Data Access – Demo 4 Transcript

Let’s take a look at object data source. I’ve added a couple of pages to this site we’ve been building. One of them is named ObjectDataSource.aspx. I’m going to begin by running it so you can see what it looks like. The data that we’re using here comes from SQL Server’s Northwind database, specifically from its customers table.

I have a drop-down list on the page, a data-bound drop-down list, of course, that shows me a list of the countries represented in that table. When I select the country from that list the grid view further down the page changes to show me just the customers in that country. What you may find interesting about this page is that there are zero lines of code making it work. All of the data binding being done here is declarative. We also see a great example here of how object data source can be used.

Before I show you the object data source, let me show you something else that I’ve done. I have created a code folder named Code in this Web site. I’m going to be telling you more about this folder in a lecture a little bit later. You should know for now that when you put source code files in that folder, in ASP.NET 2.0 those source code files get automatically compiled. I have in that folder a file named Customers.VB, which contains a simple class named Customers, with a function named GetCustomersbyCountry that I can call to get a list of all of the customers in a given country.

Rather than encode a query in a SQL data source that pulls that data back for me, I’d like to use that pre-existing data component in my application, but still practice declarative data binding. That’s exactly what the object data source is for. Let’s take a quick look at this page and source code form so that you can see exactly what’s going on here.

First off, notice that there are two data source controls declared on this page. One is a SQL data source. It is that data source that does a select distinct query on the database, brings back a list of the countries represented in the customers table. It’s that list that appears in the drop-down list. In fact, you can see right here that the drop-down list is bound to that data source control.

More importantly, here is a data grid displayed a little bit further down. This data grid is bound to the data source whose ID is ObjectDataSource1, which is this object data source right here. Take a look at how this object data source is declared. Notice, for example, that its TypeName property is equal to “Customers.” That’s a name of the class in that customers VB file that we just looked at. The name or value of its SelectMethod property is “GetCustomersByCountry,” which is the name of the method in the customers class in Customers.VB.

Now, when this object data source wants to do a query it’s going to instantiate the customers class, call the customers class’s “GetCustomersByCountry” method. I have the luxury of doing declarative data binding, but using data components in a data layer to do that. That “GetCustomersByCountry” method does expect a parameter. There is a SelectParameters element declared inside my object data source telling it that it should get the value for that parameter, that is, the parameter passed to the “GetCustomersByCountry” method from the drop-down list. Notice ControlID=“DropDownList” right here. Also, PropertyName=“SelectedValue.”

At runtime the page loads, the object data source instantiates the customers class, looks to the drop-down list, finds the selected item in it, pulls out the value property of that selected item, passes that value to the “GetCustomersByCountry” method of the customers component, and then provides that content to the data grid.

Whenever you want to do declarative data binding, but you also want to route accesses to your database through components in the middle tier, object data grid is the way to accomplish that.
Page 1 of 2

