4 MSMQ Best Practices
Best Practices for Administrators 3

MSMQ Best Practices

Introduction

Microsoft® Message Queuing (MSMQ) enables applications running at different times to communicate across heterogeneous networks and systems that may be temporarily offline. MSMQ provides many ways of sending and receiving messages.
This article outlines some best practices for MSMQ administrators to follow for planning, deploying, and implementing your MSMQ infrastructure. It also outlines some best practices for developers writing MSMQ applications.
Best Practices for Administrators

This section provides tips for:

· Planning and deployment

· Installing and upgrading to MSMQ 3.0

· Administering message routing

· Administering messages and queues

· Securing MSMQ

· Administering the MSMQ service

Tips for Planning and Deployment

Here is a quick summary of the tips outlined in this section:
· Understand that MSMQ is not a database

· Consider your MSMQ deployment mode

· Avoid deploying dependent clients

· Provide the necessary client support in your Windows Server ™ 2003 domain environment

· Install Message Queuing servers in every Windows Server 2003 site

· Do not manually create Message Queuing objects in Active Directory before you install or upgrade Message Queuing

· Consider performance requirements for your MSMQ deployment

Understand that MSMQ is not a database

MSMQ is not a database, but rather a transport mechanism. It is not designed for long-term storage. It can be used together with a database for message storage.

Consider your MSMQ deployment mode

MSMQ can be deployed in either domain mode with access to Active Directory® or in workgroup mode for computers that are not part of a domain. Computers in a domain can also be configured in workgroup mode if you choose not to select the Active Directory component during installation. Computers may also be in offline mode, where they are part of a domain, but temporarily have no Active Directory access. To help you decide on an appropriate deployment strategy, consider the following options.

MSMQ in a domain environment

In a Microsoft Windows Server 2003 domain environment, computers running Windows Server 2003 with MSMQ 3.0 can directly access MSMQ objects in Active Directory. Domain mode with Active Directory access provides:

· Queue discoverability. Queues can be addressed and resolved using a path name or public format name using a queue GUID.

· Dynamic, cost-based routing.

· Message encryption.

· Cross-platform integration, such as MSMQ-MQSeries Bridge.

· Overhead for Active Directory communication, to check that queues exist, including their properties, permissions, and GUID where necessary.

· MSMQ must be installed in on a domain controller with Active Directory access if you want to install the Downlevel Client Support component to provide support to MSMQ 1.0 or MSMQ 2.0 “downlevel” clients. In addition, it is recommended that the domain controller be configured as a global catalog to support MSMQ 1.0 clients.
MSMQ in workgroup mode

If you do not need the features provided by Active Directory, consider workgroup mode deployment, which has the following restrictions:

· Computers in workgroup mode require direct connectivity with a destination computer and only support direct message transmission. Messages sent by such computers cannot be routed.

· There is no access to Active Directory. You can only create and manage private queues on a local computer, although you can view the list of private queues and messages in them on another computer using the Computer Management snap-in. You cannot view or manage public queues or any other information in Active Directory.

· There is no support for dependent clients.

· Messages cannot be encrypted.

· Internal certificates cannot be used for sending authenticated messages; external certificates must be used.

· Cross-platform messaging, such as messaging using the Microsoft MSMQ-MQSeries Bridge is not supported.

· Even for computers that are not part of a domain and have no access to Active Directory, the Active Directory Integration subcomponent is still installed during default setup. If the workgroup computer later joins a domain, this subcomponent is activated. Conversely, an MSMQ computer can be part of a domain, and then leave the domain and join a workgroup. Such a computer can later rejoin the same domain. Note that if a computer leaves a domain and then rejoins a different domain in the same forest, MSMQ will continue to use the MSMQ Configuration object from the old domain. However, if MSMQ leaves a domain and then rejoins a domain in a different forest, a new MSMQ Configuration object will be created during the rejoin process to the new domain.

Avoid deploying dependent clients

Because of several limitations with using dependent clients, we recommend that you deploy independent clients rather than dependent clients wherever practical. If you must use dependent clients, the supporting MSMQ server should be located in the same site as the dependent client. This will improve messaging performance for the dependent client. Dependent client limitations include:
· New MSMQ 3.0 features, such as HTTP transport, Message Queuing Triggers, and sending messages to multiple destinations, are not available to dependent clients. Thus, distribution lists, multiple-element format names, and multicast messaging are not supported for dependent clients.
· MSMQ 3.0 configured with dependent client functionality requires synchronous access to an MSMQ server, called a supporting server, for all messaging functions, such as hosting queues, storing messages, sending messages, and receiving messages. The supporting server can be any computer running Windows® 2000 Server or Windows Server 2003 operating in domain mode with at least independent client functionality. If the supporting server goes offline, the dependent client will be unable to send and receive messages.
· Because the MSMQ service runs on the supporting server, encrypted messages sent to or received by dependent clients travel between the dependent client and supporting server as plaintext.
· Queue access time is slower for a dependent client than it is for an independent client. This is because queue access is through an RPC-based connection.
· There may be performance issues if multiple dependent clients connect to their supporting server at the same time to send or receive messages.
· Dependent client queues are located on their supporting server, and it is not obvious which queues belong to which dependent clients, complicating queue management.
· When MSMQ with dependent client functionality is uninstalled from a computer, the associated queues are not automatically deleted from the supporting server.
· Dependent clients cannot run under a local user account.
· Dependent clients cannot be installed on computers in workgroup mode or on 64-bit computers.
Note that if you are moving MSMQ 1.0 computers from a Windows NT 4.0 domain into a Windows Server 2003 domain, dependent clients running Windows NT 4.0 must have Windows NT® 4.0 Service Pack 4 or later installed. This is necessary for transactional messaging.

As an alternative to dependent clients, consider installing MSMQ 3.0 with independent client functionality. Where this is not appropriate, consider deploying MSMQ 3.0 with DCOM as a viable alternative. For more information, see the Web-based article on Deploying MSMQ 3.0 with DCOM.
Provide the necessary client support in your Windows Server 2003 domain environment
Note the following requirements for computers configured as MSMQ clients:
	MSMQ client
	Recommended support requirements

	MSMQ 1.0 clients in Windows Server 2003 domain
	These clients access Active Directory through a Windows Server 2003 domain controller with MSMQ 3.0 installed. We recommend that the domain controller be configured as Global Catalog.

	MSMQ 2.0 clients in Windows Server 2003 domain

	These clients access Active Directory through a Windows Server 2003 domain controller with MSMQ 3.0 installed.

	MSMQ 3.0 clients in Windows Server 2003 domain
	These clients do not require MSMQ to be installed on the domain controller, and can access Active Directory alone.

Install MSMQ servers on multiple domain controllers

When you are supporting client computers running MSMQ 1.0 or MSMQ 2.0, install MSMQ on multiple Windows Server 2003 domain controllers in each Windows Server 2003 domain. Such clients require a domain controller to access Active Directory objects, and multiple domain controllers will provide better performance and scalability.
Install MSMQ servers in every Windows Server 2003 site

You should install at least one MSMQ server with routing enabled in every Windows Server 2003 site in your Active Directory forest. This is to ensure that messages are able to reach their destination between sites.
Do not manually create MSMQ objects in Active Directory before you install or upgrade Message Queuing

Installing or upgrading MSMQ in domain mode creates MSMQ objects automatically in Active Directory. If you have manually created objects, for example the msmq queue object, before the installation or upgrade, the automatic creation of the MSMQ objects may be impaired and will not function as expected.

Consider performance requirements for your MSMQ deployment

Generally, performance of MSMQ applications, like other applications, can be improved with the following disk and memory strategies.

Disk considerations
To improve performance, consider the following:

· Number of disks. Because Windows Server 2003 operating systems and MSMQ are able to perform many disk operations in parallel, using separate physical disks (as opposed to single disks with multiple partitions) will result in performance improvements for most Message Queuing applications. Applications that use recoverable or transactional messages will see the greatest improvement, because these messages are constantly being written to disk and retrieved from disk.

· Disk type. Not all hard disks deliver equivalent performance. In particular, there are high-performance disks that use hardware striping and battery-protected write-through disk controllers that delay write operations until they can be performed most efficiently. These disks will significantly improve messaging performance, especially when sending or receiving recoverable or transactional messages. Note also that for the best messaging performance on MSMQ servers, put the messaging (*.mq) files, message log files, and transaction log files on separate physical disks.

· Disk size. When deciding disk size for your computers, consider the space requirements for MSMQ files, the type of messaging (recoverable, transactional, or express), the total number of messages that are likely to accumulate on the server at any time, and the total size of those messages. It can be difficult to anticipate message storage requirements. However, if you use MSMQ servers for session concentration within a site (in-routing and out-routing servers) or in routing links (site gates), you must allow for additional message storage space on those servers. Also, servers that support dependent clients are likely to need additional disk space.

· Number of disk drives. Adding disk drives ensures that disk access has a minimal impact on messaging performance. However, if your CPU (processor) usage is at or near 100 percent, adding disk drives does not improve messaging performance. To determine whether your computers are limited by disk access or by processing power, use System Monitor to track the % Processor Time counter (located in the Processor object) and the Avg. Disk Queue Length counter (located in the DiskLength object). If the sustained % Processor Time value is above 75 percent during the time messages are being sent, adding processing capacity may improve messaging performance. If the Avg. Disk Queue Length value for any drive is greater than 0.6 when messages are being sent, additional disks may improve messaging performance.

· Disk quota. MSMQ disk quota is comprised of a computer quota, which specifies the cumulative limits for all messages stored on a computer, and queue quotas, which specify the cumulative limit for all messages in a particular queue. When the disk quota is reached, no messages can be delivered to any queue or journal on the computer.
For MSMQ 1.0 and MSMQ 2.0, the cumulative limit for all messages stored on a computer is not limited by RAM or hard disk size, but by the amount of virtual address space allocated to the MSMQ service by the operating system. The space is a virtual 4 gigabytes (GB) of addressable memory, 2 GB for kernel mode, and 2 GB for user mode. The MSMQ Queue Manager operates in user mode and therefore has 2 GB to work with, which essentially limits us to 2 GB of messages on a disk. When you take into account memory utilized by MSMQ code and internal data structure, and file allocation to store message files on disk, between 1.4 GB and 1.6 GB of message space remains. For a clean installation of MSMQ 3.0 or an upgrade from Windows 2000 Server, the default quota is 8 GB.

Memory considerations
To improve performance, consider the following:

· Storing messages. To maximize messaging performance, there must be enough memory on a given computer to hold all of the messages that are expected to accumulate in its queues under normal operation. Messages may accumulate on the source computers, if destination computers are unreachable. On destination computers, messages will accumulate if receiving applications are not running, or are unable to keep up with the arrival rate of messages.
· Calculating RAM requirements. To calculate the amount of RAM required to hold all messages, you must consider message sizes. For example, when sending 20,000 messages that are approximately 1 kilobyte (KB) each with typical header sizes, allow at least 23 megabytes (MB) (20,000 × 1 KB + 20,000 × 150) of available RAM beyond normal system requirements. For more information see Take into account message overhead. Note that this applies only to cases where all messages actually accumulate on a computer. If messages are normally retrieved (removed from queues) as quickly as they are delivered, significantly less RAM will be required.
Tips for Installing and Upgrading to MSMQ 3.0
Here is a quick summary of the tips outlined in this section:
· Check that you have relevant installation permissions for MSMQ

· Understand the restrictions if you are migrating MSMQ 1.0 computers from a Windows NT 4.0 domain into a Windows Server 2003 domain

Check that you have relevant installation permissions for MSMQ

	Installation type
	Required install permissions

	MSMQ server on a domain controller
	Domain administrative permissions (or member of the Domain Admins group)

	MSMQ server on a non-domain controller with routing support
	Enterprise administrative permissions (or member of the Enterprise Admins group)

	Any other MSMQ server or client installation
	Local administrative permissions (or member of the local Admins group)

Understand the restrictions if you are migrating an MSMQ 1.0 PEC from a Windows NT 4.0 domain into a Windows Server 2003 domain

The following restrictions apply:

· You cannot migrate the primary enterprise controller (PEC) into a non-root domain. You must always migrate it on a Windows Server 2003 domain controller that belongs to the root domain. (The root domain is the first domain in the Active Directory forest.)

· Make sure that your Windows Server 2003 infrastructure does not contain sites with the same names of the MSMQ 1.0 sites to be migrated. If the names are the same, you must rename them, or the migration tool cannot migrate those sites into Active Directory.

· If you are migrating MSMQ 1.0 computers from a Windows NT 4.0 domain into a Windows Server 2003 domain, dependent clients running Windows NT 4.0 must have Windows NT 4.0 Service Pack 4 or later installed. This is necessary for transactional messaging.

For more information, see the Web-based article on Migrating MSMQ 1.0 Controller Servers into a Windows Server 2003 Domain .
Tips for Administering Message Routing

Here is a quick summary of the tips outlined in this section:
· Do not install a Message Queuing server with routing on a domain controller

· Use routing links to connect all sites

· Configure in-routing and out-routing servers for mobile clients

Do not install a Message Queuing server with routing on a domain controller

If your MSMQ infrastructure requires both message routing and Active Directory access, install this functionality on different computers to prevent overload on the domain controller. For example, install a Message Queuing server with routing enabled on a non-domain controller computer, and install another Message Queuing server on a Windows Server 2003 domain controller to provide Active Directory access for “downlevel” clients. This configuration helps prevent overload on the domain controller.
Use routing links to connect all sites

Routing links establish a means to route MSMQ messages between sites, and there should be sufficient routing links to connect all sites, though these links do not have to be direct. Site gates, which are optional unless you are using MSMQ-MQSeries Bridge, act as a gateway between different sites. A routing link should be created for every new Windows Server 2003 site that is created.
Configure in-routing and out-routing servers for mobile clients

We recommend that in-routing and out-routing servers be available for mobile clients that are mostly disconnected from the network or connect to the network through a remote access server.
Tips for Administering Messages and Queues

Here is a quick summary of the tips outlined in this section:
· Do not store more express messages than physical RAM can hold

· Take message overhead into account

· Put a policy in place for emptying queues

· Do not use journaling unless needed

Do not store more express messages than physical RAM can hold

To minimize paging on your computer and thereby increase messaging performance, do not store more express messages than physical RAM can hold.
Take message overhead into account

The minimum overhead for sending a message on the network is approximately 150 bytes, which includes a signature, source and target computer IDs, a target queue name, and message properties. The overhead increases if you use transactions, a multiple queue format, or authentication. For example, for authentication and encryption, the following overhead applies:

· An internal certificate is approximately 400 bytes.

· An external certificate is at least 1 kilobyte.

· A symmetric key is 76 bytes (for 40-bit encryption).

· Security ID (SID) is tens of bytes.

Put a policy in place for emptying queues

Unread messages take up disk space. As more messages fill up the disk, performance will slow down. Consider the following strategies:

· Periodically clean up journal and dead-letter queues.

· Use the Total Bytes in All Queues performance counter to monitor queue disk space.

Note that MSMQ uses memory mapped files technique to access the message files, where all files are of fixed size (4 megabytes, which is also the size limit of an MSMQ message). As more messages are kept on local computers, more message files are created and mapped to the working set of MSMQ. This working set increases as more message files are created and used. By default, once every six hours MSMQ deletes empty files, but MSMQ does not defragment message files. This means that a message file that contains just a 1KB message still consumes 4 MB of working space. For this reason, purging queues will not necessarily reduce the MSMQ working set.

Do not use journaling unless needed

Journaling can use up disk space quickly. If you must use journaling, to increase messaging performance, purge messages in all journal queues and dead-letter queues often.
Tips for Securing MSMQ

Here is a quick summary of the tips outlined in this section:
· Consider using hardened MSMQ mode if you are messaging over the Internet using HTTP/HTTPS messaging in MSMQ 3.0

· Consider queue security settings

· Renew cryptographic keys regularly

Consider using hardened MSMQ mode if you are messaging over the Internet using HTTP/HTTPS messaging in MSMQ 3.0

In an MSMQ Internet messaging scenario, consider deploying MSMQ in hardened mode, designed to enhance the security of your MSMQ computers running on the Internet. Hardened MSMQ mode is intended to support scenarios that employ only HTTP (SRMP) messages. Note that hardened MSMQ mode imposes the following restrictions:

· The MSMQ service does not listen directly to any ports. Thus, only messages arriving from remote computers through IIS are accepted and placed in their destination queues. A remote procedure call (RPC) is ignored (remote reading is blocked), and dependent clients are not supported.

· Attempts to open remote queues with non-HTTP format names and send messages to them succeed. However, all outgoing queues created on the local computer that correspond to remote destination queues specified by non-HTTP format names are in the locked state. Messages that reside in locked outgoing queues, including acknowledgment and response messages, are not transmitted to their destinations.

· Messages intended for remote destination queues with non-HTTP format names, including remote queues designated by non-HTTP elements of a multiple-element format name, remain in the locked outgoing queues until hardened MSMQ mode is canceled and the MSMQ service is restarted.

· In hardened MSMQ mode, messages can still be placed in local queues with non-HTTP format names and received from them.

Note that when deploying a domain controller with the Downlevel Client Support component in a perimeter network, this component listens to the RPC interface, and that it is not governed by hardened MSMQ mode. To reduce the attack surface, you may want to remove the Downlevel Client Support component from the domain controller computer.

Consider queue security settings

By default, everyone has permission to send messages to a queue. If you want to change this default setting, you can specify that only specified users can send messages to a queue. You can do this by enabling the queue to only accept authenticated messages, and reject others. Message authentication confirms that a message has not been tampered with, and can verify the identify of the user sending the message. Message authentication is done at the request of the sending application, which indicates that a message should be authenticated by setting its authentication level.

Renew cryptographic keys regularly

To increase security, renew cryptographic keys on computers periodically, such as once a year. You should also renew cryptographic keys any time you suspect they have been compromised.
Tips for Administering the MSMQ Service
Here is a quick summary of the tips outlined in this section:
· Do not stop the MSMQ service

· Avoid changing the MSMQ service account
Do not stop the MSMQ service

Do not stop the MSMQ service on a computer unless absolutely necessary. Otherwise, all express messages will be lost.
Avoid changing the MSMQ service account
The MSMQ service runs under the LocalSystem account by default. Do not change the account that the Message Queuing service runs on unless absolutely necessary.
Best Practices for Developers

This section provides tips for:

· Writing and developing applications

· Troubleshooting

Tips for Writing and Developing Applications

Here is a quick summary of the tips outlined in this section:
· Avoid remote queue reads (receives)
· Avoid functions that query Active Directory
· Consider using private queues where possible
· Do not send unauthenticated messages with SenderId property
· Implement timeouts
· Understand the limits of asynchronous notification
· Know when and where to use transactions
· Request ACKs or NAKs
Avoid remote queue reads (receives)

MSMQ is designed optimally for sending remotely and receiving locally. Remote queue reads (receives) have several disadvantages:

· Remote reads are not supported in transactions.

· Remote reading may not respond due to network failures, or if the remote computer restarts. In such a situation, it can take the operating system hours to identify such failures and release calls. To overcome this limitation, MSMQ on the computer executing the remote read request will cancel remote read calls five minutes after the receive timeout has elapsed. Using short timeouts (several minutes) ensures that MSMQ on local computers will cancel read operations in time. Using long timeouts will thus effectively disable this feature. Note that this long release time will not affect computers running Windows Server 2003, and these computers will recover after a short period of time.
· When you do a remote read, the message body will pass between the reader and the remote computer, even if not required. This does not happen when the computers communicating are both running Windows Server 2003.
· In the new hardened mode in MSMQ 3.0 (on Windows Server 2003), remote RPC calls (remote read) are blocked.
· MSMQ 3.0 on Windows Server 2003 provides a new secure remote read interface for messaging between computers running Windows Server 2003 with MSMQ, with the following default settings:
· MSMQ 3.0 applications on computers running Windows Server 2003 in the same forest as the MSMQ 3.0 server hosting the queue containing the message to be read will use the secured remote read interface in an encrypted channel.

· MSMQ 1.0, MSMQ 2.0, and MSMQ 3.0 clients on Windows XP will use the old remote read interface. If you enable your MSMQ 3.0 server to use only the secured remote read interface, remote read requests from these computers are not supported.
· MSMQ 3.0 applications on cross-forest computers running Windows Server 2003 in non-trusted domains will use the secured remote read interface, but read requests will be rejected because an encrypted channel cannot be established between non-trusted domains. You can modify this behavior with a registry key.
For more information on the secure remote read interface, and for instructions on changing default settings, see MSMQ 3.0 online Help on computers running Windows Server 2003.
Avoid functions that query Active Directory

When using public queues, functions used to open queues may or may not query Active Directory to verify the existence of the queue or to validate queue permissions for the type of access requested. For example, by default everyone can send to a queue, but only the owner has receive (read) access. Consider the following strategies, which you can use to open the queue with the functionality you require, while minimizing traffic:

· Use a path name (qinfo.Pathname=”Computer_Name\Queue_name”).Opening a queue with this format requires a number of round trips to the domain controller to determine the GUID, to verify that the queue exists, and to get queue permissions and properties. The advantage of this format is a simpler code syntax, where you only need to know the name of a computer and queue.

· Use a Queue GUID (qinfo.FormatName=”public=228B7F89-EB76-11D2-8A55-0080C7E276C0”). Opening a queue with this format requires a number of trips to the domain controller (but less than the number required using a path name), to verify that the queue exists, and to get queue permissions and properties. The advantage of this method is the ability to use it in offline mode (when the computer comes online it will verify that the GUID exists).

· Use a direct format name (qinfo.FormatName=”Direct=OS:Machine_Name\Queue_name”). When you open a public queue on a local computer using a direct format name, there is an Active Directory query. There is no Active Directory query if you send to a public queue on a remote computer. This format has the advantage that you can open queues across different enterprises. This option is the only one available in workgroup mode. However, there is no cost-based routing or encryption, and MSMQ will never verify that the destination machine exists.

Consider using private queues where possible

In workgroup mode, private queues are the only option, but even in domain mode, consider the advantages of using private queues:

· Private queues have all the features of public queues except that private queues are not listed in Active Directory and are not discoverable. You can, however, enumerate remote private queues using MSMQ Admin APIs.

· Private queues are faster to create than public queues, because they have no penalty time for Active Directory activity.

· Private queues do not cause Active Directory replication problems.

Do not send unauthenticated messages with SenderId property

SenderId, a property of the MSMQMessage object, is an array of bytes that represents the identifier of the sending user, and is used primarily by the destination queue manager when authenticating a message. By default, MSMQ sets this property when a message is sent. However if messages are not authenticated, these bytes are an unnecessary overhead on the message. You can set the MSMQMessage.SenderIdType to MQMSG_SENDERID_TYPE_NONE, and then Message Queuing will not attach the sender identifier to the message, indicating that the sending application does not want Message Queuing to validate who sent the message.

Implement timeouts

Some default timeouts in MSMQ are set to infinite, and this can have a detrimental effect on resources. We recommend that you specify a non-default timeout value in accordance with your business and application requirements. If no timeout is specified and the destination is unreachable, the message stays alive for the default time. Timeouts include:

· Message send

· Message receive

Message send timeouts

The following applies to message send timeouts:

· Time-to-reach-queue (PROPID_M_TIME_TO_REACH_QUEUE). This timeout specifies a time limit (in seconds) for the message to reach the queue, and the enterprise-wide default setting can be adjusted by the MSMQ administrator. Enterprise default settings are as follows:
· Four days for messages sent from computers running:
· MSMQ 3.0 in workgroup mode
· MSMQ 3.0 clients that belong to a completely new Windows Server 2003 domain
· MSMQ 3.0 clients that join an existing domain, provided weakened security was not enabled for that forest
· 90 days for messages sent from:
· Any computer in a migrated enterprise

· Computers running MSMQ 1.0 or MSMQ 2.0 in Windows 2000 and Windows NT 4.0 enterprises

· Time-to-be-received (PROPID_M_TIME_TO_BE_RECEIVED). This timeout specifies the total time (in seconds) that the message is allowed to live. This includes the time it spends getting to the destination queue, plus the time spent waiting in the queue before it is retrieved by an application. The enterprise-wide default setting is infinite. If the time elapses before the message is removed from the queue, Message Queuing discards the message, sending it to the dead-letter queue if the PROPID_M_JOURNAL property of the message is set to MQMSG_DEADLETTER. This timeout can easily become an issue if a value is not specified, particularly with messages you did not explicitly send (for example, acknowledgements or journal messages).

One symptom of an incorrectly set value for these timeouts is that a computer reacts increasingly slower over time. Depending on the type of messages, the situation may or may not get better after the computer is restarted. If the situation does not improve after a restart, this is a sign that the problem involves recoverable or transacted messages. In such a situation, the MSMQ service takes much longer to start, because it needs to initialize more messages on each restart. To confirm that this is the problem, look at the performance counters for the MSMQ Service object - Total Messages in All Queues. Check that the queue contains messages, and that the number of messages shown agrees the expected number.

Message receive timeouts

The following applies to message receive timeouts:

· Timeout parameter of the MQReceiveMessage function. The MQReceiveMessage function allows you to read messages in the queue by either peeking at or retrieving them, and the timeout parameter specifies how long an application will wait for a message to be received from a queue. The timeout parameter for this function specifies the time, in milliseconds, to wait for the message. This parameter can be set to INFINITE, 0, or a specific amount of time. The default setting is INFINITE. When using the default setting or a long timeout, consider the following:

· If you receive messages with callback, consider that each process can register only up to 63 callbacks. If your callbacks wait on queues indefinitely without activity, you may reach this limit.

· Remote reading may stop responding, due to network failures. It can take the operating system up to two hours to identify such failures and release calls. To overcome this limitation, MSMQ on the computer executing the remote read request will cancel remote read calls five minutes after the receive timeout has elapsed. This length response time does not affect computers running Windows Server 2003. Using short timeouts (several minutes) ensures that MSMQ on local computers will cancel read operations in time. Using long timeouts will thus effectively disable this feature.

Understand the limits of asynchronous notification

Asynchronous notifications using WithEvents in Visual Basic can be a powerful feature. The idea of running code only in response to an event is quite attractive. However, note the following:

· Events can get lost, and you should periodically reenable notification.

· Multiple clients will be notified in the event of a single message. This problem is common; the application ceases to respond to user input. To fix this, ensure that all subsequent receives have timeouts set for the MQReceiveMessage function.

Know when and where to use transactions

There are two types of transactions in MSMQ:

· External transactions. These are used if resources other than those that MSMQ provides need to be part of the transaction. External transactions are coordinated by the Microsoft Distributed Transaction Coordinator (DTC).

· Internal transactions. These are used if there is no need to coordinate MSMQ operations with operations involving external resources. Because they have less overhead, internal transactions execute much faster than external transactions coordinated by the DTC. MSMQ provides a transactions coordinator that supports only itself as a resource manager.

Transactional messaging is used when you want to perform several tasks in an atomic way (that is, several operations, which may include non-MSMQ operations that will all succeed or all fail). When transactional messaging is used, the sending or receiving application has the opportunity to commit the transaction (when all operations succeed) or to abort (if one of the operations fails). When a transaction is aborted, all operations are rolled back to the state when the transaction was invoked.

When sending messages within a transaction, all the messages are sent together and in the order they were sent, or they are not sent at all. Message Queuing guarantees that all messages sent within the transaction will arrive exactly once, if they can be delivered, and in the order that they were sent. (Transactional messages cannot be sent to a multicast address.)
When retrieving messages within a transaction, all the messages are removed from the queue, or they are placed back in the queue in their original position in the queue. Note that peeking at messages makes no sense in the context of a transaction. Here are some of the features of transactional messaging:
· Transactions can be useful in guaranteeing that only one instance of a message will be placed in the queue for sending. If multiple messages are sent in a single transaction, MSMQ uses an internal exactly-once-delivery (EOD) protocol to guarantee that the messages will be delivered exactly once and in order.

· Transactional messages cannot be sent to a multicast address.

· The primary penalty for transactional messaging is performance. Transactional messaging is slower than nontransactional because messages are written to disk more than once, and more computer resources are required.

· Transactional messages can only be sent to transactional queues (local and remote), and nontransactional messages cannot be sent to transactional queues.

· Messages received within a transaction can only be retrieved from a local transactional queue. However, messages can be retrieved in nontransactional operations from local and remote transactional queues.

Although MSMQ does not support remote transactional-read operations, you can achieve the same functionality using a transactional read-response application. Read more about this type of application in the section on transactions in the MSMQ documentation in the Platform SDK on MSDN.

Request ACKs or NACKs

The default behavior of MSMQ is to not give notifications of either success or failure when a message is delivered. This may be acceptable for non-critical messages, but for messages requiring verification, you need to request notification. Consider the following:

· Remember to process acknowledgements (ACKs), negative acknowledgements (NACKs), and dead-letter messages, because these consume disk space and never expire.

· Transactional messages do provide some notifications by default. All transactional message failures are reported to the dead-letter queue. (Successes are not reported.) Messages can accumulate in the dead-letter queue without your knowledge, and resources are consumed as the dead-letter queue grows.

Tips for Troubleshooting

Here is a quick summary of the tips outlined in this section:
· Verify computer connectivity

· Determine resource usage

· Understand message size limits

· Understand threading limitations

· Understand potential paged and non-paged memory issues

· Monitor paged and non-paged memory

· Avoid message capacity thresholds

Verify computer connectivity

No matter what the connectivity symptom or problem, using the ping utility to test a computer is always a good idea. The amount of time that ping takes to respond can indicate a problem, as can the fact that ping only succeeds intermittently. Intermittent success indicates issues such as network overload or failure in name resolution, which forces the computer to broadcast for name resolution.

MSMQ 1.0 only uses the Network Basic Input/Output System (NetBIOS) name. So when running ping to test an MSMQ 1.0 computer, use only the NetBIOS machine name, and not a fully qualified DNS name. On computers running Windows 2000 or Windows Server 2003, check that ping resolves the full DNS name of the problem computer. If it does not, check your DNS server.

Note that when messaging through a firewall, ping, which is based on Internet Control Message Protocol (ICMP), is a poor choice for two reasons:

· It is not session based, therefore, it does not validate the ability to establish a TCP session.

· ICMP is rarely allowed through firewalls, because its primary usage is to control networking devices.

In domain mode, use the MSMQ MQPing diagnostic tool:

· On MSMQ 1.0 in MSMQ Explorer, right-click a remote computer and select MQPing.

· On MSMQ 2.0, run the Users and Computers Active Directory snap-in, right-click the MSMQ object of a remote computer, and select Properties. On the Diagnostics tab, click MQPing.

· On MSMQ 3.0, carry out the same procedure as for MSMQ 2.0. Or alternatively, open Computer Management, click to expand Services and Applications, right-click Message Queuing, and then click Properties. On the Diagnostics tab, click MQPing.

Additional connectivity problems can be isolated through an NetMonitor (NetMon) trace. A NetMon trace can help determine the object of an MSMQ attempt to establish a session and ascertain which part of the connectivity process is failing. NetMon can also help find situations where the connection between the two computers is succeeding, but validation to a domain controller is failing.

Determine resource usage

For slowness and resource depletion issues, the MSMQ performance counters in System Monitor are extremely useful. To access the counters, click Start, click Run, and type perfmon. The counters can show the following problems:

· Messages accumulating in journal queues or acknowledgment queues. You might have forgotten that the journaling feature is turned on.

· Pending outgoing messages. This is extremely useful, because pending messages are not detectable by any other means.

· Memory utilization or depletion. This can be a common issue when sending COM objects.

Outgoing messages can be inspected by:

· Performance counters, as described above.

· MSMQ MMC snap-in in Computer Management (MSMQ 2.0 and MSMQ 3.0).

· Local admin APIs, including:

· List local private queues

· Enumerate internal outgoing queues

· List state of outgoing queue (connected, next hop, message count)

· Pause/resume outgoing queue

· Take entire queue manager offline/online

· Read/delete messages in outgoing queue

· Purge all messages in a queue (rather than one by one)

Understand message size limits

Messages are stored in .mq files. The .mq file does not represent one particular queue. Messages from multiple queues can be stored in one .mq file, and messages from a single queue can be stored in multiple .mq files. However, a single message cannot span multiple files. This is the reason for the 4 MB limit in message size.

Any attempt to send a message larger than this through the system will raise an insufficient resources error. Be aware that Unicode data takes up twice as much space as non-Unicode data, because two bytes are needed for each character.

Understand threading limitations

A common technique used by programmers to have their application notified of events that happen locally or remotely is to use asynchronous callbacks. This technique works well for MSMQ application developers, because they can subscribe to an event, go on with other work, and receive a notification that an event has transpired (message arrived) asynchronously.

However, there is a limitation in calling MQReceiveMessage() with callbacks. The limitation is that only 63 callbacks can be made against any one process. This is due to how MSMQ has been designed to implement callbacks. The consequences of this can be understood when you consider that there is actually only one thread in an application process calling the WaitForMultipleObject API. This lone thread is responsible for waking up when any one of the 63 events is fired. Only one event is being used internally by MSMQ at any one time. This also means that callbacks in a process are serialized. If an application makes a 64th call to MQReceiveMessage() with a callback, and the other 63 threads are still waiting to be signaled, the 64th call will receive an INSUFFICENT_RESOURCES error.

Another common threading-based scenario is to get an MQ_ERROR_INSUFFICIENT_RESOURCES error when calling MQReceiveMessage() to read from a remote queue. When your application reads from a remote queue, a thread is created by the local MSMQ service, and this thread waits for completion of the remote read on the remote computer. The default threshold of threads created to handle these requests is based mainly on the version of the operating system you are running. The limit for Windows NT Workstation 4.0 is 16, Windows NT Server 4.0 is 64, Windows 2000 Professional is 24, Windows 2000 Server is 96. There is no limit for Windows XP Professional and Windows Server 2003.

You can change these limits by adding the registry DWORD values MaxRRThreads and MinRRThreads to HKEY_LOCAL_MACHINE\Software\Microsoft\MSMQ\Parameters and setting them to the decimal values of your choice. Note that the MinRRThreads registry entry is not available on MSMQ 1.0 systems. Also note that in MSMQ 1.0, these threads are created on demand and are never cleaned up. So if you set this number to 1000 and the service indeed creates 1000 threads, all these threads will live as long as the MSMQ service runs. This problem does not exist on later versions of MSMQ.

Understand potential paged and non-paged memory issues

The Windows Memory Manager creates two types of dynamically sized memory pools that kernel mode software can use to allocate kernel/system memory. Conceptually, these pools can be thought of as kernel/system heaps. Non-paged memory is roughly similar to physical memory because it is guaranteed to actually be in memory before it is accessed. Access to non-paged memory will never page fault.

Paged pool memory can be paged to disk. This is system memory, and these pools are mapped to the 2 GB kernel mode virtual address space allocated to every process. There are routines such as ExAllocatePool, which allocate and deallocate from these pools and are documented in the Microsoft Driver Development Kit (DDK).

The maximum size of both pools is determined by the operating system at boot time. For more details, see articles 126402 and 312362, in the Microsoft Knowledge Base. Drivers that allocate memory can specify a four-letter tag in their requests. When pool tracking is enabled, this tag is associated with each memory allocation and can be analyzed using diagnostic tools, such as Poolmon.exe, to determine if there is a leak. (Note that the tags for MSMQ memory are MQAC (computers running Windows 2000), MQQM, and MQXA (computers running Windows Server 2003.) As documented in the article 264936 in the Microsoft Knowledge Base, exhausting the paged pool will have a critical effect on MSMQ. It is necessary to understand how MSMQ utilizes kernel memory, because you can have millions of resident messages and not reach the 1.4–1.6 GB limit, but still exhaust the page pool. Each message consumes on average approximately 70–80 bytes of page pool memory. To determine that you have reached this limit or are approaching it, run System Monitor and look at the MSMQ service counter object Total Messages in All Queues.

Monitor paged and non-paged memory

There are two options available to help you monitor paged and non-paged memory usage.

Option 1 – Enable pool tagging

Pool tagging can be enabled by running the Gflags.exe utility. This utility can be obtained by downloading the debuggers from www.microsoft.com/ddk/debugging. It is also available from the Windows 2000 Support Tools, Platform SDK, or DDK. The process is as follows:

· Run Gflags.exe.

· Click the System Registry button and select the Enable pool tagging check box. Click Apply, and then restart the computer.

· After the system reboots, run Poolmon.exe –b. This will order the pool data by allocations. Because the system just rebooted, the page pool should be clear and the insufficient resources problem should not be evident. In moving forward, periodically obtain Poolmon.exe data as snapshots of the system memory. These snapshots can be used to see if one or more tags are leaking memory. By running Poolmon.exe –b, you will be able to determine which tags are the top memory consumers. When the problem reoccurs, run Poolmon.exe –b again. As described in Q177415, this information can be used to determine if there is truly a leak. If a leak is not apparent, the memory manager can be adjusted to clean up unused pages before it reaches 80 percent usage. For more information, see Q312362.

Option 2 – Obtain System Monitor data

System Monitor should be set up to log data to monitor the problem. All data for the Process and Memory objects and their counters should be obtained. Pay close attention to each process’s handle count information on handle leaks. The Memory object will have the Pool Paged Bytes and Pool Paged Allocs counters available. Note that this information can help you identify a leak occurring, but there is no counter available for the Paged Pool limit. Refer to Option 1 for information on determining the limit. Before making the changes outlined in Q312362, you should understand what percentage of paged pool your system will use on average. Reducing the PoolUsageMaximum to a percentage lower than your average usage can cause performance problems.

Avoid message capacity thresholds

The best way to avoid getting in this situation is to implement quotas in your MSMQ deployment strategy. This is a two step process:

1. Set computer or queue quotas. Note the difference between computer quotas and queue quotas. When a computer quota is reached, the destination machine will not accept any further incoming messages, and messages will begin to accumulate in the outgoing queue of the sending computer or on an intermediate routing server. To troubleshoot this issue, acquire a network monitor capture of the MSMQ traffic, and look at the MSMQ session establishment packets or MSMQ session acknowledgement packets. If the window size is 1, the computer quota has been reached. When a queue quota is reached, the destination machine discards the message. Therefore, it is important to always request the proper quota negative acknowledgement when using queue quotas on the destination machine. This negative acknowledgment will only be sent from the destination machine when the quota has been reached. For more information, see DiskQuota, or MSMQ online Help.

2. Request and acknowledgement. Quotas will keep your applications from flooding the MSMQ service, but will not help your applications to be more flexible when these quotas are reached. To do this, you can request a NACK (negative acknowledgment) from the computer to which you are sending messages. If this acknowledgement is returned to your application, and indicates that the quota for this queue or machine has been reached, your application can either cease sending messages or offload the messages to another destination. This is an excellent way to scale out MSMQ. For more information on these acknowledgements, see MSMQ documentation on acknowledgment messages in MSDN.

Summary

For administrators, we have covered many of the common issues that you will encounter, and provided tips and hints to help you successfully plan, install, and manage MSMQ. For developers, we have provided information on best practices for writing and developing MSMQ applications, and information on troubleshooting to help you identify insufficient resources. This document can be used with other MSMQ articles and the MSMQ FAQ at the MSMQ Center, and with the MSMQ developer resources available on MSDN, to help you understand how best to deploy your MSMQ infrastructure and applications. [image: image1.png]

[image: image2][image: image3][image: image4]
