Data Access – Demo 5 Transcript

Let’s walk through another page in this sample site here. This page is named MasterDetail.aspx. On this page you’ll see a grid view and a details view control used together to provide a master detail view of some of the data in the employees table of SQL Server’s Northwind database.

Let’s start the page. What you see initially is a grid view. I’ve stylized the grid view some using the Auto Format command in Visual Studio. In that grid view you see content listed that comes from Northwind’s employees table. You also see on the left-hand side, or leftmost column of the grid view, a link that reads Select.

When I click one of those Select links a Details view appears at the bottom of the page. Remember, whereas grid view is designed to show you sort of a summary-type view of lots of records, a details view is designed to show details concerning one of those records. Details view controls have the ability to page through records without any interaction on your part, that is, without writing any code to make it happen. In this case we’re not using the paging capability. We are simply displaying in the details view at the bottom of the page all the details concerning the record that is shown in abbreviated form at the top of the page.

Now, again, this content is being produced entirely declaratively. There’s no code working on the back end to make this thing work. Let’s see what the source looks like. Open MasterDetail.aspx. If you look at it in source view you’ll see at the top here I have a SQL data source declared that is doing the select statement that you see right here on the Northwind database.

It’s actually this SQL data source that is providing content to the grid view. You can see that the SqlDataSource ID is SqlDataSource1. Here’s the grid view control, and its data source ID is SqlDataSource1. Now, why does the grid view have a column of select links in it? If you look out here a little bit further in the grid view tag, you’ll see that I’ve set its AutoGenerateSelectButton property equal to “True.” That causes it to automatically generate that column of Select buttons.

Let’s see. Let’s scroll back over until we get back a little bit further in the page. Let’s continue scanning down here. If I go down below the grid view, you see the details view being declared right here. The details view tag is a fairly large one, there are lots and lots of different properties being declared there. That’s primarily- those are primarily added by the AutoFormat command that I used.

If you go back up just a little bit, you’ll see the SQL data source that serves that grid view. Now, this SQL data source does a query of its own on the Northwind database. You can see that query right here. It’s basically pulling back all the information, all the fields in a given record. It also includes a Where clause. If we scroll out far enough we’ll see that Where clause. We’re asking for all the information where the EmployeeID field is equal to a parameter named @EmployeeID.

We need to tell the SQL data source where to get the value for that parameter from at runtime, hence the SelectParameters element that you see right here. We’re telling it to go back to the grid view control. Notice the grid view’s controls ID is right here. To get the value of the value property of the item that is currently selected in that grid, and to use that to provide a value for the @EmployeeID property.

Now, one thing that’s not very obvious here that you should know about is this: in a grid view, entire rows are selected. That row has multiple cells, each of which has its own value. It’s not very clear when we tell this SQL data source to get a value for a parameter from the SelectedValue property of the grid view. Which of the values in the row that is selected is going to be used to get that property value. That comes from the grid view tag itself.

Go back down here and look at the asp:GridView tag and notice that I’ve initialized its DataKeyNames property equal to EmployeeID. It’s this that tells the SQL data source that once it has found the selected row in the data grid that it should look in the EmployeeID field of that row to get a value for the Employee ID property.

There’s a little bit more at work here than there has been in some of the previous demos, in both this grid view and details view. I set AutoGenerate columns and AutoGenerate rows to “False” so that I can carefully control exactly what’s shown there. That’s why you see, for example, a columns element in the grid view and a fields element in the details view.

Hopefully you see the main point here, which is that by combining the grid view and details view with declarative data binding, we can get a lot of output for just a little bit, or in this case, no code.
Page 1 of 2

