources declared. One of those SQL Data Sources, the first one on this page, provides content to the drop-down list. The second SQL Data Source provides content to the data grid. In this example, to fill the data grid, we do a query on a database. In fact, the Northwind database that comes with SQL Server. But, the query is a parameterized query. It includes a where clause with a parameter named At Country. At runtime, we want to get the value for that at-country parameter from the selected item in the drop-down list.

You can see that for the second SQL Data Source and its select command, we have the replaceable parameter defined, where country equals at country, then through the select parameters element we tell the SQL Data Source where to go at runtime to get a value for that parameter. Here, I've declared a control parameter on a control that tells the SQL Data Source that it should go to the control whose ID is my drop-down list, read that control's selected value property, and use the result as the value of the at country parameter when it performs a query of its own. If, instead of filling that replaceable parameter with the value selected in another control, I wanted to use a query string parameter instead, then instead of declaring a control parameter inside my SQL Data Source I would declare a query string parameter as you see right here.

Here, I'm telling that SQL Data Source to get the value for the at-country parameter at runtime from the query string parameter named country. One of the most commonly asked questions regarding SQL Data Sources is, Do I have to use dynamic SQL commands or can I call stored procedures with them? You can call stored procedures with them. In fact, this is generally considered to be good programming practice not only for performance reasons but for security reasons as well. In this example, you see two SQL Data Sources being declared. These SQL Data Sources don't use dynamic SQL commands, instead they call stored procedures. At the bottom of the slide, you can see the stored procedures listed. Significantly, all I have to do in the SQL Data Source is to call these stored procedures. They specify the name of the stored procedures in the select command properties.

If a stored procedures accepts input parameters, I also need to include a select-parameters element in that SQL Data Source and in the select-parameters element, one parameter control for each different input parameter that the stored procedure accepts. In the second of the two SQL Data Sources on this slide, you see that it calls a stored procedure that requires one input parameter. Therefore, I have a select-parameter element in the SQL Data Source, and I'm using the control-parameter element, to tell the SQL Data Source to get the value of that parameter at runtime from the selected item in the drop-down list. At this point, I'd like to pause and do a demo for you. In this demo, we'll build something that compliments the page that we built in the previous demo. In it, we'll use the SQL Data Source Control. We'll also use a query string parameter to control- to provide the value of a replaceable parameter used by that SQL Data Source to the SQL Data Source control from a query string. A SQL Data Source is just one member of the data source family of controls. Another very important one to you, and to all ASP .NET programmers, is the Object Data Source.

Object Data Source is having a way of having your cake and eating it too. It allows you to do declarative data binding without explicitly building data binding code into the UI tier of your application. Object Data Source is useful if you want to access your database using data components in a data layer, but you still want to take advantage of declarative data binding, SQL Data Source-style. Object Data Source, like SQL Data Source, has a lot of different properties. Developers coming into ASP .NET 2.0 for the first time sometimes find that confusing, because they look in the documentation, they see lots and lots of properties, and it's not clear which ones are used a lot and which ones aren't used much at all. Here's your secret decoder ring.

Here are the properties of Object Data Source that are very important in most Object Data Source scenarios. The type name property, for example, allows you to specify the name of the data component, literally the class name, in your data layer, that this Object Data Source will wrap. That object has methods in it that can be called a query the database, update the database, delete records from the database, etc. Object Data Source has properties: named select method, certain method, update method, and delete method, that allow you to specify to it which methods it should call in on this data component to perform database queries or to perform other database operations.

Object Data Sources even support caching, just like SQL Data Source simply by setting Enable Caching to true and also setting Cache Duration equal to the number of seconds you want the data to be cached, you can perform declarative caching of query results. Here are some of the other properties of Object Data Source. They, too, support parameterized operation just like SQL Data Sources. That's why you see properties here like select parameters, insert parameters, update parameters, and delete parameters. At this point, what I'd like to do is do another demo for you. In this one I'm going to show you a pre-built page that uses an Object Data Source to do data binding. You'll see that rather than have explicit data-binding code in my UI layer, I'll be doing all of my data access through a data component in my data layer, and I'll be using an Object Data Source as a wrapper around that component in my UI layer.

ASP .NET Version 2.0 introduces about 50 new control types to ASP .NET. We've talked about some controls already, like repeater. You've briefly seen controls like data grid. But, one of the controls introduced in ASP .NET 2.0 that's going to be, I think, extraordinarily useful to programmers is the grid view control. The grid view control is a super set of the data grid. Its job is to bind to data sources and to render those data sources into HTML tables. It does everything that the ASP .NET 1.0 data grid did and then some. For example, with no code at all it's capable of sorting, paging, even allowing data to be edited, and changes propagated back into the database. The user interface produced by this control is extremely customizable, as you will see. I can even control, if I want, the HTML that outputs on a table cell by table cell basis. Very simple example of grid view. In this page, you can see that I have a grid view declared. I'm also using a SQL Data Source to provide content to that grid view. If you run this page, run this example, what you'll see output to the page is an unadorned HTML table. Using properties of the grid view, you can customize that output so that it's very attractive.

You'll see an example of what I mean by that in just a moment. Another of the new controls in the ASP .NET 2.0 is the details view control. There was no counterpart to this one in ASP .NET 1.0. This control complements the grid view very well, although it can also be used without a grid view. The details view control's job is to bind to a data source containing one or more records and to render those records into HTML one at a time. It's called details view because you can point it at a set of records and one by one it can show you the details of those individual records. One use for it is to build master details views like you see so often in Web pages. By combining grid view and details view, it's very easy to build master detail views in ASP .NET.

Here's a quick example of what a details view looks like in practice. You can see that I've declared a details view control. I also have it bound to a SQL Data Source, which is querying a database and providing some content. Also, notice, however, that I've set the Auto Generate Rows property of this details view to false. That tells it not to generate one row in the HTML table that it outputs for each row it finds in the record that it's binding to, but rather to let me tell it what rows to display. The fields element inside the details view lets me declare the rows that I want shown. When I declare an image field, for example, I'm taking an image coming back in the database query, and asking the details view to display it for me. In the bound fields that I'm declaring, I'm simply taking text coming back from the query and displaying that text in rows in the details view. I'm also using a template field here.

Template fields allow me to specify or to provide HTML so that a given row in a details view renders out using that HTML. In this example, I'm wanting to take the first name and the last name fields from the query coming back and combine them with a space between them to produce a name that consist of a first name and a last name. Notice the data binding expression inside the item template in the template field, that data binding expression now produces the HTML that will be output for that row in the details view control. The fields, or rows, that I declared in the details view are not specific to the details view control. You can also use a columns element in a grid view to customize a grid-view control. The very same fields that you can declare in a details view, you can declare in a grid view as well. This is a list of those fields. They change a little bit before ASP .NET Version 2.0 ships. But, this gives you a pretty good idea of the different kinds of fields that you can declare in a grid view or a details view. At this point, let's pause and look at a demo. Going to show you a page that combines both a grid view and a details view to show information as retrieved through a database query, and to provide a clickable, master detail view for the end user. Before we close out this session, I'd like to say a word or two about two-way data binding. This is something that you'll need in the project that you're working on.

It's also something that all ASP .NET programmers should know about. When you use Data Source controls, like SQL Data Source or Object Data Source, to do declarative database queries you actually have the power to do much more. It's very common in Web pages to query a database, to bring back data, and to display it to the end user for the purpose of letting them not only view that data but also to edit it. In ASP .NET 1.0, it wasn't very difficult to build pages that allowed users to edit data. But, in ASP .NET 2.0, it's even easier than it was in Version 1.0. In fact, in some cases you can get away with writing no code at all. That's because the data controls, like the grid view and the details view, and the Data Source controls that you bind them to support two-way data binding. In other words, they're equally as capable of putting data back in the database as they are pulling it out.

The best way to introduce you to two-way data binding is to show you an example. In this next example, we're going to look at a page that's very much like the one we used in the previous demo. It's a master detail view built around a grid view and a details view. The difference is that this time the data's not read-only. Not only can we view data in this master detail, we can edit data as well. We'll see some of the built-in editing capabilities of both the grid view and the details view controls. We'll also see what it takes to allow those controls to do what they do.

That concludes our look at data access in ASP .NET. Hope this information has been useful to you as well. As you can see, there are a lot of tools here that ASP .NET places at your disposal. Remember that with the Data Source Controls, you can do declarative data binding and even declarative updating of database data, pair those data source controls with controls like repeater, data grid, grid view, and details view, and the work of rendering out the results of database queries into HTML is largely done for you as well.

Page 1 of 10

