Data Access – Demo 6 Transcript

Let’s close out this session on data access in ASP.NET by looking at a final example, a page named EditMasterDetail.aspx. This is basically the same page that you saw in the previous demo, one that uses a grid view and a details view to create a master detail view of the employees table of the Northwind database. This one throws in editing capabilities to demonstrate two-way data binding.
As before, I can select a record by clicking this Select button here. But there’s some additional things that I can do. For example, I can click a Delete button to delete one of these records. Notice that when I click that Delete button a message box pops up asking for confirmation. That’s not a feature that is built into the grid view, that’s a feature that I have added. I added that because you’re asked to include a feature very much like this in the application that you will be building. In just a few moments I’ll show you what I had to do to get that confirmation box to appear, and you’ll see that it wasn’t much.

I’ll click Cancel because I don’t care to delete that record. Now, let’s edit one of these records. Grid view has editing support built into it. Doesn’t take any code to make this happen, although you can add code if you’d like. Now, if I want to change Steven’s name to Mike like this, I can make the change, click Update, and the change gets propagated back to the database courtesy of the grid view control and the SQL data source that it’s using to do its data binding.

Now, in addition, if you scroll down, notice that the details view has some editing capabilities of its own. For example, I can tell it to include an Edit link. If I click that link then the details view clicks into an editable view like this. If I click the Delete link then it will delete that record from the database. If I click the New link it shows me a blank input form allowing me to add a new record.

Significantly again, I haven’t written any code to make this happen. You’re seeing a very good demonstration here of the capabilities built into the details view control. Now, let’s take a quick look at the source here to see what it is that allows this two-way data binding to work. There’s several key elements that I need you to see.

Here is that source view. First, here’s the SQL data source control that provides content to the grid view at the top of the page. In a previous demo, the SelectCommand property of that SQL data source was initialized, but the UpdateCommand and DeleteCommand properties were not. The first step in doing two-way data binding is to initialize the InsertCommand, UpdateCommand, and DeleteCommand properties of the data source control. Now, I didn’t initialize InsertCommand here, because I’m not allowing this grid view control to do inserts. Because I am allowing it to do Updates and Deletes, I must define those properties. Property values tell the SQL data source exactly what command to execute. An UpdateCommand, for example, or a DeleteCommand if the control is asked to perform an update on the database or a delete on the database.

Now, in almost all cases when you update or delete, the commands that you use will require parameters, hence, the UpdateParameters element that you see right here and the DeleteParameters element that are inside the SQL data source control. These simply map the parameters being passed by name, parameters like @LastName, being passed, in this case, to the UpdateCommand to the corresponding fields in the grid view that we are binding to.

Let’s go down to the second SQL data source. This is the one that serves the details view control. I’m allowing the details view to do Inserts, Updates, and Deletes, which is why I’ve initialized all three of those properties in that control, InsertCommand, UpdateCommand, and DeleteCommand.

In addition, you can see the InsertParameters, UpdateParameters, and DeleteParameters, which, again, are telling the SQL data source where to get the values for the input parameters input to the commands from. Again, these asp:parameter elements just map those parameters being defined in the commands back to the equivalently named fields and the control that the data source is bound to.

I had to make some small changes to the grid view and details view itself to support two-way data binding. For example, in the grid view tag if I scroll out here, you’ll see that I now have properties being initialized. Properties named AutoGenerateEditButton and AutoGenerateDeleteButton. Setting both of those to “True” causes the Edit and Delete buttons that you saw in the data grid, or in the grid view on the page to appear.

Same with the details view control. Here is the details view tag declaring that control. If you’ll scroll out some, you’ll notice that I’ve set its AutoInsertButton proper- AutoGenerateInsertButton property to “True”, its AutoDelete- AutoGenerateDeleteButton, I should say, property to “True.” I should find, yes, an AutoGenerateEditButton property set to “True” also. That’s why you saw links at the bottom of the details view allowing us to edit, to delete, and to insert.

It’s also very important when you’re using controls, like grid views and details views to do two-way data binding that you specify the primary key or keys, being used to do the inserts, updates, and deletes with the DataKeyNames property. For example, right here I’ve set DataKeyNames equal to “EmployeeID.” That is the primary key in the table that I’m getting this data from and putting the data back to. If you look inside the details view tag, you’ll see that I’ve also defined that primary key there. That’s important, because I am allowing editing to occur from inside those controls.

That is a quick look at what it takes to do two-way data binding. I think you’ll agree that it’s not much, especially if you’ve done two-way data binding before in Version 1.0 of ASP.NET where quite a bit more code was required to do this.

There is one other thing I want to mention to you. Let’s go back to the page. I’m going to run it more- one more time. I’m going to select one of these records. Actually, there are two things I want to mention. Before I do this one let me show you something else. I promised that I would show you how it is that I’m causing that confirmation dialogue to appear when the user clicks one of the Delete links. As I said, the grid view doesn’t have the ability on its own to display that message box, but it doesn’t take much code to add that.

Notice in my grid view tag here, I have an attribute that reads OnRowCreated = “GridView1_RowCreated.” Row created is an event that the grid view fires for each and every row that it renders out. If my grid view has a hundred rows, then each time the page is requested the RowCreated event will fire 100 times. With this attribute I’m telling the grid view that each time it creates a row I want this method called. If we look at that method you’ll see how there I’m adding in some Client-side script to that row, such that when the button is clicked, the Delete button, that is, my code will be activated.

Here is that method here. Remember, this is called for each and every row that the grid view creates. I first look at the row type to make sure that it’s a data row and not, say, a header row or a footer row. Ultimately then, I reach into the leftmost cell of the row that was just rendered out, pull out a reference to control number 2, which happens to be that link that reads Delete. I attach a DHTML “onclick” attribute to it. That means that when a Delete link is clicked, this little bit of Java script right here is going to execute, and it is the confirm function that causes the message box to pop up.

With that, notice I’m returning the value that return confirmed- that confirm returned. If confirm returns “False” indicating that the user does not want to delete that record, then this function returns “False,” and the browser itself suppresses the post-back that would otherwise have occurred. On the other hand, if the user affirms the deletion by clicking Okay, then the confirm function returns “True,” this function returns “True” and the browser will allow the post-back to go through.

Now, on to that very last thing that I wanted to show you. Let’s go back to the page again running in the browser. I’ll select an item. Let’s click the Edit button. Notice here that even though this user interface was entirely generated by ASP.NET requiring almost no work on my part to get it to appear, it doesn’t use real estate very efficiently. For example, these Edit boxes here that you see don’t fill the width of that page. Also, there may be cases where you want this to be a multi-line Edit control instead of a single-line Edit control, or there may be cases where instead of a text box appearing there, you want a drop-down list to appear.

Even though I haven’t done that in this demo let me show you how to do that, because you may find this useful in a project that you’re about to work on. Let’s go back to EditMasterDetail.aspx. Let’s switch to design view. I’m going to right-click the rightward pointing arrow that’s connected to the details view control. I’m going to select Edit Fields.

We see a list of the fields that are being declared. If I want I can do this. I can take the fields in which I want to exert more control over exactly how that field looks in Edit view, Insert view, or whatever. I can click the link that reads “Convert this field into a template field.” If I do that now, let’s go back to source view and see what that did.

It converted a field that was formally a bound field into a template field. You can see it right here. A template field allows me to control to the nth degree exactly what appears there. Here’s what this template field is doing for me. Notice it begins with an Edit Item template. In the Edit Item template I specify what I want to appear in that field when the control is in editing mode. Notice that it’s going to be rendered out now as a text box. If I want that text box to expand to fill the width of that page there, I’ll add a Width=100percent attribute. Also notice that there is an item template. This specifies how that field should look when the control is not in editing mode. Notice we’re just having it render out as a label, but this bind method being called here is an important one, because it says that we want to bind this field to the LastName field in the database for the purpose of two-way data binding.

There’s also an Insert Item template. I can even control what appears in this row of the details view when it’s in Insert mode. I’ll do the same thing with the text box there that I did in the Edit Item template. I’ll add a Width=100 attribute to expand it. Now, let’s run the page one last time and see what that details view looks like when we are in, say, Editing mode.

Notice that the Last Name field, Last Name text box, now expands to fill the entire width of the page. If I wanted to do that with the other fields I could go back into the designer, convert each of those into template fields, and modify the markup however I wanted.

If you- even though the details view, and for that matter the grid view, will do a lot for you in and of themselves without additional code, you’ll often find times where you want to exert more control over exactly how that control looks in Insert mode, or Edit mode. It’s through template fields that you exert that control.
Page 1 of 4

