Message Queuing Frequently Asked Questions

By Doron Juster

Microsoft Corporation

March 2005
This document provides a resource of known issues and commonly asked questions for the following Message Queuing (also known as MSMQ) versions:

· Microsoft Message Queuing Server (MSMQ 1.0) on computers running Microsoft(Windows NT(version 4.0, Windows(98, Windows 95, or Windows Millennium Edition.

· Message Queuing 2.0 on computers running Microsoft Windows(2000 Server or Windows 2000 Professional.

· Message Queuing 3.0 on computers running Microsoft Windows(XP Professional or Windows Server(2003.

For a general overview of Message Queuing or more specific information about Message Queuing features, see the Message Queuing online Help.

Applies to:

· Microsoft Message Queuing Server

· Windows NT 4.0

· Windows 95

· Windows 98

· Windows Millennium Edition

· Message Queuing 2.0

· Windows 2000 Server

· Windows 2000 Professional

· Message Queuing 3.0

· Windows XP Professional

· Windows Server 2003

The information contained in this document is provided as a courtesy and represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, BizTalk, SQL Server, Visual Basic, Windows, Windows NT, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

This frequently asked questions (FAQ) document provides a resource of known issues and commonly asked questions for the following Message Queuing (also known as MSMQ) versions:

· Microsoft Message Queuing Server (MSMQ 1.0) on computers running Microsoft(Windows NT(version 4.0, Windows(98, Windows 95, or Windows Millennium Edition.

· Message Queuing 2.0 on computers running Microsoft Windows 2000 Server or Windows 2000 Professional.

· Message Queuing 3.0 on computers running Microsoft Windows XP Professional or Windows Server(2003.

For a general overview of Message Queuing or more specific information about Message Queuing features, see the Message Queuing online Help. This document provides links to Knowledge Base (KB) articles and to MSDN topics. You may need to press the Ctrl key in order to click the link and reach it. If any of the links provided do not display in Internet Explorer as expected, either refresh the Internet Explorer page or copy the link into your browser's address box. Links are maked by underlined words.
CAUTION Some of the issues and suggested solutions in this FAQ document relate to the Windows registry. Incorrectly editing the registry might severely damage your system. You should back up any valuable data on the computer before making changes to the registry.

Table of Contents
1

Message Queuing Frequently Asked Questions

2

Introduction

3

Table of Contents

17

1
Getting Started

17

1.1
What Is Message Queuing?

17

1.2
How do I get Message Queuing?

17

1.3
Ok, I installed it. Can I see it in action, immediately?

18

1.4
Where can I learn more about Message Queuing?

19

2
Setup and Upgrade

19

2.1
How can I test a Message Queuing installation?

19

2.2
Is Microsoft SQL Server(required to install Message Queuing 2.0 in a Windows 2000 domain environment?

19

2.3
Do I need to extend the Active Directory schema before I install Message Queuing on Windows 2000 and Windows Server 2003?

19

2.4
What permissions do I need to have to install Message Queuing on Windows 2000?

20

2.5
Can I install Message Queuing on a computer running Windows 2000 that belongs to an Active Directory forest while I'm logged on as a user from a different Active Directory forest?

20

2.6
Can I install a server running Windows 2000 Message Queuing 2.0 with routing enabled against a MQIS server running Windows NT 4.0 MSMQ 1.0?

20

2.7
Can a dependent client be installed in workgroup mode?

20

2.8
Is it possible to install Message Queuing on two computers that have the same name?

20

2.9
Sometimes it seems that unattended Setup for Message Queuing 2.0 hangs. Any reasons? Is it possible to do a completely unattended setup, without any pop-up windows?

21

2.10
While installing Message Queuing 2.0, I receive the following error: "Unable to create MSMQ service object in Active Directory, error code 0xC00E0071." What's wrong?

21

2.11
Setup for Message Queuing 3.0 fails with the following error: "Error 0xc00e03eb unsupported function." Why?

22

2.12
I installed a Message Queuing–independent client computer and receive the following error: "Error 0xc00e0025, Access is denied." What's wrong?

22

2.13
Setting up an independent client with Message Queuing 2.0 in Active Directory fails with the following error message: "0x80005000 while trying to create the msmqConfiguration object." Why?

22

2.14
Setting up Message Queuing 3.0 fails with the following error: "0xC00E0090L" What's the problem?

22

2.15
I install Message Queuing 2.0 routing server and Setup failed with the following error: "Object not found." Why?

23

2.16
After I upgraded an MSMQ 1.0 backup site controller (BSC) to Windows 2000, the Message Queuing service did not come online and applications could not access the MQIS database. What's wrong?

23

2.17
I upgraded my computer from Windows 98 to Windows XP, and Message Queuing does not start after the upgrade. Why?

23

2.18
When I install Message Queuing on Windows 2000, I am sometimes asked to provide the name of a server and sometimes not. Why?

24

2.19
Is there any information available to read before upgrading an MSMQ 1.0 primary enterprise controller (PEC) to Windows 2000?

24

2.20
Is it possible to re-run the Message Queuing 2.0 Upgrade wizard?

25

3
Messaging

25

3.1
What is the overhead size for sending a message on the network?

25

3.2
Where does Message Queuing store messages for local queues? Does it use a database for storage?

25

3.3
Where does Message Queuing keep messages that I send to other computers?

26

3.4
Can I keep message files on a compressed NTFS volume?

26

3.5
Why is there a 4-MB message size limitation?

26

3.6
Does Message Queuing support the scheduled delivery of messages?

26

3.7
Is MQSendMessage() synchronous?

26

3.8
Does Message Queuing guarantee that a transactional message will reach its destination queue?

27

3.9
MQSendMessage() always succeeds even when it is obvious that the message cannot be sent. Why?

27

3.10
It seems as if Message Queuing leaks memory when I send a large amount of messages. Is this true?

28

3.11
I sent a message to a distribution list (using the DL=<GUID> format name), but it only arrived at one of the destination queues on a computer. Why?

28

3.12
Transactional messages are accumulating in outgoing queues and are never delivered to the destination. Why?

29

3.13
I changed the IP address of an MSMQ 1.0 server and now independent clients cannot send messages to that server. Why?

29

3.14
A remote computer changed its IP address, but my outgoing queues are pointing to the old address. Ping works and recognizes the new address. Why?

30

3.15
I send a message to a local transactional queue and I eventually find it in the transactional dead-letter queue with a bad destination class error. Why does this happen?

30

3.16
I send a message to an existing remote queue (using the PUBLIC or PRIVATE format name) and I eventually get a bad destination NACK. Why?

30

3.17
I am using a DIRECT=TCP format name, but the target computer does not receive my messages. Why?

31

3.18
I send messages from a LocalSystem service on Windows NT 4.0, and it takes dozens of seconds until each message is received. Why?

31

3.19
On Windows XP, I call MQReceiveMessage() with long time-out, inside a COM+ transaction, and it fails after a short time with the following error: "0xc00e0051" Why?

31

3.20
When designing for transaction confirmation mechanism, are there any differences between using XACT-deadletter queue and ACK/NACK to admin queues?

32

3.21
Multicast messages get lost on slow links. Is there any solution for this?

32

3.22
Is it possible for several threads (or processes) to see the same message?

32

3.23
What's the meaning of the Arrived Time value of messages in queue journal (target journaling)?

32

3.24
How does Message Queuing enlist in an XA transaction?

32

3.25
A message travels to the destination via an intermediate routing server. What happens to the message if the routing server crashes?

33

3.26
How does MSMQ Delivery properties (TTRB, TTRQ, Express, Recoverable, Journaling etc) play in multicasting scenarios?

33

3.27
I send a message which specifies an administration queue and asks for full acknowledgment. I get a "reach queue" ack and a "time to reach queue expired" nack. How come ?

34

3.28
Can a thread performs an asynchronous Receive call and then exits?

35

4
Security

35

4.1
Why do we need both Renew Internal Certificate and Renew Cryptographic Key in Control Panel (or in computer management console)?

36

4.2
I want to build a security descriptor and pass it to MQCreateQueue. Which revision should the access control lists (ACLs) be?

37

4.3
I enabled auditing on my queues. How do I interpret the auditing events?

37

4.4
Are all remote procedure calls (RPCs) used by Message Queuing 2.0 authenticated using the Kerberos protocol?

37

4.5
Can a dependent client send encrypted messages?

38

4.6
I created a local public queue on my computer running Windows 2000. Security settings for this queue indicate that my computer account (Domain\myComputer$) is the owner of this queue, and not my user name (Domain\User). Why?

38

4.7
I changed the security settings of a public queue so that access is now denied to all. How can I restore access to this queue?

38

4.8
I am sending messages across multiple enterprises or across multiple untrusted domains. Are there any special considerations for this scenario?

38

4.9
My computer running Windows 2000 has the enhanced cryptographic provider installed, but messages I send are not encrypted with 128 bits. Why?

39

4.10
Why is it that sometimes I cannot send authenticated messages and at other times I can send them successfully, but the receiver rejects them?

40

4.11
When trying to register a certificate, I receive the following error: "Access is denied error (0xc00e0025)." When trying to renew my internal certificate, I receive an error message that I cannot delete my previous certificate from Active Directory. What is the problem?

40

4.12
I revoked the Send permission from the Everyone account, and instead granted it to a specific group. Now no one can send messages to the queue. Why?

40

4.13
When I try to create a local public queue on a computer running Windows 2000 that belongs to a Windows 2000 Active Directory forest, it fails with an access denied error. Why?

41

4.14
It seems that Message Queuing 3.0 on a computer running Windows XP cannot accept messages from local user accounts. Is this true? Are there any ways to resolve this issue?

41

4.15
It seems that my messages are inserted into a queue although its security descriptor does not grant my account the Send permission. Why?

42

4.16
I can send to a foreign queue, even when its security descriptor does not grant my account the Send permission. Why?

42

4.17
I moved my computer to another domain in the same forest. Now I cannot create local queues. Why?

42

4.18
The Administrators group has the Full Control permission on a local public queue. I am a local administrator and I can receive from that queue but I cannot delete it (trying to do so results in access denied error). Why?

43

4.19
Can I restrict the Send permission for an administrative queue?

43

4.20
I sent a message with enhanced RC2 encryption and received a bad encryption NACK. What's the problem?

44

4.21
Is it possible to set a policy which define the default security setting of msmq objects in Active Directoty?

45

5
Administration

45

5.1
Can I manage private queues from a remote computer?

45

5.2
Is there any limit on the number of queues that can be monitored by performance counters?

45

5.3
Can I selectively remove a message from a queue by using the Message Queuing administrative tools (the MSMQ Explorer for MSMQ 1.0 and the Message Queuing Computer Management application for Message Queuing 2.0 and later)?

45

5.4
While running the dump/fix tools, I accidentally deleted everything from the Lqs subdirectory. Now my message files are okay, but Message Queuing does not start. Can I recover without reinstalling Message Queuing?

45

5.5
I see many public queues on my computer with type ID BBD97DE0-CB4F-11CF-8E62-00AA006B4F2F. What are they?

46

5.6
Can message files be backed up when the Message Queuing service is running?

46

5.7
How do I set the machine quota when Message Queuing 2.0 is running in workgroup mode?

46

5.8
How does Message Queuing manage licensing? Does it consume Client Access Licenses (CALs) from the File and Print subsystem?

46

5.9
I install Message Queuing without routing on a server running Windows 2000 Server (that is, an independent client configuration). Is it limited to 10 concurrent sessions?

46

5.10
I do not see the Message Queuing Session performance object in System Monitor. Why? And why is it that I cannot see all my queues in System Monitor?

47

5.11
When I look at outgoing queues in Computer Manager on a computer running Windows 2000, I see queues in the Inactive state. What does this state mean, and what does the Not Validated state indicate?

47

5.12
Is there a programmatic way to know if Message Queuing is installed on a computer?

47

5.13
How can I identify the type of Message Queuing installation on my computer?

48

5.14
What do the counters in the Outgoing Queues details pane in Computer Management mean?

48

5.15
I purged all the queues on my computer, but the storage directory still contains many message files. When are these deleted?

49

5.16
I upgraded to Windows 2000 Service Pack 4, and now the Users and Computers snap-in displays a folder called Public Queues under the Message Queuing object. What is that?

49

5.17
I try to add a routing server as site gate to a routing link, but it does not appear in the list of servers. Why?

50

5.18
I added the CleanupInterval registry value but it does not seem to help. Anything else I need to do?

50

5.19
On Windows 2000 I try to create a new public queue and get the following error: "0xc00e0005 (queue-already-exist)" However, I cannot see the queue in the Microsoft Management Console (MMC). Any ideas?

51

5.20
After migrating the PEC to a Windows 2000 domain controller, I cannot renew the cryptographic key on any Windows NT 4.0 PSC. Why?

51

5.21
I try to add in-FRS and out-FRS to an independent client, but the Servers list on the Routing tab does not show all the routing servers in the site. Why?

51

5.22
The Message Queuing icon does not appear in Control Panel on a dependent client running Windows 2000. Why?

51

5.23
I upgraded to Windows 2000 Service Pack 3 (or later) and all my applications are broken. Computer Management cannot browse local private queues. What's the problem?

52

5.24
I purge an outgoing queue but its message count does not change. It does not reset to 0. Why?

52

5.25
I cannot manage my public queues if I log on to Windows XP using a trusted Windows NT 4.0 account. This worked fine on a client running Windows 2000. Any ideas?

53

5.26
I connect to another computer with Computer Management; I can open the Public Queues folder and see the queues, but I cannot receive from the queues. I get the following error: "Remote service is not available." What's the problem?

53

5.27
Are there any special considerations when deploying clients running Windows 2000 and Windows XP in a Windows NT 4.0 MSMQ environment?

53

5.28
Can I rename the computer and still use Message Queuing, without reinstalling it?

54

5.29
While running Message Queuing backup (MQBkup) in Restore mode, I receive the following error: "Access denied." What's wrong?

54

5.30
When listing private queues with Windows 2000 Computer Management, I do not see all my queues. Why?

55

6
Triggers

55

6.1
I have a trigger rule that calls a COM component that is defined with Require Transaction. If the component aborts, sometimes the message is triggered again infinitely and sometimes it is not retriggered at all. Why?

55

6.2
I installed the Triggers service on a Windows 2000 cluster, and now Message Queuing causes an access violation after starting. Why?

55

6.3
When creating a trigger I received the following message: "The queue path was not validated." What's wrong with the trigger?

55

6.4
A COM component invoked by a trigger takes a label and body in the form of BSTR. Do I have to free the body and label BSTR at the end of my method or will the Triggers service free it?

56

6.5
Does the Triggers service share invoked components among threads?

56

6.6
How does the Triggers service handle messages with high priority?

56

6.7
Can the Triggers service run as a cluster resource?

56

6.8
Are there any special requirements for COM objects that are invoked by a trigger?

56

6.9
My triggered component throws an exception, and then the Triggers service stops processing messages. How do I resume the Triggers service?

56

6.10
What is the meaning of the following event: "65503 (No further rules will be processed for this message.)"?

57

6.11
I define a retrieval trigger, but messages remain in the queue after the component is invoked. Why?

57

6.12
I added a new trigger and it does not fire. Why?

57

6.13
When trying to do anything with the Triggers snap-in, on Windows 2000, I get the following error: "Runtime error 91." Why?

57

6.14
I have a trigger on a transactional queue. Some messages are not retrieved, although they meet the rules. Why?

58

6.15
What is the syntax for specifying multiple parameters with the TrigAdm tool?

59

7
Clusters

59

7.1
What are the common mistakes when configuring Message Queuing and Message Queuing–based applications on a Windows 2000 cluster?

59

7.2
Where can I find more information about configuring Message Queuing on a cluster?

60

7.3
What are the known limitations of Message Queuing 2.0/3.0 on an MSCS cluster?

60

7.4
Are there known interoperability issues with other products on a cluster?

60

7.5
Does Windows 2000 Network Load Balancing (formerly Windows NT Load Balancing Service [WLBS]) support Message Queuing?

61

7.6
I send many messages to a Network Load Balancing cluster. All the messages are received and processed by the same node. Why don't I see load balancing?

61

7.7
Does Application Center Component Load Balancing (CLB) work with Queued Components and Message Queuing?

61

7.8
In a server cluster, is there any dependency (or handshake) between Message Queuing on a physical node and Message Queuing on a virtual server?

63

7.9
What's the purpose of the MQAC$MSMQ Service.sys file under System32\Drivers on my cluster computer?

63

7.10
Do I have to put the MS DTC resource in the same cluster group as the Message Queuing resource?

63

7.11
Is it possible to do transactional remote reads between an application on the cluster node and a queue on the virtual server?

63

7.12
Is it possible to add registry settings to a Message Queuing resource that runs on a cluster group?

64

7.13
Are there any known issues when upgrading a Windows 2000 cluster to Service Pack 3 (or later)?

64

7.14
My clustered application fails to call Message Queuing and produces the following error: "Service not available." Everything seems to run fine if I start Message Queuing on the node computer. Is this acceptable?

65

7.15
I cannot bring the Message Queuing resource online on a cluster server running Windows 2000. Why?

66

7.16
I upgraded a Windows NT 4.0 cluster to Windows 2000 and now the Message Queuing resource does not come online. Why?

66

7.17
Is it possible to run Computer Management in the context of a virtual server when connecting from Terminal Server client?

67

8
MSMQ-MQSeries Bridge

67

8.1
Where can I learn more about the MSMQ-MQSeries Bridge?

67

8.2
Can I map several Message Queuing foreign queues to a single MQSeries queue?

67

8.3
Can I map several MQSeries queues to a single Message Queuing queue?

67

8.4
Can I install multiple bridge servers and point each one to a different MQSeries Queue Manager?

67

8.5
Can I install multiple bridge servers on the same foreign site and point them all to the same MQSeries Queue Manager, for load balancing or high availability?

68

8.6
How is load balancing done among multiple bridges?

68

8.7
I have multiple foreign computers in a single foreign site. How do I send messages to all foreign computers?

69

8.8
How can I send messages from a MQSeries application to Message Queuing queues on computers other than the one running the bridge?

70

8.9
Using the Bridge Explorer, while adding a new CN (foreign site) , I cannot see all the MQSeries Queue Managers that I have. What should I do?

70

8.10
When configuring the MSMQ-MQSeries Bridge, and trying to configure a new CN (foreign site) , I receive the following error: "No Applicable CN defined." What is missing?

71

8.11
After installing and configuring MSMQ-MQSeries Bridge, the MQSeries-to-MSMQ pipes do not run and remain pending. What's wrong?

71

8.12
Can the MSMQ-MQSeries Bridge set the UserIdentifier attribute in MQMD when sending messages to MQSeries?

71

8.13
Can I use Message Queuing to read from a MQSeries queue?

71

8.14
Can I use the DIRECT format name when sending messages to an MQSeries queue (foreign queue) through the bridge?

72

8.15
I tried the MSMQSend sample that is installed with the bridge, but it fails with the following error: "Error C00E0050" What's wrong?

72

8.16
Do I need to be logged on as an administrator to run the MSMQ-MQSeries Bridge Explorer?

72

8.17
Can I use the MQSERVER environment variable for the MSMQ-MQSeries Bridge?

72

8.18
The MSMQ-MQSeries Bridge service doesn't start. What's wrong?

72

8.19
What queries does the MSMQ-MQSeries Bridge Explorer do in order to display the computers list? (That is, why don't I see my cluster in that list, although I run BCluster?)

72

8.20
I send from Message Queuing to MQSeries, asking for a full NACK. However, the MQSeries NACKs end up in the MQSeries deadletter queue. Why?

73

8.21
Can I configure the MSMQ-MQSeries Bridge by using scripts?

73

8.22
I stop the MSMQ-MQSeries Bridge service from the MSMQ-MQSeries Bridge Explorer, but its icon continues to be green. Why?

73

8.23
BCluster fails to remove the Bridge cluster resource. What can be wrong?

73

8.24
I installed two bridges, each in a different site. Both run fine, but I cannot send from one site to MQSeries in the other site. Why?

73

8.25
Can I monitor the Bridge's pipes programmatically?

74

8.26
Can I rename the computer which runs the Bridge?

74

8.27
Can I use the Bridge manager from Terminal Service session? Can I view the Bridge performance counters that way?

75

9
Deployment

75

9.1
I want to configure a central queue on a Message Queuing server and have multiple remote clients read from it. Is this a good design?

75

9.2
Why do I need to run Message Queuing 2.0 on Windows 2000 domain controllers?

76

9.3
Are there any special considerations that should be taken into account when deploying dependent clients?

77

9.4
How do I know if the Message Queuing service is running on a remote computer?

77

9.5
Are there any fundamental differences between machine quota and queue quota?

77

9.6
Are there any special considerations when storing a large volume of messages?

78

9.7
Can Message Queuing 3.0 store an unlimited number of messages on a single computer?

78

9.8
Is it true that using a DIRECT format name forces Message Queuing to avoid querying Active Directory?

78

9.9
I stress Message Queuing on a computer with more than one CPU but most of the processors are idle. Why doesn't Message Queuing use all available CPUs?

78

9.10
How can I determine why a Message Queuing independent client does not come online?

79

9.11
An outgoing queue is in the wait-to-connect state, although I can ping the destination computer. What is wrong?

80

9.12
Calling MQOpenQueue for remote read with PUBLIC format name fail with error 0xc00e0069. It succeeds with DIRECT format name. Why?

80

9.13
MQOpenQueue fails with error 0x80070005 (access denied) when trying to open a remote queue for receive. Both sides run Windows Server 2003. What can be the problem?

80

9.14
What are the common methods to monitor the operation of Message Queuing?

81

9.15
What are the common deployment mistakes which I should avoid?

82

9.16
Can I use Windows Management Instrumentation (WMI) to monitor MSMQ?

82

9.17
Can I mix different Message Queuing versions in the same deployment?

82

9.18
Can a Message Queuing computer be cloned?

82

9.19
I installed Message Queuing on Windows 2000 domain controllers, and it seems that the Local Security Authentication Server (Lsass.exe) process leaks memory when Message Queuing is running. How can I correct this?

83

9.20
I test my MSMQ code in a console application and it runs fine. It fails from ASP or ASP.NET code. What can be the reasons?

84

10
The Internet and Message Queuing over HTTP/HTTPS

84

10.1
Can Message Queuing messages go through a firewall, over the native protocol?

84

10.2
Do I need to open all the ports that are specified in this FAQ?

84

10.3
Can the Message Queuing native protocol operate over a network address translation (NAT) firewall?

84

10.4
I send transaction messages to a remote computer, using the HTTP protocol, and they are accumulated in my outgoing queue. Why?

85

10.5
I send a large message using direct=http, over slow link, and it’s stuck in my outgoing queue. Any workarounds?

85

10.6
Does Message Queuing check for server certificate revocation when sending to DIRECT=HTTPS name?

85

10.7
How is access check done with messages sent over the HTTPS protocol?

86

10.8
Messages get lost although there is a mapping which supposedly map them to an existing queue. What can be the problem?

88

11
Programming

88

11.1
Why does MQCreateQueue fail with the following error: "Generic error MQ_ERROR, 0xc00e0001"?

88

11.2
Sometimes MQCreateQueue returns a PRIVATE format name and sometimes a DIRECT format name. Why?

88

11.3
IsTransaction property returns the wrong result when the local public queue is opened with a DIRECT format name on Message Queuing 2.0. Why?

88

11.4
I use an I/O completion port for an asynchronous receive. What should I do when MQReceiveMessage returns MQ_OK? Where should I process the message?

89

11.5
What are the reasons for the following error: "MQ_ERROR_INSUFFICIENT_RESOURCES"?

90

11.6
When calling MQReceiveMessage to read from a remote queue I receive the following error: "MQ_ERROR_INSUFFICIENT_RESOURCES" What's the problem?

91

12
Message Queuing COM Object

91

12.1
I tried to set the MSMQQueueInfo.PathName property and received the following error: "This operation is not supported for a WORKGROUP installation computer." What's wrong?

91

12.2
Can I send an ASCII string as a message body from Visual Basic?

91

12.3
When I call get_Body() from a C++ application, who is responsible for freeing the memory allocated to hold the body?

91

12.4
When I release an auto-pointer, my code fails. Why?

92

12.5
I have an ATL component using Message Queuing (by means of COM smart-pointers). Each call to pMsg->Send() is leaking memory. Why?

93

13
Queued Component

93

13.1
Calling GetObject("queue:/new:My.Comp") fails with the following error: "Object required." What's the problem?

93

13.2
Can I use Queued Components without Active Directory?

93

13.3
Can Queued Components use external certificates for authentication?

93

13.4
Queued Components creates multiple queues when I mark a component as queued. Can I reduce the number of queues?

93

13.5
My Queued Components application stops running after the computer joins a domain. Anything I have to do in this case?

94

13.6
In workgroup mode, I send to a Queued Components server on Windows Server 2003 (or Windows XP) and messages end up in my transactional dead-letter queue with the class of Access-Denied. Why?

94

13.7
Messages sent by the Queued Components recorder are rejected with the class of bad signature. Why?

95

14
The .NET Framework and Visual Studio .NET

95

14.1
I am using an internal transaction to send a message and the message does not enter the queue. Why?

95

14.2
I send several messages to the same queue, and it seems that message #n gets part of the message body from message #n-1. Why?

95

14.3
I can send a message to a local private queue, using the path .\private$\queue, but I cannot send to a remote private queue, using computer\private$\queue. Why?

95

14.4
An attempt to read from a remote queue fails with the following error: "Invalid-handle" Why?

96

14.5
I granted a user Full Control on a queue, but the user cannot open it for receive. What can be wrong?

96

14.6
Can I serialize a message object?

96

14.7
I try to build the C++ Local Admin sample code by using Visual Studio .NET and it fails. Any solution?

96

14.8
Calling BeginPeek from the delegate handler routine (after calling EndPeek to complete a previous BeginPeek call) results in an endless loop of peeking the same message. Why?

96

14.9
Calling ReceiveByCorrelationID fails with the following error: "Message that the cursor is currently pointing to has been removed from the queue by another process or by another call to Receive without the use of this cursor." Why?

97

14.10
The Send() method fails with error “Send Failed: Exception Message = File or assembly name jesla7sr.dll, or one of its dependencies, was not found”. What can be wrong ?

97

14.11
I try to open the local deadletter queue and this fails with error “Cannot establish connection with the controller(s).”. What should I do?

97

14.12
I send messages using System.Messaging API. I cannot receive them in a VB/C++ app using the MSMQ COM API. Why?

98

14.13
GetPublicQueuesByMachine() does not return anything in a Windows NT4 MQIS environment. Why? Any other limitations of this API?

98

14.14
It seems that messages get lost after I unregister a delegate handler. Why?

98

14.15
MSMQ is installed and running but my .NET application fails with exception "Message Queuing has not been installed on this computer". Why?

100

15
Troubleshooting

100

15.1
How do I enable error logging on Message Queuing 2.0?

101

15.2
How do I enable error logging for Message Queuing 3.0 on Windows XP?

102

15.3
How do I enable error logging for Message Queuing 3.0 on Windows Server 2003?

102

15.4
Does the Task Manager handles counter include the Message Queuing cursor handles?

102

15.5
How can I troubleshoot the reasons for Access-Denied errors (0xc00e0025)?

103

15.6
How can I troubleshoot the reasons for messages not reaching destination queue?

104

16
Message Queuing Events

104

16.1
What do events 2121 and 2124, stating the following: "Message Queuing was unable to join the local Windows 2000 domain. Error 0xc00e0075.", mean?

104

16.2
The Message Queuing service fails to start, issuing the following events (2083 and 2023, respectively): "File corruption" and "Recovery problems" What should I do?

104

16.3
Message Queuing exits with the following event (2077): "Unable to save %1 for the checkpoint." What causes this?

104

16.4
I see event 1016 from System Monitor, warning that Message Queuing data is not aligned. Is this harmful?

105

16.5
On Windows 2000 I cannot see Message Queuing counters in System Monitor, and I receive event 1008 about failure to load MQPerf.dll. What's the problem?

105

16.6
I installed Message Queuing on a Windows 2000 domain controller and see the following event (2048): "The server cannot support automatic recognition." What's wrong?

105

16.7
After I send a message I receive the following event (2010): "Cannot route to remote site." How can I resolve the site GUID to the site name, and what does event 2014 about an unknown site indicate?

105

16.8
I receive the following events (2015 and 2084, respectively): "Inconsistent Queue Manager ID." and "Computer object not found." What should I do?

106

16.9
What does the following event (2122) mean: "This domain controller is not trusted for delegation."?

106

16.10
I install Message Queuing on a global catalog server, and it issues the following event (2139) on startup: "Message Queuing has detected a problem with the local domain controller." What's the problem?

106

16.11
I got the following event (2063) on my domain controller: "Message Queuing may function in an unpredictable fashion." What can be the problem?

106

16.12
On a dependent client I get the following event (2068): "The list of Message Queuing capable domain controllers in the Windows registry is empty." What's the problem?

107

16.13
I see event 2013 ("Unable to route messages because this computer is a site gate, but it does not share a connected network with neighboring site") logged in the Windows event log. What can be the problem?

108

17
Bridge and Trigger Events

108

17.1
I received the following event from the MSMQ-MQSeries Bridge (53): "Unsupported option at CQ2QMsgF::QMsg, at (or near) line 2323." What's the problem?

108

17.2
I received the following event (104) from BizTalk Adapter for SAP: "Failure of MSMQ with error 0xc00e0058." What's the problem?

108

17.3
I received the warning event (101) from the Triggers service regarding reallocation of message body. Do I have to do anything?

108

17.4
I received the following event (74) from the MSMQ-MQSeries Bridge service: "Bad MQSeries Queue Manager Name" What does it mean?

108

17.5
I received the event 65508 from the Triggers service regarding HRESULT(0). What's the problem?

108

17.6
I receive event 68 from the MSMQ-MQSeries Bridge: "MSMQ-MQSeries Bridge cannot operate when MSMQ is running in a workgroup mode". Why?

109

18
Inside Message Queuing

109

18.1
How are messages delivered to a remote computer?

110

18.2
Any scale considerations for the messages delivery mechanism?

111

18.3
What happens when a session is broken while messages are delivered?

111

18.4
How are transactional messages delivered?

111

18.5
How are the messages files used by the Message Queuing service and Message Queuing runtime?

112

18.6
What happens when an application receives a message?

112

18.7
What are the options for installing multiple MSMQ-MQSeries Bridges in an enterprise? What are the options for sending to multiple MQSeries Queue Managers?

113

18.8
How do I choose between public and private queues? What about format names? And what about Workgroup mode?

116

18.9
Memory issues with System.Messaging

117

18.10
Is Message authentication secure? Is an internal certificate secure?

121

19
Going Forward

121

19.1
How is Message Queuing related to Message Queuing-T? Is Message Queuing-T a replacement for Message Queuing?

121

19.2
What's the roadmap for Message Queuing?

122

20
Appendix A: vbsSendMsg.vbs

123

21
Appendix B: mmcv.cpp

127

22
Appendix C: Findsite.vbs

129

23
Appendix D: MQTrace.cmd (Windows Server 2003 and Windows XP)

144

24
Appendix F: Common Errors in the MSMQ.log File

146

25
Appendix G: Registry Used By the Host Integration Server 2000 MSMQ-MQSeries Bridge

149

26
Appendix H: Registry used by Message Queuing

150

27
Appendix I: WMI script samples

Getting Started

1.1 What Is Message Queuing?

Message Queuing is a middleware component of the Windows operating system. In a nutshell, middleware is for applications what mail is for humans. Your application can use Message Queuing to send messages to another application even if the recipient application is not running or the computer on which the sender or recipient application is running is disconnected from the network. Messages are stored and forwarded by Message Queuing until they reach the destination queue. Later, when a recipient application runs, it can retrieve the messages from the queue. Message Queuing decouples sender and recipient applications so they do not need to run at the same time. Message Queuing provides built-in security, transaction support, and more.

For an overview of Message Queuing, see here and here.
1.2 How do I get Message Queuing?

Message Queuing is a built-in component of Windows.
To install Message Queuing on a computer running Windows 2000 or Windows XP

1. Click Start, click Control Panel, and then click Add or Remove Programs.
2. Click Add/Remove Windows Components.
3. In the Windows Components Wizard dialog box, in the Components box, select the Message Queuing check box, and then click Next.

To install Message Queuing on a computer running Windows Server 2003

4. Point to Start, point to Control Panel, and then click Add or Remove Programs.

5. In the Add or Remove Programs dialog box, click Add/Remove Windows Components.
6. In the Windows Components Wizard dialog box, in the Components box, click Application Server, and then click Details.
7. In the Application Server dialog box, in the Subcomponents of Application Server box, select the Message Queuing check box, and then click OK.
8. In the Windows Components Wizard dialog box, click Next.
1.3 Ok, I installed it. Can I see it in action, immediately?
Yes.
To use Message Queuing to send a message on a computer running Windows XP
9. Click Start, right-click My Computer, and then click Manage.
10. In the console tree, expand Services and Applications, and then expand Message Queuing.
11. In the console tree, under Message Queuing, right-click Private Queues, point to New, and then click Private Queue.
12. In the New Private Queue dialog box, in the Queue Name box, enter MyPrivQ, and then click OK.
13. Using Notepad, copy the contents of Appendix A: vbsSendMsg.vbs into a file with a .vbs extension.
14. Run this .vbs script file from the command line prompt.
The .vbs script file will send a message to the queue that you just created.
15. In the console tree, expand MyPrivQ, and then click Queue messages.
The message appears in the details pane.
To send a message between computers

16. Create a queue on the remote computer to receive the message.

17. On the computer from which the message will be sent, locate the following line in the .vbs script file created in the preceding procedure:

strFormatName = "direct=os:.\private$\myprivq"

18. Change the preceding line as follows:

strFormatName = "direct=os:ComptuerName\private$\myprivq"

where ComputerName is the name of the remote computer to receive the message.

1.4 Where can I learn more about Message Queuing?

For information about programming with Message Queuing, see overview and MSDN. For information about deploying Message Queuing, see Windows 2000 and Windows Server 2003.

Setup and Upgrade

1.5 How can I test a Message Queuing installation?
In domain mode, you can use MQPing.

To gain access to MQPing

· For MSMQ 1.0, in MSMQ Explorer, right-click a remote computer, and then click MQPing.

· For Message Queuing 2.0 and later, open the Users and Computers snap-in, right-click the Message Queuing object of a remote computer, click Properties, and then on the Diagnostics tab, click MQPing.

For information about running a Message Queuing installation under stress by using MQBench, see http://go.microsoft.com/fwlink/?LinkId=23369.

1.6 Is Microsoft SQL Server(required to install Message Queuing 2.0 in a Windows 2000 domain environment?
No. Starting with Message Queuing 2.0 on Windows 2000, Message Queuing is fully integrated with the Active Directory(directory service. Active Directory stores computer and public queue definitions, and Windows 2000 domain controllers running Message Queuing take the role of Message Queuing Information Store (MQIS) servers running Windows NT 4.0.

1.7 Do I need to extend the Active Directory schema before I install Message Queuing on Windows 2000 and Windows Server 2003?

No. The Windows 2000 and Windows Server 2003 built-in schemas include all the definitions that are required by Message Queuing.

The Windows Server 2003 Active Directory schema includes new objects and attributes for Message Queuing. If you install Message Queuing 3.0 in an Active Directory environment that deploys only Windows 2000 domain controllers, Message Queuing 3.0 will not be able to use these new objects and attributes. For example, you will not be able to define a multicast address for a public queue in such an environment.

1.8 What permissions do I need to have to install Message Queuing on Windows 2000?

To install Message Queuing server on a domain controller, you must be a member of the Domain Admins group.

To install Message Queuing routing server on a computer that is not a domain controller, you must be a member of the Enterprise Admins group. The reason is that setting up a Message Queuing routing server creates objects in Active Directory under the configuration-naming context. By default, only members of the Enterprise Admins group can do this. Setup creates the Server object under the Servers container under the relevant site. Then, Setup creates an msmqSetting object under the Server object. So your account must have Create All Child Objects permission on the Servers container and on the new server.

For any other Message Queuing installation, you need to be a member of the local Administrators group only.

For more information, see the Windows 2000 releases notes.

1.9 Can I install Message Queuing on a computer running Windows 2000 that belongs to an Active Directory forest while I'm logged on as a user from a different Active Directory forest?

No. Cross-forest setup is not supported on Windows 2000 and later.

In addition, you cannot install Message Queuing on a server running Windows 2000 or later that belongs to an Active Directory forest while you are logged on as a Windows NT 4.0 user.

1.10 Can I install a server running Windows 2000 Message Queuing 2.0 with routing enabled against a MQIS server running Windows NT 4.0 MSMQ 1.0?

No. Only Windows 2000 independent clients can be installed against MQIS servers running Windows NT 4.0 MSMQ 1.0. However, you can install a routing server running Windows NT 4.0 against a Windows 2000 domain controller that is running Message Queuing 2.0.

1.11 Can a dependent client be installed in workgroup mode?

No. A dependent client must be installed in domain mode and requires a supporting server that is also in domain mode and in the same forest.

Do not be misled by article http://support.microsoft.com/kb/311567 in the Microsoft Knowledge Base. The fix mentioned in this article resolves a particular issue, but it does not add support for a dependent client in workgroup mode. Workgroup mode remains unsupported even after this fix.

1.12 Is it possible to install Message Queuing on two computers that have the same name?

No. Active Directory allows you to join multiple computers with the same name to different domains in the forest. A computer name must be unique in each domain, but does not have to be unique in the forest. Message Queuing does not support this.

During Message Queuing installation, Setup looks for a Computer object (with an msmqConfiguration child object) with the same name anywhere in the forest. This search algorithm is generic in Message Queuing and is done to support the move-domain scenario. When a Message Queuing computer moves from one domain to another in the same forest, a new Computer object is created in the new domain, but the msmqConfiguration object remains in the old domain, under the old Computer object. This is because of other (unrelated) limitations.

If you have two computers with the same name in the forest, and one is already installed with Message Queuing, setting up the second computer will hijack the msmqConfiguration object on the first computer. Eventually, both computers will try to use the same msmqConfiguration object. This is not possible; hence, both computers will fail to run Message Queuing.
1.13 Sometimes it seems that unattended Setup for Message Queuing 2.0 hangs. Any reasons? Is it possible to do a completely unattended setup, without any pop-up windows?

Unattended setup of Message Queuing for Windows 2000 will throw a pop-up window requesting the CD to copy the Message Queuing executable files. If you run Setup through a remote mechanism (for example, Terminal service or Telnet) you might not see the pop-up window. It is possible that the pop-up window is either shown on the screen attached to the remote computer or it disappears altogether.

To resolve this issue, see http://support.microsoft.com/kb/316565.
1.14 While installing Message Queuing 2.0, I receive the following error: "Unable to create MSMQ service object in Active Directory, error code 0xC00E0071." What's wrong?

This error indicates that the msmqServices object was not found in Active Directory. This object is created when running Dcpromo.exe to create a new Windows 2000 forest. It contains several global constants used by Message Queuing. If the msmqServices object is deleted, you cannot install new Message Queuing 2.0 computers.

To restore the msmqServices object

19. Run the ADSIEdit tool and create an msmqServices object under the Services container (under the configuration-naming context).

20. Use the Sites and Services snap-in to set the correct values for the attributes of the newly created msmqServices object.

1.15 Setup for Message Queuing 3.0 fails with the following error: "Error 0xc00e03eb unsupported function." Why?

This failure happens in cross-forest scenarios that are not supported. For example, consider the following:

· A computer running Windows XP belongs to a Windows NT 4.0 domain.

· The Windows NT 4.0 domain trusts a Windows 2000 domain.

· Message Queuing is installed on the Windows 2000 domain controllers.

· You log on to the computer running Windows XP as a user in the Windows 2000 domain, and then run Message Queuing Setup.

· During Message Queuing Setup, you specify a Windows 2000 domain controller running Message Queuing.

Setup fails with the "unsupported function" error. Technically, Setup functions as if it is running in a Windows 2000 environment, because it can query a Windows 2000 domain controller. Setup instructs the newly installed Message Queuing service to create the msmqConfiguration object. However, the Message Queuing service functions as if it is in an MQIS environment, because the computer belongs to a Windows NT 4.0 domain. Creation of the object by the service is only supported when the computer belongs to Active Directory environment, so the Message Queuing service fails to create the object. It calls functions on the MQIS interface that are only supported in Active Directory mode.

Another example is when a computer running Windows XP is in an Active Directory environment, but DNS is not configured correctly on the computer running Windows XP. In this case, during setup you will be prompted for a server name. This is the first indication of a configuration problem, because Setup should automatically recognize the Active Directory environment. You supply the name of a Windows 2000 or Windows Server 2003 domain controller running Message Queuing, and as with the previous example, Setup now functions as if it is in an Active Directory environment. Again, the newly created Message Queuing service will fail to recognize that environment and handles the server name you specified as if it were a server running Windows NT 4.0 MQIS.

1.16 I installed a Message Queuing–independent client computer and receive the following error: "Error 0xc00e0025 XE "0xc00e0025 (Access Denied)" , Access is denied." What's wrong?

In most cases, this error means that the Message Queuing configuration (msmqConfiguration) object already exists in Active Directory (or the Message Queuing Computer object already exists in the MQIS database) and you do not have the permissions to update it. Ask your administrator to grant you permissions for Set Properties and Set Permissions, and then try again.
The scenario which leads to this problem is as follow:

· User A installs Message Queuing in domain mode.

· User A then un-installs Message Queuing, but his computer cannot access Active Direcotry while uninstalling. Thus MSMQ is removed locally from the computer but the msmq Configuration object is not removed from Active Directory.

· User B tries to re-install MSMQ. He doesn't have the Set permissions on the existing msmq Configuration object and he hits this problem.
1.17 Setting up an independent client with Message Queuing 2.0 in Active Directory fails with the following error message: "0x80005000 while trying to create the msmqConfiguration object." Why?

One possible reason is that the organizational unit (OU) that is hosting the computer contains a slash mark (/) in its name. Because of a Message Queuing bug, the slash mark is not escaped correctly when Message Queuing queries Active Directory, which causes the query to fail.

For other possible causes for this error, see Appendix F: Common Errors in the Message QueuingMSMQ .log File.

1.18 Setting up Message Queuing 3.0 fails with the following error: "0xC00E0090L" What's the problem?

It could be that you are logged on as a local user and you selected Active Directory. If the computer is in an Active Directory forest, Setup performs several queries on Active Directory to determine if an msmqConfiguration object already exists for this computer. These queries fail when done in the local-user context. You must be logged on as a domain user who is also local administrator.

1.19 I install Message Queuing 2.0 routing server and Setup failed with the following error: "Object not found." Why?
This can happen if the server is in a site that hosts multiple domain controllers from multiple domains.

During installation of a routing server, the following two objects are created:

· The msmqConfiguration object in the domain-naming context

· The msmqSetting object in the configuration-naming context.

The msmqConfiguration object is created only by the domain controller that owns the Computer object. The msmqSetting object can be created by any domain controller, because each domain controller can write to the configuration-naming context.

Assume that the server belongs to a site that hosts domain controllers from multiple domains. When you install Message Queuing, Setup tries to find a domain controller (that is running Message Queuing) in the computer's domain and in the computer's site. If Setup cannot find the domain controller in the computer's domain and site, it picks any domain controller running Message Queuing in the computer's site.

If Setup picks the domain controller for the domain of the computer on which Message Queuing is being installed, it works. The same domain controller will create both the msmqConfiguration object and the msmqSetting object and you will not encounter any replication problem.

However, if Setup picks a domain controller for another domain, the msmqConfiguration object will be created by another domain controller (Active Directory forwards the request to the correct domain controller) and the msmqSetting object will be created on the domain controller picked by Setup. Later, because the msmqConfiguration object is not yet replicated, Setup tries to access the msmqConfiguration object and fails.
In this scenario, do not let Message Queuing Setup pick a domain controller. Instead, use the option to manually select a domain controller, and then select a domain controller that is in the computer's domain.

1.20 After I upgraded an MSMQ 1.0 backup site controller (BSC) to Windows 2000, the Message Queuing service did not come online and applications could not access the MQIS database. What's wrong?

Check the secured communication setting for Message Queuing. (In the Message Queuing Properties dialog box in Control Panel, on the Service Security tab, examine the Controller server communications box.) If it is turned on and you do not need it, turn it off.

The following scenario will turn on the secured communication setting even if you do not require the functionality:

· The primary site controller (PSC) of the BSC renews its cryptographic key.

· The BSC (by design) enables the secured communication setting while retrieving the new cryptographic key. Because of a bug, the feature is subsequently not disabled after the cryptographic key has been retrieved.

· While the BSC is running Windows NT 4.0, it accesses the MQIS database locally, so you do not see any problems.

· After the upgrade to Windows 2000, if you do not promote the server to a domain controller (using Dcpromo.exe), Message Queuing and applications running on this server start using a remote MQIS (or Active Directory) server. With the secured communication setting enabled, the server might remain offline if the remote MQIS server is not configured for secured communication.

1.21 I upgraded my computer from Windows 98 to Windows XP, and Message Queuing does not start after the upgrade. Why?
There is a known problem if the computer is deployed in an Active Directory environment, but Message Queuing is installed against an MSMQ 1.0 MQIS server. In this case, following the upgrade, Message Queuing attempts to use Active Directory instead of the MQIS database. To resolve this issue, uninstall, and then reinstall Message Queuing.

1.22 When I install Message Queuing on Windows 2000, I am sometimes asked to provide the name of a server and sometimes not. Why?

By default, when installing Message Queuing on Windows 2000, Setup automatically finds a Windows 2000 domain controller running Message Queuing and uses it during setup. There are several reasons for failure of this automatic process. Some of these reasons are legitimate. Others indicate a problem that can lead to Setup failure, including the following:

· You are working in an MSMQ 1.0 MQIS environment, and you have not yet deployed Message Queuing on Windows 2000 domain controllers.

· Your sites and subnets settings in Active Directory are not correct, and the IP address for your computer cannot be mapped to a subnet and site. You must fix this.

· The subnet mapping is correct, but there is no Message Queuing server on a domain controller in your site. You must first install a Message Queuing server on a domain controller in your computer's site.

· You are logged on as a local user, which means that you do not have the necessary permissions to query Active Directory for subnets and sites. If you are trying to set up a Message Queuing server with routing enabled while logged on as a local user, you will probably not succeed.

1.23 Is there any information available to read before upgrading an MSMQ 1.0 primary enterprise controller (PEC) to Windows 2000?

Note the following:

· You cannot migrate the PEC into a non-root domain. You must always migrate by running the Upgrade Wizard on a Windows 2000 domain controller that belongs to a root domain. (The root domain is the first domain in the Active Directory forest.) This was fixed in Windows 2000 Service Pack 4. However, this limitation does apply to Windows Server 2003 and was fixed in Windows Server 2003, Service Pack 1.

· Verify that you do not have Active Directory sites with the same names as MSMQ 1.0 MQIS Site objects. If you do, you must rename them; otherwise, the Upgrade Wizard cannot copy those sites into Active Directory.

· You cannot merge multiple MSMQ 1.0 enterprises into a single Active Directory configuration. Each MSMQ 1.0 enterprise must be migrated into a distinct Windows 2000 forest.

· You cannot run the Message Queuing Upgrade wizard if you upgrade directly from Windows NT 4.0 to Windows 2000 Service Pack 3. This is a known regression, due to a mismatch in file versions. To solve this problem, apply the following hotfix: http://support.microsoft.com/kb/327392.

1.24 Is it possible to re-run the Message Queuing 2.0 Upgrade wizard?

Yes. However, be aware that the Upgrade wizard will fail if you have already deleted objects that were previously created by the Upgrade wizard. The Upgrade wizard imports MQIS objects into Active Directory with their existing GUID (the objectGuid attribute in Active Directory). When you delete such objects, they become tombstones and retain the globally unique identifier (GUID) until cleaned up. The default cleanup interval of Active Directory is 60 days. Before cleanup, they cannot be created again with the same GUID.

You can shorten the tombstone cleanup interval, as explained in http://support.microsoft.com/kb/216993. You might also need to adjust the garbage collection interval, as explained in http://support.microsoft.com/kb/198793.
2 Messaging
2.1 What is the overhead size for sending a message on the network?
The minimum overhead for a message that is sent over the native Message Queuing protocol is approximately 150 bytes, which includes a signature (unrelated to message authentication), source and target computer IDs, a target queue name, and message properties. The overhead increases if you use transactions (20 bytes for transaction sequence ID numbers), multiple queue format names, or security features (such as authentication and encryption).

For example, for authentication and encryption, the following overhead applies:

· An internal certificate is approximately 400 bytes.

· An external certificate is at least 1 KB.

· A symmetric key is 76 bytes (for 40-bit encryption).

· A security identifier (SID) is approximately a few dozen bytes.

The overhead for messages sent over the HTTP or multicast protocols is higher because of SOAP formatting. It adds at least 1 KB of headers, for a message sent without authentication.

2.2 Where does Message Queuing store messages for local queues? Does it use a database for storage?
Message Queuing does not use a database for storing messages. In particular, Message Queuing does not store messages in the MQIS database or in Active Directory. Messages are stored in a proprietary format in multiple 4-MB files in the MSMQ\Storage folder. The only way to move these message files to another directory is to move them from the Message Queuing Control Panel application in MSMQ 1.0 and Message Queuing 2.0, or from the Computer Management application in Message Queuing 3.0. Any other manipulation of these files can corrupt your Message Queuing installation.

Note In a cluster configuration, the location of the MSMQ\Storage folder on the shared disk cannot be altered. The clustered instance of MSMQ will always use that location. You can move the location of the storage filder used by the MSMQ instance on the physical node.

For more information about the storage directory, see http://support.microsoft.com/kb/174307.

2.3 Where does Message Queuing keep messages that I send to other computers?

Outgoing messages are kept in the same files that are used to store local messages. The Message Queuing service creates dynamic outgoing queues to store messages awaiting transmission to other computers. These queues are deleted when all messages have been transmitted and the queue is empty. Message Queuing manipulates these outgoing queues with no user intervention. The same mechanism is used on intermediate Message Queuing routing servers.
It is important to emphasize that when an application needs to send messages to a remote queue it simply opens that remote queue for send. It does not need to do anything related to local outgoing queues. The Message Queuing Service takes care of managing the local outgoing queues. This is transparent to the application.
Note Outgoing queues can be managed and monitored using performance counters and the Message Queuing management API.
Note There is no association between messages files and queues. A single messages file can store messages from multiple queues and multiple queue types (local, outgoing, public, private). A queue's messages are stored in multiple files. The file names are sequencials, unrelated to any queue name.
2.4 Can I keep message files on a compressed NTFS volume?

No. Message Queuing is not compatible with compressed NTFS volumes. In particular, trying such a deployment will cause Windows NT 4.0 to deadlock.

For more information on best practices for NTFS compression, see http://support.microsoft.com/kb/251186.

2.5 Why is there a 4-MB message size limitation?

There are two main reasons:

· The Message Queuing driver (Mqac.sys) uses memory-mapped files for message storage, and the present implementation does not break a large message into several message fragments. The driver maps the files to kernel memory address space when Message Queuing runtime sends or receives a message. The kernel memory address space is limited to 16 MB, shared by all drivers and fonts. This is one of the main reasons for the message size limitation. The 16-MB kernel address space limitation also means that a cluster node can host up to three Message Queuing resources, assuming that Message Queuing is not running on the node computer. This is because each resource can consume its own 4-MB range from the kernel address space.

· The Message Queuing code that manages sessions is not designed to deliver large messages and handle session acknowledgements (ACKs) in the middle of message delivery. This can cause sessions to be closed while a large message is still being sent, because an internal session ACK is not received.

2.6 Does Message Queuing support the scheduled delivery of messages?

No. Use the LocalAdmin Pause and Resume APIs to control when messages are sent to remote queues.

You can download the LocalAdmin API from http://support.microsoft.com/kb/242471. For Message Queuing 3.0, use the Pause and Resume methods of the MSMQOutgoingQueueManagement object.

2.7 Is MQSendMessage() synchronous?

Yes. If the message was successfully handled by the Message Queuing service, when the MQSendMessage() API returns to the caller, the message has been inserted into a queue (either local or outgoing). For recoverable messages, the message has been written to disk when MQSendMessage()returns to the caller.

For a remote queue, success of MQSendMessage() does not mean that a message will eventually reach its remote destination queue. It means that the local Message Queuing service has inserted it into the outgoing queue.

The following two topics discuss various failure modes that are possible when sending messages.

2.8 Does Message Queuing guarantee that a transactional message will reach its destination queue?

No. The scope of a Message Queuing transaction is the local computer, and Message Queuing does not guarantee end-to-end delivery. When you call MQSendMessage() within a transaction, and then commit the transaction, Message Queuing guarantees that it has the necessary resources on a local computer to save the message and send it to the destination, but it does not guarantee that the message will eventually reach the destination queue. For example, the message might expire before it reaches the destination computer, or the message might be rejected by the destination computer because of quota. Use the message confirmation mechanism to track message progress.

For more information on the transaction confirmation process, see the MSDN documentation about the Transaction Confirmation Process at http://go.microsoft.com/fwlink/?LinkId=12460.

2.9 MQSendMessage() always succeeds even when it is obvious that the message cannot be sent. Why?

The success of MQSendMessage() does not guarantee the delivery of the message to its ultimate destination. The success of MQSendMessage() merely means that the local MSMQ service successfully accepted the message and it will process it as soon as possible. It doesn't imply any guarantee to deliver the message to its destination queue. There are many reasons for failures to deliver a message. For example:

· You attempt to send a nontransactional message to a transaction queue.

· You send a message to a queue that has exceeded its quota.

· You send a message to a queue which does not grant you the send permission.

· You send a message to a computer which does not exist, using the DIRECT format name.

MQSendMessage() will succeed in all these cases, by design. It is the destination computer which reject such messages. Or the message will wait in an outgoing queue until it expires.
To find out what actually happened to a message, you must do one of the following:

· Specify an admin queue (PROPID_M_ADMIN_QUEUE) and ask for an acknowledgment (PROPID_M_ACKNOWLEDGE).
· Use a dead-letter queue (PROPID_M_JOURNAL)
· Generate an application-level acknowledgement from the target application.

Note MQSendMessage() can fail if it does not have sufficient resources to process the message, if the queue handle is not valid, or other similar reasons. The information applies both when sending to remote queues and when sending to local queues.

For more information on acknowledgment messages, see the MSDN documentation about acknowledgement messages at http://go.microsoft.com/fwlink/?LinkId=12461.

2.10 It seems as if Message Queuing leaks memory when I send a large amount of messages. Is this true?

No. Message Queuing uses memory-mapped files to hold queued messages. The files are each a fixed size of 4 MB, which is also the size limit of a Message Queuing message. As more messages are added to queues, more message files are created and mapped to the working set of the Message Queuing service. It seems that Message Queuing leaks memory because the working set grows as more message files are created and used. By default, once every six hours, Message Queuing deletes empty files. Message Queuing does not defragment message files, so a message file that contains a single 1-KB message still consumes 4 MB of address space. For this reason, purging queues will not necessarily reduce the size of the working set.
To change the default interval, add the MessageCleanupInterval DWORD registry value to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters and set it to the required interval in milliseconds.

2.11 I sent a message to a distribution list (using the DL=<GUID> format name), but it only arrived at one of the destination queues on a computer. Why?

This is a limitation when the distribution list contains several queues that are hosted on a single MSMQ 1.0 or Message Queuing 2.0 computer. The sending computer sends separate messages to each of the queues in the distribution list, but all messages have the same message ID. When multiple queues are hosted by a single MSMQ 1.0 or Message Queuing 2.0 computer, that Message Queuing computer receives several messages with the same message ID. The first message is accepted, and the others are rejected as duplicates, even though the destination queue for each message is different. This limitation applies only to nontransactional messages. To avoid this issue, you can disable the duplicate-removal algorithm on MSMQ 1.0 or Message Queuing 2.0 computers by adding the RemoveDuplicateSize DWORD registry value to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters with a value of 0.

Note When you add this registry value with a value of 0, you disable the duplicate removal algorithm that is used for nontransactional messages. As a result, you will probably receive more duplicate messages than before, and your applications must know to handle them.

2.12 Transactional messages are accumulating in outgoing queues and are never delivered to the destination. Why?

A common scenario where this might happen is as follows:

21. Transactional messages are sent to a remote destination queue and negative source journaling (deadletter) is specified. This means that messages will wait and accumulate in the outgoing queue on the source computer until they are received by an application on the destination computer, and until a final ACK sent by the destination computer reaches the source computer.

22. Messages reach the destination computer and are successfully inserted into the destination computer's transaction queue. The order ACK is sent to the source computer, but not the final ACK, because messages are still in the queue waiting to be received.

23. The destination computer fails and is rebuilt. Old message files were not backed up and all old messages are lost.

24. The source computer continues to send transactional messages to the same queue (using a DIRECT format name with no regard for a new queue GUID). These new messages are received on the destination computer. The final ACK is sent to the source computer and transactional messages are removed from the outgoing queue of the source computer.

The outcome of such a scenario is that the old messages (those that were lost when the destination computer failed) are still in the outgoing queue waiting for a final ACK that never arrives.

Other scenarios, which are similar to the preceding one, can lead to same problem.

Order ACKs are not persistent. If the source computer restarts, all transactional messages that are waiting for a final ACK will be sent again to the destination computer and rejected, because newer messages with a higher sequence number have already been received.

To confirm that this is the problem, run Network Monitor on the source computer and recycle the Message Queuing service. You will see transactional messages sent to the remote computer and order ACKs arriving with a higher sequence number than all the sent sequence numbers. This indicates that the destination computer rejected all messages, as expected by the exactly-once and in-order transactional messaging algorithm running on the destination computer.

The only remedy in this case is to purge the outgoing queue.

Also, using a short time-to-be-received (TTBR) value is always recommended. Then, these messages will expire and be moved to the dead-letter queue.

2.13 I changed the IP address of an MSMQ 1.0 server and now independent clients cannot send messages to that server. Why?

In an MSMQ 1.0 environment, after you change an IP address of a server, you must run MSMQ Explorer and update the MQIS database with the new IP address. Otherwise, clients will continue using the old address.

To update the address in MSMQ Explorer, use the Network tab of the Properties dialog box for the relevant computer. This is not necessary if the server had only one address changed.

2.14 A remote computer changed its IP address, but my outgoing queues are pointing to the old address. Ping works and recognizes the new address. Why?

There are two main reasons for this problem:

· Registration of the new address happens slowly or not at all.

· The address resolution cache is not fast enough in detecting the address change.

Both of these problems are not specific to Message Queuing, and can be summarized as follows:

Registration

Even if the computer itself registers the change immediately, you need to wait for the replication delay. Both Windows Internet Name Service (WINS) and DNS are distributed architectures and it takes time until a registration on one server is replicated and made available to all servers. For some configurations (for example, a Windows 2000 remote access client), the computer does not register its address at all. For WINS servers, you may need to reduce lifetimes and tombstone times of entries so clients can register quickly.

Address resolution cache

Each process has a cache of address resolutions. This cache is maintained by the Domain Name System (DNS) client and NetBIOS. Testing connectivity in this scenario with Ping is misleading, because when you initiate Ping, you run a new process that has an empty cache, so it needs to query the server. You can force a short time-out for cache entries with a registry entry. This affects all processes on the computer. The relevant registry values are as follows:

· HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\NetBT\Parameters\CacheTimeout
· HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters\MaxCacheEntryTtlLimit
You can reduce the value of the WaitTime key in HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters, which dictates how often Message Queuing will attempt to resolve names before trying to establish a session.
You can change the node type to M-node, to force NetBIOS over TCP/IP (NetBT) to broadcast for name resolution before querying the name server, although this action involves significant overhead.

For more information, see NodeType in http://support.microsoft.com/kb/120642.

Other helpful utilities to run include nbtstat –R and ipconfig /flushdns. All registry entries are documented in the Windows Server 2003 Resource Kit Registry reference at http://go.microsoft.com/fwlink/?LinkId=96615. Generally, Message Queuing is not well suited to serve computers that change IP addresses rapidly or often.

2.15 I send a message to a local transactional queue and I eventually find it in the transactional dead-letter queue with a bad destination class error. Why does this happen?

This can happen if you delete the queue after calling MQSendMessage() and before calling pTransaction->Commit. For more information, see the next item.

2.16 I send a message to an existing remote queue (using the PUBLIC or PRIVATE format name) and I eventually get a bad destination NACK. Why?

This can happen if a Message Queuing routing server is incorrectly configured. Consider the following scenario:

25. A Message Queuing routing server is installed.

26. The Message Queuing routing server is uninstalled without adequate connectivity to Active Directory, and the msmqSetting object was not deleted.

27. Message Queuing is re-installed as a server without routing.

On another independent client, a message is sent to a remote queue by using PUBLIC or PRIVATE format names. The client cannot deliver directly to the target, so it sends to a routing server. The independent client queries Active Directory to find a routing server and finds the server that was re-installed without routing because its msmqSetting object was not deleted during uninstall. The client forwards the message to that server. The server gets a message that is not addressed for a local queue, and it is not configured to be a router, so it rejects the message and returns a bad destination negative acknowledgement (NACK).

2.17 I am using a DIRECT=TCP format name, but the target computer does not receive my messages. Why?

This can happen if the target computer is a remote access client that receives a new IP address after redialing. This problem has been fixed in a Windows NT 4.0 hotfix post-Service Pack 6 (see http://support.microsoft.com/kb/306416) and in Windows 2000 Service Pack 2. See also Cluster FAQ.

2.18 I send messages from a LocalSystem service on Windows NT 4.0, and it takes dozens of seconds until each message is received. Why?

This is a known limitation of MSMQ 1.0 on Windows NT 4.0. When the Message Queuing service receives a message, an access check is performed to determine whether the message can be inserted into the queue. Part of this process is to enumerate all groups that the sender belongs to. If the sender is the LocalSystem service, the enumeration can takes dozens of seconds.
To resolve this issue, use one or more of the following methods
· Run the application service under a domain user account.

· Set queue security with a discretionary access control list (DACL) that contains only a single access control entry (ACE), granting Full Control to Everyone.

· Do not restrict Send permission for the queue and verify that the ACE granting Everyone the Send permission is the first ACE in the DACL.

· Send the messages without a sender SID, by specifying PROPID_M_SENDERID_TYPE as MQMSG_SENDERID_TYPE_NONE.

Note Similar delays can occur if the sender and receiver domains do not trust each other or if the receiver cannot access a domain controller to enumerate sender groups.

For a description of how to fix this problem, see http://support.microsoft.com/kb/324154.

2.19 On Windows XP, I call MQReceiveMessage() with long time-out, inside a COM+ transaction, and it fails after a short time with the following error: "0xc00e0051" Why?

This is the COM+ transaction time-out. By default on Windows XP, a COM+ transaction expires after 60 seconds. This causes the MQReceiveMessage() call to fail. Microsoft Distributed Transaction Coordinator (MS DTC) tells Message Queuing to cancel the transaction. You can change the default for a specific COM+ application, or for all COM+ applications, on the computer by using Component Services console or programmatically through COM+. For more information, see managing automatic transactions and setting the transaction time-out. Additionally, you can search Component Services Help for time-out.

2.20 When designing for transaction confirmation mechanism, are there any differences between using XACT-deadletter queue and ACK/NACK to admin queues?

Yes. Some fundamental differences include the following:

· ACK/NACK messages from remote computers can get lost, whereas XACT-deadletter always happens on the source computer. Because of this, you will always find these messages in the XACT-deadletter queue on the computer that generated the original XACT messages. The Expire message class in XACT-deadletter might be a false alarm due to ACK/NACK messages from a remote computer getting lost. This is an in-doubt case that your code needs to resolve.

· The XACT-deadletter queue is shared by all applications, while ACK/NACK messages are returned to the admin queue specified by your application. Each application can use its own distinct admin queue to gather ACK/NACK messages.

· Admin queues cannot be transactional. On the other hand, you can receive from the xact-deadletter queue inside the context of transaction.

2.21 Multicast messages get lost on slow links. Is there any solution for this?

Yes. Reduce the rate of multicast transmissions. By default, the PGM driver transmits at 560 kilobits per second (Kbps). If this rate is too high, set the DWORD registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\MulticastRateKbitsPerSec to a lower value (in Kbps).
2.22 Is it possible for several threads (or processes) to see the same message?

Yes. However, this depends on the exact meaning of see and on timing. Several processes can always peek the same message because the peek operation does not remove the message from queue.

It is also possible that several processes peek the same message while another process receives it and removes it from queue. This depends on the timing of the MQReceiveMessage() calls. The Message Queuing driver keeps a list of pending calls on each queue and processes them in order. For example, initially a queue is empty. Process A calls MQReceiveMessage() to peek a message; process B issues a call to receive a message; and then process C calls MQReceiveMessage() to peek a message. Later a message reaches the queue. Process A will peek it; process B will receive it and remove it from queue; and process C will wait for next message. The driver will not handle process C's request now because process B removed the last message from the queue and the queue is empty.

2.23 What's the meaning of the Arrived Time value of messages in queue journal (target journaling)?

When a message is moved to a queue journal (target journaling), Arrive Time keeps its original value. That is, when you receive from the target journal, Arrive Time is the time that message was originally put in the target queue. There is no property that tells you when the message was received and moved to the journal queue.
2.24 How does Message Queuing enlist in an XA transaction?
It enlists via MS DTC by using the IXATransLookup interface.
For more information, see help.
2.25 A message travels to the destination via an intermediate routing server. What happens to the message if the routing server crashes?
It depends on whether or not the message is transactional, as follows:

For non-transactional messages

When the source computer successfully delivers the message to the next hop (which can be either the final destination or an intermediate routing server), it forgets the message. This means that if the routing server crashes before it delivers the message to the final destination, the message is lost. To ensure that messages are delivered even if failures occur en route, use recoverable messages.

For transactional messages,

The source computer keeps track of outgoing messages until it gets an order ACK from the destination. The order ACK means that the message was successfully inserted into the final destination queue on the final destination computer. If the message is successfully delivered to the next hop but the order ACK is not received, the source computer resends it after 30 seconds. The resend interval is then increased (up to six hours). If other delivery routes are available, Message Queuing will use them for resend.

For more information about message delivery, see Inside MSMQ.

2.26 How does MSMQ Delivery properties (TTRB, TTRQ, Express, Recoverable, Journaling etc) play in multicasting scenarios?

The delivery mechanism of multicast messages is different than the one used for standard one-to-one messages. One-to-One delivery is explained in Inside MSMQ. It depends on explicit sessions created by sender computer with specific recipients. With multicast, there are no specific recipients. The source computer does not know who are the recipients of the message. It does not know which computer is listening on the multicast address.
For the MSMQ service on source computer, the recipient of the multicast message is the local PGM driver. The MSMQ service discards the multicast message as soon as it successfully transfers it to the PGM driver. Message is then removed from the outgoing queue. If the PGM driver cannot accept the message then MSMQ keeps it in the outgoing queue and will re-try again later.
For multicast messages, TTRQ is the time until MSMQ service transfers the message to the PGM driver. In most cases, transfer to the PGM driver is done immediately and TTRQ does not have much useful meaning. TTBR is meaningful on receiver side, once the message is accepted and inserted into the destination queue. This is similar to the meaning of TTBR in one-to-one delivery scenario.

Same difference exists for the Express/Recoverable property. It is meaningful only when MSMQ holds the messages. For the common case, where message is delivered immediately to the PGM driver, the Express/Recoverable property is meaningful only on receiver computer after message was inserted into destination queue. The PGM driver does not persist messages to disk.

If you enable machine journaling (source journaling) then the multicast message is moved to the machine journal queue as soon as it was successfully transferred to the PGM driver. Seeing the message in the machine journal queue doesn't mean that any recipient accepted it. It just means that the PGM driver took ownership of this message and MSMQ service discarded it.

Note: this discussion applies only to messages sent with the multicast format name. Delivery of messages sent with the Distribution List(DL) format name or with Multi Queue Format Name(MQF) is considered one-to-one. Under the cover, the MSMQ service expands one message to multiple ones, and establish sessions with each of the destination computers (or intermediate routing servers which will later forward the message to its destination computers).
2.27 I send a message which specifies an administration queue and asks for full acknowledgment. I get a "reach queue" ack and a "time to reach queue expired" nack. How come ?

This is possible if the network is disconnected immediately after the message is sent by the MSMQ service to the destination computer. You must always consider an "expire" nack as an in-doubt condition. Seeing such a nack doesn't necessarily mean that the message didn't reach its destination. It just means that the source computer cannot know what happen with the message, it didn't get a session ack.
The reason that both nack and ack reach the administration queue is that they are created by different mechanisms.
An acknowledgment message is sent by the destination computer as soon as the message is accept in queue or received by an application (depending on what type of ack you asked). This ack is a standard msmq message, addressed to the administration queue that you specify.
Unrelated to this, the source computer keeps outgoing messages in the outgoing
queue until it gets a session ack from the next hop. This is an internal
ack, not visible to applications. For performance reasons, it's not sent
immediately, but rather a short interval after a message is accepted. It can
acknowledge a batch of messages, thus avoiding too much handshake traffic.
It's possible that you disconnected the cable after user ack was accepted
into the administration queue but before session ack was received by msmq. In that
case, msmq keeps the message in the outgoing queue, re-trying to transmit it
until it expires. When it expires, you get the "Expire" nack.
The "Inside MSMQ" chapter below provides an overview of the session management mechanisms of MSMQ.
2.28 Can a thread performs an asynchronous Receive call and then exits?

No. This can lead to the cancellation of the Receive call. A thread which makes an asynchronous Receive call (either receive with callback or receive with overlap) must be alive as long as the Receive call is pending in the MSMQ driver. If the thread terminates and exits before the Receive call completes then the Receive operation is cancelled and the application gets back the error code 0xc0000120 (STATUS_CANCELLED).

For VB/COM code, this means that a thread which calls EnableNotification must be alive until the Arrived (or ArrivedError) events are called.

For .NET framework, this means that a thread which calls BeginPeek or BeginReceive must be alive until the completion delegate is called.
It is legitimate to terminate the calling thread before the Receive operation is completed if the callback (or notification) code is designed to accept and handle the STATUS_CANCELLED error.

3 Security

3.1 Why do we need both Renew Internal Certificate and Renew Cryptographic Key in Control Panel (or in computer management console)?

These two options are not related to one another. In Message Queuing 3.0, they appear in different pages. Each one must be used only when needed. Using both (as an easy default) is not recommended.

These options perform the following functions:

Renew Internal Certificate

Creates a new user certificate on the local computer and stores the certificate in the User object in Active Directory. The certificate is used only for message authentication. It has nothing to do with message encryption.

Renew Cryptographic Key

Renews the cryptographic keys that are used for message encryption on the local computer and stores the public key in the msmqConfiguration object in Active Directory. These cryptographic keys are used only for message encryption and have nothing to do with message authentication.

When do you have to renew an internal certificate?
For MSMQ 1.0, you must run MS MessageQueue (from Control Panel) and register a certificate to enable message authentication.

For Windows 2000 and later, an internal certificate is created and registered automatically for each new user that logs on to a computer. Because of this, by default, you do not have to renew the internal certificate. The automatic registration does not work in the following known cases:

· Message Queuing 2.0 was installed in workgroup mode, and then the computer joined a domain. (This was fixed in Message Queuing 3.0.)

· Message Queuing is not online (it does not have access to a domain controller running Message Queuing) at logon time.

For these cases, you must manually register an internal certificate; however, do not renew cryptographic keys.

Another common instance where you need to renew internal certificate is when COM+ Queued Components issues an event with the following error: "0xc00e0030"

When do you have to renew the cryptographic key?
By default, cryptographic keys are created when installing Message Queuing in domain mode, or when a workgroup Message Queuing computer joins a domain. You should periodically renew your encryption keys (perhaps once a year). You should also renew encryption keys any time you suspect that they might be compromised.

While each user can renew their internal certificate, only the user that set up Message Queuing can renew the cryptographic keys. If Message Queuing was installed in workgroup mode, and then the Message Queuing computer joined a domain, only members of the Domain Admins group can renew the cryptographic keys. All other users will get an "0xc00e0025 XE "0xc00e0025 (Access Denied)" " (access is denied) error when trying to renew the cryptographic keys. This is by design.

3.2 I want to build a security descriptor and pass it to MQCreateQueue. Which revision should the access control lists (ACLs) be?

It depends on how you want to build the ACEs. If you are using the specific bits as defined in Mq.h (MQSEC_XXX values), the revision must be ACL_REVISION. This is the only option for Windows NT 4.0, and all ACEs are simple ones (that is, not object ACEs). You add the specific Message Queuing bits to the access mask of each ACE.

For Windows 2000, you can also use object ACEs. In that case, you must use ACL_REVISION_DS. In all ACEs, the specific bits in the access mask are those defined by Active Directory (for example, ADS_RIGHTS_ENUM). Message Queuing–specific permissions are defined as extended rights. The following are the GUIDs of Message Queuing–specific permissions:

msmqConfiguration object

{ 0x4b6e08c0, 0xdf3c, 0x11d1,

 { 0x9c, 0x86, 0x00, 0x60, 0x08, 0x76, 0x4d, 0x0e } MQSEC_RECEIVE_DEADLETTER_MESSAGE

{ 0x4b6e08c1, 0xdf3c, 0x11d1,

 { 0x9c, 0x86, 0x00, 0x60, 0x08, 0x76, 0x4d, 0x0e }

MQSEC_PEEK_DEADLETTER_MESSAGE,

{ 0x4b6e08c2, 0xdf3c, 0x11d1,

 { 0x9c, 0x86, 0x00, 0x60, 0x08, 0x76, 0x4d, 0x0e }

 MQSEC_RECEIVE_JOURNAL_QUEUE_MESSAGE

 { 0x4b6e08c3, 0xdf3c, 0x11d1,

 { 0x9c, 0x86, 0x00, 0x60, 0x08, 0x76, 0x4d, 0x0e }

 MQSEC_PEEK_JOURNAL_QUEUE_MESSAGE

msmqQueue object

 { 0x06bd3200, 0xdf3e, 0x11d1,

 { 0x9c, 0x86, 0x00, 0x60, 0x08, 0x76, 0x4d, 0x0e }

 MQSEC_RECEIVE_MESSAGE,

 { 0x06bd3201, 0xdf3e, 0x11d1,

 { 0x9c, 0x86, 0x00, 0x60, 0x08, 0x76, 0x4d, 0x0e }

 MQSEC_PEEK_MESSAGE

 { 0x06bd3202, 0xdf3e, 0x11d1,

 { 0x9c, 0x86, 0x00, 0x60, 0x08, 0x76, 0x4d, 0x0e }

 MQSEC_WRITE_MESSAGE

 { 0x06bd3203, 0xdf3e, 0x11d1,

 { 0x9c, 0x86, 0x00, 0x60, 0x08, 0x76, 0x4d, 0x0e }

 MQSEC_RECEIVE_JOURNAL_MESSAGE

Foreign site object

 { 0xb4e60130, 0xdf3f, 0x11d1,

 { 0x9c, 0x86, 0x00, 0x60, 0x08, 0x76, 0x4d, 0x0e }

 MQSEC_CN_OPEN_CONNECTOR
When using Active Directory Service Interfaces (ADSI) to build a security descriptor and update Active Directory directly, you must use ACL_REVISION_DS and extended rights. Internally, objects in Active Directory are always stored with ACL_REVISION_DS. MSMQ .lqs files are stored with ACL_REVISION. Message Queuing APIs convert from one format to the other as needed. When creating private queues, use only ACL_REVISION.
Note Use ACL_REVISION only with the MSMQ APIs (MQCreateQueue, MQSetQUeueSecurity, MQGetQueueSecurity). Never use ACL_REVISION when manipulating MSMQ security directly with ADSI because the specific bits are interpreted differently by ADSI.
3.3 I enabled auditing on my queues. How do I interpret the auditing events?

Auditing events contain a user name and queue name. They also contain the access mode requested for the queue. To understand how the queue was accessed, look for the following line in the event:

Accesses Unknown specific access (bit X)

The specific bits are documented in the MQSetQueueSecurity entry in the Windows Platform SDK and are defined in the SDK file Mq.h as follows:

bit 0- MQSEC_DELETE_MESSAGE

bit 1- MQSEC_PEEK_MESSAGE

bit 2- MQSEC_WRITE_MESSAGE

bit 3- MQSEC_DELETE_JOURNAL_MESSAGE

bit 4- MQSEC_SET_QUEUE_PROPERTIES

bit 5- MQSEC_GET_QUEUE_PROPERTIES

3.4 Are all remote procedure calls (RPCs) used by Message Queuing 2.0 authenticated using the Kerberos protocol?
No. Calls made for remote read are authenticated with NTLM. The Kerberos version 5 protocol is used for Active Directory calls (calls to Message Queuing on Windows 2000 domain controllers, for accessing Active Directory). Calls for remote read use NTLM, unless the reader application is a service running under the LocalSystem account. NTLM is used to facilitate interoperability with MSMQ 1.0 computers.
3.5 Can a dependent client send encrypted messages?
Yes. However, this can be meaningless. A dependent client works by calling its supporting server via RPC. When you send a message and request encryption, the RPC traffic from the dependent client to the supporting server is not encrypted. Then, the supporting server encrypts the message before sending it. So, the message is clear text when moving from the dependent client computer to the supporting server and the message is encrypted when moving from the supporting server to the destination. Whether this is meaningful depends on the specific deployment.

Note Message authentication is always meaningful, because it is the Message Queuing runtime on the dependent client computer that signs the message with the user’s private key. The user’s private key is stored on the dependent client computer.
3.6 I created a local public queue on my computer running Windows 2000. Security settings for this queue indicate that my computer account (Domain\myComputer$) is the owner of this queue, and not my user name (Domain\User). Why?
This is by design. By default, in MSMQ 1.0, members of the Everyone group can create queues. In Windows 2000, this permission is restricted to the user who installed Message Queuing on a computer and to all applications that run on that computer. Thus, by default, applications running on a computer can create local queues on that computer. If an application runs under the security context of a user who has explicit permission to create queues, the user becomes the owner of the queue. Otherwise, the local Message Queuing service creates local queues on behalf of the user, and the service becomes the owner. By default, the Message Queuing service runs under the computer account (Domain\myComputer$) and Message Queuing Setup grants the Create All Child Objects permission to this computer account.

3.7 I changed the security settings of a public queue so that access is now denied to all. How can I restore access to this queue?

To restore access to a queue for Message Queuing running against an MSMQ 1.0 MQIS server

28. Log on as the owner of the queue.

29. Call MQSetQueueSecurity(), with SecurityInformation set to DACL_SECURITY_INFORMATION and a DACL that gives you access to the queue.

Note You need to know the format name of the queue in advance.

You cannot use MQSetQueueSecurity() to restore access to a queue for Message Queuing running against Windows 2000 Active Directory. Instead, use ADSI or Lightweight Directory Access Protocol (LDAP) directly in a manner that is similar to the preceding procedure.

3.8 I am sending messages across multiple enterprises or across multiple untrusted domains. Are there any special considerations for this scenario?

Yes. By default, each message includes the SID of the sender. This property is meaningless when enterprise boundaries or untrusted domain boundaries are crossed. Specify PROPID_M_SENDERID_TYPE with the value MQMSG_SENDERID_TYPE_NONE when calling MQSendMessage().

3.9 My computer running Windows 2000 has the enhanced cryptographic provider installed, but messages I send are not encrypted with 128 bits. Why?

Message Queuing creates the cryptographic keys used for encryption only during setup. If you upgrade from Windows NT 4.0 (where Message Queuing can only use 40-bit encryption) to Windows 2000, or if you install Message Queuing on a Windows 2000 platform that only supports 40-bit encryption, and then apply a service pack or hotfix that installed the 128-bit cryptographic provider, Message Queuing will not create a 128-bit encryption key.

To use 128-bit encryption, run Message Queuing from Control Panel and renew the cryptographic keys.

Note The Message Queuing Control Panel item is not supported on virtual cluster groups. This means that if you installed Message Queuing in a virtual group that supports only 40-bit encryption, you will not be able to run the Control Panel item and create the 128-bit key later, after having installed the 128-bit enhanced cryptographic provider. You will have to remove the Message Queuing resource and create it again.

3.10 Why is it that sometimes I cannot send authenticated messages and at other times I can send them successfully, but the receiver rejects them?

To successfully authenticate messages, you need an internal certificate on your local computer and the certificate must be registered in MQIS (or Active Directory). There are several cases in which these requirements are not met:

· For MSMQ 1.0 on Windows NT 4.0, Windows 98, or Windows 95, you must run Message Queuing from Control Panel and register a certificate. Otherwise, you cannot send authenticated messages. If you run Message Queuing from Control Panel but do not register a certificate, an internal certificate is created locally, but the internal certificate is not registered in MQIS. This means that you can send authenticated messages, but the receiver will reject them because it cannot find the certificate in MQIS. So, for MSMQ 1.0, register an internal certificate the first time you run Message Queuing from Control Panel.

· For Message Queuing 2.0 on Windows 2000, an internal certificate is created automatically during the first log on. But this happens only if you install Message Queuing in domain mode. If you install Message Queuing in workgroup mode and later join a domain, the automatic registration mechanism is not activated. You need to run Message Queuing from Control Panel and register a certificate. On Windows 2000, running Message Queuing from Control Panel without registering a certificate will not create one locally.

· If you run a process under an account that is different from the account for the currently logged-on user (for example, using runas or a service), the account might not have an internal certificate (because it never logged on interactively). Even if it has an internal certificate, it is possible that the account hive is not loaded. (Impersonating a user will not cause the user's hive to be loaded.) In this case, it is the responsibility of the application to load the account hive.

· Another reason that Message Queuing fails to authenticate received messages is due to replication merging in Active Directory. If the same user is logged on simultaneously on multiple computers and an internal certificate is registered for the user on each computer, replication merging can destroy some of the certificates. This happens because all certificates for a user are kept in a binary large object attribute (mSMQSignCertificates) of the user object. Consider the following scenario:

· On computer A, a certificate is registered on domain controller B.

· On computer C, the certificate is registered at the same time on domain controller D.

· When domain controllers B and D replicate the entire mSMQSignCertificates attribute to each other, the newer one takes precedence, and one of the certificates (in the older attribute) is lost.

· Due to the way that Message Queuing registers certificates in Active Directory; you cannot register more than approximately 800 certificates for a single user. This mainly affects services that run on multiple computers under the same domain user account. Technically, the reason for this is that Message Queuing uses a multi-valued indexed attribute to store the certificates digests, to speed up queries. Such attributes are limited to approximately 800 values.

· When installing Message Queuing on a Windows 2000 domain controller, Message Queuing Setup does not register an internal certificate for the user who runs Setup. This limitation is a bug in the Message Queuing Setup code. To resolve this issue, log off, and then log on. A certificate will be registered automatically on the first logon (for each new user).

3.11 When trying to register a certificate, I receive the following error: "Access is denied error (0xc00e0025 XE "0xc00e0025 (Access Denied)")." When trying to renew my internal certificate, I receive an error message that I cannot delete my previous certificate from Active Directory. What is the problem?

Verify that you have the Write Personal Information permission for your own user object in Active Directory. You can grant this permission explicitly to yourself (for example, to your Domain\UserAccount), or you can grant it to Self or to a group that you are a member of.

3.12 I revoked the Send permission from the Everyone account, and instead granted it to a specific group. Now no one can send messages to the queue. Why?

When performing an access check on the receiver side, Message Queuing only looks at the domain global groups to discover the sender's group membership. Local groups (both local domain groups and groups defined locally on a receiver computer) are not searched.

3.13 When I try to create a local public queue on a computer running Windows 2000 that belongs to a Windows 2000 Active Directory forest, it fails with an access denied error. Why?

The most common reason for this failure is that the local Message Queuing service fails to authenticate using the Kerberos protocol. In this case, Active Directory authenticates the Message Queuing service as anonymous, and then it does not have permission to create a local public queue. A common reason for the Kerberos protocol failure is that the DNS configuration on the client computer is wrong. (For example, the IP address displayed by ipconfig in the DNS server field is not the actual IP address of the DNS server.) Another common problem is the difference in the system clock between the local computer and the domain controller (clock synchronization is required by the Kerberos protocol).

For more information, see Security FAQ.

3.14 It seems that Message Queuing 3.0 on a computer running Windows XP cannot accept messages from local user accounts. Is this true? Are there any ways to resolve this issue?

In some scenarios, this is true, and there are ways to resolve this. The main issue is that starting with Windows XP, Anonymous Logon is no longer a member of the built-in Everyone group. This is a Windows security feature, and is not specific to Message Queuing.

In all versions of Message Queuing, the default security setting for a queue is that members of the Everyone group can send messages to it. In MSMQ 1.0 and Message Queuing 2.0, this includes the Anonymous Logon account. In Message Queuing 3.0, when clients run in an Active Directory environment, default security is that both the Everyone group and the Anonymous Logon account can send messages to a queue. This default enables the same functionality as MSMQ 1.0 and Message Queuing 2.0. In an Active Directory environment, Message Queuing 3.0 clients create public queues by accessing Active Directory directly, without using any Message Queuing agent on the domain controller.

The default settings do not apply in the following cases:

· For Message Queuing 3.0 client computers in a Windows NT 4.0 MQIS environment.

In this environment, the client uses the MQIS server to create queues, and the default security setting is that the MQIS server gives only the Everyone group, and not the Anonymous Logon account, permission to a queue. Because of this, when the Message Queuing 3.0 computer receives a message and performs an access check, the Anonymous Logon account is not included in the security descriptor, and messages without a SID are rejected, because they are considered anonymous. Similarly, messages from local user accounts are also rejected, because all versions of Message Queuing do not add the SID of a local account to a message.

· For Message Queuing 3.0 client computers in a Windows 2000 environment, when public queues for the Message Queuing 3.0 client computer are created by other computers that are not running Message Queuing 3.0.

In this case, the queues are created by Message Queuing on the domain controller, and the Anonymous Logon account is not included in the default security setting. This was fixed in Windows 2000 Service Pack 3.

In all cases, the way to resolve this issue is the same. Manually grant the Send permission to the Anonymous Logon account. This can also be done programmatically, by calling MQSetQueueSecurity().

3.15 It seems that my messages are inserted into a queue although its security descriptor does not grant my account the Send permission. Why?
This can happen when sending to a local queue.

When you open a remote queue for send, no access check is done on the sender side. In terms of security, Open always and unconditionally succeeds. Thus, when you send messages to the remote queue, the remote side (the destination computer) performs an access check for each incoming message. Because the destination computer does not trust the network, it must check each message before inserting the message into a queue.

The situation is different when opening a local queue for send. Here, the local Message Queuing service performs an access check at open time. Once a queue handle is returned to application, the application can insert any message into the queue, even if message contains a user SID for which Send permission is not granted. This is especially apparent for the MSMQ-MQSeries Bridge. Once it opens a local queue on the bridge box, it can insert any message into this queue, regardless of the UserIdentifier value in the original MQSeries message.

3.16 I can send to a foreign queue, even when its security descriptor does not grant my account the Send permission. Why?
As explained in the previous item, it is the responsibility of the destination computer to perform an access check before inserting incoming messages into a queue. Any store-and-forward routing server between the source and destination does not perform any access check on the messages. It just stores the messages, and then forwards them. The MSMQ-MQSeries Bridge is a special kind of routing server, routing from Message Queuing to MQSeries (and vice-versa). Foreign queues are just placeholders for real queues on the MQSeries queue manager. Therefore, the MSMQ-MQSeries Bridge (and Message Queuing on the bridge box) does not perform any access check. It is the responsibility of MQSeries to validate messages before inserting them into an MQSeries queue.
3.17 I moved my computer to another domain in the same forest. Now I cannot create local queues. Why?
When you move a computer to another domain in the same Active Directory forest, the join domain code in Message Queuing searches for an msmqConfiguration object in Active Directory (in all domains), with same object GUID as the GUID of the Message Queuing service. (The GUID is stored in HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\MachineCache\QMId.) If found, the msmqConfiguration object is reused. Now the computer, because it is in a different domain, has a different computer account. Therefore, it cannot create queues because it does not have the proper permission, and the mechanism explained in Security FAQ no longer works.

You need to log on using a user account with Set permission on the msmqConfiguration object and add the new computer account, granting it the permission to create queues (or the Create All Child Objects permission). By default, the Domain Admins group for the new domain does not have the Set permission on the msmqConfiguration object, which is in another (the old) domain.

For information about how a computer account is used when you create local queues, see Security FAQ.
3.18 The Administrators group has the Full Control permission on a local public queue. I am a local administrator and I can receive from that queue but I cannot delete it (trying to do so results in access denied error). Why?
It is likely that the Administrators group is the built-in Administrators group, which might be added to the queue by Active Directory inheritance. The built-in Administrators group is context sensitive. For a public queue, any operation other than send and receive is an operation that manipulates the Queue object in Active Directory. Therefore, it is Active Directory that performs the access check for these operations. In this context, the built-in Administrators group is the domain-local group of administrators. By default, it contains both the Domain Admins and Enterprise Admins groups. It has nothing to do with local Administrator account on the computer hosting the queue.

The situation is different when you try to receive. When receiving, the access check is done on the local computer (by the Message Queuing service) and the built-in Administrators group is interpreted on the local computer. In this case, it is the local Administrators group. Thus, you can receive in the context of the local computer; but you cannot delete in the context of Active Directory.
3.19 Can I restrict the Send permission for an administrative queue?
Message Queuing returns ACKs with the same user ID as the one in the original message. This means that the administrative queue must grant Send permission to the user who originally sent the message. You can deny the Send permission from other users.
3.20 I sent a message with enhanced RC2 encryption and received a bad encryption NACK. What's the problem?
Depending on the operating system and service pack, this could be a compatibility issue. Due to a bug in CryptoAPI (Windows NT 4.0 Service Pack 2 and later), enhanced RC2 keys were created with an effective length of 40 bits (instead of 128). This was fixed in Windows Server 2003. If you send from Windows Server 2003 to Windows XP or Windows 2000 (up to Service Pack 3), the message cannot be decrypted. This was fixed in Windows XP Service Pack 1 and Windows 2000 Service Pack 4. To enable backward compatibility and tighten security, the following registry values were added to all platforms:
· Windows XP Service Pack 1 and Windows Server 2003
· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\Security\SendEnhRC2With40
The default value is 0; use an effective length of 128 bits. A non-zero value reverts to Windows 2000 behavior, where the key is created with an effective length of 40 bits.
· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\Security\RejectEnhRC2IfLen40
The default value is 0; all key lengths are accepted. To tighten security, so that messages that use an effective length of 40 will be rejected, set this value to 1.
· Windows 2000
· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\Security\SendEnhRC2With128
The default value is 0; use an effective length of 40 bits. A non-zero value forces an effective length of 128 bits. This improves security but might not be compatible with other computers.
· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\Security\RejectEnhRC2IfLen40
The default value is 0; all key lengths are accepted. To tighten security, so that messages that use an effective length of 40 will be rejected, set this value to 1.
3.21 Is it possible to set a policy which define the default security setting of msmq objects in Active Directoty?

There is no Group Policy for this. You can use security descriptor inheritance to change the defaults.
Use the adsiedit tool to change the default security setting of public queues. Add an inheritable ACE to the relevant OU. For example, if you want a specific permission to be added to every queue in a domain:

· Right click the domain object, then click on properties.

· Go to the security tab, click on advanced.

· Click Add, select a user.

· On the Apply onto box, select msmq queue objects.

· Select the permission that you want to allow or deny (Peek Message for example).

· Click Ok or apply.

This permission will be applied to all existing queues and to any new queue that will be created in the future. Be aware that this can be a performance hit for a domain controller loaded with many objects, because the ACE is applied on each object (not only queues) and it increases the size of the dit.

If your domain is large, better avoid inheritance and set the security programmatically, when creating the queue.

There is no way to achieve this automatic inheritance for private queues.

Similarly, use the Active Directory Users and Computers snapin to change the default setting of the MSMQ Configuration object. Proceed as follow:
· Right click the OU, Select Properties and then Security.
· Select Advanced, then Permissions. Click on Add.
· Select the user or group to which you want to grant the relevant permission.
· On the Apply onto drop down box, select MSMQ Configuration Objects.

· Select the permission that you want to allow or deny (for example, "Create All Child object", to allow or deny the permission to create queues).

· Click Ok or Apply.

You can use the same technique to change the default security setting of computer objects, to allow (or deny) the Create MSMQ Configuration object permission to a user or a group. Same remarks regarding dit size apply here too. You can user the adsiedit tool instead of Users and Computers snapin to change the defaults of computer and MSMQ Configuration objects.
Note explicit security setting take precedence over inherited ones. This is explained in details in Platform SDK. For example, when the MSMQ setup process creates the MSMQ Configuration object, it sets its security so any local process can create local queues. This setting cannot be override by inheritance. You must remove the "Create Child Object" permission from the computer account in order to deny local processes the permission to create local queues. The special permission of the computer account is explained elsewhere in this document.
Administration

3.22 Can I manage private queues from a remote computer?

No. Management operations on private queues (create, delete, and get/set properties) can only be done from the local computer (the computer that owns the queue). For clusters, this means that the application that manages the private queues (or Computer Management) must run in the context of the virtual server that owns the queues.

For more information on how to run Computer Manager in the context of a virtual server, see http://support.microsoft.com/kb/256975.

3.23 Is there any limit on the number of queues that can be monitored by performance counters?

Yes. You can monitor up to 97 queues and up to 20 sessions. These are hard-coded numbers and apply to all platforms. Using the Message Queuing LocalAdmin API, you can get the message count and quota used for each queue, without any limitation.

3.24 Can I selectively remove a message from a queue by using the Message Queuing administrative tools (the MSMQ Explorer for MSMQ 1.0 and the Message Queuing Computer Management application for Message Queuing 2.0 and later)?

No. Specific messages cannot be removed with these tools. However, you can purge an entire queue (for example, delete all its messages) by right-clicking the required queue, and then clicking Purge. Purging a long queue with thousands of messages might take several minutes. During this time, the Message Queuing service might freeze. The Message Queuing service will resume normal operations as soon as the purge is complete.

3.25 While running the dump/fix tools, I accidentally deleted everything from the Lqs subdirectory. Now my message files are okay, but Message Queuing does not start. Can I recover without reinstalling Message Queuing?

Yes. The Lqs subdirectory contains definitions of all private queues, including four internal private queues that are required by the Message Queuing service itself. This is why Message Queuing will not start.

For a tool to recover the internal private queues, contact Microsoft Product Support Services.

3.26 I see many public queues on my computer with type ID BBD97DE0-CB4F-11CF-8E62-00AA006B4F2F. What are they?

These queues are created by the RPC subsystem when server applications start using the ncadg_mq transport (RPC over Message Queuing). Microsoft SNA Server and Microsoft Exchange Server use this transport if Message Queuing is installed. If you do not need this transport, you can remove it.

To remove the ncadg_mq transport

30. Remove registry entries named ncadg_mq under the keys HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ClientProtocols and HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\ServerProtocols.

31. Restart the computer.

SNA Server and Exchange Server will continue to work normally in the absence of the ncadg_mq transport.

3.27 Can message files be backed up when the Message Queuing service is running?

No. You must stop the Message Queuing service to back up the message files.

3.28 How do I set the machine quota when Message Queuing 2.0 is running in workgroup mode?

Edit the MachineQuota value under the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\MachineCache. Set it to the required size in KB of all the message files combined.

3.29 How does Message Queuing manage licensing? Does it consume Client Access Licenses (CALs) from the File and Print subsystem?

Message Queuing manages its own CALs. It does not use CALs of other subsystems.

For more details, see Windows 2000 Online Help.

3.30 I install Message Queuing without routing on a server running Windows 2000 Server (that is, an independent client configuration). Is it limited to 10 concurrent sessions?

No. The limitation of 10 concurrent sessions applies only to Windows 2000 Professional. For Windows 2000 Server, Message Queuing counts CALs, regardless of how you configured Message Queuing.
CALs are not counted when connecting to a server running the Windows operating system, only when connecting to a workstation running the Windows operating system. Therefore, if you use only servers running Windows 2000 Server, Message Queuing does not count CALs and does not limit the number of sessions that it creates with other computers.
3.31 I do not see the Message Queuing Session performance object in System Monitor. Why? And why is it that I cannot see all my queues in System Monitor?

By design, the Message Queuing Session object appears only when the local Message Queuing service has active sessions with other computers. When there are no sessions, the Session object does not appear. The Session object monitors only sessions on TCP/IP port 1801 that are used to send and receive Message Queuing messages. The Session object does not monitor MQIS traffic or remote read traffic that is implemented as RPC calls on other ports.

Similarly, a queue is only monitored if it contains messages or if an application explicitly opened it. Otherwise, the Message Queuing service does not keep any state information for a queue, and it is not available in System Monitor.

For more information, see Administration FAQ.
Note: The above information also applies to MQMgmtGetInfo API. This API can return state information only regarding active queues. If a queue is not opened by an application and it doesn't contain messages then this API cannot be used to get information on that queue. In that case, MSMQ on Windows Server 2003 will return the error “MQ_ERROR_QUEUE_NOT_ACTIVE” (0xc00e0004). On MSMQ versions that are older than Windows Server 2003 the error returned is “MQ_ERROR” (0xc00e0001).
3.32 When I look at outgoing queues in Computer Manager on a computer running Windows 2000, I see queues in the Inactive state. What does this state mean, and what does the Not Validated state indicate?
The Inactive state means that there is no session for this queue and that the queue is not scheduled for connection. A queue enters the Inactive state for the following reasons:

· It is opened for the first time. In this case, the queue leaves the Inactive state when there is an available worker thread in the Message Queuing service that can try to establish a session for it.

· An outgoing queue is paused.

· The Message Queuing service is taken offline.

· A queue was not connected for a long enough time and it is now time for a new name resolution. In this case, the queue leaves the Inactive state when there is an available worker thread in the Message Queuing service that can try to establish a session for it.

The Not Validated state means that the local Message Queuing service cannot access an MQIS server (or Active Directory server) to resolve PUBLIC or PRIVATE format names into computer names. In other words, the local Message Queuing service is offline.

For more information, see Deployment FAQ.

3.33 Is there a programmatic way to know if Message Queuing is installed on a computer?

Yes. Try to load Mqrt.dll (using the LoadLibrary API).

· For MSMQ 1.0 and Message Queuing 2.0, the .dll file is not present on the disk if Message Queuing is not installed, and so you cannot load it.

· For Message Queuing 3.0, the Message Queuing binaries are always present on the disk, but trying to load Mqrt.dll fails if Message Queuing is not installed.

3.34 How can I identify the type of Message Queuing installation on my computer?

For MSMQ 1.0, inspect the registry value MQS under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\MachineCache. The following table lists the values and what the settings indicate.

	Value
	Setting

	0#
	Independent client

	1#
	Routing server

	2#
	BSC (backup site controller)

	4#
	PSC (primary site controller)

	8#
	PEC (primary enterprise controller)

	16#
	Remote Access Service (RAS) connectivity service on a RAS server that does not run MSMQ 1.0

For Message Queuing 2.0 and Message Queuing 3.0, the MQS value was deprecated and replaced by the following three values:

MQS_DepClients
When this value is set to 1, the computer can be used as a supporting server for remote dependent clients.

MQS_DsServer
When this value is set to 1 (domain controller only), the computer provides Active Directory access for MSMQ 1.0 and Message Queuing 2.0 clients. This value is always set to 1 on Windows 2000 domain controllers. It is set to 1 on Windows Server 2003 domain controllers only if you installed the Message Queuing Downlevel Client Support service

MQS_Routing
When this value is set to 1, the computer is configured as a Message Queuing routing server.

3.35 What do the counters in the Outgoing Queues details pane in Computer Management mean?

There are three counters:

Number of Messages
This counter is relevant for all types of queues. It shows the number of messages currently held in the outgoing queue. For non-transactional queues, this means that messages have not been delivered to the target computer (or to the next hop) yet.

Unacknowledged (msgs)
This counter is only relevant for transactional queues. It counts messages that were successfully delivered to the destination computer (or to the next hop), but for which order ACKs have not been received. Message Queuing will continue sending these messages until the source computer receives the order ACKs from the destination computer.

Unprocessed (msgs)
This counter is relevant only for transactional queues. It counts messages for which order ACKs were received (indicating that the messages were successfully inserted in the target queue), but for which final ACKs have not been received yet (indicating that the messages have not been read from the target queue yet). Message Queuing will not continue to send these messages as long as the current instance of the Message Queuing service is running; however, if the Message Queuing service restarts, it will send the message again. This is because of limitations in Message Queuing's internal implementation.

Note The Unprocessed counter is only relevant if dead-letter functionality is requested. For more information on the transactional dead-letter queue, see the MSDN documentation about Message Queuing Transactions at http://go.microsoft.com/fwlink/?LinkId=12492.

3.36 I purged all the queues on my computer, but the storage directory still contains many message files. When are these deleted?

Empty message files are deleted once every six hours, by default. This time interval can be controlled in the registry by setting the MessageCleanupInterval REG_DWORD value under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters. Applications should not keep cursors opened unnecessarily for a long time. Cursors might point to messages that were already received (and removed from files). These pointers prevent cleanup and deletion of empty files.

3.37 I upgraded to Windows 2000 Service Pack 4, and now the Users and Computers snap-in displays a folder called Public Queues under the Message Queuing object. What is that?

This change reflects a security fix in the Active Directory schema. The fact that Public Queue objects were displayed under the Message Queuing object in the console tree turned out to be security issue in the schema. The schema was fixed for Windows 2003 and the fix was propagated to Windows 2000 Service Pack 4. As a result, public queues are not displayed in the console tree. To resolve this issue, the code for the Message Queuing snap-in displays the Public Queues folder under the Message Queuing object, exactly as it is displayed in Computer Management. To view public queues, expand Public Queues; and to see the messages in a queue, expand the queue.

If your Active Directory is Service Pack 3 and you open the Users and Computers snap-in on a computer with Service Pack 4, public queues will be visible in both ways. This is the expected behavior.

If Active Directory is Service Pack 4 (or Windows Server 2003) and you open the Users and Computers snap-in on a computer with Service Pack 3 (or earlier), you will not see the public queues in the console tree. The only work-around for this is to upgrade to Service Pack 4.

3.38 I try to add a routing server as site gate to a routing link, but it does not appear in the list of servers. Why?

That is because of an orphan directory link in the MSMQ Routing Link object. This happens because of a bug in Message Queuing uninstall functionality. Consider the following scenario:

32. Add a routing server as site gate to an MSMQ routing link.

33. Uninstall Message Queuing from that routing server, which deletes the MSMQ configuration object for that computer.

34. Run the ADSIEdit tool, and then review the site gates lists of the routing link (the mSMQSiteGates attribute of the MSMQ Routing Link object). You will see a distinguished name similar to cn=msmq\DEL:...
The mSMQSiteGates attribute is a link to the msmqConfiguration object of the routing server (or set of links to multiple routing servers' objects). When the msmqConfiguration object is deleted, Active Directory replaces the link with a link to the deleted object.

There are some bugs in Message Queuing where such links are not deleted when uninstalling the Message Queuing routing server. In these cases, the links are converted to links to the deleted msmqConfiguration objects. To remove these links, you must use the ADSIedit tool. To install the ADSIEdit tool, follow the instructions in http://support.microsoft.com/kb/301423.

The existence of these links is why other routing servers do not appear in the list of servers that can be added as site gate.

3.39 I added the CleanupInterval XE "CleanupInterval" registry value but it does not seem to help. Anything else I need to do?

You need to add this registry value on both ends of a Message Queuing session. Otherwise, the computer with the smallest value will stop the session prematurely. A common reason to add this registry value with a large value is to keep sessions alive and avoid the overhead of creating Message Queuing sessions. The overhead includes Active Directory queries and a sequence of handshake messages, which can be expensive on slow or loaded networks.

3.40 On Windows 2000 I try to create a new public queue and get the following error: "0xc00e0005 (queue-already-exist)" However, I cannot see the queue in the Microsoft Management Console (MMC). Any ideas?

One possibility is that you are providing your own security descriptor to MQCreateQueue, and it does not allow members of the Everyone group or you to get queue properties. The scenario is as follow:

35. When a user application calls MQCreateQueue, Message Queuing runtime calls the Message Queuing service on the domain controller, which creates the queue successfully (under the user context, assuming that the user has the permission to create queues).

36. Message Queuing on the domain controller queries for the queue GUID to return it back to client. However, the user does not have query permission (because of the wrong security descriptor that is used), so this fails. GUID is not returned to client and the Message Queuing runtime considers this as a failure to create the queue.

37. The Message Queuing runtime calls the local Message Queuing service on the client computer to try and create the queue on behalf of the user (for more information, see Security FAQ). This fails because the queue already exists.

This is a minor bug in Message Queuing (a misleading error code) and a major bug in the application. Never create a queue and set its security so that members of the Everyone group cannot get queue properties and queue permissions. This prevents Message Queuing and applications from seeing the queue and using it. The same is true when using MQSetQueueSecurity (or MMC) to change security of the Queues objects. Make sure that Everyone (or at least a group that includes all relevant parties) can query queue properties and permissions.

If a user does not have permission to create public queues and the user provides a wrong security descriptor, MQCreateQueue will fail with error "0xc00e000b" for the same reason. However, the scenario is a bit different, as defined next:

· The first attempt to create the queue fails (error: "Access deny, 0x80070005" from Active Directory).

· The Message Queuing service creates the queue successfully on behalf of the user (doing so under the context if its own computer account).

· The result is that the Message Queuing service cannot query for the GUID, because Everyone does not have the Get Properties permission.

The same is true for the MSMQ object (the msmqConfiguration object under the Computer object). Never change its security setting such that Everyone is denied the Get Permission and Get Properties permissions for the object. Doing so prevents proper use of Message Queuing.

3.41 After migrating the PEC to a Windows 2000 domain controller, I cannot renew the cryptographic key on any Windows NT 4.0 PSC. Why?

There are two unrelated problems with this scenario:

· Bugs in Message Queuing 2.0 code that run on the migrated PEC prevent the replication of the new PSC cryptographic key to other Windows NT 4.0 PSCs. This was fixed in Windows 2000 Service Pack 4 (hotfix http://support.microsoft.com/kb/814028 and http://support.microsoft.com/kb/816002).

· The user who renews the cryptographic key on the PSC must have Write permission on both the msmqConfiguration object of the PSC and the Site object of the PSC in Active Directory. The cryptographic key is saved in the msmqConfiguration object. The Site object is accessed to enable replication of the new cryptographic key by the Message Queuing Replication service. Before Service Pack 4, no error message was issued if the user did not have the Write permission on the Site object. The cryptographic key was saved correctly in the msmqConfiguration object but it was not replicated. With the fix in Service Pack 4, the renew cryptographic key operation fails if the user does not have Write permission for both objects.

3.42 I try to add in-FRS and out-FRS to an independent client, but the Servers list on the Routing tab does not show all the routing servers in the site. Why?

It is most likely that there are orphan msmqSetting objects. When the Users and Computers snap-in builds the Servers list, Active Directory is queried to find all msmqSetting objects with the mSMQRoutingService attribute set to TRUE. If such an object is found without a corresponding msmqConfiguration object, the search is stopped and the Servers list includes only those servers that were found before this failure. An orphan msmqSetting object might appear in the following situations:

· You uninstall an Message Queuing routing server but do not have the permission to delete the msmqSetting object.

· You delete the msmqConfiguration object manually but forgot to remove the msmqSetting object.

To resolve this issue, manually remove all orphan msmqSetting objects; that is, msmqSetting objects that do not belong to an installed Message Queuing routing server.

3.43 The Message Queuing icon does not appear in Control Panel on a dependent client running Windows 2000. Why?

One possibility is that you used a long, fully qualified DNS name (FQDN) for the supporting server when installing the Message Queuing dependent client. Control Panel read this name from the registry value HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\RemoteQMMachine. Control Panel expects a short NetBIOS name. If you use a long FQDN, Message Queuing fails to read it and does not show any UI. To resolve this issue, use Regedt32.exe to change the value to the short NetBIOS name of the supporting server.

3.44 I upgraded to Windows 2000 Service Pack 3 (or later) and all my applications are broken. Computer Management cannot browse local private queues. What's the problem?

Most likely it is because the Message Queuing service runs under the credentials of a local user account. Service Pack 3 added code to authenticate local RPC calls between the Message Queuing runtime and local Message Queuing service. This code supports only the LocalSystem account (which is the default) and domain accounts. You cannot run the Message Queuing service under the local user account. This is a limitation in the current versions of Message Queuing.

3.45 I purge an outgoing queue but its message count does not change. It does not reset to 0. Why?

This happens with the transactional outgoing queue, where messages are marked with PROPID_M_JOURNAL set to DEADLETTER and order ACKs have already arrived from the destination computer. Such messages are kept in a hidden state by the queue manager, until the final ACK arrives from the destination computer. When you purge the outgoing queue, messages are marked as deleted but they are not removed from the messages files, because the queue manager still holds a reference to them. They will be deleted in the following cases:

· After the computer is restarted (or re-cycling of the Message Queuing service).

· After the final ACK is received from the destination computer.

As long as the messages are not deleted, they will continue to consume computer quota.

3.46 I cannot manage my public queues if I log on to Windows XP using a trusted Windows NT 4.0 account. This worked fine on a client running Windows 2000. Any ideas?

This is new behavior in Message Queuing 3.0 (Windows XP and Windows Server 2003), which is not compatible with Windows 2000 for the cross-forest case.

To resolve this issue

38. Add a REG_DWORD registry value named EnableLocalUser to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\msmq\Parameters.

39. Set EnableLocalUser to 1.

40. Restart your applications.

MSMQ 1.0 and Message Queuing 2.0 clients use RPC to access Active Directory (or the MQIS database), via the Message Queuing service running on a Windows 2000 domain controller (or Windows NT 4.0 MQIS server).. Each client keeps a list of Active Directory servers that run Message Queuing and calls one of the servers by using RPC. Message Queuing on the domain controller (the Active Directory server) listens to RPC, gets the call, and then processes it. It does not matter how you are logged on to the client, as long as the account has the permission to perform the requested operation.

For Message Queuing 3.0, the default changed and the Message Queuing client uses ADSI to access Active Directory directly (without having to use any Message Queuing agent on the domain controller). There are many good reasons for doing so, but ADSI is sensitive to user context. By default, ADSI tries to access an Active Directory server in the user's domain. Because Windows NT 4.0 domains do not run Active Directory, all ADSI calls fail if the currently logged-on user making the call is from a trusted Windows NT 4.0 domain. The work-around for this issue reverts the Message Queuing client behavior (applications only, not the Message Queuing service itself) to the Message Queuing 2.0 behavior, using RPC. This change affects all Message Queuing applications on a given computer. This work-around also applies if you log on as a local user, for the same reasons. If your environment deploys Windows Server 2003 domain controllers, install the Message Queuing Downlevel Client Support service on the Windows Server 2003 domain controllers.
3.47 I connect to another computer with Computer Management; I can open the Public Queues folder and see the queues, but I cannot receive from the queues. I get the following error: "Remote service is not available." What's the problem?

Most likely, DNS is configured incorrectly. Public queues are opened for receive by using the PUBLIC format name. In this case, the process for opening the remote queue is as follow:
41. The local Message Queuing service queries Active Directory to resolve the GUID of the public queue to the name of computer, which is returned to the Message Queuing runtime.
42. The Message Queuing runtime uses the computer name to call the remote computer in order to open the remote queue (for receive) and get a handle.
43. The local Message Queuing service first tries to get DNSHostName from the Computer object. If this succeeds, the FQDN is returned to the Message Queuing runtime. If this attribute is not set, the NetBIOS name is returned to the Message Queuing runtime.
44. If the Message Queuing runtime cannot resolve the name to an address, it fails with the error "Remote service is not available."
The incorrect configuration of DNS occurs if the DNSHostName is set, but the computer itself is not registered in DNS (and so its FQDN cannot be resolved to an IP address). This configuration error must be corrected by the administrator.
3.48 Are there any special considerations when deploying clients running Windows 2000 and Windows XP in a Windows NT 4.0 MSMQ environment?

To configure servers running Windows NT 4.0 MQIS to support Message Queuing 2.0 and Message Queuing 3.0 independent clients, you must apply Windows NT 4.0 Service Pack 6a on the MSMQ MQIS computer, and then apply the following two hotfixes:

The MSMQ 1.0 hotfix described in http://support.microsoft.com/kb/304212.

The reason for this hotfix is that Windows XP Message Queuing 3.0 independent clients are built as robust RPC clients. Without this hotfix, calls from Windows XP Message Queuing 3.0 independent clients to MQLocateNext fail.

The RPC hotfix described in http://support.microsoft.com/kb/823980.

This hotfix is required to enable auditing on the client running Windows XP. This hotfix is also required to enable clients running Windows 2000 to complete Setup.

3.49 Can I rename the computer and still use Message Queuing, without reinstalling it?

Yes. This is supported for Windows 2000 and later. It is not supported on MSMQ 1.0 (Windows NT 4.0, Windows 95, and Windows 98). As with all changes done in Active Directory, wait for replication before all computers in your enterprise can use the new name. Additionally, wait for replication of DNS/WINS.
3.50 While running Message Queuing backup (MQBkup) in Restore mode, I receive the following error: "Access denied." What's wrong?
Verify that you are logged on as a local administrator and that no other application is trying to use Message Queuing or trying to load MQRT.dll. A common problem is that applications which use MSMQ have open handles to the MSMQ section of registry. Then the backup tool cannot restore that section.
3.51 When listing private queues with Windows 2000 Computer Management, I do not see all my queues. Why?

This may happen if there are empty files in the Msmq\Storage\Lqs folder (files with a size of 0). List all files in that folder, and then delete all those with a size of 0. This can also happen if there is a corrupted .lqs file in the directory. To find corrupted LQS files, look for files which do not include the line "Signature=DoronJ". These ones are considered corrupted and won't be used by MSMQ.
Note: you can send and receive messages to/from a valid private queue, even if it is not visible in the Computer Management console because of other corrupted files.
Triggers

3.52 I have a trigger rule that calls a COM component that is defined with Require Transaction. If the component aborts, sometimes the message is triggered again infinitely and sometimes it is not retriggered at all. Why?
The aborted message is retriggered infinitely if the trigger is not serialized. The Message Queuing Triggers service uses standard Message Queuing APIs and queue cursors to peek at messages. When the trigger is not serialized, a new MQReceiveMessage() call is made before each message is processed. Therefore, when your transactional component is called, there is a pending MQReceiveMessage() operation on the queue. When a transaction is aborted, the message that was received during the transaction is returned to the queue, but the cursor is not moved forward for pending operations. For this reason, the same message is received in the existing pending operation.

When the trigger is serialized, there is no pending MQReceiveMessage() call during component processing. Thus, when the transaction aborts, the message is returned to the queue. The next MQReceiveMessage() call is performed by the Triggers service only after the message is returned to the queue, so that the cursor advances, and the same message is not processed again.

3.53 I installed the Triggers service on a Windows 2000 cluster, and now Message Queuing causes an access violation after starting. Why?

Verify that the Message Queuing Triggers service is set to Manual after the Triggers service Setup ends.

By default, the Triggers service is installed in Automatic mode and is dependent on the Message Queuing service. However, on a Windows 2000 cluster node, Message Queuing must always be in Manual mode, because it cannot start at boot time due to dependencies on MS DTC.

If you leave the Triggers service in Automatic mode, the Message Queuing service will also automatically start at boot time, which might produce an access violation (or fail to initialize and quit).

The Triggers service on Windows 2000 is not cluster aware. It can run on the node, but it cannot be added as a resource to a virtual server. This means it cannot failover. This feature was added in Windows Server 2003 where the Triggers service is cluster aware.

3.54 When creating a trigger I received the following message: "The queue path was not validated." What's wrong with the trigger?

Nothing. This message explains that the queue path was not validated by the Triggers service. Verify that the queue exists and that its security descriptor grants the Triggers service the permission to peek or receive messages in the queue.

3.55 A COM component invoked by a trigger takes a label and body in the form of BSTR. Do I have to free the body and label BSTR at the end of my method or will the Triggers service free it?

You do not need to free the passed parameters. All the allocated memory for parameters is freed by the Message Queuing Triggers service after the COM method invocation.

3.56 Does the Triggers service share invoked components among threads?

No. All threads are listening on an I/O completion port. When a message arrives, one of the threads is activated and processes the message. For each rule in each trigger, the trigger thread creates the requested COM object (by calling CoCreateInstance), calls it, and then releases it. There is no sharing of COM objects among the threads or among multiple rules or triggers that are invoked by the same message. The trigger thread loops on all triggers of the message, and then it loops on all the rules of each trigger. For each rule, it creates the component, calls it, and then releases it.

If you use COM+ to manage your components, COM+ can control the life cycle and pooling of your components.

3.57 How does the Triggers service handle messages with high priority?

The Triggers service uses a cursor to reference messages in a queue. The standard functionality of cursors, as described in the following list, applies to triggers as well:

· If the cursor is at the end of a queue waiting for a new message, and a message with higher priority is received, the higher priority message will be triggered, and then all lower-priority messages that are in queue will be retriggered. (The low priority messages might be left in the queue if not removed by the invoked code.)

· If the cursor is pointing at a message with priority N (but not at the end of a queue) and a higher priority message arrives, the higher priority message will not be triggered until the Triggers service restarts.

· In a transactional queue, the priority of all messages is always 0.

3.58 Can the Triggers service run as a cluster resource?

The Triggers service for MSMQ 1.0 and Message Queuing 2.0 (which is available on the Microsoft website) is not cluster-aware and cannot run as a resource in a cluster group. Cluster support was added in Message Queuing 3.0 (along with receive triggers and transactional triggers). For Windows Server 2003, the Triggers service is fully supported on MSCS Cluster.

3.59 Are there any special requirements for COM objects that are invoked by a trigger?

Yes. The COM object must support IDispatch.

For more information, see http://support.microsoft.com/kb/257289.
3.60 My triggered component throws an exception, and then the Triggers service stops processing messages. How do I resume the Triggers service?
The Triggers service will resume operation without any manual intervention. By design, when a component throws an exception, the worker thread that invoked the component terminates. A minute later (or more, depending on load), the Triggers service will re-create the thread, and then that thread will resume operation. As a best practice, components invoked by the trigger should not throw an exception when reporting problems.
3.61 What is the meaning of the following event: "65503 (No further rules will be processed for this message.)"?

This event means that the invoked COM component did not return S_OK (0).
In this case, other rules in that trigger are not invoked for the message.
3.62 I define a retrieval trigger, but messages remain in the queue after the component is invoked. Why?
The Triggers service first peeks a message, to check if it satisfies any rule. If it does, the rule is invoked, and then the message is received and removed from queue. If the invoked COM component throws an exception, the code to receive the message is not run and the message remains in the queue.

3.63 I added a new trigger and it does not fire. Why?

New triggers are handled by a single worker thread that is also responsible for other housekeeping duties (such as managing the other threads that read messages and invoke components). If this thread is busy, it can take time until the new trigger is accepted and starts processing messages. This is true if you add the trigger by using Computer Management. On the other hand, if you add a new trigger by using the Trigadm tool, you have to recycle the Triggers service in order for it to use the new trigger.

3.64 When trying to do anything with the Triggers snap-in, on Windows 2000, I get the following error: "Runtime error 91." Why?

This can be due to lack of DCOM access permission. You need to have Access permission, as granted with the Dcomcnfg tool, in order to run the Triggers snap-in. By default, this permission is granted to all, but it is possible that an administrator revoked it. Run Dcomcnfg and review the Access permission.

3.65 I have a trigger on a transactional queue. Some messages are not retrieved, although they meet the rules. Why?

This happens because a cursor on a transactional queue can skip a message in certain circumstances. The problem has to do with the interplay between cursor behavior and the way Message Queuing receives transactional messages from the network and inserts them into queue.

The Message Queuing service first stores the message on disk, and marks it so that no one can receive it. This is necessary in order to complete logging later. A transactional message cannot be received before it was persistently logged. Technically, however, it is already in queue and can be pointed to by a cursor (although it cannot be received). Call this marking as phase #1.
Then, the Message Queuing service logs the message sequence numbers in the transaction log. When logging is completed, the Message Queuing service marks the message as receivable, and from now on the message can be received. Call this marking as phase #2.
If there is only one remote sender that is sending messages, this problem will never occur. But, if there are multiple senders, the following scenario can happen:
· The Triggers service receives message x and calls a COM+ component to process it. At this time there is no pending receive request on the queue.
· The Message Queuing service receives message x+1 from SenderA and runs phase #1.
· The Message Queuing service receives message x+2 from SenderB and runs phase #1.
· After a thread switch, the Message Queuing service runs phase #2 for x+2.
The state of messages is as follows:
· x is received and processed by COM+.
· x+1 is marked as Do Not Read Me.
· x+2 is marked as OK; Available.
Now, the Triggers service calls MQReceiveMessage to peek the next message. The cursor cannot receive message x+1, so it skips it and receives message x+2. Message x+1 has been skipped and will wait forever in queue, until the Triggers service is restarted.
This problem is solved for Windows 2000 with a hotfix post Service Pack 4, Q839258, available from Microsoft Support.

3.66 What is the syntax for specifying multiple parameters with the TrigAdm tool?

Use a semicolon as paramete separator. For example:

C:\>C:\msmqtools\trigadm.exe /Request:AddRule /Name:Test /Action:COM;Component.Class;MyMethod;\"literal\";$MSG_LOOKUP_ID;

The semicolon after last parameter is mandatory.
Clusters

3.67 What are the common mistakes when configuring Message Queuing and Message Queuing–based applications on a Windows 2000 cluster?

You need to verify that the following are set up correctly:

· Your clustered application (generic service, generic application, or your own resource) must use the network name of its cluster group as the computer name. You configure this setting in the Cluster Administration tool. In the Parameters dialog box for your application or service, select the Use Network Name for computer name check box. Your application must depend on the network name resource for this check box to be available.

· Because your application is dependent on the Message Queuing resource, you must add the Message Queuing resource to the cluster group that runs the application. Otherwise, failover will not work as expected.

· Renaming the cluster network name is not supported by Message Queuing.

· If your code runs inside your own resource .dll file, be aware that resource .dll files are run by the Cluster service in the context of the node. Resource .dll files do not run in the context of any virtual server. Because of this, any Message Queuing call from a resource .dll file is directed to the Message Queuing service on the node. This service is set to Manual. It does not start after restarting the node and you must not enable it as Automatic.

3.68 Where can I find more information about configuring Message Queuing on a cluster?

Search MSDN or the Microsoft Product Support Services site for Knowledge Base articles.

The following is a partial list of available Knowledge Base articles:

· 256975 HOWTO: Install and Configure Message Queuing on a Windows 2000 Cluster

· 267316 Performance Monitor Counters Are Lost on the Cluster During Failover.
· 310775 INFO: Using the MSMQ Service on a Windows 2000-Based Cluster
This article explains how to automatically run Message Queuing on the cluster nodes.
· 235529- Kerberos support on Windows 2000-based server clusters.
This article explains how to configure MSMQ on Windows 2000 Service Pack 3 (and later) MSCS cluster.
· 220889 INFO: MSMQ Must Be Clustered if Installed on an MSCS Cluster
· 237458 HOWTO: Install an MSMQ Independent Client on a Cluster After SQL Server 7.0
· 192708 INF: Order of Installation for SQL Server 6.5 MSMQ 1.0 Clustering Setup
· 188685 HOWTO: Install an MSMQ PSC on Microsoft Cluster Server
· 275474 HOWTO: Rebuild an MSMQ Site Controller on a Computer Running MSCS and SQL Server 7.0
· 233077 INFO: Using MSMQ with SQL Server 7.0 on Clusters
· 250652 PRB: MSMQ Triggers Does Not Operate on a Cluster
· 262882 Install an MSMQ Site Controller on a Microsoft Cluster Server with SQL Server 7
· 237431 INFO: MSMQ Site Controller Availability and MSCS
3.69 What are the known limitations of Message Queuing 2.0/3.0 on an MSCS cluster?

The limitations include the following:

· Performance counters are not available.

The way to avoid this issue is to use Local Admin API as described in http://support.microsoft.com/kb/242471. For a partial fix, see http://support.microsoft.com/kb/267316.
· If you run Dcpromo.exe on the node to turn it into a domain controller, you can only install Message Queuing as a server without routing enabled. If you enable routing, you cannot add Message Queuing as a resource to a cluster group.
· The node instance of MSMQ must run under the default LocalSystem account. Do not change it to a domain user account. Changing it will break MSMQ applications which run on a cluster group.
3.70 Are there known interoperability issues with other products on a cluster?

Yes. There are some issues, including the following:

· SQL Server may not support RequireKerberos.

A possible way to resolve this issue is to install Message Queuing in workgroup mode. For more information regarding Kerbros support in SQL Server, see http://support.microsoft.com/kb/319723. For background information regarding Kerberos support in MSCS cluster, see http://support.microsoft.com/kb/235529.

· SQL Server requires a private network name for its own use. This might be an issue when trying to cluster SQL Server, Microsoft BizTalk(, and Message Queuing. A possible way to resolve this issue is to use two network names and two IP addresses—one for SQL Server and the other for all other products.

For more information, see http://support.microsoft.com/kb/306985.
· IIS and MSMQ use different clustering methods. This can cause problems for ISAPI code which try to access MSMQ. See http://support.microsoft.com/kb/820985 for more details.
3.71 Does Windows 2000 Network Load Balancing (formerly Windows NT Load Balancing Service [WLBS]) support Message Queuing?

Starting with Windows 2000 Service Pack 2, Message Queuing is supported, with these restrictions:

· Only non-transactional messages can be sent to the clustered queues.

· Only private queues are supported.

· Only the format DIRECT=TCP:ClusterIP\Private$\QueueName can be used to send messages to the clustered queues (QueueName should be the same on all nodes).

Starting with Service Pack 3, there is a registry key that also enables DIRECT=OS, in addition to DIRECT=TCP. To enable DIRECT=OS over Network Load Balancing, add the DWORD registry value IgnoreOsNameValidation at HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters with a value of 1.
Note: On MSMQ3.0 registry value IgnoreOsNameValidation affects only messages sent over the native protocol (tcp port 1801). It doesn’t affect messages sent over the HTTP protocol using the DIRECT=HTTP format name. To use NLB with MSMQ messages over HTTP protocol you have to define mapping. For more information refer to online help and to the B2B whitepaper.
Note: The limitation of non-transactional messages is valid on all versions of MSMQ when referring to queues hosted by the NLB nodes. HTTP support in MSMQ3.0 can overcome this limitation when using backend server to host the transactional queue and using mapping for store & forward on the NLB nodes. For more information refer to online help and to the HTTP deployment scenarios whitepaper.
3.72 I send many messages to a Network Load Balancing cluster. All the messages are received and processed by the same node. Why don't I see load balancing?

Message Queuing is designed for concentrating sessions. It keeps sessions alive for a few minutes after the last message is sent and it uses the same session for all messages between two computers, regardless of the specific target queue of each message. If a new message is sent before the Message Queuing session is closed, or if a message is sent to a new target queue, that session is reused. This means that the same Network Load Balancing node will receive all messages from a specific sender, as long as a session is alive.

Load balancing is achieved when you have multiple senders that send to the same Network Load Balancing cluster. In that case, each sender might be handled by a different node. The time interval for keeping a session alive can be controlled with a registry value.

3.73 Does Application Center Component Load Balancing (CLB) work with Queued Components and Message Queuing?

No. CLB does not support Message Queuing or Queued Components.

Note Additionally, Application Center does not support Microsoft Cluster service. For more information, see http://support.microsoft.com/kb/263163.
3.74 In a server cluster, is there any dependency (or handshake) between Message Queuing on a physical node and Message Queuing on a virtual server?

No. For Message Queuing, each virtual server is a distinct computer that has its own distinct disk, its own distinct name, its own distinct cryptographic keys, its own distinct registry sections and its own distinct IP address. This is also true for each physical node in the cluster. Each node and each virtual server has its own files—message files and logging files. The fact that several nodes and virtual servers share the same hardware is not relevant.

This means that if your application is running on the cluster node, you need Message Queuing running on the node. Similarly, if your application runs in the context of the virtual server, you need the Message Queuing resource running on that virtual server. Message Queuing on the cluster node only communicates with Message Queuing on the virtual server if your application on the node sends a message to a queue that is owned by the Message Queuing resource on the virtual server, and vice versa. This functionality is identical to any other session between two Message Queuing computers that exchange Message Queuing messages.

There is no special handshake between Message Queuing on the cluster node and Message Queuing on the virtual server. Each views the other as a remote standard Message Queuing computer. The fact that they share hardware is irrelevant. But there are the following limitations:

· Message Queuing on the node must be manual, and not set to automatic.

· You need the Cluster service running in order for Message Queuing on the cluster node to start. This is because of the way that MS DTC is clustered.

· In MSMQ 1.0 and Message Queuing 2.0, the Message Queuing application in Control Panel is only applicable for the instance of Message Queuing that is running on the physical node. You cannot use it to manage a clustered instance of Message Queuing.
· Message Queuing on all nodes must be install with the same configuration (workgroup/domain mode, enable/disable routing). The clustered instance of MSMQ inherit the configuration of the node. Installing different configurations on different nodes may prevent the clustered instance of MSMQ from starting and running.

· When a clustered instance of MSMQ is brought online, the msmq cluster resource dll copies some registry values from the node instance to the clustered instance section of MSMQ registry. This is done in order to enforce identical configuration and identical security hardening. The following values (all under HKLM\Software\Microsoft\MSMQ\Parameters) are copied:

· SetupStatus
· Workgroup
· MachineCache\MQS_Routing
· MachineCache\MQS_DepClients
· MachineCache\EnterpriseId
· MachineCache\SiteId
· MachineCache\MQISServer
· MachineCache\CurrentMQISServer
· DsEnvironment
· Hardened_MSMQ (Only on Windows Server 2003)
· Security\DenyOldRemoteRead (Only on Windows Server 2003)
The independent nature of each instance of Message Queuing (on the physical node and on the virtual server) can be seen in Task Manager. Each instance is a different process. If both are running, you will see two processes running Mqsvc.exe.

The independent nature of each instance of Message Queuing also means that an application running on one instance and receiving from a queue that is owned by another instance is doing a remote read. It cannot do it in the context of a transaction. This is a common limitation of remote read, unrelated to MSCS Cluster.

3.75 What's the purpose of the MQAC$MSMQ Service.sys file under System32\Drivers on my cluster computer?

This is the Message Queuing driver that is used by the clustered instance of Message Queuing. Mqac.sys is the base driver. It serves the Message Queuing instance on the physical node. Each Message Queuing cluster resource in each virtual server has its own instance of the driver. The name of the driver is MQAC$MSMQResourceName.sys. This is needed to load the driver multiple times, so each virtual server has its own independent instance. It is the Message Queuing cluster resource DLL that copies the base driver file into the new file name when the Message Queuing resource is brought online.
Similarly, there is an instance of the MSMQ service which is registered with the Service Control Manager for each cluster group which hosts a MSMQ resource. The name of the service is "Message Queuing (msmq resource name)". This instance is registered by the msmq cluster resource dll when the msmq resource is brought online. It is removed when the resource is taken offline while the cluster group failover. Because of a bug, the service instance of the clustered msmq resource is not removed when the computer shutdown. It remains registered and set to Manual. The service is removed only when both nodes run and the cluster group failover.
The same happens when clusterizing the MSMQ Trigger service.

Note this discussion applies to the clustered instance of MSMQ. The node instance is installed only by setup and it can be removed only by setup.
3.76 Do I have to put the MS DTC resource in the same cluster group as the Message Queuing resource?

No. The clustering model of MS DTC is different than that of Message Queuing or other resource types. There is only one instance of MS DTC in a cluster, and this instance serves all the other cluster groups. (Technically, the other groups use an MS DTC proxy that interfaces with the group that owns the MS DTC resource.) The MS DTC instance can be in any group. For scenarios with multiple groups that have a Message Queuing resource, it is convenient, but not mandatory, to put the MS DTC resource in a separate group.

3.77 Is it possible to do transactional remote reads between an application on the cluster node and a queue on the virtual server?

No. Transactional remote reads are not supported in Message Queuing, in all configurations and platforms. Each virtual server must be considered as a distinct and separate computer. The fact that virtual servers share the same hardware is irrelevant and does not weaken any architectural limitation in Message Queuing.

3.78 Is it possible to add registry settings to a Message Queuing resource that runs on a cluster group?
Yes. However, changing the registry under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Clusteredqms must always be done on the node that owns the cluster group, while the Message Queuing resource is online. Otherwise, when Message Queuing fails over from the node that owns the cluster group to the node where you changed the registry, it brings with it the registry settings from the node that owns the cluster group, overwriting whatever settings you specified on the other node. This is known as checkpoint and it is the standard way for clusters to manage the movement of registry and cryptographic keys from one node to another.

3.79 Are there any known issues when upgrading a Windows 2000 cluster to Service Pack 3 (or later)?

There are the following main issues:

· In Windows 2000 Service Pack 3, Microsoft added support for Kerberos protocol authentication with the computer object of the virtual server. From Service Pack 3, the NetworkName resource creates the computer object in Active Directory, instead of Message Queuing, as was the case previously. When updating to Service Pack 3, a special utility adds Kerberos protocol support for all cluster groups that host the Message Queuing resource in domain mode. This should be transparent, but problems can occur.

For more information, see http://support.microsoft.com/kb/235529.

· The Message Queuing service on the physical node must be run under the LocalSystem account. If you change it to a domain user account, Message Queuing applications on the clustered groups will fail to call Message Queuing APIs. This is because of new security validations that were introduced. This limitation also applies to Windows Server 2003.

Note The Message Queuing resource in a cluster group always run under the LocalSystem account. This has not changed in Windows 2000 Service Pack 3, and cannot be changed, because it is hard coded in the Message Queuing resource DLL file that activates the Message Queuing resource in cluster groups.

· Applications that use the Message Queuing COM interface (including all Message Queuing applications based on the Microsoft Visual Basic(development system) might fail when sending or receiving messages.

This is fixed in Service Pack 4 and a hotfix is available at http://support.microsoft.com/kb/329546.

3.80 My clustered application fails to call Message Queuing and produces the following error: "Service not available." Everything seems to run fine if I start Message Queuing on the node computer. Is this acceptable?
No. There are some serious problems with this scenario. For an explanation of how to resolve this issue, see Cluster FAQ.

Message Queuing on a cluster virtual server and Message Queuing on a physical node are two distinct entities that function like two distinct computers. The fact that both share the same hardware is irrelevant. For an explanation of this, see Cluster FAQ.

It might appear that everything seems to be running fine when Message Queuing is running on the node. This is because even though the application is clustered, it is not configured correctly to use the clustered Message Queuing instance in its virtual server. Instead, it tries to use the Message Queuing instance on the physical node, and technically nothing prevents it from doing this after Message Queuing is started on the physical node. It is an RPC call from the Message Queuing runtime, over the Local remote procedure call (LRPC) protocol, to a service listening on the endpoint. By default, the RPC call will go to the node if Message Queuing on the node is up and running.

However, such a scenario can cause serious problems because the high availability provided by failover will not be available. When failover occurs, the application will fail over with its group, but the physical-node instance of Message Queuing will not fail over and will continue running on the physical node. Following failover, your application will use the Message Queuing instance on the other node. Therefore, it will reference different queues. Your local queues and messages will not fail over and your application has lost them. Messages sent to remote transaction queues will arrive out of order, because ordering is done for each Message Queuing instance, and your application has used two different and distinct instances of Message Queuing to send messages. All the advantages of a cluster configuration are lost.

This incorrect scenario is common because the correct configuration is not by default and needs to be configured explicitly. To correct the issue, when you add a generic application, you need to make it dependent on the same network name resource that is used by Message Queuing in the cluster group. After you have set the dependency, in the Parameters dialog box for the generic application resource you must select the Use network name for computer name check box. This also applies to a generic service. Without this setting, your application functions as if it is running on the node, as far as the computer name is concerned. (For example, without these settings, calling GetComputerName() will return the name of the node.)

If you are writing your own resource .dll file, you can achieve the same effect by adding the Environment value under your clustered service definition, at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\YourService with COMPUTERNAME environment variable being the name of the network name resource.

For more information, see ResUtilGetEnvironmentWithNetName and GetComputerNameEx in the Platform SDK.

The article http://support.microsoft.com/kb/310775 in the Microsoft Knowledge Base does not suggest running the Message Queuing instance on the node as a general purpose way of deploying Message Queuing on a cluster. The problem addressed in this article is a unique one—running Message Queuing on a cluster server where both nodes are also domain controllers. This configuration is not common and is mostly used by small businesses that put all the server products on one highly available box. With this configuration, Message Queuing is installed in domain mode. But because Message Queuing on the node where Active Directory is installed is not started automatically, the clustered instances of Message Queuing will be offline by default. This article shows how to run Message Queuing on the nodes too, to provide Active Directory access services to clustered instances of Message Queuing, and to other remote Message Queuing clients. Even with this scenario, clustered applications must be configured correctly to use the clustered Message Queuing instance that runs in their own cluster group.

3.81 I cannot bring the Message Queuing resource online on a cluster server running Windows 2000. Why?

There are several possible reasons:

· You upgraded from Windows NT 4.0 to Windows 2000, which includes the enhanced cryptographic provider (128-bit encryption). This was fixed in Windows 2000 Service Pack 1.

· The account that runs the Cluster service does not have permissions to create Computer objects in the domain. You must grant this account the Create Computer, or Create All Child Objects permissions for the default Computers container. Then, after failing again, you should see the Computer object created, and you should grant the Create MSMQ Configuration Objects (or Create All Child Objects) permission for the new computer objects to the appropriate user.

Note This applies to the user account running the Cluster service, not to the user account that was used to log on. This issue was fixed in Windows 2000 Service Pack 3.

· Starting with Windows 2000 Service Pack 3, or with some QFEs posted after Service Pack 2, you need to add the RequireKerberos DWORD private property to the network name resource.

For more information, see http://support.microsoft.com/kb/235529.

3.82 I upgraded a Windows NT 4.0 cluster to Windows 2000 and now the Message Queuing resource does not come online. Why?

The most common reason for this is that you did not do the following:

· Run the Configure Your Server (CYS) wizard to continue the Message Queuing upgrade. This wizard will convert the Windows NT 4.0 Message Queuing resource type to its Windows 2000 version.

· Run Comclust.exe.

3.83 Is it possible to run Computer Management in the context of a virtual server when connecting from Terminal Server client?
No. This is not possible by default. You need this possibility in order to manage queues in the virtual server.

To overcome this limitation, use the Mmcv.cpp code in Appendix B: mmcv.cpp.

To run the Mmcv.cpp code
· From a Terminal Service client that is connected to an MSCS cluster node, open the command-line prompt, and then enter the following command:

mmcv –s NetworkNameForVirtualServerHostingMessageQueuingResource
MSMQ-MQSeries Bridge

3.84 Where can I learn more about the MSMQ-MQSeries Bridge?

The following links provide more information:

· overview
· Configuration: Online Help ; HIS2000 Resource Kit
· programming considerations
3.85 Can I map several Message Queuing foreign queues to a single MQSeries queue?

No. Each Message Queuing foreign queue represents a single and distinct MQSeries queue. When a Message Queuing application sends messages to a Message Queuing foreign queue, the MSMQ-MQSeries Bridge will relay that message to the MQSeries queue that has the same name as the Message Queuing foreign queue, on the MQSeries Queue Manager that has the same name as the Message Queuing foreign computer.

3.86 Can I map several MQSeries queues to a single Message Queuing queue?

Yes. In MQSeries, define the queue as a remote definition queue. Several remote definition queues can have the same remote queue name. This is the name of the Message Queuing queue. The remote queue manager name of the remote definition queue must be the name of the Message Queuing computer hosting the queue. Make sure that you use the transmission queue defined for the MSMQ-MQSeries Bridge. When an MQSeries application sends messages (MQPUT) to any of those remote definition queues, the MSMQ-MQSeries Bridge will relay them to the single Message Queuing queue defined with the remote queue name.

3.87 Can I install multiple bridge servers and point each one to a different MQSeries Queue Manager?

Yes. However, there is a considerable overhead involved. Each MQSeries Queue Manager is represented by a foreign computer in a different foreign site. Each bridge server needs to be in a different Windows 2000 site, and each Windows 2000 site needs a domain controller that runs Message Queuing.

For more information, see Inside MSMQ.

3.88 Can I install multiple bridge servers on the same foreign site and point them all to the same MQSeries Queue Manager, for load balancing or high availability?

Yes. Note the following limitations:

· When you send messages to a foreign transactional queue, after a bridge server has been selected by a source computer, all subsequent transactional messages for that foreign computer will be forwarded to the same bridge server. This is done to ensure exactly-once delivery.

· If messages reach a Message Queuing server that is also a bridge, and the Bridge service is down (although the Message Queuing service is running), the messages will wait in the connector queue until the local Bridge service is running again. Message Queuing will not forward these messages to other servers configured as bridge servers in the same foreign site.

· The bridge server is chosen randomly and cannot be specified.

· All Message Queuing site gate servers on routing links of the non-foreign site must be configured as bridge servers too, and point to the same MQSeries Queue Manager. For example, consider a scenario where you have a Windows 2000 site (SiteA) and a foreign site (SiteFor). In order to deploy two bridges in SiteFor, you have to have two Message Queuing routing servers that also run the Bridge service in SiteA. These servers will be site gates on the Message Queuing routing link from SiteA to SiteFor. In this example, you must not configure any other Message Queuing servers as site gates on any routing link from SiteA to any other site.

3.89 How is load balancing done among multiple bridges?

Load balancing is determined by the sender computer and depends on the type of queue:

Non-transactional queues

The Message Queuing sender computer (where you open the queue) will randomly choose a bridge server and use it (as long as it is online) for all non-transactional queues opened on it. If the bridge computer goes offline, the sender computer will look for another bridge. This provides load balancing among Message Queuing senders, where each sender computer can use a different bridge.

Transactional queues

When you open a transactional queue for sending for the first time, the Message Queuing service randomly chooses a bridge server for it. From then on, as long as there are messages in this outgoing queue, the same bridge will be used. If it goes offline, the sender will wait until it is online again, and then continue to use the same bridge. This provides load balancing on the same sender computer among multiple transactional queues, where each queue might use a different bridge server.

3.90 I have multiple foreign computers in a single foreign site. How do I send messages to all foreign computers?

A foreign site is only mapped to, and can only connect to, one MQSeries Queue Manager. You must enable routing from that MQSeries Queue Manager to all other MQSeries Queue Managers that are represented by the Message Queuing foreign computers. For example, in a scenario where you have foreign computers C1 and C2 in foreign site S1, and the bridge that serves S1 connects to MQSeries Queue Manager C1, on MQSeries Queue Manager C1, you must do the following:

45. Create a local transmission queue and create a sender channel to C2 that uses this transmission queue.

46. Create a local remote definition queue named C2 with a blank remote MQSeries Queue Manager name. It must use the transmission queue for C2 that was created in the previous step.

47. You must create a local remote definition queue for each queue on C2 to which you want to send messages. This queue must also be defined as a foreign queue under C2 in Message Queuing. The remote definition queue must contain the name of the queue on C2 and the name of the MQSeries remote Queue Manager (C2).

48. Verify that the sender channel from MQSeries Queue Manager C1 to C2 is running.

3.91 How can I send messages from a MQSeries application to Message Queuing queues on computers other than the one running the bridge?

There are several ways you can send messages from an MQSeries application to any Message Queuing queue on any computer. Define the following:

MSMQComputer
The name of any Message Queuing computer, not necessarily the one running the MSMQ-MQSeries Bridge.

MSMQQueue
The name of the public or private Message Queuing queue on MSMQComputer.

BridgeComputer
The name of the Message Queuing routing server that runs the bridge.

MQSeriesQM
The name of the MQSeries Queue Manager that the bridge connects to.

Method 1:

· Using the MQSeries Explorer, create a remote definition queue on MQSeriesQM. Set the remote queue name to MSMQQueue, and then set its remote queue manager name to MSMQComputer.

· If the Message Queuing queue is transactional, you must set the transmission queue name to BridgeCompupter.XMITQ.

· If the Message Queuing queue is non-transactional, you can use the high-performance pipe by setting the transmission queue name to BridgeComputer.XMITQ.HIGH, and by setting the remote queue manager name to MSMQComputer%. Alternatively, you can use the same settings as those configured for a transactional queue.

· When calling MQOPEN, specify the name of the remote definition queue just created.

Method 2

If the Message Queuing queue is transactional, when calling MQOPEN, set ObjectQMgrName in the MQOD structure to BridgeComputer and set the ObjectName member of the MQOD structure to one of the following:

· direct_os/MSMQComputer/MSMQQueue

This is equivalent to direct=os:MSMQComputer\MSMQQueue).

· If you have the format name of the Message Queuing private queue: P_A56F41B4_9869_11D0_AF8F_0000E8D1C3A7/00004356
· If you have the format name of the Message Queuing public queue: PUBLIC_A56F41B4_9F69_11D0_AF8F_0A00E8D1C3AB
If you apply Microsoft Host Integration Server 2000 Service Pack 1, you have more options:

· direct_os/MSMQComputer/P_/MSMQQueue
This is equivalent to DIRECT=os:MSMQComputer\Private$\MSMQQueue

Remove P_ for a public queue.

· direct_tcp/11.22.33.44/MSMQQueue
This is equivalent to DIRECT=tcp:11.22.33.44\MsmqQueue
Add P_ for a Private$ queue.

If the Message Queuing queue is non-transactional, use the same method as that in Method 2 for a transactional queue, but in addition you can also set ObjectQMgrName to BridgeComputer%. Note that setting ObjectQMgrName in the MQOD structure to BridgeComputer or BridgeComputer% assumes that two remote definition queues with these names were created on MqSeriesQM when you installed the MSMQ-MQSeries bridge on BridgeComputer.

You can also combine these methods. For example, you can create a remote definition queue with Method 1, and then set its remote queue name to one of the formats for ObjectName described in Method 2. For example, using these methods you can send a message from your MQSeries application on a mainframe to a private queue on a Microsoft Windows CE device.

Note The ObjectName field in the MQOD structure, or the RemoteQueueName box in the MQSeries Explorer, is limited to 48 characters. This limits the length of the direct_ string.

3.92 Using the Bridge Explorer, while adding a new CN (foreign site) , I cannot see all the MQSeries Queue Managers that I have. What should I do?

To see all the MQSeries Queue Managers while using Bridge Explorer to add a new CN (foreign site)

49. In Bridge Explorer, right-click the MSMQ-MQSeries Bridge Service icon, and then click Properties.

50. On the MQI Channels tab, specify the channel of the MQSeries Queue Manager that you want to use.

3.93 When configuring the MSMQ-MQSeries Bridge, and trying to configure a new CN (foreign site) , I receive the following error: "No Applicable CN defined." What is missing?

You need to add the foreign site to the list of sites for the Message Queuing server that is running the MSMQ-MQSeries Bridge.

To add the foreign site to the list of sites

51. In the Users and Computers snap-in, right-click the MSMQ Configuration object for the bridge computer, and then click Properties.

52. In the Properties dialog box, click the Sites tab.

53. Add the foreign site to the sites of the computer.

54. Verify that the Message Queuing server is also a site gate on the relevant Message Queuing routing link:

55. Under the MSMQServices object, right-click the relevant Message Queuing routing link object, and then click Properties.

Another possible problem can be caused by the following scenario:

· Using the Sites and Services snap-in, you add a Message Queuing foreign site and a new Message Queuing routing link.

· You add a Message Queuing server to the foreign site and also add the server as a site gate to the Message Queuing routing link.

· Then, you delete the foreign site and delete the Message Queuing routing link.

The problem is that the mSMQSites attribute in the MSMQConfiguration object of the Message Queuing server still contain the GUID of the deleted foreign site.

The only place this is a problem is when calling MQGetMachineProperties(PROPID_QM_CONNECTION). The code first queries for sites of computers (it gets the GUIDs from mSMQSites), and then it queries the Site objects. If a GUID belongs to a deleted site, the query fails, although there is another valid GUID of a valid site in the mSMQSites attribute.

To resolve this issue, use the ADSIEdit tool to clean up the mSMQSites attribute of the MSMQConfiguration object of the Message Queuing server

56. Find the GUID of the native site from another MSMQConfiguration object.

57. On the correct MSMQConfiguration object, delete all other GUIDs and leave only the native one.

58. Use the Users and Computers snap-in to add the foreign site to that MSMQConfiguration object.

3.94 After installing and configuring MSMQ-MQSeries Bridge, the MQSeries-to-MSMQ pipes do not run and remain pending. What's wrong?

There are several possible solutions to this problem:

· Inspect the application event log for error events from the Bridge service or the MQSeries server. These events can explain some of the problems.

· Check the transmission queue properties. To do this, right-click each of the pipes, and then click Properties. Ensure that the name of the MQSeries transmission queue on the General tab is all uppercase letters. By default, this name is derived from the name of the foreign site (or foreign CN). Message Queuing supports lowercase names, but the interface between the Bridge service and the MQSeries server requires all names to be in uppercase letters only.

3.95 Can the MSMQ-MQSeries Bridge set the UserIdentifier attribute in MQMD when sending messages to MQSeries?

Yes. By default, the bridge transfers messages from Message Queuing to MQSeries without UserIdentifier. To enable translation of the Message Queuing sender SID to the MQSeries UserIdentifier, add the DWORD value MapUserSid2UserName under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MQBridge\Server, with a value of 1. For more details about this registry value, see Appendix G: Registry Used By the Host Integration Server 2000 MSMQ-MQSeries Bridge.

3.96 Can I use Message Queuing to read from a MQSeries queue?

No. You cannot use the Message Queuing API to read directly from an MQSeries queue.

On the MQSeries side, you must put a message in an MQSeries queue that uses the bridge transmission queue. The bridge will then move the message to a Message Queuing queue, and you can use the Message Queuing API to read from the Message Queuing queue.

3.97 Can I use the DIRECT format name when sending messages to an MQSeries queue (foreign queue) through the bridge?

No. You must use the PUBLIC format name to address foreign queues. You can use the MQPathNameToFormatName API to map the foreign queue path (ForeignComputer\ForeignQueue) to a PUBLIC format name.

3.98 I tried the MSMQSend sample that is installed with the bridge, but it fails with the following error: "Error C00E0050" What's wrong?

This error means MQ_ERROR_TRANSACTION_USAGE—you are trying to send to a transactional queue. The MSMQSend sample can only send messages to nontransactional queues.

3.99 Do I need to be logged on as an administrator to run the MSMQ-MQSeries Bridge Explorer?

Yes. By default, you do need to be an administrator. However, you can run it while logged on as a Power User if you first grant the Power User account the Read permission on the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows nt\CurrentVersion\Perflib.

Note By default, this key does not inherit permissions from its container.
3.100 Can I use the MQSERVER environment variable for the MSMQ-MQSeries Bridge?
Technically it might be possible, but be aware of the following:
· The bridge is tested only with the MQSeries channel table. That is also the documented configuration. This means that using MQSERVER is not supported.
· You need the channel table if you want to connect the bridge to multiple MQSeries queue managers.
If you have MQSeries applications that run on the bridge computer and connect to MQSeries queue managers other than the one used by the bridge, you must remove the MQSERVER variable and use only channel table. This is because the MQSERVER variable overrides the channel table.

3.101 The MSMQ-MQSeries Bridge service doesn't start. What's wrong?
Inspect the applications and system events logs for error events that can help to determine the problem. It could be that the password for the Bridge account has expired or was changed. Use Computer Management (the Services folder) to change the password for the Bridge service. (By default, Host Integration Server 2000 installs the bridge under a domain user account, not under LocalSystem).
3.102 What queries does the MSMQ-MQSeries Bridge Explorer do in order to display the computers list? (That is, why don't I see my cluster in that list, although I run BCluster?)
The MSMQ-MQSeries Bridge Explorer queries for all queues with type-id {94834826-5415-11D2-8C71-00C04FC307FA}. These are the MQBridgeProxyControler public queues that the Bridge service creates after installation. For a cluster, make sure to bring the bridge resource online after running BCluster. Otherwise, this public queue will not be created in the context of the cluster.
3.103 I send from Message Queuing to MQSeries, asking for a full NACK. However, the MQSeries NACKs end up in the MQSeries deadletter queue. Why?
MQSeries sends the COA/COD report under different security contexts, as follows.

· COA (reach ACK) is sent with the context of the channel (system by default).

· COD (read ACK) is send with the context of the message sender.

If the sender of the original message does not have permission to send the COD report, COD is not sent. By default, the bridge sends messages to the MQSeries side with a blank user identity. With a blank user identity, COD cannot be sent.

To resolve this issue, you can instruct the bridge to add a user identity, by using the registry key entry MapUserSid2UserName.

Note The MQSeries user identity is limited to 12 characters. This means that you cannot use long user names, such as Administrator.

For more information, see Appendix G: Registry Used By the Host Integration Server 2000 MSMQ-MQSeries Bridge.

3.104 Can I configure the MSMQ-MQSeries Bridge by using scripts?

Yes. You can configure it by using Windows Management Instrumentation (WMI). Sample Active Server Page (ASP) code is available by installing the Host Integration Server 2000 software development kit (SDK). WMI scripting can replace manual configuration done from the MSMQ-MQSeries Bridge Explorer. You still need to create all Active Directory objects manually or by using your own code or ADSI scripts.

By default, ASP runs as a local user who cannot change anything in the registry. The Bridge WMI provider accesses the bridge registry (HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MQBridge) with All-access mode. Because of this, by default the ASP code will fail. You can disable anonymous access in Internet Information Services (IIS) and enable integrated security, so that WMI will run under the user credentials of the administrator who runs the ASP pages.

3.105 I stop the MSMQ-MQSeries Bridge service from the MSMQ-MQSeries Bridge Explorer, but its icon continues to be green. Why?

This is related to how the Bridge service is installed. Its path (under HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MQBridge\ImagePath) is registered and enclosed within quotation marks. Because of this, the bridge performance counters code (Q2qprfdl.dll) considers the bridge as always running. The green icon is displayed based on a query of performance counters. A possible way to resolve this issue is to remove the quotation marks, and then restart the computer running the Bridge service.

3.106 BCluster fails to remove the Bridge cluster resource. What can be wrong?

Make sure that no other cluster resource is dependent on the bridge resource. BCluster will not remove the bridge resource if some other resource depends on it.

3.107 I installed two bridges, each in a different site. Both run fine, but I cannot send from one site to MQSeries in the other site. Why?

Verify that you have a Message Queuing routing link between the two native sites. Also verify that this routing link does not include any site gate. This routing link is required for Message Queuing inter-site routing. Without it, Message Queuing cannot route messages from one site to the bridge server in the other site.

3.108 Can I monitor the Bridge's pipes programmatically?

Yes, this is possible using Performance Monitor Counters. The interface for status reporting between the Bridge service and the Bridge manager is implemented by Performance Monitor Counters. Each pipe implements a Performance object. The names of these objects are defined in the q2qperf.ini file which is installed with the Bridge. The following are the names and help text of the performance objects for the four pipes:
Q2QPERF_CNOBJ_A2BH_009_NAME=MQBridge:MSMQ to MQS Q2QPERF_CNOBJ_A2BH_009_HELP=An Non-Transactional Message Channel from MSMQ to MQSeries Queue Manages

Q2QPERF_CNOBJ_A2BN_009_NAME=MQBridge:MSMQ to MQS Tx Q2QPERF_CNOBJ_A2BN_009_HELP=A Transactional Message Channel from MSMQ to MQSeries Queue Manages

Q2QPERF_CNOBJ_B2AH_009_NAME=MQBridge:MQS to MSMQ Q2QPERF_CNOBJ_B2AH_009_HELP=An Non-Transactional Message Channel from MQSeries to MSMQ Queue Manages

Q2QPERF_CNOBJ_B2AN_009_NAME=MQBridge:MQS to MSMQ Tx
Q2QPERF_CNOBJ_B2AN_009_HELP=An Transactional Message Channel from MQSeries to MSMQ Queue Manages

The Status counter indicates the pipe status. Its values are as follow:

#define Q2Q_STATUS_STOPPED 0
#define Q2Q_STATUS_RUNNING 1
#define Q2Q_STATUS_PAUSED 2
#define Q2Q_STATUS_PENDING 3
#define Q2Q_STATUS_RECOVERING 4
Note: When a pipe is stopped you can either see the Status counter with value 0 or the appropriate Performance object does not exist at all.
3.109 Can I rename the computer which runs the Bridge?

Yes, this is possible for MSMQ2.0 and later. After renaming it, go to the computer which run the MQSeries server. Using MQSeries explorer change the "Remote Queue Manager Name" field in the two remote definition queues that are created when you configured the bridge. The name of the remote definition queues are the same as the bridge original computer name (one suffixed with "%").
3.110 Can I use the Bridge manager from Terminal Service session? Can I view the Bridge performance counters that way?

Yes, both are possible. Ensure that you are logged on as a local administrator and that the "Remote Registry Service" is running on the Bridge computer. To view performance counters from the PerfMon tool, select the computer name as \\name\\ (instead of \\name which is the default). This limiatation is related to the way the Bridge performance counters dll (q2qprfdl.dll) registers itself. Using \\name\\ you can view all other performance counters too.
4 Deployment

4.1 I want to configure a central queue on a Message Queuing server and have multiple remote clients read from it. Is this a good design?

The answer depends on the scenario and scale. Remote reading has some disadvantages (some of these are resolved in Windows Server 2003):

· Transactions are not supported. This is also true for Windows Server 2003.

· A remote read solution does not scale well. Each pending read consumes an RPC session and a thread on both sides. This problem was solved on Windows Server 2003. For more information, see Programming FAQ.

· If the remote computer restarts or if there is a network failure, the client doing the remote read might stop responding for a lengthy time. It can take the operating system up to two hours to identify such failures and release calls. To overcome this limitation, Message Queuing on the computer that is executing the remote read request will cancel remote read calls 10 minutes after the receive time-out has elapsed. Using short time-outs of several minutes ensures that Message Queuing on local computers will cancel read operations in time. Thus, using long time-outs effectively disables this feature.
· A related problem happens if you open the remote queue for exclusive access (using MQ_DENY_RECEIVE_SHARE when opening the queue). If the nework fails it can take the server up to two hours to identify the failure and close the queue. During this period, other clients will not be able to open the queue for receive.

· If the remote computer restarts, the client application will not be able to continue using the queue handle for receive. It has to close the queue handle and re-open it. Trying to use the queue handle after remote side restart cause MQReceiveMessage to fail with error code 0xc00e0006, MQ_ERROR_INVALID_PARAMETER.
· The remote read interface is not encrypted and messages travel on the network in plain text. This changed in Windows Server 2003. Remote Receive between two Windows Server 2003 computers in domain mode is encrypted.
4.2 Why do I need to run Message Queuing 2.0 on Windows 2000 domain controllers?

Message Queuing 2.0 on a Windows 2000 domain controller effectively takes the role of the MQIS server in MSMQ 1.0. The Message Queuing service on the domain controller replies to directory service queries from Message Queuing clients. For example, the Message Queuing service on the Windows 2000 domain controller handles the MQCreateQueue() API for public queues and replies to the MQLocatexxx calls. There is a known problem with overloading Message Queuing with queries when Message Queuing client computers start. This issue was fixed in Windows 2000 Service Pack 2. The handshake between Message Queuing clients and Message Queuing on the Windows 2000 domain controller is by RPC calls.

In Message Queuing 3.0, the RPC interface was replaced by ADSI, enabling the client to directly access Active Directory. This means that Message Queuing 3.0 client computers can run in an Active Directory environment where Message Queuing is not deployed on domain controllers.

When using the RPC interface, Message Queuing clients call Message Queuing on the domain controller via RPC. Then, Message Queuing on the domain controller impersonates the client and accesses Active Directory to perform the requested operation, under the client credentials. The client knows the name of relevant domain controllers from the MQISServer registry.

With Message Queuing 3.0 (Windows Server 2003), the Downlevel support service provides access to Active Directory for MSMQ 1.0 and Message Queuing 2.0 clients. This is a separate service, in addition to the Message Queuing service. It implements the RPC interfaces that were previously used by Message Queuing 2.0 on the domain controller. The Downlevel support service is not needed when deploying only Message Queuing 3.0 clients. As noted previously, these clients use ADSI to access Active Directory directly. They do not need any intermediate agent on the domain controller.

For more information about Message Queuing on a Windows Server 2003 domain controller, see the Windows Server 2003 online help available at http://go.microsoft.com/fwlink/?LinkId=23135.

In the following cases a Message Queuing 3.0 client will use the RPC interface in an Active Directory environment:
· To support local users.
· In an environment that runs down-level clients (MSMQ 1.0 or Message Queuing 2.0).

When a Message Queuing 3.0 computer manipulates public queues belonging to down-level clients, it uses the RPC interface, not ADSI. This is done to enable notification (Active Directory notifying the down-level client about changes in its queues). If some of the domain controllers are not available, it is possible that a Message Queuing 3.0 client will be able to manipulate its local public queue (because it can find any domain controller) but it will fail to manipulate public queues of down-level clients (because it could not find a domain controller running the Message Queuing Downlevel support service or a Windows 2000 domain controller running Message Queuing). You can force the Message Queuing 3.0 client to use only ADSI by adding the DWORD registry value DisableDownlevelNotifications with a value of 1, under the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters. In this case, down-level clients will not be notified. Notification is not guaranteed even when using the RPC interface, so this change is not critical. Down-level clients will eventually acknowledge changes in their public queues when they refresh the Lqs cache, which is once every 12 hours by default.
4.3 Are there any special considerations that should be taken into account when deploying dependent clients?

Yes. Note the following:

· The supporting server should be running the same (or later) Message Queuing version as the dependent client. For example, a Windows 2000 Message Queuing dependent client cannot use an MSMQ 1.0 server on Windows NT 4.0 as a supporting server. The only exception is a computer running Windows XP that runs against a Windows 2000 Message Queuing supporting server.

· A server running Windows 2000 in workgroup mode cannot act as a supporting server.

· New features of Message Queuing 3.0 are not supported for Message Queuing 3.0 dependent clients. For Message Queuing 3.0, you should use the DCOM configuration rather than dependent client.

· The RPC interface between the dependent client and the supporting server is not encrypted.

4.4 How do I know if the Message Queuing service is running on a remote computer?

You can send a message to a non-existent queue on the remote computer, using a DIRECT format name. Specify a short TTBR value (for example, 30 seconds), and request a NACK to the local administrative queue. If you receive a NACK from the remote computer that the queue is not valid, it means that the Message Queuing service is up and running on the remote computer. If you receive a time-out NACK from the local computer, it means that the remote computer is not available.

Note Using remote read to determine the availability of a remote Message Queuing service is not recommended because a remote read can stop responding for up to two hours when it encounters a network connectivity failure.

4.5 Are there any fundamental differences between machine quota and queue quota?

Yes. When the machine quota is exceeded on a computer, the computer closes its sessions and does not accept new messages. In this case, messages will wait in outgoing queues of source computers, or intermediate routers, making the machine quota a binary method of throttling. When queue quota is exceeded, the destination Message Queuing computer rejects the messages for the particular queue, and returns an exceeded quota NACK (if a NACK has been requested). This means that messages are lost if a queue quota is exceeded.

4.6 Are there any special considerations when storing a large volume of messages?

There are a number of considerations:

· On MSMQ 1.0 and Message Queuing 2.0, there is a design limitation that allows you to store up to approximately from 1.6 through 1.8 GB of messages on any computer. This limitation is the accumulated size of all messages in all queues. (This limitation was removed on Message Queuing 3.0.) When this limitation is reached, you might encounter problems when restarting Message Queuing. This will be indicated by Message Queuing not starting, and by events 2023 and 2083. Because of this, you should set a machine quota of approximately 1.6 GB or lower.

· It is also a common programming error to enable journaling, and then forget to clean up the journal and dead-letter queues. This is a common reason why storage limits are exceeded. If journaling is enabled, it is important to clean it up periodically.

· It is important to ensure that you are not using Message Queuing as a database for long-term storage.

4.7 Can Message Queuing 3.0 store an unlimited number of messages on a single computer?

No. There are two unrelated limitations:

The overall size of all messages on a computer.

Before Message Queuing 3.0, this was limited to approximately from 1.6 through 1.8 GB because all messages files were mapped to the virtual address space of the MQSvc process and this space is limited to 2 GB. This limitation was removed in Message Queuing 3.0.

The number of messages per computer.

The Mqac driver consumes a few dozen bytes of kernel memory for each queued message, and the size of kernel memory is limited. Practically, for MSMQ 1.0 and Message Queuing 2.0, this limit is approximately 2.5 million messages depending on how much physical memory is available. Windows XP and later can allocate larger pools of kernel memory, allowing Message Queuing 3.0 to store a few more million messages. The limit is much higher for Windows Server 2003 on a 64-bit platform.

For more information, see Resource Management in MSMQ applications.
4.8 Is it true that using a DIRECT format name forces Message Queuing to avoid querying Active Directory?

This is partly true. If you open a remote queue for sending, Message Queuing on the sender side will not query Active Directory. (As a side effect, the message cannot be encrypted and cannot be routed through an intermediate routing server.) Sending with the DIRECT format name is the main method for sending messages to remote public queues while the sender computer is offline and cannot access Active Directory.

On the other hand, if you open a local public queue by using a DIRECT format name, or when the Message Queuing service receives a message from the network that is addressed to a local public queue, Active Directory is queried to get the properties of the queue. If Active Directory is not available, Message Queuing will use the local cache of queue properties, stored in the directory MSMQ\Storage\Lqs of the local computer.

For more information, see Inside MSMQ.

4.9 I stress Message Queuing on a computer with more than one CPU but most of the processors are idle. Why doesn't Message Queuing use all available CPUs?
Message Queuing does not scale well with multi-CPU computers. The Message Queuing driver (which manages the messages store) is serialized by a global lock on its entry point. This means that only one CPU at a time can run inside the Message Queuing driver.

4.10 How can I determine why a Message Queuing independent client does not come online?

The following answer applies to MSMQ 1.0 and Message Queuing 2.0 independent clients only. First, the following describes what Message Queuing does when it starts to find an MQIS or Active Directory server:

· If the Message Queuing client determines that it has changed sites, it broadcasts to find an MQIS server in its new site. For this, a change of the IP address is considered as a change in the site. All Message Queuing servers listen to such broadcasts and reply. A Message Queuing client will always broadcast after set up and will always broadcast if it is a remote access client.

· Message Queuing queries an MQIS server for its own data (properties of its own msmqConfiguration object) and data to initialize some routing tables.

The Message Queuing client will try all servers from the MQISServer list in the registry. It will remain in offline mode if none of the servers answer. There are multiple and unrelated reasons for Message Queuing to be offline, including the following:

· The independent client cannot resolve a server name to the IP address.

· The MQIS server running Windows NT 4.0 is not fully operational (it issues event 2063). This happens if more than one of the MQIS server addresses have changed, and the addresses no longer match the addresses registered in the MQIS database. In this state, the MQIS server will respond to a client broadcast with the wrong address; therefore, the client cannot find a server. This reason can easily be determined by using a Network Monitor capture. You need to use MSMQ Explorer to reassign the CNs of the addresses for the MQIS server.

· Message Queuing 2.0 authenticates by using the Kerberos protocol. The Kerberos protocol authentication fails if the DNS client configuration is incorrect or if clocks are not synchronized.

· If Message Queuing remains offline immediately after Setup, see Internet FAQ.

4.11 An outgoing queue is in the wait-to-connect state, although I can ping the destination computer. What is wrong?

There are unrelated reasons for this, including the following:

· This could indicate problems with name resolution. For example, the destination computer is a remote access client that gets a new IP address after dial-up. It takes some time for the new IP addresses to propagate to WINS and for the address resolution caches inside the Message Queuing process to be flushed.

· All licenses are exhausted. The simplest method to troubleshoot this is to take a Network Monitor capture. If ping replies on UDP port 3527 with "Connection not permitted", the sender of this reply has exhausted all its Message Queuing licenses. The ping mechanism is explained in the "Inside MSMQ" chapter. You must wait until it frees resources (close queues and cleans up sessions) and makes a license available. A common scenario for this is a deployment that uses only computers running non-server operating systems. Message Queuing on a non-server operating system can only establish up to 10 Message Queuing sessions with other non-server computers.

For example, if one non-server computer wants to send messages to 50 other non-server computers, it first connects to 10 destinations, sends the messages, waits until these 10 sessions are cleaned up, connects to another 10 computers, and so on. You can reduce the time it takes to clean up unused sessions by modifying the CleanupInterval XE "CleanupInterval" registry value. Do not lower its value too much. (Do not use a value under one minute.) Alternatively, use Message Queuing routing servers in such a deployment.

· There could be problems accessing Active Directory to perform routing calculations. This is only relevant for queues opened with PUBLIC or PRIVATE format names. Message Queuing will not attempt to establish a connection for these queues until it succeeds in querying Active Directory and determining the best route for the queue.

· The machine quota has passed the maximum on the receiver computer. When this happens, the receiver side might end the session.
4.12 Calling MQOpenQueue for remote read with PUBLIC format name fail with error 0xc00e0069. It succeeds with DIRECT format name. Why?

Most probable reason is that the name of the remote computer is not registered in DNS. This error code translates to MQ_ERROR_REMOTE_MACHINE_NOT_AVAILABLE.
When you open a remote queue for read using PUBLIC formant name (or using PathName in VB), the local Message Queuing service queries Active Directory for PROPID_Q_PATHNAME_DNS of remote queue. If this property exists then MSMQ Runtime (mqrt.dll) will use that Fully Qualified DNS Name (FQDN) to call remote side (in order to open the queue and get a queue handle from remote computer).

MSMQ code compose PROPID_Q_PATHNAME_DNS by retrieving the DNSHostName attribute from the computer object in Active Directory. If this name is not registered in DNS server then MSMQ runtime will fail to resolve the name to an ip address and will fail to call the remote side.

Bottom line- if FQDN is registered in Active Directory, in the DNSHostName attribute, but it’s not registered in DNS then MSMQ fails to open remote queue for read when using the PUBLIC format name.
4.13 MQOpenQueue fails with error 0x80070005 (access denied) when trying to open a remote queue for receive. Both sides run Windows Server 2003. What can be the problem?
This might indicate a problem with Kerberos authentication. Windows Server 2003 introduced a new RPC interface for MSMQ remote read. This interface is used when both sides run on Windows Server 2003. It's authenticated and encrypted and requires Kerberos authentication. If Kerberos is not functional then client side falls back to anonymous access. By default, server side rejects anonymous receive access to its queues. In that case, MQOpenQueue fails with error 0x80070005. Common problems that can cause Kerberos to fail are:
· Clocks out of synchronization. Kerberos require clock synchronization. This is usually maintained by the "Windows Time" service.

· Misconfiguration of DNS. Client need to perform lookup in DNS in order to authenticate to the server using Kerberis. If DNS client is misconfigured then client cannot use Kerberos for authentication.

4.14 What are the common methods to monitor the operation of Message Queuing?

The three main methods are performance counters, events and the Computer Management Console. All methods are available from the Windows GUI and can also be used programmatically.
The single most important item to monitor is the number of messages and their accumulated size in all queues. As explained above, storing too many messages can exhaust computer resources and then it may be impossible to start the Message Queuing service. Use machine quota to prevent this problem. Use the “MSMQ Service” performance object to monitor the number of messages in all queues and the total size of all messages.

Probably the next most important item to monitor is accumulation of messages in outgoing queues. Prolonged accumulation indicates a deployment problem. This can happen if:

· Destination computer is offline.

· Local computer cannot establish a session for destination queues (for example, failure to resolve IP address of next hop).
· Local application sends faster than the amount of messages that can be delivered by the session.

Eventually, accumulation of messages will exhaust computer resources. The simplest way to monitor this accumulation is by inspecting the “Outgoing Queues” folder in the Computer management console (under “Service and Applications \ Message Queuing”). Outgoin queues can also be monitored using Performance counters, inspecting the relevants queues counters in the “MSMQ Queues” performance object. On MSMQ3.0 you can programmatically use the MSMQOutgoingQueueManagement COM object to monitor outgoing queues. Similar functionality is available for MSMQ2.0 using the Local Admin API that is available for download from http://support.microsoft.com/kb/242471.
4.15 What are the common deployment mistakes which I should avoid?

There are several design and deployment patterns which are not recommended. The following list is not exhaustive.

· Using "dynamic" public queues. It is a common design pattern to create a queue "on the fly", use it (for example, as response queue in an outgoing message) and then delete it when no longer needed. Although this design pattern is legitimate, it should use private queues and not public ones. There are two reason to prefer private queues in this scenario.
· Public queues are expensive:They are objects in Active Directory which consume space and create overhead of replication. Deleted public queues (similar to any deleted object in Active Directory) are kept as tombstones for 60 days by default, increasing the size of Active Directory database.
· Replication delays: A new public queue object must be replicated among all domain controllers in an enterprise until it can reliably be used from all computers. If you send the PUBLIC format name of a new public queue in the "response queue" property of a message it can happen that recipient computer cannot find this queue because it was not yet replicated to the domain controller it uses. Even locally, you can create a local public queue and fail to use it until it is replicated. This can happen because of the different ways that MSMQ bind to Active Directory objects. Each binding method may access a different domain controller. MSMQ cannot select the domain controller to be used. This selection is done by the "DC Locator" component of ADSI and the Netlogon service.
Note: some users may consider this as a regression in MSMQ2.0 when compared to MSMQ1.0 or regression in MSMQ3.0 when compared to MSMQ2.0. It is important to realize that this is not a regression and replication delay problems happen in all versions of MSMQ. The implementation details differ and this may cause the false impression of regression. The default replication delay in MSMQ1.0 (between MQIS servers) was 2 second intra-site and 10 seconds inter-site. These are short intervals which practically can be seen as instant replication. However, they are not appropriate for large scale deployments. That is the reason the default replication interval for Active Directory is 15 minutes. Another implementation difference is the proprietary RPC interface versus ADSI. As explained elsewhere, MSMQ1.0 and MSMQ2.0 clients use a proprietary RPC interface in order to access Active Directory while MSMQ3.0 clients use ADSI. With the RPC interface (which use MSMQ owned registry values to locate the server), local public queues can be used immediately in most cases. This cannot be guaranteed with ADSI which use the "DC Locator" component of the Netlogon service.
Conclusion- when using public queues you must wait for replication to all domain controllers until the queues can be used reliably by all computers.
4.16 Can I use Windows Management Instrumentation (WMI) to monitor MSMQ?

There is no MSMQ provider for WMI. You can use the Performance Counter provider to monitor Message Queuing counters. Appendix I provides two short sample scripts which demonstrate how to monitor the MSMQ Service performance object and the MSMQ Queue performance object. The WMI Performance Counter provider is explained in Platform SDK. See also this link for VBScript support in WMI.
4.17 Can I mix different Message Queuing versions in the same deployment?

Yes. All versions of MSMQ are compatible with each other as long as new features are not used with clients (or servers) which do not support them.

You can send messages from each version to each other version as long as you use only properties which are supported by the recipient.

For example:

· Multicast messages and messages over HTTP[S] are supported only on MSMQ3.0 (Windows XP and Windows Server 2003).

· 128 bit encryption is supported only on Windows 2000 and later.

MSMQ3.0 computers in a Windows 2000 Active Directory environment cannot use Queue Alias objects because these are new objects in the Windows Server 2003 schema. They can use distribution lists in Windows 2000 Active Directory environment but the lists much be managed from a MSMQ3.0 computer.

4.18 Can a Message Queuing computer be cloned?

Yes, you can clone computers running MSMQ, but the following limitations apply:

· Use the Microsoft Sysprep tool for cloning. Note that Sysprep cannot clone the released version of Windows XP if MSMQ is installed. This was fixed in Windows XP Service Pack 1. Cloning of MSMQ is not possible with other cloning tools.

· The computer must be in Workgroup and not joined to a domain.

Failing to follow these limitations may result in MSMQ installations which cannot work. In some extreme cases, Active Directory may be damaged too.

4.19 I installed Message Queuing on Windows 2000 domain controllers, and it seems that the Local Security Authentication Server (Lsass.exe) process leaks memory when Message Queuing is running. How can I correct this?

The Message Queuing service on a domain controller queries Active Directory on behalf of all Message Queuing clients that connect to the domain controller. The Lsass.exe process, which also implements Active Directory functionality, caches objects in memory. This is by design, and it explains the memory consumption of the Lsass.exe process.

For more information, see http://support.microsoft.com/kb/308356.
4.20 I test my MSMQ code in a console application and it runs fine. It fails from ASP or ASP.NET code. What can be the reasons?

The most common reason for such failures is that the code use public queues or remote receive. These operations succeed from a console application which run under the logged on user account, which is a domain user in these cases. On the other hand, ASP and ASP.NET run by default under a predefined local user account. When running under local user context, msmq code cannot access Active directory, thus it may fail using public queues. For the same reason, it may fail to receive from remote queues, because this operation needs authentication.

There are two solutions to this problem:

· Change application architecture so it uses private queues and the DIRECT format name. Avoid using remote receive. These are recommended practices in any scenario and ASP / ASP.NET is an example where this practice can solve a deployment problem.

· Run the ASP / ASP.NET code under a domain user account, or impersonate the caller. When impesonating, you may need to enable delegation and Kerberos authentication for IIS. The following KB articles apply and can help in configuring ASP / ASP.NET:
· 215383 , How To Configure IIS to Support Both Kerberos and NTLM Authentication.
· 306158 , How to implement impersonation in an ASP.NET application.
· 306590 , INFO: ASP.NET Security Overview.
· 308160 , HOW TO: Configure Internet Information Services Web Authentication in Windows 2000.
· 315736 , How To Secure an ASP.NET Application by Using Windows Security.
· 317012 , Process and request identity in ASP.NET.
· 325608 , PRB: Authentication Delegation Through Kerberos Does Not Work in Load-Balanced Architectures.
· 810572 , How to configure an ASP.NET application for a delegation scenario
5 The Internet and Message Queuing over HTTP/HTTPS

5.1 Can Message Queuing messages go through a firewall, over the native protocol?

Yes. For more information, see the following Knowledge Base articles:

· 183293 HOWTO: Configure a Firewall for MSMQ Access
· 178517 INFO: TCP, UDP, and RPC Ports Used by MSMQ
· 154596 HOWTO: Configure RPC Dynamic Port Allocation to Work with Firewall
Because Message Queuing uses dynamic RPC ports, this article might be useful.

These KB articles are relevant to all versions of Message Queuing. In Message Queuing 3.0 HTTP/HTTPS messaging is supported on the standard HTTP/HTTPS ports.

For Message Queuing on Windows CE, you also need to open port 137 for NetBios queries. Before establishing a session, Windows CE first determines the name of the remote side by using a NetBios query.

5.2 Do I need to open all the ports that are specified in this FAQ?

No. The minimum requirement is TCP port 1801. Opening this port enables the local Message Queuing service to send and receive messages. However, without opening the RPC ports you cannot read from remote queues and you cannot query MQIS or Active Directory for Message Queuing–related objects (for example, queues, computers, and sites).

Note UDP port 1801 is mandatory when installing the MSMQ 1.0 independent client and Message Queuing 2.0 independent client (or a server without routing) in domain mode. On the first restart after Setup, the Message Queuing service must broadcast over UDP port 1801 to resolve its site and CN. If this is not done, Message Queuing will remain in offline mode. The Message Queuing client will periodically re-try broadcasting until it can resolve its site and CN.
5.3 Can the Message Queuing native protocol operate over a network address translation (NAT) firewall?

No. Message Queuing is not designed and was not tested for operation over NAT. The best way to operate Message Queuing over NAT is to use the HTTP support available in Message Queuing 3.0.
The main problem with the native protocol is when sending transactional messages with the DIRECT format name. In that case, MSMQ on recipient computer extracts the source IP address from the socket and sends the order acknowledgement messages back to this address. However, this is the NAT'ed address of the source, not its real address. There is no guarantee that these order acks will reach the source computer and then the transactional messages may accumulate in the outgoing queue.
5.4 I send transaction messages to a remote computer, using the HTTP protocol, and they are accumulated in my outgoing queue. Why?
It could be that you did not install Message Queuing HTTP support on the sender computer. A Message Queuing 3.0 computer can send over HTTP even if HTTP support is not installed locally. It is the Message Queuing service that generates the HTTP POST packet that is sent to port 80 on the remote computer. However, HTTP support is required in order to receive an order ACK. If you did not install HTTP support, Message Queuing will not receive an order ACK and all outgoing transactional messages will accumulate in the local outgoing queues until expired. Similarly, order ACK messages will accumulate on the destination computer's outgoing queues.
5.5 I send a large message using direct=http, over slow link, and it’s stuck in my outgoing queue. Any workarounds?

The session management code in MSMQ breaks HTTP sessions prematurely in this type of scenario. To workaround, add the HttpResponseTimeout DWORD registry value to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters and set it to the proper timeout. This value is the time (in milliseconds) required for the message to travel over the network from source computer to destination. Its default value is 120000 (two minutes, in milliseconds).
For example, to transfer a 4 Mbytes message over ISDN, set this value to 1000000 (decimal). It is calculated as follow:

· A 4 MB message is roughly ~32000000 bits.
· Effective transmission rate of ISDN line is roughly 32000 bits per seconds.
· You need 1000 seconds for the message to travel over the network, which is 1000000 milliseconds.
5.6 Does Message Queuing check for server certificate revocation when sending to DIRECT=HTTPS name?

Yes, by default Message Queuing checks the trust chain of the recipient server certificate and its revocation status. This can be a problem if sender computer cannot access the revocation database. In that case a HTTPS session will not be established and messages will accumulate in the outgoing queue.

If you’re not concerned about revocation status you can disable the revocation check. Add the SkipRevocationCheck DWORD registry value to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\Security and set it to 1.
5.7 How is access check done with messages sent over the HTTPS protocol?

There are two levels of authentication and authorization when using MSMQ over HTTPS. They are unrelated.
Hop to hop
This level operates between the MSMQ service on hop N-1 to the MSMQ service on hop N, via IIS. This level is unrelated to the security setting of any queue. It secures the channel (the network) between the hops. The MSMQ service on hop N-1 authenticates the identity of IIS on hop N (via server certificate installed on IIS). Hop N authenticates the identity of the msmq service on hop N-1. IIS on hop N determines the identity of hop N-1 based on client certificate mapping. Without client certificate and mapping, IIS sets the identity to its default guest account (IUSER_<machinename> or some default user account). This account is used by the MSMQ ISAPI extension (mqise.dll) to perform access check against the msmq web directory (by default, \inetpub\wwwroot\msmq). This is the first gate that an https message must pass, before reaching the MSMQ service on hop N. This level of authentication and authorization is per hop. If you use SFD redirection then each hop can behave differently.
End to End
Once it passed hop-to-hop authentication and authorization, the message reach its destination computer. The MSMQ service (on destination computer) authenticates the user who sent the message. If you didn't sign the message, then it's anonymous. To sign the message, use the PROPID_M_AUTH_LEVEL message property. If message is signed you can restrict the send permission on the destination queue. This level of authentication and authorization is end to end, from application which sends the message to the MSMQ service on destination computer. It's unrelated and unaffected by hop-to-hop authentication and authorization . You can get this level of authentication even when using http (and then the first level, hop to hop, is not applicable).

Note IIS does not know the account of the user who sent the message. It merely knows the account of the msmq service which forwards the message on behalf of the user. These are two different and unrelated accounts. Queue security deal with the user who sent the message, not with the msmq service which forward it.
Similarly, there are two different and unrelated client certificates in this scenario.

In the hop-to-hop authentication level, the MSMQ service (on hop N-1) needs a client certificate, which is stored in the machine certificates store. IIS (on hop N) will validate the certificate and its trust chain. This means that IIS must trust the CA which issued the certificate.

In the end-to-end level, the user who sends the message needs a certificate, which is stored in the user personal certificates store. This can be the MSMQ internal certificate which is created on first logon. MSMQ service on destination computer does not validate its trust chain. This is left for the application if it needs to validate it.

5.8 Messages get lost although there is a mapping which supposedly map them to an existing queue. What can be the problem?

There are several common reasons for this.

· On Windows XP, the spelling of slashes or backslashes in the message header must be identical to the spelling in the mapping file. For example, if the <alias> line read: http://name/msmq/private$/queue
and you send to
direct=http://name/msmq/private$\queue (backslash instead of slash)
the message is rejected. In this example, you must send to direct=http://name/msmq/private$/queue
· The same (or equivalent) mapping must exist on all hops until the message reaches the destination computer. For example, if you send a message from computer A through intermediate server B to destination computer C, then both computers B and C must have a mapping which map the virtual name in the message header to the real name of a queue on computer C. The mapping on server B tells MSMQ on that server to forward the message to computer C. The mapping on computer C tells MSMQ to insert the message into a local queue. The mapping can be different on each computer, as long as each one tell MSMQ what to do with the message and the mapping on the destination computer point to a real local queue.
For more information on mapping files and SFD, refer to online help and to the HTTP Deployment Scenarios whitepaper available at http://go.microsoft.com/fwlink/?LinkId=26442.
6 Programming
6.1 Why does MQCreateQueue fail with the following error: "Generic error MQ_ERROR, 0xc00e0001"?

The most common reason for this is that there is no network controller card on the computer. In this case, the call to UuidCreate() to generate the queue GUID succeeds, but does not return RPC_S_OK. This causes the Message Queuing code to fail in attempting to create the queue.

6.2 Sometimes MQCreateQueue returns a PRIVATE format name and sometimes a DIRECT format name. Why?

If Message Queuing is in workgroup mode, the DIRECT format name is always returned. In domain mode, only the PRIVATE format name is returned when creating private queues.

For more information, see MSDN.

6.3 IsTransaction property returns the wrong result when the local public queue is opened with a DIRECT format name on Message Queuing 2.0. Why?

This is a bug in the Message Queuing code (all versions). You cannot call MQGetQueueProperties() with a DIRECT format name of a public queue, even if it is a local public queue. MQGetQueueProperties() will return MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION. However, this failure is not exposed in the COM interface. You can use a MSMQQueueInfo object successfully with a DIRECT format name in order to send and receive messages. However, querying queue properties will return incorrect results without notifying the caller.

6.4 I use an I/O completion port for an asynchronous receive. What should I do when MQReceiveMessage returns MQ_OK? Where should I process the message?

Always process the message in the worker thread that waits on the completion port. When MQReceiveMessage returns with a success or pending code, you will get an asynchronous notification. When MQReceiveMessage fails with an error code, you must process the error immediately because you will not get any asynchronous notification. For example:

hr = MQReceiveMessage(... &overlapped..)

if (SUCCEEDED(hr)) {

 Do nothing now; expect asynchronous notification on the completion port.

}

else {

 Handle the failure now; there will not be any asynchronous notification.

}
Note the same is true when using asynchronous receive with callback XE "Callback" , instead of I/O completion port. You must handle failures immediately after MQReceiveMessage return. There won't be any callback if MQReceiveMessage failed.
6.5 What are the reasons for the following error: "MQ_ERROR_INSUFFICIENT_RESOURCES"?

This error can be returned by several APIs. It has several (unrelated) reasons. For a detailed white paper regarding these issues, see MSDN.
Some common reasons for this error code include the following:
· The thread pool for the remote read are exhausted.

For more information, see Deployment FAQ.

· An asynchronous receive with callback XE "Callback" .

The callback XE "Callback" mechanism is implemented by a thread in the application process space that waits for completion events (events that are raised by the Message Queuing driver when a message arrives and there is a pending read request). The thread uses the WaitForMultipleObjects API, which is limited to 64 events. For this reason, you cannot have more than 63 pending calls to MQReceiveMessage() that are waiting for callback (one event is used internally by Message Queuing). This limitation is per application process.

· The volume of messages has been exceeded.

The volume of messages stored on the computer has reached its maximum possible value (slightly less than 2 GB). This means that all the virtual space of the Message Queuing service process is exhausted. Configure a quota to prevent this problem.

· Paged-pool kernel memory is exhausted.

The Message Queuing driver consumes kernel memory bytes for each message. If you have millions of short messages, you will not see the problem of volume (see the previous item in this list), but you will exhaust the paged-pool kernel memory. When kernel memory consumption reaches 80 percent, the Message Queuing driver ceases to allocate kernel memory, and most send or receive operations will fail due to insufficient resources.

For troubleshooting, run System Monitor counters and look for the number of messages in all queues (in the Message Queuing Service Object counter).

· Mismatched binaries.

There is a known problem if you install Security Rollout Package 1 over Windows 2000 Service Pack 2, uninstall Message Queuing, and then reinstall Message Queuing. This sequence of operations results in a set of Message Queuing binaries that are not compatible. Reapply Security Rollout Package 1.

· The message size is too large or the machine quota has been exceeded.

MQSendMessage will fail with this error code if the message size is greater than 4 MB, or if the machine quota is exceeded.

· A special case of this error code is when opening a transactional foreign queue on Message Queuing 3.0. Then, it most likely means that Message Queuing cannot find a route to a bridge server that can forward the message to MQSeries. There may be two problems:
· The bridge was not configured correctly and necessary objects (such as Message Queuing routing links and the Message Queuing site gate) were not created.
· For a new bridge, Message Queuing on the local computer needs to refresh its own routing data. This happens once every 12 hours by default. You can restart the Message Queuing service in order to overcome this delay.
6.6 When calling MQReceiveMessage to read from a remote queue I receive the following error: "MQ_ERROR_INSUFFICIENT_RESOURCES" What's the problem?

When your application reads from a remote queue, a thread is created by the local Message Queuing service that waits for completion of the remote read on the remote computer. This error means that there is no thread available in the local Message Queuing service to process the new receive request.

· For MSMQ 1.0 on Windows NT Server 4.0, the Message Queuing service creates a maximum of 64 threads. On Windows NT Workstation 4.0, Message Queuing creates a maximum of 16 threads.

· For Message Queuing 2.0 on Windows 2000 Server, the Message Queuing service creates a maximum of 96 threads. On Windows 2000 Professional, Message Queuing creates a maximum of 24 threads.

You can change these limits by adding the DWORD registry value MaxRRThreads to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters, and then setting it to your required value.

Note In MSMQ 1.0, these threads are created on demand and are never destroyed. If you were to set this number to 1000 and the service creates 1000 threads, all these threads would live as long as the Message Queuing service runs. This problem was fixed in Message Queuing 2.0 where threads are released and destroyed when no longer needed.

Message Queuing COM Object

6.7 I tried to set the MSMQQueueInfo.PathName property and received the following error: "This operation is not supported for a WORKGROUP installation computer." What's wrong?

You installed Message Queuing in workgroup mode. When you set the MSMQQueueInfo.PathName property, the Message Queuing COM object calls the MQPathNameToFormatName() API under the hood. This API is not supported for public queues in workgroup mode. In workgroup mode, you need to set the MSMQQueueInfo.FormatName property instead, using the DIRECT format name.

6.8 Can I send an ASCII string as a message body from Visual Basic?

By default, this functionality is not available. If you assign an ASCII string to a msg.Body, it will be converted to UNICODE. The Visual Basic Variant data type does not support ASCII strings. Instead, pack the ASCII string as an array.

The following code example provides a possible solution.

Dim msg As New Message QueuingMessage

Dim MyString

MyString$ = "My Visual Basic body"

Dim myarray() As Byte

ReDim myarray (Len(MyString$) - 1)

Dim i As Long

For i = Lbound(myarray) To Ubound(myarray)

 Dim b As Byte

 Dim s As String

 s = Mid$(MyString$, i + 1, 1)

 b = Cbyte(Asc(s))

 myarray(i) = b

Next

Msg.Body = myarray

6.9 When I call get_Body() from a C++ application, who is responsible for freeing the memory allocated to hold the body?

This issue is a responsibility of the application. Message Queuing allocates the memory, and the application must release it.

6.10 When I release an auto-pointer, my code fails. Why?

This is not specific to Message Queuing. For example, if your pointer is IMSMQQueuePtr pQueue, make sure you call pQueue.Release and not pQueue->Release. This is because you must release your own auto-pointer, and not the encapsulated interface pointer.

6.11 I have an ATL component using Message Queuing (by means of COM smart-pointers). Each call to pMsg->Send() is leaking memory. Why?

This can happen if you repeatedly call CoInitialize before doing your useful work, and then call CoUninitialize after that. In that case, you may encounter a known COM+ bug.

For more information, see http://support.microsoft.com/kb/289640.
Queued Component

6.12 Calling GetObject("queue:/new:My.Comp") fails with the following error: "Object required." What's the problem?

Probably the type library for the queued interface is not registered correctly. Because of that, the Queued Components (QC) recorder is failing to load it. You will also see an event similar to the following:
COM+ QC failed to obtain necessary information from the catalog.
GetTypeInfo
Server Application ID: {E9FCA936-26A9-4518-950B-B4B28E4EC953}
Server Application Name: IIS-{Default Web Site//Root/dxp_dmrg_dev}
Error Code = 0x80004005 : Unspecified error
COM+ Services Internals Information:
File: .\ipsfactorybuffercache.cpp, Line: 338
6.13 Can I use Queued Components without Active Directory?

Yes. Install Message Queuing in workgroup mode, and then disable queued application security by setting Authentication level for calls to NONE. Starting with Windows 2000 Service Pack 2, setting Authentication level for calls to NONE is not required and NONE is implicitly assumed. If you set it to something else, you get an event warning about a security mismatch. The event is issued only on Windows XP and later.

6.14 Can Queued Components use external certificates for authentication?

No. Queued Components only use the default Message Queuing internal certificate.

6.15 Queued Components creates multiple queues when I mark a component as queued. Can I reduce the number of queues?
No. These queues are used by the retry mechanism of Queued Components, to handle poison messages. Trying to delete these queues can cause problems.
For more information, see MSDN and http://support.microsoft.com/kb/257317.
6.16 My Queued Components application stops running after the computer joins a domain. Anything I have to do in this case?

If you moved from a workgroup configuration (in which Queued Components uses private queues) to a domain configuration (in which Queued Components uses public queues), you will need to re-create the queues that are used by Queued Components.

To re-create the queues that are used by Queued Components

59. In Component Services, right-click your application, and then click Properties.

60. Click the Queuing tab, and then clear the Queued attribute.

61. Close the Properties dialog box.

62. Re-open the Properties dialog box, click the Queuing tab, and then check the Queued attribute.

This will create the Queued Components queues. Use Computer Management to verify that you have a public queue of the expected name (the application name), export the application, and then import it on the clients again. The name of the queue is a part of the exported application data.

6.17 In workgroup mode, I send to a Queued Components server on Windows Server 2003 (or Windows XP) and messages end up in my transactional dead-letter queue with the class of Access-Denied. Why?

Queued Components on the server side creates its queue with an incorrect security setting. Queued Components grants Full Control to Everyone (which is okay in workgroup mode) but does not grant any permission to the Anonymous logon account. As a result, all messages from remote computers (Queued Components clients) to this queue are rejected. Starting with Windows XP, Anonymous logon is no longer a member of the Everyone group. This means that the permissions that are granted to Everyone do not apply for Anonymous logon.

You need to use Computer Management to grant the Send permission to the Anonymous logon account in order for messages (from remote computers) to enter local queues when the local computer is in workgroup mode.
6.18 Messages sent by the Queued Components recorder are rejected with the class of bad signature. Why?
Most likely, the Queued Components recorder runs under an account that is different from the account for the currently logged on user. For Queued Components to run correctly under any account, you must follow the instructions provided in http://support.microsoft.com/kb/269292. You must also log on interactively at least once (with the QC user account) on the computer in order for a Message Queuing internal certificate to be created and registered in the first place.

The .NET Framework and Visual Studio .NET

6.19 I am using an internal transaction to send a message and the message does not enter the queue. Why?

A common mistake is to use code similar to the following:

MyQueue.Send(Str,"My Message Data.", new

 MessageQueueTransaction());

This is incorrect because the internal transaction is never committed, so the message is never sent. You need to create a MessageQueueTransaction object before calling Send, and then commit it. Alternatively, you can use MessageQueueTransactionType.Single.

6.20 I send several messages to the same queue, and it seems that message #n gets part of the message body from message #n-1. Why?

This is a known problem when using the ActiveX Formatter. To overcome this, create a new formatter before each call to MessageQueue.Send. This was fixed in the .NET Framework version 1.1.

6.21 I can send a message to a local private queue, using the path .\private$\queue, but I cannot send to a remote private queue, using computer\private$\queue. Why?
Internally, the path name is translated to a format name, and it is not possible to get the format name of a remote private queue. The way to resolve this issue is to use the following path name: FormatName:direct=os:computer\private$\queue when constructing the MessageQueue object. (This is also true in C# and Visual Basic .NET.). Because of similar reasons, queue.Transactional is also not supported for remote private queues. It is not possible to query properties of remote private queues. You must known them in advance.
6.22 An attempt to read from a remote queue fails with the following error: "Invalid-handle" Why?

This probably occurred because the remote computer has restarted, and you used a cached queue handle that is no longer valid.

In core Message Queuing, a local application uses a handle of the local Message Queuing service when reading from a remote queue, and the local Message Queuing service in turn has a remote queue handle from the remote computer. If the remote computer restarts, the remote queue handle used by the local Message Queuing service is no longer valid. The standard way to resolve this issue is to close, and then reopen the queue. However, by default, this work-around does not work in the .NET Framework, and the Close method of the MessageQueue object does not close the queue handle. This is because the .NET Framework uses a connections cache that caches queue handles. To close a queue handle, either disable the connections cache and use the Close method, or call ClearConnectionCache after calling the Close method.

6.23 I granted a user Full Control on a queue, but the user cannot open it for receive. What can be wrong?
Make sure you used the correct bits in the ACE access mask. The following shows the correct code for granting Full Control:

AccessControlEntry ace = new System.Messaging.MessageQueueAccessControlEntry(trustee, System.Messaging.MessageQueueAccessRights.FullControl);
A common mistake is to use code similar the following:

//AccessControlEntry ace = new AccessControlEntry(trustee, GenericAccessRights.All, StandardAccessRights.All, AccessControlEntryType.Allow);
You need the Message Queuing-specific definitions, not the standard ones.
6.24 Can I serialize a message object?
No, System.Messaging cannot be serialized. If you want to serialize a message object, you need to manually retrieve all its properties, and then serialize them one at a time. (This refers to the Message object, not the message body).
6.25 I try to build the C++ Local Admin sample code by using Visual Studio .NET and it fails. Any solution?
Remove the include statement for <mqmgmt.h>. All its definitions are already included in other header files that Visual Studio .NET uses.
6.26 Calling BeginPeek from the delegate handler routine (after calling EndPeek to complete a previous BeginPeek call) results in an endless loop of peeking the same message. Why?
The current version of System.Messaging does not provide an asynchronous cursor that will let you peek the next message in a loop, asynchronously. A BeginPeek/EndPeek loop will peek the same message again and again. This is because BeginPeek always peeks the first message in a queue. If that message is not removed after a preceding EndPeek, the loop will keep peeking that same first message. You should consider using MessageQueueEnumerator.
6.27 Calling ReceiveByCorrelationID fails with the following error: "Message that the cursor is currently pointing to has been removed from the queue by another process or by another call to Receive without the use of this cursor." Why?
This can happen when multiple readers call this method to receive from the same queue. Internally, ReceiveByCorrelationID is implemented as a loop with the following form:
While (MQReceiveMessage(PEEK_NEXT))
 {
 MQReceiveMessage(PEEK_CURRENT)
 If (CorrelationId match) MQReceiveMessage(RECEIVE_CURRENT)
 }
In other words, PEEK_NEXT positions the cursor on a message, and then PEEK_CURRENT retrieves the correlation ID of the message at the cursor position.

Now, consider the following scenario with multiple readers:
· Reader #1, looking for CorrelationID1, runs PEEK_NEXT. Its cursor is advanced and points to a message with CorrelationID2 (Reader #1 is not interested in this message).
· Reader #2, looking for CorrelationID2, runs RECEIVE_CURRENT. The message is removed from queue, but its position is still valid, because the cursor of Reader #1 points at it. The position is marked as already read.
· Reader #1 tries to run PEEK_CURRENT. Its cursor points to a position in the queue that has already been read, so PEEK_CURRENT fails with the error mentioned previously (which is the equivalent of MQ_ERROR_ALREADY_RECEIVED).
To resolve this issue, call ReceiveByCorrelationID again, and then try to receive your message.
6.28 The Send() method fails with error “Send Failed: Exception Message = File or assembly name jesla7sr.dll, or one of its dependencies, was not found”. What can be wrong ?

This can happen if the user who sends the message does not have full access to the %TEMP% directory.

This problem happens mainly with C# when using the XML Formatter/serializer. It generates and compiles code on the fly, with the side effect of using temporary files on disk. The temporary files are written to the process user’s %TEMP% directory.
Note- the assembly name in the error message is a random string.

Workaround- Grant full access to the %TEMP% directory to the user who send the message. On the server-side this may happen in asp.net worker process which sends messages. You have to grant the permission to the worker process account (unless you’re doing impersonation, in which case the impersonated user must have access).
6.29 I try to open the local deadletter queue and this fails with error “Cannot establish connection with the controller(s).”. What should I do?

This can happen when using the path name of a local system queue. (for example- .\XACTDeadLetter$). Internally, MessageQueue code queries Active Directory to find the GUID of local Message Queuing service in order to compose the MACHINE format name of the system queue. This query fails if you cannot access Active Directory. You can avoid this query by using the following path name- “FormatName:DIRECT=os:.\system$;deadxact” (or similar ones for the other system queues).

For similar reason, the Path name .\XACTDeadLetter$ is not supported when MSMQ is operating in workgroup mode. Use the format name instead.
6.30 I send messages using System.Messaging API. I cannot receive them in a VB/C++ app using the MSMQ COM API. Why?

By default, MessageQueue class uses the XMLMessageFormatter in order to format the message body. This formatter is not compatible with MSMQ COM API. You need to use the ActiveXMessageFormatter to enable interoperability between Application that uses System.Messaging and VB/C++ app using the MSMQ COM API. Read more about the MessageQueue Formatter property in the .NET Framework Developer Center at http://go.microsoft.com/fwlink/?LinkId=26853
6.31 GetPublicQueuesByMachine() does not return anything in a Windows NT4 MQIS environment. Why? Any other limitations of this API?
Internally, this API uses only the Active Directory interface to query for public queues that are defined in Active Directory. It does not use the Message Queuing interface for querying a Windnows NT4.0 MQIS Server. You can use this API only in an Active Directory environment.
Two limitations of this API are worth mentioning:

· The computer name parameter of the API must be the "cn" attribure of the computer object in Active Directory. In most cases it is identical to the NetBIOS name of the computer, but this is not mandatory. This means you cannot use a fully qualified DNS name with this API.

· If the computer does not exist there is no exception. The API succeeds and the list of queues is empty.

6.32 It seems that messages get lost after I unregister a delegate handler. Why?

This is correct. One message may get lost after unregistering the delegate handler. When calling BeginReceive, the System.Messaging code eventually calls MQReceiveMessage, then it waits on an I/O completion port. Once MQReceiveMessage is called there is no way to cancel the receive (or peek) request other than closing the queue. Unregistering the delegate handler merely remove it from the list of handlers. It doesn't cancel the receive request, which is still pending in the MSMQ driver. When a message enters the queue, the pending receive requested is fulfilled and released. An I/O Completion packet is posted on the I/O completion port. The System.Messaging code accepts the completion packet but there is no delegate to handle the message. So message is lost.
The common reason to unregister a delegate is that application wants to stop listening on a queue. The right way to achieve this is to disable connection cache and then close the queue. Closing the queue will release all pending Receive requests on the handle. You need to disable the connection cache in this scenario, otherwise the queue handle is not closed. It's cached.
6.33 MSMQ is installed and running but my .NET application fails with exception "Message Queuing has not been installed on this computer". Why?
One possible problem is that your assembly includes a DLL with a name identical to an operating system dll (for example, "security.dll"). In that case, MQRT.dll (the MSMQ runtime) will try to load the dll from the assembly instead of loading the operating system dll. It fails and cannot be loaded. Then .NET concludes that MSMQ is not installed, because it cannot load MQRT.
To troubleshoot this, enable "Show Loader snaps" in Gflags and run your process under windbg. It will trace modules load and unload. (To find more about Gflags, search for the word "Gflags" at http://support.microsoft.com).
You could also use the Assembly Binding Log Viewer to display details for failed assembly binds. This information helps you diagnose why the .NET Framework cannot locate an assembly at run time. These failures are usually the result of an assembly deployed to the wrong location or a mismatch in version numbers or cultures. The common language runtime's failure to locate an assembly typically shows up as a TypeLoadException in your application. Read the following article for more information on the Assembly Binding Log viewer tool.
7 Troubleshooting

7.1 How do I enable error logging on Message Queuing 2.0?

Add the following DWORD registry value: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\Debug\LoggingTypes, with a value of 0x40000000. Then, stop and restart the Message Queuing service (net stop msmq; net start msmq), or start a Message Queuing application and make sure it calls Message Queuing. The log file is %windir%\Debug\MSMQ.log.

You might need to create an empty log file first and grant the Everyone group Full Control on it.

This problem is fixed on Windows 2000 Service Pack 3 for most scenarios. However, it still occurs if the Message Queuing 2.0 service is impersonating an anonymous caller. For example, Message Queuing on a domain controller called from a local user.

For explanations of common errors that are found in MSMQ.log, see Appendix F: Common Errors in the Message QueuingMSMQ .log File.

To enable error logging on a cluster (for a Message Queuing resource in a cluster group), add the same registry values under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Clustered QMs\ MSMQ$YourMSMQResourceName\Parameters\Debug.

For guidelines regarding the registry on a cluster, see Cluster FAQ. The name of the log file for the Message Queuing cluster resource is MSMQxxx.log, where xxx is the process ID, under %windir%\Debug.

Starting with Windows 2000 Service Pack 3 it is possible to log errors in the Message Queuing driver. After adding the LoggingTypes registry value, add the DWORD registry value ACLogging with a value of 0x08. The errors are logged in the standard file %windir%\Debug\MSMQ.log.

Starting with Windows 2000 Service Pack 4, error logging is applied to the Message Queuing runtime too. (Message Queuing runtime is the MQRT.dll file that is loaded by any Message Queuing application). Error log files for Message Queuing applications are stored under \Documents and Settings\myUserName\My Documents\MSMQxxx.log, where xxx is the process ID.

The value of 0x40000000 in LoggingTypes enables most logging. You can log more or less, depending on other settings of registry values under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\Debug. All registry values described here are bits fields. LoggingTypes has the following values (OR’ed):

	LoggingTypes value
	Bit field

	Log errors
	0x00000001

	Log warnings
	0x00000002

	Collect tracing
	0x00000004

	Collect information
	0x00000008

	Log everything
	0x40000000

	Refresh setting
	0x80000000

If the Refresh setting bit is off, the Message Queuing service reads the registry settings for logging at system start, and then each time a Message Queuing application makes its first call to Message Queuing. If the Refresh setting bit is turned on, the Message Queuing service reads the setting each time it attempts to log something. This can add some overhead, but allows for change in logging without restarting the Message Queuing service or running a new Message Queuing application.

The following is an example of adding or removing logging:

· To log only errors in Message Queuing applications without logging the Message Queuing service:

a. Change the value of LoggingTypes to 0x1.

b. Add a DWORD registry value RTLogging, with a value of 0x8.

c. If the DWORD registry value QMLogging exists, set it to 0.

· To log only the Message Queuing service without logging Message Queuing applications:

d. Change the value of LoggingTypes to 0x1.

e. Add a DWORD registry value named QMLogging, with value 0x8.

f. If the DWORD registry value RTLogging exists, set it to 0.

· To log errors in drivers:

g. Set the LoggingTypes value to at least 0x05.

h. ACLogging must have a value of 0x08.

ACLogging is required, even when LoggingTypes is 0x40000000. Without it, driver errors are not logged.

7.2 How do I enable error logging for Message Queuing 3.0 on Windows XP?

Message Queuing 3.0 on Windows XP uses two logging methods—the one that existed in Message Queuing 2.0 (see the preceding question) and a new one. You need to enable both.

To enable the new method

63. Install the Windows XP support tools (available on the Windows XP CD, under \Support\Tools).

64. Run Setup.exe from this directory.

65. Do a complete installation and choose all options.

66. Copy the text in Appendix D: MQTrace.cmd (Windows Server 2003 and Windows XP) into a batch file (call it MQTrace.cmd).

67. To see the Help message, from the command prompt, enter the following command:

mqtrace ?
68. Start tracing by running mqtrace (error level) or mqtrace –info.

69. Stop tracing by running mqtrace –stop.

You can then send the resulting %windir%\Debug\MSMQLog.bin file to Microsoft Product Support Services to translate into a readable format.

Starting with Windows XP Service Pack 2, only the new method is available, and it includes all logging that was previously done with the Message Queuing 2.0 method

7.3 How do I enable error logging for Message Queuing 3.0 on Windows Server 2003?

Message Queuing 3.0 on Windows Server 2003 uses a new error logging method, which is an enhancement of the method used on Windows XP. By default, error logging is enabled and the log file is %windir%\Debug\MSMQlog.bin. The log file is circular; its default size is 4 MB.

To use error logging non default settings

· Copy the text from Appendix D: MQTrace.cmd (Windows Server 2003 and Windows XP) into a file and call it Mqtrace.cmd.

To see the Help message

· From the command prompt, enter the following command:

mqtrace ?
7.4 Does the Task Manager handles counter include the Message Queuing cursor handles?
No. Cursor handles are not kernel handles. They are just indexes into an internal table that is managed by the Message Queuing driver.
7.5 How can I troubleshoot the reasons for Access-Denied errors (0xc00e0025 XE "0xc00e0025 (Access Denied)")?

First, ensure that the relevant security descriptor grant you the permissions for the operation that you try to perform. Assuming that the security descriptor is defined correctly, there are some techniques to troubleshoot this problem, depending on the exact failure mode.

Failing to open a remote queue for read- In this scenario, the client side calls remote side over RPC. The Message Queuing service on remote side impersonates the client call and performs AccessCheck against the security descriptor of the local queue. To troubleshoot this, enable auditing on the remote computer (the one hosting the queue), try to open the queue and review the audit event in the security events log. The event will tell you what are the credentials of the caller. In some scenarios, client may be impersonated as a different user than the one making the call to open the queue. For example, if client process impersonate a user by calling LogonUser without specifying INTERACTIVE_LOGON then it is possible that the RPC call is done as anonymous. Similar problems may happen when ASP code tries to open remote queue for read. You need to ensure that ASP impersonate correctly before making the call. Do the following to enable auditing:
· Enable audit of object access on the computer. For example, on Windows XP this is done from the “Local Security Policy” tool. Expand the “Local Policies” folder, select the “audit policy” folder and then enable “audit object access”.

· Enable auditing on the queue. Edit the properties of the queue, go to the “Security” tab. Click on “Advanced” and go to the “auditing” tab. Add a entry which audit all access for Everyone. On MSMQ3.0, add also an entry for ANONYMOUS LOGON.
7.6 How can I troubleshoot the reasons for messages not reaching destination queue?

A common scenario is when messages flow out of a computer but not reaching the destination queue. The simplest way to start troubleshooting this is to enable deadlettering and request for acknowledgment messages.
· Deadlettering- Add the PROPID_M_JOURNAL property to the message, with value MQMSG_DEADLETTER. If message is not accepted into the destination queue then it will be moved by Message Queuing into the deadletter queue. Inspect the message class of the message when it’s in the deadletter queue. This is the first indication as to why message was rejected.
· Acknowledgment messages- Add the PROPID_M_ACKNOWLEDGE property to the message, with value (MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE | MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE) and add PROPID_M_ADMIN_QUEUE specifying an administration queue, preferably a private one. Inspect the message class of the NACKs arriving to the administration queue.
Note: when sending messages to a queue opened with the PUBLIC or PRIVATE format name it’s possible that messages were routed via an intermediate MSMQ routing server. You should check what’s the “next hop” address of the outgoing queue on source computer. If it is the address of a routing server you should inspect the outgoing queues on that routing server. It’s possible that messages are waiting there until the routing server can establish a session with final destination computer.
8 Message Queuing Events

8.1 What do events 2121 and 2124, stating the following: "Message Queuing was unable to join the local Windows 2000 domain. Error 0xc00e0075.", mean?

On each restart, the Message Queuing service checks whether the computer joined a domain. If it did, Message Queuing tries to do so as well, by creating a Message Queuing Configuration object under the Computer object in Active Directory. For the join process to succeed, you must have a domain controller in your computer's site that is running Message Queuing. You must also have a global catalog server running Message Queuing in your computer's domain. (A single global catalog in your site is enough.) You see these events when the join process fails to find a suitable domain controller.

Note Message Queuing cannot join a Windows NT 4.0 MSMQ 1.0 enterprise. In this case, the join process fails and issues these events.

If you prefer to leave Message Queuing in workgroup mode, add the DWORD registry value AlwaysWithoutDS under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ\Parameters\Setup, with a value of 1.

Other reasons that the computer might fail to join a domain include the following:

· TCP/IP subnets are not configured correctly in Active Directory.

· DNS is not configured correctly on the computer.

8.2 The Message Queuing service fails to start, issuing the following events (2083 and 2023, respectively): "File corruption" and "Recovery problems" What should I do?

Contact Microsoft Product Support Services. There are several tools available to help you resolve these issues.

8.3 Message Queuing exits with the following event (2077): "Unable to save %1 for the checkpoint." What causes this?

This event occurs when the Message Queuing service saves state information for all open transactions to the log files and checkpoints to the QMLOG logger. Reasons for this failure can include the following:

· A hardware failure—check you hard disk drive and controller.

· It could be a Message Queuing issue, in which case, you should apply the most recent service pack and most recent hotfix. In particular, reapply Service Pack 6 after you install MSMQ 1.0 on a computer running Windows NT 4.0 Service Pack 6.

8.4 I see event 1016 from System Monitor, warning that Message Queuing data is not aligned. Is this harmful?

No. You can safely ignore this event. The problem was fixed for Message Queuing 3.0.

For more information, see http://support.microsoft.com/kb/288077.

8.5 On Windows 2000 I cannot see Message Queuing counters in System Monitor, and I receive event 1008 about failure to load MQPerf.dll. What's the problem?

Message Queuing performance counters cannot be viewed on a cluster virtual server nor can they be viewed when connected to Terminal Server from a remote computer. Instead, use the Message Queuing LocalAdmin which can be downloaded from http://support.microsoft.com/kb/242471.

The problem with Terminal Server was fixed in Windows 2000 Service Pack 3. For hotfix details, see http://support.microsoft.com/kb/322210.

The cluster issue was fixed in Windows 2000 Service Pack 4, but on a cluster this fix is limited to processes running in the context of the cluster group. You cannot view cluster counters from a remote computer. For a partial work-around, see http://support.microsoft.com/kb/267316.

8.6 I installed Message Queuing on a Windows 2000 domain controller and see the following event (2048): "The server cannot support automatic recognition." What's wrong?

Event 2048 indicates a replication delay problem and happens when you first install Message Queuing on a domain controller in a site, and that domain controller is not a global catalog. When Message Queuing starts, it queries the global catalog for some data that it needs to build a sites and servers list. This event is issued when data is not found. To resolve this issue, either wait for a replication delay or force manual replication by using the Sites and Services snap-in.

This event can also occur with an incorrect site configuration. The msmqSetting object might be in one Active Directory site while the SiteID registry value contains the GUID of another site.

8.7 After I send a message I receive the following event (2010): "Cannot route to remote site." How can I resolve the site GUID to the site name, and what does event 2014 about an unknown site indicate?

To resolve the site GUID to the site name

70. Use the Findsite.vbs script from Appendix C: Findsite.vbs.

71. Find out the site name by running Findsite.vbs GUIDCopiedFromEvent from the command line prompt.

72. Use the Sites and Services snap-in to add Message Queuing routing links for connectivity to the remote site.

Use the same script for event 2014, although in this case it might fail because the site does not exist on the domain controller that was accessed by the script. For event 2014, using the script can indicate whether there is a Message Queuing–specific problem or whether the site does not exist (at least on the domain controller that was accessed for the query).

8.8 I receive the following events (2015 and 2084, respectively): "Inconsistent Queue Manager ID." and "Computer object not found." What should I do?

In most cases you do not need to take any action—wait for Active Directory replication. It is possible that Message Queuing was installed against a domain controller that is not enabled as a global catalog. When Message Queuing later starts, it queries a global catalog for some of its properties, and you might receive one of these events if the new msmqConfiguration object was not yet replicated to the global catalog.

Similarly, you can receive event 2015 if you uninstall Message Queuing, and then immediately reinstall it. Due to replication delays, the Message Queuing service can query a global catalog that still holds the old msmqConfiguration object. If you continuously receive these events, this probably indicates a problem with Active Directory replication.

8.9 What does the following event (2122) mean: "This domain controller is not trusted for delegation."?

There are two unrelated reasons that you might receive event 2122:

· You installed Message Queuing with routing on a cluster server whose nodes were promoted to be domain controllers. This event will be issued by the clustered Message Queuing resource and indicates a Message Queuing limitation. You cannot install Message Queuing with routing enabled on a cluster that is also a domain controller. You need to install it without routing.

· The Computer object of a domain controller must be trusted for delegation in order for the Kerberos protocol delegation to be enabled. This is required for Message Queuing on a domain controller. By default, this feature is enabled, but users can turn it off. You need to enable it for Message Queuing (on the Properties dialog box for the Computer object).

8.10 I install Message Queuing on a global catalog server, and it issues the following event (2139) on startup: "Message Queuing has detected a problem with the local domain controller." What's the problem?

Most likely, the local domain controller is not yet a global catalog server. You change a domain controller to a global catalog server by selecting the Global Catalog check box on the Properties dialog box for the NTDS object (under the relevant Server object). However, it can take some time for the local server to replicate all the necessary data (including SYSVOL) and start publishing itself as a global catalog server. During this interval, Message Queuing cannot determine if it is on a global catalog or not and it issues event 2139.
8.11 I got the following event (2063) on my domain controller: "Message Queuing may function in an unpredictable fashion." What can be the problem?
One possible reason is morphed subnet objects. When Message Queuing on a domain controller starts up, it builds a mapping between IP subnets and sites. On Windows 2000, if it finds a morphed subnet object (a subnet with the name x.y.z.0/nnCNF:guid), it fails to build that mapping and issues the event. This is fixed on Windows Server 2003 and Windows 2000 Service Pack 5.

Note Morphed objects are created by Active Directory when there are conflicts in replication.
8.12 On a dependent client I get the following event (2068): "The list of Message Queuing capable domain controllers in the Windows registry is empty." What's the problem?
Most likely you are running your application as a non-domain user. When running an application on a dependent client, the Message Queuing runtime queries the supporting server for a list of MQIS servers. This is implemented as a RPC call. The RPC interface between a dependent client and supporting server is authenticated. This means that the user running the application must be trusted by the supporting server. Always run dependent client applications under the credentials of a domain user.
8.13 I see event 2013 ("Unable to route messages because this computer is a site gate, but it does not share a connected network with neighboring site") logged in the Windows event log. What can be the problem?
In general, this event means that you didn't define the proper msmq routing link objects and there is no connectivity between the sites. A common case for this event is a MSMQ Routing server which also runs the MSMQ-MQSeries bridge. In this case, you must follow the limitations mentioned above. Violation of these may lead to event 2013 on the bridge computer. Pay special attention to the information below:

· All Message Queuing site gate servers on routing links of the non-foreign site must be configured as bridge servers too, and point to the same MQSeries Queue Manager.
Bridge and Trigger Events

8.14 I received the following event from the MSMQ-MQSeries Bridge (53): "Unsupported option at CQ2QMsgF::QMsg, at (or near) line 2323." What's the problem?

Ensure that you are not running a beta version of Host Integration Server 2000 Bridge. This event might also occur if you open the transmission queue used by the bridge on MQSeries, and use an MQPUT directly to that queue. Instead, use the standard MQSeries local queue or remote definition queues. Do not open and put messages directly in the transmission queue.

8.15 I received the following event (104) from BizTalk Adapter for SAP: "Failure of MSMQ with error 0xc00e0058." What's the problem?

To solve this issue, either apply Windows 2000 Service Pack 3 or apply the hotfix at http://support.microsoft.com/kb/307522, on top of Windows 2000 Service Pack 2.

8.16 I received the warning event (101) from the Triggers service regarding reallocation of message body. Do I have to do anything?

For details, see http://support.microsoft.com/kb/253520.

8.17 I received the following event (74) from the MSMQ-MQSeries Bridge service: "Bad MQSeries Queue Manager Name" What does it mean?

The problem is that the Bridge service failed to connect to MQSeries Queue Manager. (The MQCONN API failed.) To see the actual failure code and reason, you need to enable SNA tracing, and then analyze its log.

8.18 I received the event 65508 from the Triggers service regarding HRESULT(0). What's the problem?

Unfortunately, this event displays a wrong HResult. The event means that MQReceiveMessage failed with an unexpected error and the specific trigger thread will stop. For example, if a trigger monitors a remote queue, and the remote computer fails or the network goes down, you will see this event. Event text and problems related to remote queues were fixed in build 23 which is available from the Microsoft download center at http://go.microsoft.com/fwlink/?LinkId=23177.
8.19 I receive event 68 from the MSMQ-MQSeries Bridge: "MSMQ-MQSeries Bridge cannot operate when MSMQ is running in a workgroup mode". Why?

In most cases this happens when the Bridge is running as a cluster resource and the local MSMQ service run under the credentials of a domain user. This is not a correct configuration.

On a cluster, the MSMQ service must run under the default LocalSystem account. Otherwise, if you change it to a domain user account, MSMQ applications on the clustered groups cannot call the MSMQ APIs. This problem is not specific to the Bridge and it affects all MSMQ applications on the cluster computer.
Inside Message Queuing
8.20 How are messages delivered to a remote computer?
Delivery of messages is based on a push model. The source computer is responsible for pushing its outgoing messages to remote destinations. When an application calls MQSendMessage, the message is placed in an outgoing queue. Assuming there is not yet a session with the remote side, a worker thread in the Message Queuing service wakes up and tries to establish a new session. A new session is created as follows (the following uses a successful case, based on the native protocol, on Windows 2000):
· Run the routing algorithm to see which computer is the next hop for the message. Resolve the name of the next-hop computer to an IP address. This is done by calling gethostbyname.
· Ping the other computer (over UDP port 3527), and then wait up to one second for a reply. The remote side replies with another UDP packet, signaling that it is ready to accept a session.
· Call connect() to create a TCP session with the remote side.
· Send an establish packet. This is a 572-byte packet; its purpose is to measure the round-trip delay. The remote side replies with a similar packet.
· Send a connection parameters packet, with the parameters of this Message Queuing session (window size, acknowledge time-out, and so on). The remote side replies with a similar packet.
Once this protocol completes, there is a Message Queuing session between both computers and messages can flow both ways.
That is the basic mechanism, which is always true for the native protocol. In case of failure, there is a re-try mechanism, as follow:
· If connect() fails, Message Queuing will try again after five seconds. This time without a ping. In other words, Ping is used only for the first time Message Queuing tries to establish a session. So, the first re-try mechanism is by calling connect() again and again, every five seconds, trying to establish a TCP-level session.
· In parallel with the first re-try mechanism, every x minutes, Message Queuing runs the routing algorithm again and tries again to resolve the name of the remote computer, pings it, and continues with the basic mechanism. This second mechanism is needed in order to handle computers that change their addresses and routing server failures. Message Queuing increases the value of x from 1 minute to 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and eventually 5 minutes.
That is the basic re-try mechanism, which is composed of two methods—each one handling different problems.

Eventually, if the target is offline for too long, Message Queuing will do name resolution and routing every five minutes, and then try the new address every five seconds.
The following are some possible exceptions and failures:
A session already exists with the remote side.
In this case, messages just flow over the existing session. Nothing else needs to be done. Message Queuing will use the same session for all outgoing queues that point to the same remote computer.
The sender uses the DIRECT format name.
In this case, there is no routing. The source will always try to send only to the destination computer. If the sender uses the DIRECT=tcp format name, Message Queuing will not do name resolution. Session establishment will start with the ping.
Routing, when using the PUBLIC or PRIVATE format names, Message Queuing runs the routing algorithm first.
It is possible that next hop will be a routing server instead of the destination computer. This happens if the destination itself is not available or if in-FRS is defined for the destination, out-frs is defined for the source computer, or there are site gate routing servers. In all these cases, each computer will use the mechanisms described in the preceding topic to push messages to the next hop, until reaching the destination.
The remote computer cannot accept new sessions because it has exhausted all its CALs.
In this case, the remote computer returns a refuse code in the ping, or in the establish packet. The client-side of the session (the initiator) will tear it down, and then try again later.
8.21 Any scale considerations for the messages delivery mechanism?

Yes. Scale need to be considered. The Message Queuing service has a pool of worker threads that do most of queuing and delivery work. All threads listen on a common I/O completion port. When an I/O operation is ready, the operating system wakes up a worker thread, which processes the result of the I/O, issues another I/O request, and then waits again on the completion port. Responsiveness of the Message Queuing service will reduce if all worker threads are blocked and none is available. The number of worker threads can be controlled via the QMThreadNo registry value.

For example, the connect() API blocks for 20 seconds (by default) when the remote side does not reply. If the local computer tries to send to too many remote computers that are not available on the network, most worker threads will be blocked, waiting for connect() to fail. This scenario is partially solved by Message Queuing, by always leaving one worker thread available for a non-blocking operation. Either the application or administrator can help with this scenario, by pausing an outgoing queue if it is known that remote side will not be available for a long time.
Another problem that can happen in large scale deployment is mobile computers which interchange IP addresses. The simple form of this problem is when destination computer changed its address. This is explained elsewhere. The complicated case is when two computers interchange the addresses. There are two cases to consider:
· You send messages using the PUBLIC or PRIVATE format names. The next hop computer (call it computerA) changed address and got the address of another computer (call it computerB). In parallel computerB got the address of computerA. Because of caching, name resolution on source computer will still provide the old ip address of computerA, which now point to computerB. When the source computer tries to establish a session with compuerB (thinking it's computerA) it inserts the QM ID of computerA in the session establishment packet. ComputerB identifies this mismatch and refuse the session. Source computer will re-try to establish session (as explained above) and will eventually perform correct name resoulton, after the cache is purged. Then a session will be established and messages will flow.
· You send messages using the DIRECT format name. In that case, QM ID is not used and a session will be established with computerB. The source computer will send the messages. ComputerB will identify that the messages are not destined for it and will reject them. If requested, bad-destination nack will be sent back to the administration queue. In this scenario, messages get lost, unlike the case of PUBLIC or PRIVATE format names. A hotfix is available to prevent this loss, see http://support.microsoft.com/kb/833512.
8.22 What happens when a session is broken while messages are delivered?
Message Queuing acknowledges delivery of messages. Each hop returns an ACK (Message Queuing internal session ACK, not to be confused with an application-level ACK) to the previous hop when messages are accepted. The ACK for express messages is sent as soon as a message is accepted from the wire and inserted in the queue. A session ACK for recoverable message is sent once the message is flushed to disk.

Message Queuing combines multiple ACKs together, and whenever possible, it piggybacks them on a standard message. The sender side keeps the messages in an outgoing queue until it receives the session ACK. Once the session ACK arrives, the message is removed from the outgoing queue and discarded. If the session is broken, all messages that are not yet acknowledged are still in the outgoing queue. The sender side will try to re-establish the session, using the mechanisms explained previously. Once a session is established, all messages that are waiting in the outgoing queue will be delivered. This is true for all Message Queuing sessions, even those to/from intermediate routing servers.
8.23 How are transactional messages delivered?
At the lower layer, they are delivered exactly as non-transactional messages. Message Queuing establishes sessions for remote transactional queues in exactly the same way as it does for non-transactional queues. The same session and same low-level delivery mechanism serves both types of queues.
In addition to that, EOD (transactional, also called Exactly-Once, in-orDer) delivery has another higher level layer, to deal with end-to-end semantics. The source computer (the one where transaction messages were originally created and sent by applications) keeps outgoing transactional messages until it receives an order ACK from the destination computer (the computer hosting the destination queue). The order ACK means that messages were accepted in order and inserted successfully in the destination queue. If the order ACK does not arrive, the EOD layer will resend the messages. The EOD layer takes care of resending only after a session ACK arrives from the next hop. The resend intervals for the EOD layer are: 30 seconds, 30, 30, 5 minutes, 5, 5, 30 minutes, 30, 30, and then once every six hours. The EOD resend mechanism overcomes problems with routing servers that went down and cannot deliver to destination. This mechanism is not available for non-transactional messages.
If an application also specifies deadletter, the EOD layer keeps messages in the outgoing queues until final ACK arrives from the destination. The final ACK means that an application received the messages from queue.
8.24 How are the messages files used by the Message Queuing service and Message Queuing runtime?
On Windows 2000, all messages files are always mapped to the user-mode virtual address space of the MQSvc process (the Message Queuing service). This is why storage is limited to 2 GB (effectively, slightly less than that). Each process has 2 GB of user-mode virtual address space, for code and data. For Message Queuing, most of this space is consumed by messages files mapping.

8.25 What happens when an application receives a message?

The Message Queuing runtime calls the driver directly. The driver (while in the context of the application) cannot access the mapping done by the MQSvc process. The driver cannot cross this security boundary, and even if it does, the mapping addresses might be different. Thus, the driver must perform a new mapping to access the message file while running in the context of application. The driver will not map the file to the address space of the application. If it does, the application can read the entire file, which means that application can read messages that it should not be able to read. The solution is that the driver map the file to the kernel address space. This one is limited to approximately 16 MB. After doing the kernel mapping, the driver can copy the message from the file to an application buffer.

This mechanism ensures that the user mode process that calls the Message Queuing API never has direct access to the messages files. The message files are never mapped to the application address space.

This mechanism also means that if an application receives messages that are kept in multiple files, the driver will unmap and remap the files to the kernel space. The driver can map only one file to kernel space at any given time. The mapping/unmapping operations can degrade performance. This is especially noticeable if you use only express messages and accumulate more messages than can be kept in one file.

8.26 What are the options for installing multiple MSMQ-MQSeries Bridges in an enterprise? What are the options for sending to multiple MQSeries Queue Managers?
There are several options to deploy multiple bridge servers in an enterprise.

· You can install multiple bridge servers in the same foreign site, connected to the same MQSeries Queue Manager.

· You can install them in different foreign sites.

· You can send messages from Message Queuing to multiple MQSeries Queue Managers.

You cannot have multiple bridge servers in the same foreign site but connected to multiple MQSeries Queue Managers.

When you configure the bridge, you choose which MQSeries Queue Manager that bridge is connected to. (On the MQI Channels tab, when you right-click Bridge service under Server in MSMQ-MQSeries Bridge Explorer.) Such a connection needs channels and transmission queues. In order to send to multiple MQSeries Queue Managers in the same foreign site, use MQSeries routing (for more information, see Bridge FAQ).

The following is a summary of what is possible and what is not possible. In all cases, each MQSeries Queue Manager must be represented by a distinct Message Queuing foreign computer.

Possible

One bridge server and multiple foreign computers in the same foreign site.

This scenario means that the bridge is connected to one of the MQSeries Queue Managers and you must define MQSeries routing to move messages from that Queue Manager to other MQSeries Queue Managers.

This is explained in Bridge FAQ.
You can have multiple bridge servers in that foreign site (for redundancy and load balancing), as long as they all are site gates and they all connect to the same MQSeries Queue Manager. All these bridge servers must be in the same native Windows 2000 site. Other Message Queuing routing servers cannot be site gates on any link from the native site.

For more information, see Bridge FAQ.

One bridge server and multiple foreign computers in multiple foreign sites (each foreign computer in its own foreign site).

You can have one bridge server connected to multiple foreign sites. This server must be a site gate on all links from its native Windows 2000 site to all the foreign sites. You can have multiple bridge servers in this scenario (for redundancy and load balancing), as long as all the bridge servers:

· Are in the same native Windows 2000 site.

· Are site gates on the same links.

· Are connected to exactly the same set of MQSeries Queue Managers.

Other Message Queuing routing servers cannot be the site gate on any link from the native site.
Multiple bridge servers and multiple foreign computers in multiple foreign sites (each foreign computer in its own foreign site).

You can have different bridge servers connected to different foreign computers. For this to work, you need to:

· Have each bridge server in its own distinct native Windows 2000 site.

· Ensure that each bridge server is connected to a different MQSeries Queue Manager.

· Ensure that no other Message Queuing routing server in that native site is a site gate.

· Ensure that each site has a domain controller running Message Queuing.

Not possible

Multiple Bridge servers in same native site and multiple foreign computers in multiple foreign sites (each foreign computer in its own foreign site).

You cannot have different bridge servers connected to different foreign computers while all bridge servers are in the same native site.

8.27 How do I choose between public and private queues? What about format names? And what about Workgroup mode?
Basically, the choice depends on the application requirement. Before going to the comparison, it is important to emphasize that both public and private queues provide the exact same messaging functionality. Both can be transactional, both can be used with authentication and encryption, and both support all queue properties (as with quota or target journaling). The following is a short and non-inclusive list of the differences.

Advantages of public queues:

· They are published in Active Directory and enable centralized administration. For example:

· You can use the standard Delegation wizard to change security settings of multiple queues.

· You can use ADSI scripts to add queues to multicast groups.

· From one computer, you can manage all public queues in your enterprise.

· Locating queues dynamically. This feature lets you locate a queue based on a queue property (label or queue type), without hard coding the queue name in your application. This can be used to implement custom load balancing. You set up several servers that provide the same service. Each server creates a public queue with the same queue-type GUID. Then, clients can look for queues with that type of GUID, and then chose one randomly. The only hard-coded item for the application is the type-GUID of the queue.
Disadvantages of public queues:

· Because public queues are objects in Active Directory, their use involves queries in Active Directory, which increases the load on the network and domain controllers. Message Queuing 2.0 clients use proprietary RPC protocol to access Active Directory via Message Queuing servers that run on domain controllers. This protocol, and the queries themselves, can load the network and the domain controllers, depending on the number of computers and volume of queries. When a Message Queuing client starts, it creates a cache of .lqs files representing its local public queues. This enables offline operation, but adds more load.
· Public queues cannot be used "on the fly". You cannot create a public queue and use it immediately. You first need to let the new queue object to replicate to all other domain controllers in the Active Directory forest. Only then you can reliably use it. Trying to use a public queue before it replicated may end up with MSMQ failing to find the queue object when it queries its domain controller. This is true even for an application creating a local public queue. The application process and the MSMQ service process may use different domain contollers. The domain controller is picked by the DC Locator component of the NetLogon service. It is not guaranteed to be the same for all processes on a computer.
Advantages of private queues:

· The disadvantages of public queues are the advantages of private ones. The overhead of private queues is negligible. It is just an .lqs file on the computer that hosts it.
· You can reliably use a private queue as soon as you create it. You can use it as response queue in messages that you send and receipient will be able to send back response to that newly created private queue.
Disadvantages of private queues:

· The advantages of public queues are the disadvantages of private ones. You cannot locate a remote private queue. You must know its name in advance. You cannot manage a private queue from a remote computer. You must do this from the computer that hosts the queue. This can be a problem for customers who deploy Message Queuing on an MSCS cluster. It means that you can manage private queues only from a process running in the context of the virtual server which hosts the MSMQ clustered resource.
· You cannot query the properties of remote private queues. MQGetQueueProperties() or MQGetQueueSecurity() APIs will fail if you call them with the format name of a remote private queue. Similarly, the methods IsTransactional (of the MSMQ COM interface) or Transactional (of SystemMessaging) do not support remote private queues.
Advantages of PUBLIC/PRIVATE format name:

· With these names, you get the full functionality of Message Queuing. This includes encryption and routing. Routing enable some kind of load balancing (front-end servers farm), by installing intermediate Message Queuing routing servers and defining them as in-FRS of the target computer. With this, load balancing is implemented by Message Queuing, without application intervention. Encryption is supported only with these format names.

Disadvantages of PUBLIC/PRIVATE format name:

· You need access to Active Directory in order to fetch routing data, queue properties, and encryption keys. You can design your application for offline operation (that is, the application can open and send while domain controllers are not available). But the Message Queuing service will not be able to send the messages until Active Directory is available. Messages will accumulate in outgoing queues on the sender computer.

· You have to create these names somehow. PUBLIC format name can be created from the path name, by using the Message Queuing API (which queries Active Directory). For a PRIVATE format name, you must develop your own method by which clients get the name of remote private queues.

Advantages of DIRECT format name:

· Active Directory is not required because the format name includes the name of the target computer, and the sender can establish a direct session with the target computer without querying Active Directory. DIRECT format names can include the TCP/IP address of the target computer, which eliminate name resolution queries too.

Note When you open a local public queue by using DIRECT format name, or when the Message Queuing service receives messages for a local public queue, Active Directory is queried for the queue properties. This happens only once, when opening the queue. Subsequent receive/send operations do not query Active Directory. If Active Directory is not available, Message Queuing uses the local cache of the public queues definitions (found under the Storage\Lqs directory).

· You build the name without effort—just append the queue name to the computer name (or TCP/IP address).

Disadvantages of DIRECT format name:

· You do not have routing and encryption. You must do the encryption in the application (which is trivial) and obtain the encryption key of the target computer (which can be complex). You cannot use Message Queuing routing for intermediate store and forward, so eventually the sender must be able to establish a direct session with the destination.
Consideration for transactional messages over the native (not http) protocol:

· When sending transactional messages using the PUBLIC or PRIVATE format names, the destination queue manager sends back order acknowledgments using the format name PRIVATE=<GUID of Source Computer>\00000004. The GUID of source computer is extracted from the incoming message (it's the PROPID_M_SRC_MACHINE_ID property) and 00000004 is the hardcoded identifier of the internal system order queue. This means that destination computer need to access Active Directory in order to resolve GUID into machine name. This also means that these order acknowledgment messages can be routed by MSMQ routing servers. If destination computer is offline and cannot access Active Directory then order acknowledgement messages will wait in outgoing queue and messages will accumulate in outgoing queue on source machine, waiting for the order acknowledgments.

· When sending transactional messages using the DIRECT format name, the destination queue manager sends back order acknowledgements using the format name DIRECT=TCP:<IP of source computer>\private\order_queue. The IP address of the source computer is extracted from the socket over which the original message was accepted. This means that if the session was closed before all order acknowledgement messages were moved and later the source computer changes its IP address then order acknowledgment messages will wait in outgoing queue on destination computer and will never be delivered. Source computer will have to re-send the messages which were not acknowledged. A similar problem exists when sending transactional messages using the DIRECT format name over NAT firewall. The destination computer extracts the NAT'ed address from the socket, not the real address of the source. In many cases, the NAT'ed address cannot be used to send back order acknowledgements. This is the reason that Microsoft does not support and does not recommend using transactional messages over NAT firewall.
How is Workgroup mode related to this discussion? There is a common misconception that "private queue" means "workgroup" mode. This is not true.

It is true that MSMQ in Workgroup mode can host only private queues locally. But private queues are not limited to Workgroup mode. It is legitimate to use private queues in domain mode if you don't need to publish the queue in Active Directory. In that case, you save some overhead related to Active Directory publishing but can still take advantage of other domain mode features- encryption, message authentication, dynamic routing, etc.

In the other direction, Message Queuing in Workgroup mode can send messages to remote public queues, using the direct format name. It can also authenticate message content using external certificates. In this scenario, sender identity is not authenticated, only message content is protected against tampering. The receiving application can retireve the external certificate from the message, analyzes it and decides whether or not to trust the sender.

8.28 Memory issues with System.Messaging

Often developers feel that System.Messaging leak memory, even after Garbage Collection is done. The following scenario shows legitimate code which seem to leak memory:

Loop

· Instantiate new MessageQueue object. The queue itself is empty.

· Register a async peek delegate and call BeginPeek.

· Unregister the async peek delegate and Dispose the MessageQueue Object.

 End loop

There are two "implementation details" in this example which seem to cause leak:

1. Unregistering an async peek (or receive) delegate handler merely remove the delegate from the list of callbacks in the MessageQueue object. It doesn't cancel the peek/receive operation. There is no way in MSMQ to cancel a pending peek/receive operation other than closing the queue handle. See above for more details. This means that all the Peek operations are still pending in the MSMQ driver and the memory which was allocated for messages properties is still alive, giving a false impression of leak. In the example above, If you fill the queue with messages then peek return immediately and there is no leak. Garbage collection will free all memory used for received properties.

2. Dispose() of MessageQueue doesn't close the queue handle, unless (at least) one of the following is true:

· You disable the global connection cache.

· The queue was opened with DENY_RECEIVE sharing mode.

In all other cases, the queue handle is cached and is closed only on exit, at finalization time. If you disable the connection cache then there is no leak. To disable connection cache set the EnableConnectionCache property of the MessageQueue class to “false”. The queue handle is closed in each iteration, canceling the peek operation. Eventually Garbage Collection will free the memory used for messages properties.

Note Starting with version 2.0 of the .NET Framework, the default value of the EnableConnectionCache property is false. The connection cache is disabled by default.
8.29 Is Message authentication secure? Is an internal certificate secure?

Yes, both are secure. Before explaining the details of Message Queuing message authentication let's see why MSMQ authentication method is different than other authentication methods.

The main difference is that MSMQ is primarily used for the disconnected scenario. In this scenario, the producer of the message and its consumer do not need to be online and connected at the same time. It is legitimate that sender application will not run when messages that it previously sent are received at the destination computer. Because of the disconnected scenario, online authentication algorithms like NTLM or Kerberos cannot be used.

Authentication with standard certificates which are issued by a CA (Certificates authority) is possible but that would be a deployment blocker. This method means that each user need to acquire a certificate from the CA, on each computer that he logs on and sends MSMQ messages. It also means that you have to deploy a CA server in your enterprise for this to work.

The solution used by Message Queuing is to use "internal" certificates. These have the format of a standard X509 certificate but they are created by each user locally. They are not signed by a CA. Registering the certificate in Active Directory (which is secure and trusted by all computers and users in the enterprise) is the way to overcome the deployment overhead of a CA.

Now let's look at the details. Message authentication has two goals:

· Ensure that no one changed the message content while it was in transit from source to destination.

· Ensure the identity of the sender.
Tamper proof

The first goal is achieved by digitally signing the message. The user must supply a certificate, or use the default MSMQ internal certificate.

In the context of the sender’s application, the MSMQ run-time (mqrt.dll) creates a hash from several message properties and then encrypts the hash with the user’s private key, (which matches the public key in the certificate). The signature and the certificate are then attached to the message.

On the receiver side, the MSMQ service verifies the signature (by extracting the public key from the certificate, decrypting the signature and verifying it is identical to the computed hash of message properties). It will reject messages whose signatures don’t match.

Ensuring Sender Identity

There are two options in order to ensure sender identity.

Using Unregistered Certificates

In this case, it is ultimately the receiving application that determines whether to trust the sender. When sending a message, you must specify MQMSG_SENDERID_TYPE_NONE (in the PROPID_M_SENDERID_TYPE property) and attach your external certificate (PROPID_M_SENDER_CERT). This is an anonymous message.
The target queue must be configured to accept messages from “everyone”. For MSMQ3.0, the queue must also grant the send permission to "Anonymous Logon".

In this case, the receiving application is responsible to analyze the certificate and decide if it trusts the sender. For this option you don't need any domain trust between sender’s domain and the receiver’s domain and you don't need any special setup.

But the receiver application must have code that can analyze certificates (quite straightforward) and it must have a policy allowing it to decide which senders to trust.

This option is the only one available when crossing trust boundaries (when sender and receiver do not belong to the same Active Directory forest). This option is also feasible when MSMQ run in Workgroup mode.

Using Registered Certificates

This option requires a preliminary setup step, in which the user runs the Computer management tool (or the MSMQ control panel applet on Windows 2000) and registers a certificate.

This is done automatically for internal certificates. Each time a new domain user logs on a computer for the first time, MSMQ generates an internal certificate for her and registers it in Active Directory. Then, when sending a message, you use this certificate. This option requires domain trust between the user and the domain controller.

For msmq2.0 clients, the MSMQ server on the domain controller authenticates the user’s RPC call that registers the certificate. MSMQ impersonates the caller, extracts the user’s SID from the impersonation token and inserts the certificate in the “mSMQSignCertificates” attribute of the user object in Active Directory.

MSMQ3.0 clients use ADSI to register the certificate in Active Directory (in the same attribute of the user object). This assumes that only the user herself can update her own user object. This is true by default in any Active Directory deployment.

Why is this algorithm secure?

Registering the certificate is implemented via authenticated ADSI interface or via an authenticated RPC call. These authentication mechanisms (using Kerberos) ensure that the call is not tampered and that the caller is indeed the one she claims to be. This is an online process, in which the client and domain controller are both online. Note that the user (the caller who registered the certificate) has the private key which matches the public key in the certificate.

When you send a message, you sign it with your private key, and attach the certificate to the message.

When the MSMQ service on the recipient computer receives a message, the sender may be offline, so the recipient cannot challenge the sender to validate her identity. The MSMQ service verifies the signature (by retrieving the public key from the certificate, decrypting the signature and verifying it’s identical to the computed hash of message properties) and then queries Active Directory to find the certificate. If found, the user object which holds it is considered to be the user who sent the message.

This mechanism of message authentication implements the disconnected security paradigm that is necessary for MSMQ. MSMQ decouples the lifetime of source and destination computers. You cannot implement message authentication by any algorithm that use a synchronous (online) handshake between participants (like challenge/response in NTLM or clock synchronization in Kerberos).

For disconnected security to be possible, you need a trusted third-party entity. This is Active Directory that stores user certificates in the users objects. The sender trusts Active Directory when she registers the certificate. The MSMQ service trusts Active Directory when it searches for the user object which holds a received certificate.
Isn't it possible for a malicious user to generate an internal certificate and use it?

Yes, it's possible. An internal certificate is created using standard and straightforward CryptoAPI calls. But a malicious user won't be able to register this certificate in Active Directory, in the user object of another user. Therefore, she cannot sent an authenticated message that will be authenticated as sent from another user.
Notes and Limitations:

· You cannot store more than ~800 certificates per-user. This is due to limitations in Active Directory implementation of the user object attributes that are used to store the certificates.

· You need to have the “write personal information” permission on your own user object. This is granted to SELF by default. If for any reason this permission was revoked, you’ll get error 0xc00e0025 (“access denied”) when trying to register a certificate.

· A local user cannot register a certificate (she doesn’t have a user object in Active Directory). Similarly, when MSMQ runs in Workgroup mode, you cannot use message authentication to identify the sender. You can only use it with external certificates for authenticating message content.

Going Forward

8.30 How is Message Queuing related to Message Queuing-T? Is Message Queuing-T a replacement for Message Queuing?

Message Queuing-T, also called Biztalk Server 2004 Message Queuing, is not a replacement for Message Queuing. It is a Biztalk Server 2004 feature that enables high-performance interoperability between Message Queuing applications and Biztalk Server 2004.
Message Queuing-T allows Message Queuing messages to flow directly between the wire and the Biztalk Server Message Box with minimal overhead.
Message Queuing-T provides a subset of Message Queuing 2.0 features. It supports only transactional messages and does not support encryption.
8.31 What's the roadmap for Message Queuing?

The next version of Windows will continue to ship and fully support Message Queuing. The next version of Message Queuing will be:

· Fully integrated with the next version of Windows' communication infrastructure.

· Fully compatible with all previous versions of Message Queuing.

Older versions of Message Queuing will continue to be supported by Microsoft product support policies.

For an overview, see Indigo.

Appendix A: vbsSendMsg.vbs

Option Explicit

Dim objInfo

Dim objQue

Dim objMsg

Dim strFormatName
' Destination

strFormatName = "direct=os:.\private$\myprivq"

Set objInfo = CreateObject("MSMQ.MSMQQueueInfo")

Set objMsg = CreateObject("MSMQ.MSMQMessage")

objMsg.Label = "my message"

objInfo.FormatName = strFormatName

set objQue = objInfo.Open(2, 0)

' Send Message

objMsg.Send objQue

' Close Destination

objQue.Close

Set objMsg = Nothing

Set objInfo = Nothing

msgbox "Done..."

Appendix B: mmcv.cpp
//
// File: mmcv.cpp
//
#include <windows.h>
#include <stdio.h>
BOOL RunProcess(LPTSTR szServer, LPSTR lpszCommand)
{
 DWORD dwCreateFlag = DETACHED_PROCESS ;
 //
 // Initialize the process and startup structures.
 //
 PROCESS_INFORMATION infoProcess;
 STARTUPINFO
infoStartup;
 memset(&infoStartup, 0, sizeof(STARTUPINFO)) ;
 infoStartup.cb = sizeof(STARTUPINFO) ;
 infoStartup.dwFlags = STARTF_USESHOWWINDOW ;
 infoStartup.wShowWindow = SW_SHOWNORMAL ;
 //
 // For details regarding these env variables, see KB Q198893 (and Q182600).
 //
 char szMyName[128] ;
 DWORD dwMyNameSize = sizeof(szMyName) / sizeof(szMyName[0]) ;
 DWORD dw = GetEnvironmentVariable("COMPUTERNAME", szMyName, dwMyNameSize) ;
 if (dw == 0)
 {
 printf("Failed to get COMPUTERNAME env variable, err- %lut\n", GetLastError()) ;
 return FALSE ;
 }
 szMyName[dwMyNameSize-1] = 0 ;
 SetEnvironmentVariable("COMPUTERNAME", szServer) ;
 SetEnvironmentVariable("_CLUSTER_NETWORK_NAME_", szServer) ;
 SetEnvironmentVariable("_CLUSTER_NETWORK_HOSTNAME_", szServer) ;
 LPSTR pszEnv = GetEnvironmentStrings() ;
 //
 // Restore COMPUTERNAME
 //
 SetEnvironmentVariable("COMPUTERNAME", szMyName) ;
 char szCommand[MAX_PATH * 3] ;
 char szSysDir[MAX_PATH] ;
 UINT uSysDirLen = sizeof(szSysDir) / sizeof(szSysDir[0]) ;
 UINT uSys = GetSystemDirectory(szSysDir, uSysDirLen) ;
 if (uSys == 0)
 {
 printf("Failed to get system directory, err- %lut\n", GetLastError()) ;
 return FALSE ;
 }
 szSysDir[MAX_PATH-1] = 0 ;
 strcpy(szCommand, szSysDir) ;
 strcat(szCommand, "\\mmc ") ;
 strcat(szCommand, szSysDir) ;
 strcat(szCommand, "\\compmgmt.msc") ;
 szCommand[(MAX_PATH * 3) - 1] = 0 ;
 if (lpszCommand == NULL)
 {
 lpszCommand = szCommand ;
 }
 printf("Going to run %s\n", lpszCommand) ;
 if (!CreateProcess(NULL,
 lpszCommand,
 NULL,
 NULL,
 FALSE,
 dwCreateFlag,
 pszEnv,
 NULL,
 &infoStartup,
 &infoProcess))
 {
 printf("\nERROR: CreateProcess() failed, LastErr- %lut\n",
 GetLastError()) ;
 return FALSE;
 }
 return TRUE ;
}
void Usage(char * pszProgramName)
{
 fprintf(stderr, "Usage: %s\n", pszProgramName);
 fprintf(stderr, " -c <command to run>\n") ;
 fprintf(stderr, " -s <name of Virtual server>\n") ;
 exit(1);
}
void _cdecl main(int argc, char **argv)
{
 // Allow the user to override settings with command line switches.
 //
 LPSTR lpszServer = NULL ;
 LPSTR lpszCommand = NULL ;
 for (int i = 1; i < argc; i++)
 {
 if ((*argv[i] == '-') || (*argv[i] == '/'))
 {
 switch (*(argv[i]+1))
 {
 case 'c':
 lpszCommand = argv[++i];
 break;
 case 's':
 lpszServer = argv[++i];
 break;
 case 'h':
 case '?':
 default:
 Usage(argv[0]);
 }
 }
 else
 {
 Usage(argv[0]);
 }
 }
 if (!lpszServer)
 {
 printf("\nError: You must enter the Server name...\n\n") ;
 Usage(argv[0]);
 }
 RunProcess(lpszServer, lpszCommand) ;
}
Appendix C: Findsite.vbs

‘==

‘ This script finds the site name, based on the site GUID.

‘ The script takes one argument- guid copied from Message Queuing event 2010 (or similar

‘ events).

‘==

Dim oRootDSE 'As IADs

Dim strSite 'As String

Dim strPath 'As String

Dim strGuid 'As String

' Parse the command line and set the query filter.

ParseCommandLine()

strPath = "LDAP://<GUID=" & strGuid & ">"

WScript.Echo "ADSI Path- " & strPath

Set oRootDSE = GetObject(strPath)

strSite = oRootDSE.Get("cn")

WScript.Echo "Site- " & strSite

Set oRootDSE = Nothing

WScript.Quit(0)

' End of Script

‘===

‘ The ParseCommandLine subroutine will build a GUID that is suitable

‘ for GetObject().

‘===

Sub ParseCommandLine()

 Dim vArgs

 Set vArgs = WScript.Arguments

 if Not VArgs.Count = 1 Then

 DisplayUsage()

 End if

 strGuid = Mid(vArgs(0) , 7 , 2)

 strGuid = strGuid & Mid(vArgs(0) , 5 , 2)

 strGuid = strGuid & Mid(vArgs(0) , 3 , 2)

 strGuid = strGuid & Mid(vArgs(0) , 1 , 2)

 strGuid = strGuid & Mid(vArgs(0) , 12 , 2)

 strGuid = strGuid & Mid(vArgs(0) , 10 , 2)

 strGuid = strGuid & Mid(vArgs(0) , 17 , 2)

 strGuid = strGuid & Mid(vArgs(0) , 15 , 2)

 strGuid = strGuid & Mid(vArgs(0) , 20 , 4)

 strGuid = strGuid & Mid(vArgs(0) , 25 , 12)

End Sub

‘==

‘ The DisplayUsage subroutine will display how to use this script. The objectCategory and objectClass arguments are optional.

‘===

Sub DisplayUsage()

 WScript.Echo "Usage: csript " & WScript.ScriptName &_

 " <guid of site, copied from eventid 2010>" & vbLF

 WScript.Quit(0)

End Sub

Appendix D: MQTrace.cmd (Windows Server 2003 and Windows XP)
@echo off

if "%_echo%"=="" (

echo off

) else (

echo on

)

setlocal

@rem

@rem Manage MSMQ Release Bits Tracing

@rem

@rem Revision History:

@rem 1.1 Shai Kariv (shaik) 05-Apr-2001

@rem 1.2 Conrad Chang (conradc) 05-Feb-2002

@rem 1.3 Conrad Chang (conradc) 31-July-2002

@rem (Changed to use logman and use names instead of GUIDs)

@rem 1.4 Conrad Chang (conradc) 22-March-2004

@rem (Added support for XP)

@rem 1.5 Conrad Chang (conradc) 19-Oct-2005

@rem - Added flushing so that you don't need to stop the trace

@rem - remove indigo on XP check

@rem - remove filtering of unable to decode entries in trace file

@rem

echo mqtrace 1.5 - Manage MSMQ Release Bits Tracing.

set mqBinaryLog=%windir%\debug\msmqlog.bin

set mqTextLog=%windir%\debug\msmqlog.txt

set log_session_name=msmq

set msmqtracecfgfile=%windir%\debug\msmqtrc.ini

set msmqtracesessionlog=%windir%\debug\msmqtrc.log

set loggingrunning=

set mqRealTime=

set tracecommand=start

set tracefilemodeoptions=-f bincirc -max 4

set tracefilepathcommand=-o %mqBinaryLog%

set IsWinXP=0

set TmpVerFile=%tmp%\osver.txt

if not exist %windir%\system32\msmqpub.mof (

set MSMQSchemeFile=.\msmqpub.mof

) else (

set MSMQSchemeFile=%windir%\system32\msmqpub.mof

)

rem

rem XP is version 5.1

rem

ver > %TmpVerFile%

findstr /i /c:"5.1" %TmpVerFile%

if %ERRORLEVEL% == 0 set IsWinXP=1

del %TmpVerFile%

@rem

@rem Jump to where we handle usage

@rem

if /I "%1" == "help" goto Usage

if /I "%1" == "-help" goto Usage

if /I "%1" == "/help" goto Usage

if /I "%1" == "-h" goto Usage

if /I "%1" == "/h" goto Usage

if /I "%1" == "-?" goto Usage

if /I "%1" == "/?" goto Usage

@rem

@rem Set TraceFormat environment variable

@rem

if /I "%1" == "-path" shift&goto SetPath

if /I "%1" == "/path" shift&goto SetPath

goto EndSetPath

:SetPath

if /I not "%1" == "" goto DoSetPath

echo ERROR: Argument '-path' specified without argument for TraceFormat folder.

echo Usage example: mqtrace -path x:\symbols.pri\TraceFormat

goto :eof

:DoSetPath

echo Setting TRACE_FORMAT_SEARCH_PATH to '%1'

endlocal

set TRACE_FORMAT_SEARCH_PATH=%1&shift

goto :eof

:EndSetPath

@rem

@rem Format binary log file to text file

@rem

if /I "%1" == "-format" shift&goto FormatFile

if /I "%1" == "/format" shift&goto FormatFile

goto EndFormatFile

:FormatFile

if /I not "%TRACE_FORMAT_SEARCH_PATH%" == "" goto DoFormatFile

REM

REM LH doesn't need TMF file

REM

if %IsWinXP% == 0 goto DoFormatFile

echo ERROR: Argument '-format' specified without running 'mqtrace -path' first.

echo Usage example: mqtrace -path x:\symbols.pri\TraceFormat

echo mqtrace -format ('%mqBinaryLog%' to text file '%mqTextLog%')

goto :eof

:DoFormatFile

if /I not "%1" == "" set mqBinaryLog=%1&shift

echo Formatting binary log file '%mqBinaryLog%' to '%mqTextLog%'.

call tracefmt %mqBinaryLog% -o %mqTextLog% -tmf %MSMQSchemeFile%

echo Please view Trace File at %mqTextLog%

set mqBinaryLog=

goto :eof

:EndFormatFile

@rem

@rem Format binary log file to text file

@rem

if /I "%1" == "-flush" shift&goto FlushTrace

if /I "%1" == "/flush" shift&goto FlushTrace

goto EndFlushTrace

:FlushTrace

logman update msmq -fd -ets

goto :eof

:EndFlushTrace

@rem

@rem Handle the -stop argument

@rem

if /I "%1" == "-stop" shift& goto HandleStopCommand

if /I "%1" == "/stop" shift& goto HandleStopCommand

goto EndHandleStopCommand

:HandleStopCommand

echo Stopping %log_session_name% trace session...

logman stop %log_session_name% -ets

goto :eof

:EndHandleStopCommand

@rem

@rem Handle the -query argument

@rem

if /I "%1" == "-query" shift& goto HandleQueryCommand

if /I "%1" == "/query" shift& goto HandleQueryCommand

goto EndHandleQueryCommand

:HandleQueryCommand

echo Querying %log_session_name% trace session...

logman query %log_session_name% -ets

goto :eof

:EndHandleQueryCommand

@rem

@rem Process the tracing change

@rem

if /I "%1" == "-change" shift&goto ChangeTrace

if /I "%1" == "/change" shift&goto ChangeTrace

goto EndChangeTrace

:ChangeTrace

@rem

@rem Process the module

@rem

if %IsWinXP% == 0 (

set Module=""

if /I "%1" == "AC" set Module="MSMQ: AC" & goto ProcessChangeLevel

if /I "%1" == "DS" set Module="MSMQ: DS" & goto ProcessChangeLevel

if /I "%1" == "GENERAL" set Module="MSMQ: General" & goto ProcessChangeLevel

if /I "%1" == "LOG" set Module="MSMQ: Log" & goto ProcessChangeLevel

if /I "%1" == "PROFILING" set Module="MSMQ: Profiling" & goto ProcessChangeLevel

if /I "%1" == "NETWORKING" set Module="MSMQ: Networking" & goto ProcessChangeLevel

if /I "%1" == "ROUTING" set Module="MSMQ: Routing"& goto ProcessChangeLevel

if /I "%1" == "RPC" set Module="MSMQ: RPC" & goto ProcessChangeLevel

if /I "%1" == "SECURITY" set Module="MSMQ: Security" & goto ProcessChangeLevel

if /I "%1" == "SRMP" set Module="MSMQ: SRMP" & goto ProcessChangeLevel

if /I "%1" == "XACT_GENERAL" set Module="MSMQ: XACT_General" & goto ProcessChangeLevel

if /I "%1" == "XACT_LOG" set Module="MSMQ: XACT_Log" & goto ProcessChangeLevel

if /I "%1" == "XACT_RCV" set Module="MSMQ: XACT_Receive" & goto ProcessChangeLevel

if /I "%1" == "XACT_SEND" set Module="MSMQ: XACT_Send" & goto ProcessChangeLevel

REM

REM For Indigo interop

REM

REM if /I "%1" == "WS" set Module="MSMQ: WS" & goto ProcessChangeLevel

)

goto usage

:ProcessChangeLevel

shift

set TraceLevel=

if /I "%1" == "none" set TraceLevel=() & goto UpdateTraceLevel

if /I "%1" == "error" set TraceLevel=(error) & goto UpdateTraceLevel

if %MODULE% == "MSMQ: ERRORLOGGING" goto usage

if /I "%1" == "warning" set TraceLevel=(error,warning) & goto UpdateTraceLevel

if /I "%1" == "info" set TraceLevel=(error,warning,info) & goto UpdateTraceLevel

if /i "%TraceLevel%"=="" goto usage

:UpdateTraceLevel

logman update msmq -p %Module% %TraceLevel% -ets

goto :eof

:EndChangeTrace

@rem

@rem Consume the "-start" argument if it exists. Default is to start.

@rem

echo Starting %log_session_name% trace logging to '%mqBinaryLog%'...

if /I "%1" == "-start" shift& goto HandleStart

if /I "%1" == "/start" shift& goto HandleStart

goto EndStart

:HandleStart

set tracecommand=start

set tracefilepathcommand=-o %mqBinaryLog%

:EndStart

@rem

@rem Consume the "-update" argument if it exists. Default is to start.

@rem

echo Updating %log_session_name% trace logging to '%mqBinaryLog%'...

if /I "%1" == "-update" shift& set tracecommand=update

if /I "%1" == "/update" shift& set tracecommand=update

@rem

@rem Consume the -rt argument

@rem

if /I "%1" == "-rt" shift&goto ConsumeRealTimeArgument

if /I "%1" == "/rt" shift&goto ConsumeRealTimeArgument

goto EndConsumeRealTimeArgument

:ConsumeRealTimeArgument

if /I not "%TRACE_FORMAT_SEARCH_PATH%" == "" goto DoConsumeRealTimeArgument

echo ERROR: Argument '-rt' specified without running 'mqtrace -path' first.

echo Usage example: mqtrace -path x:\symbols.pri\TraceFormat

echo mqtrace -rt (start RealTime logging/formatting at Error level)

goto :eof

:DoConsumeRealTimeArgument

echo Running %log_session_name% trace in Real Time mode...

set mqRealTime=-rt -ft 1

set tracecommand=start

:EndConsumeRealTimeArgument

@rem

@rem Process the noise level argument if it exists. Default is error level.

@rem

if /I "%1" == "-info" shift&goto ConsumeInfoArgument

if /I "%1" == "/info" shift&goto ConsumeInfoArgument

goto EndConsumeInfoArgument

:ConsumeInfoArgument

echo %log_session_name% trace noise level is INFORMATION...

if %IsWinXP% == 0 (

Call :FSETUPTRCINIFILE "(error,warning,info)"

) else (

Call :FSETUPTRCINIFILE "0x7"

)

goto EndConsumeNoiseLevelArgument

:EndConsumeInfoArgument

if /I "%1" == "-warning" shift&goto ConsumeWarningArgument

if /I "%1" == "/warning" shift&goto ConsumeWarningArgument

goto EndConsumeWarningArgument

:ConsumeWarningArgument

echo %log_session_name% trace noise level is WARNING...

if %IsWinXP% == 0 (

Call :FSETUPTRCINIFILE "(error,warning)"

) else (

Call :FSETUPTRCINIFILE "0x3"

)

goto EndConsumeNoiseLevelArgument

:EndConsumeWarningArgument

echo %log_session_name% trace noise level is ERROR...

IF %IsWinXP% == 0 (

Call :FSETUPTRCINIFILE "(error)"

) Else (

Call :FSETUPTRCINIFILE "0x1"

)

if /I "%1" == "-error" shift

if /I "%1" == "/error" shift

:EndConsumeNoiseLevelArgument

@rem

@rem At this point if we have any argument it's an error

@rem

if /I not "%1" == "" goto Usage

@rem

@rem Query if %log_session_name% logger is running. If so only update the flags and append to logfile.

@rem

@rem XP - always return 0 (success or fail)

@rem W2K3 - 0 success

@rem 4029 fail

@rem LH - 0 success

@rem -2147020695 (< 0) fail

@rem

echo Querying if %log_session_name% logger is currently running...

logman query %log_session_name% -ets > %msmqtracesessionlog%

if %ERRORLEVEL% NEQ 0 goto settrace

@rem

@rem logman.exe on XP is always return success so we need to look at the output to find MSMQ

@rem

if %IsWinXP% == 1 (

findstr /i msmq %msmqtracesessionlog%

if ERRORLEVEL 1 goto settrace

)

echo %log_session_name% logger is currently running, changing existing trace settings...

set tracecommand=update

set tracefilepathcommand=

set tracefilemodeoptions=

:settrace

if /I "%mqRealTime%"=="" goto settracecontinue

set tracefilepathcommand=

set tracefilemodeoptions=

:settracecontinue

logman %tracecommand% %log_session_name% %mqRealTime% -pf %msmqtracecfgfile% %tracefilepathcommand% %tracefilemodeoptions% -ets

@rem

@rem In real time mode, start formatting

@rem

if /I "%mqRealTime%" == "" goto EndRealTimeFormat

echo Starting %log_session_name% real time formatting...

if defined mqBinaryLog goto NormalRealTimeStart

logman update %log_session_name% -rt -ets

:NormalRealTimeStart

call tracefmt -display -rt %log_session_name% -o %mqTextLog%

:EndRealTimeFormat

set mqRealTime=

goto :eof

:FSETUPTRCINIFILE

set TEST=%1

if %IsWinXP% == 0 goto :nonxpsetup

goto :xpsetup

:nonxpsetup

@echo "MSMQ: AC" %TEST:~1,-1% > %msmqtracecfgfile%

@echo "MSMQ: Networking" %TEST:~1,-1% >> %msmqtracecfgfile%

@echo "MSMQ: SRMP" %TEST:~1,-1%
>> %msmqtracecfgfile%

@echo "MSMQ: XACT_General" %TEST:~1,-1% >> %msmqtracecfgfile%

@echo "MSMQ: RPC" %TEST:~1,-1% >> %msmqtracecfgfile%

@echo "MSMQ: DS" %TEST:~1,-1% >> %msmqtracecfgfile%

@echo "MSMQ: Security" %TEST:~1,-1% >> %msmqtracecfgfile%

@echo "MSMQ: Routing" %TEST:~1,-1% >> %msmqtracecfgfile%

@echo "MSMQ: General" %TEST:~1,-1% >> %msmqtracecfgfile%

@echo "MSMQ: XACT_Send" %TEST:~1,-1% >> %msmqtracecfgfile%

@echo "MSMQ: XACT_Receive" %TEST:~1,-1% >> %msmqtracecfgfile%

@echo "MSMQ: XACT_Log" %TEST:~1,-1% >> %msmqtracecfgfile%

@echo "MSMQ: Log" %TEST:~1,-1% >> %msmqtracecfgfile%

REM

REM Hardcoded ERRORLOGGING TO ERROR flag

REM

@echo "MSMQ: ERRORLOGGING" (error) >> %msmqtracecfgfile%

goto :eof

:xpsetup

@echo {24b9a175-8716-40e0-9b2b-785de75b1e67} %TEST:~1,-1% > %msmqtracecfgfile%

goto :eof

:Usage

if %IsWinXP% == 1 goto WinXPUsage

echo

echo

echo Usage: mqtrace [^<Action^>] [^<Level^>]

echo mqtrace -?

echo.

echo Advance Usage: mqtrace -path ^<TraceFormat folder^>

echo mqtrace -rt [^<Action^>] [^<Level^>]

echo mqtrace -format [^<Binary log file^>]

echo mqtrace -change [^<Module^>] [^<Level^>]

echo mqtrace -update [-rt] [^<Level^>]

echo mqtrace -query

echo.

echo ^<Action^> - Optional trace action:

echo -start - start/update trace logging to '%mqBinaryLog%' (default).

echo -stop - stop trace logging.

echo.

echo ^<Level^> - Optional trace level (overrides current trace level):

echo -error - trace error messages only (default).

echo -warning - trace warning and error messages.

echo -info - trace information, warning and error messages.

echo.

echo -? - Display this usage message.

echo.

echo -path - Set environment variable for TraceFormat folder.

echo This variable is necessary for later use of -rt or -format

echo and needs to be set once (per command-line box).

echo.

echo -rt - Start trace logger and formatter in Real Time mode.

echo Environment variable must be set first, see '-path'.

echo In addition, binary log is kept in '%mqBinaryLog%'.

echo.

echo -format - Format binary log file to text file '%mqTextLog%'.

echo Environment variable must be set first, see '-path'.

echo

echo.

echo -change - Change the trace level for each module

echo

echo.

echo -update - Update the trace level for all modules

echo

echo.

echo ^<Binary log file^> - Optional binary log file. Default is '%mqBinaryLog%'.

echo

echo.

echo ^<Module^>: The module for which to change the debug level

echo modules are: AC, DS, GENERAL, LOG, PROFILING, NETWORKING, ROUTING,

echo RPC, SECURITY, SRMP, XACT_GENERAL, XACT_LOG,

echo XACT_RCV, and XACT_SEND.

echo

echo.

echo ^<Level^> - Trace level (overrides current trace level):

echo none - shut down debug from this module

echo error - trace error messages only (default).

echo warning - trace warning and error messages.

echo info - trace information, warning and error messages.

echo.

echo.

echo Example 1: mqtrace (start/update logging to '%mqBinaryLog%' at Error level)

echo Example 2: mqtrace -path x:\Symbols.pri\TraceFormat

echo Example 3: mqtrace -rt -info (start real time logging at Info level)

echo Example 4: mqtrace -format (format '%mqBinaryLog%' to '%mqTextLog%')

echo Example 5: mqtrace -stop (stop logging)

echo Example 6: mqtrace -query (query current MSMQ current trace settings)

echo Example 7: mqtrace -change AC warning

echo Example 8: mqtrace -update -rt -info

goto :eof

:WinXPUsage

echo

echo Usage: mqtrace [^<Action^>] [^<Level^>]

echo mqtrace -?

echo.

echo Advance Usage: mqtrace -path ^<TraceFormat folder^>

echo mqtrace -rt [^<Action^>] [^<Level^>]

echo mqtrace -format [^<Binary log file^>]

echo.

echo ^<Action^> - Optional trace action:

echo -start - start/update trace logging to 'msmqlog.bin' (default).

echo -stop - stop trace logging.

echo.

echo ^<Level^> - Optional trace level (overrides current trace level):

echo -error - trace error messages only (default).

echo -warning - trace warning and error messages.

echo -info - trace information, warning and error messages.

echo.

echo -? - Display this usage message.

echo.

echo -path - Set environment variable for TraceFormat folder.

echo This variable is necessary for later use of -rt or -format

echo and needs to be set once (per command-line box).

echo.

echo -rt - Start trace logger and formatter in Real Time mode.

echo Environment variable must be set first, see '-path'.

echo In addition, binary log is kept in 'msmqlog.bin'.

echo.

echo -format - Format binary log file to text file 'msmqlog.txt'.

echo Environment variable must be set first, see '-path'.

echo.

echo -flush - Flush all the trace buffer to disk

echo.

echo ^<Binary log file^> - Optional binary log file. Default is 'msmqlog.bin'.

echo.

echo Example 1: mqtrace (start/update logging to 'msmqlog.bin' at Error level)

echo Example 2: mqtrace -path x:\Symbols.pri\TraceFormat

echo Example 3: mqtrace -rt -info (start real time logging at Info level)

echo Example 4: mqtrace -format (format 'msmqlog.bin' to 'msmqlog.txt')

echo Example 5: mqtrace -stop (stop logging)

echo Example 6: mqtrace -flush
Appendix F: Common Errors in the MSMQ.log File

Logging errors in Message Queuing produces the file \Winnt\Debug\MSMQ.log, which lists most errors that are encountered while the Message Queuing service is running. Some of these errors are legitimate and do not indicate any problem. This appendix lists common errors and their reasons.

· "0xc00e0005 in Lqs/30 and Lqs/50"

This probably happened when an application opened a local public queue. After the Message Queuing service fetches the queue properties from Active Directory, it also updates the local cache (.lqs file under \Storage\Lqs). The code always tries to create the .lqs file. If it already exists, you will see the two Lqs/30 and Lqs/50 lines. The code can handle this case, and it just updates the .lqs file with the properties fetched from Active Directory.

· "0x8000500d in Mqdscore/Xlatobj/20 and Xlatobj/40"

Many of the attributes in Active Directory are not set if default values are not changed. So when trying to query them, ADSI correctly returns this error (which means that the directory property cannot be found in the cache), and then the Message Queuing code uses the default.

· "MQRPC/90, RPCStatus: 0x6d3 (RPC_S_UNKNOWN_AUTHN_SERVICE)"
This means that the computer cannot use the Kerberos protocol in order to authenticate when connecting to a remote computer. This error is legitimate in environments where the Kerberos protocol is not available (for example, a computer running Windows 2000 in a Window NT 4.0 domain).

· "0xc000009a in heap/820"

This can happen when an application sends or receives a message from the network. It means that there is no more space on all messages files and Message Queuing will create a new one. For most cases, this is a legitimate error and it does not indicate any resources problem.

· "0xc00e0023" in QMSecutl/20 (buffer-too-small)

This happens when the Message Queuing service reads the security descriptor of its own msmqConfiguration object from the registry cache. The code will reallocate the buffer, and then try again.

· "0x80005000" in queries done by MQADS (the .dll used by Message Queuing 2.0 on domain controller to access Active Directory)
A common reason for this error is that the Kerberos protocol is not working on the client computer. When the Kerberos protocol is not working, the Message Queuing 2.0 service on the client computer will authenticate as anonymous, and that is the common error returned by Active Directory when accessed as anonymous.

Two common reasons for the Kerberos protocol to be nonfunctioning:

· Incorrect configuration of the DNS client. KDC (the service that runs on domain controllers and issues Kerberos tickets), is located using DNS. If DNS is incorrectly configured, the client cannot find a KDC, and cannot use the Kerberos protocol.

· Clocks being out of synchronization. The Kerberos protocol depends on clock synchronization. When clocks are out of synchronization, the server cannot authenticate clients by using Kerberos protocol tickets.

· "0xc00e0c1c in acssctrl/secd4to5/70"
This means that access mask in an ACE (in a security descriptor that is given to MQCreateQueue and MQSetQueueSecurity) does not contain any bits that map to Active Directory specific bits. This can be okay (for example, if the mask allows only receive, value 0x01, which maps to an extended right) or it indicates a problem if the mask contains non-relevant bits.

Starting with Windows 2000 Service Pack 3, this error will happen each time you create a public queue with the default security setting. The Message Queuing service on the domain controller, which generates the default security descriptor, adds an ACE for the anonymous SID with only the Send permission bit turned on. This bit does not map to a specific Active Directory bit. It maps only to the Send extended right, causing this error message to appear (anonymous was added for compatibility with the Windows Server 2003 security model).
· "0xc000009a in heap/1235"
This means that an application sent a message with a body larger than 4 MB.
· "Qmutil/20"
Most likely, this is a false alarm and can be safely ignored. When Message Queuing performs name resolution, it first tries TCP/IP, then SPX. The use of SPX is inherited from Windows NT 4.0. Currently, this protocol is obsolete and SPX-related code was removed from Message Queuing 3.0. Qmutil/20 means that Message Queuing failed to resolve the SPX address of a remote computer name.
Appendix G: Registry Used By the Host Integration Server 2000 MSMQ-MQSeries Bridge

There are some features in the Host Integration Server 2000 Bridge that are turned off by default and that can be turned on by adding registry values. This appendix lists these registry settings.

Note Some of the following registry keys require Host Integration Server 2000 Service Pack 1.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MQBridge\Server\DefaultMsmqLabel REG_SZ
When translating MQSeries messages into Message Queuing messages, the ApplIdentifier field of the MQSeries MQMD structure is copied to the Message Queuing label property. By default, this is an all-spaces field that translates into an empty Message Queuing label. Using this registry value, you can insert a default label into an Message Queuing message when an MQSeries message does not have one (for example, it has an all-spaces identifier).

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MQBridge\Server\BodyTypeAsVector REG_DWORD
Messages from MQSeries to Message Queuing that were not marked as string by MQSeries were converted to body type VT_UI1|VT_VECTOR. Visual Basic code cannot handle this body type. Hotfix http://support.microsoft.com/kb/324342 fixed this by changing the body type to VT_UI1|VT_ARRAY. This key was added for backward compatibility. If it is present with a nonzero value, the bridge will set the message body type to VT_UI1|VT_VECTOR.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MQBridge\Server\CorrelidPrefix REG_DWORD
When the bridge moves messages from Message Queuing to MQSeries, it prefixes the 20-byte correlation ID with the DWORD FQ2Q (the MQSeries correlation ID is 24 bytes). You can override this if you use the bridge EP API, but you cannot override it to be all nulls (24 bytes with a value of 0). When this registry value is present, its value is taken as-is and prefixed to the 20 bytes taken from the Message Queuing correlation ID. When not present, FQ2Q is used.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MQBridge\Server\AlwaysInfiniteToMQS REG_DWORD
Transactional messages can get lost after they reach MQSeries. The reason is a difference in semantics. On the Message Queuing side, you send a transactional message and enable dead-letter flags. Then, if the message expires, it will be put in the Xactdeadletter queue. On the MQSeries side, the bridge does not set any dead-letter flags, and the message gets lost after it expires. Setting the correct dead-letter flags is not trivial, and as a way to resolve this issue, when this registry value is nonzero, the bridge code ignores TTBR and TTRQ and sets the MQSeries expiry value to UNLIMITED.

HKEY_LOCAL_MACHINE\SOFTWARE\microsoft\MQBridge\Server\DisableUnicodeConversion REG_DWORD
When the bridge gets a message from MQSeries marked with the STRING format, it handles the message body as an ASCII string and converts it to Unicode. However, there are applications that send binary data, but mark it as STRING. After the conversion, the data is meaningless. When this registry is present with a nonzero value, the bridge will not convert the STRING body to Unicode.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MQBridge\Server\IncludeMQRO_DISCARD REG_DWORD
By default, the bridge adds the flag MQRO_DISCARD_MSG when converting an express Message Queuing message without journaling to MQSeries. However, this flag is not supported by certain IBM mainframes. If this registry is present with a value of 0, MQRO_DISCARD_MSG will not be added.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MQBridge\Server\MapUserSid2UserName REG_DWORD
By default, the bridge sends messages to MQSeries without a user name. Adding this registry with the values shown in the following table instructs the bridge to add a user name to the MQSeries message.

	Value
	Description

	0x1
	Send with a user name, using the default output from LookupAccountSid().

	0x80000001
	Send with a user name converted to uppercase.

	0x40000001
	Send with a user name converted to lowercase.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MQBridge\Server\OpenWithoutQMgr REG_DWORD
Opens MQSeries queues without setting the Queue Manager value in the MQOD structure. This may be needed in MQSeries cluster environment. The registry can have the values shown in the following table.
	Value
	Description

	0
	Default. Always use Queue Manager.

	1
	Always open without Queue Manager.

	2
	Try without Queue Manager only if opening with Queue Manager; fail with error "Unknown object."

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MQBridge\Server\IgnoreReplyResolution REG_DWORD
MQSeries message can include ReplyQ and ReplyQMgr fields that are the equivalent of PROPID_M_RESP_QUEUE (and Admin queue). By default, the bridge always converts these into a format name, to be included as the Message Queuing message properties. If conversion (from path name to format name) fails, the bridge puts the message in its deadletter queue. This registry overrides the default and lets the bridge send messages to the Message Queuing side without the PROPID_M_RESP_QUEUE and PROPID_M_ADMIN_QUEUE properties. The registry can have the values shown in the following table.
	Value
	Description

	0
	Default. Do not ignore failures.

	0x1
	Ignore failure when no ACK is requested (that is, PROPID_M_ACKNOWLEDGE is 0).

	0x2
	Ignore failure when an ACK is requested (that is, PROPID_M_ACKNOWLEDGE is not 0).

	0x3
	Always ignore failures.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MQBridge\Server\MinPollingTimer REG_DWORD, milliseconds, default-100.
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MQBridge\Server\MaxPollingTimer REG_DWORD, milliseconds, default- 0.
The bridge periodically checks whether there are new messages in the queues that it uses (control queue, MQSeries transmission queues). The frequency of polling is determined as follows:

· By default, both registries are not present and the bridge polls the queues once every 100 milliseconds.

· If you add only MinPollingTimer, (and the value of Max is not present or is 0), this is the period of polling. If the value is less than 100, the bridge sets it to 100 milliseconds.

· If you add MaxPollingTimer with a non-zero value, the bridge starts at MinPollingValue (or 100 milliseconds if Min is not present) and, whenever queues are empty, it doubles the value until reaching MaxPollingTimer. When queues are not empty, the polling interval is reset to MinPollingTimer. If the Max registry is larger than 60,000, the bridge uses the value 60000.

The bottom line for setting an arbitrary value is to use only MinPollingTimer. Use MaxPollingTimer to set a range, limited from 100 through 60,000 milliseconds.
9 Appendix H: Registry used by Message Queuing

There are some features in Message Queuing that are turned off by default and can be turned on by adding registry values. Most MSMQ registry values are documented in the Windows Server 2003 Resource Kit Registry reference at http://go.microsoft.com/fwlink/?LinkId=96615. This appendix lists registry settings which may not be otherwise documented.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSQM\Parameters\MulticastRateKbitsPerSec REG_DWORD (available on Windows XP and later).
Rate of transmission of multicast messages. MSMQ uses this rate when creating Multicast sockets to transmit multicast messages. The rate is per socket. It is recommended to set low rate value if your network includes slow links which transfer multicast packets. Refer to MSDN for more details on PGM settings and programming.
	Value
	Description

	560
	Default rate is 560 kbits per second.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSQM\Parameters\Security\SkipRevocationCheck REG_DWORD (available on Windows Server 2003)
Check Revocation list when accepting a server certificate. See this item for more details.
	Value
	Description

	0
	Default. Perform Revocation check.

	1
	Do not check Revocation list.

10 Appendix I: WMI script samples

The following sample demonstrates how to list active queues. Copy it into a file with an extension "wsf" and run the file.

<Package>

<Job ID="MSMQQueue">

<Script language="VBScript">

Dim Locator

Set Locator = CreateObject("WbemScripting.SWbemLocator")

Dim objs

Set Service = Locator.ConnectServer(".", "root\cimv2")

Set objs = Service.ExecQuery("Select * From Win32_PerfRawData_MSMQ_MSMQQueue")

For Each object In objs

 WScript.Echo "Name: " & object.Name

 WScript.Echo "...MessageCount: " & object.MessagesInQueue & ", BytesCount: " & object.BytesInQueue

Next

</Script>

</Job>

</Package>

The following example demonstrates how to display the MSMQ Service object, which includes global counters for the MSMQ service:

<Package>

<Job ID="MSMQService">

<Script language="VBScript">

Dim Locator

Set Locator = CreateObject("WbemScripting.SWbemLocator")

Dim objs

Set Service = Locator.ConnectServer(".", "root\cimv2")

Set objs = Service.ExecQuery("Select * From Win32_PerfRawData_MSMQ_MSMQService")

For Each object In objs

 WScript.Echo "Total Messages: " & object.TotalMessagesInAllQueues

Next

</Script>

</Job>

</Package>

