Designing .NET Class Libraries

Session:
Strategy Question and Answer
Speaker(s):
Brad Adams, Jeff Richter, Rico Mariani, Sonja Keserovic
Transcript
Brad Adams:
Well, welcome back, I appreciate you staying for the Q&A session even though the weather it beautiful outside. I think you recognize everybody on stage except for possibly Jeffrey Richter. Jeff is a noted author and industry pundit. Does a lot of consulting work in the .NET programming space, so I’ve asked him to come. He can provide kind of a different kind of maybe balanced perspective into some of the questions that we have today. So this is my favorite part of the whole kind of two-day event. It’s kind of the Q&A part is where we get a chance to hear what’s on your minds and what questions and design problems you’re facing, and hopefully provide some feedback to you. So I’ll kind of moderate the discussion but if you have any questions now is a good time to start. Anybody? Yeah.

Q:
Question from the audience.
Brad Adams:
SOAP. Anybody want to take that? I think, Jeff, you’ll be the default. Jeff will be our default. So whenever we give it to Jeff, you’ll know.

Jeff Richter:
Well, I was on the Indigo team for six months, so I guess, default, there’s justification for that. The six months that I spent on the Indigo team building apps was the main thing. I wasn’t building the platform, I was building apps to test the platform and verify the platform. One thing that became very clear to me is that people will always say when you’re building the application, “Do you want to code first or do you want the contract first?” So in other words, you want to think about it in terms of .NET types, and then run some tool on them that produces the WSDL and the SOAP schemas and so on. Or if you want to think in terms of the contract first and then write a tool that produces the .NET types and it was very clear from the six months that I spent that you want to think in terms of contract first. If I’m ever building and distributing an application and actually I do build some from time to time, then I’m only thinking contract first now and I’ll never go to code first. So because I’m thinking therefore XML and schemas I try to do everything in terms of that type system and then how it maps to .NET. Another thing that I took away from the six months that I was there, is that request/reply isn’t going to work in a large distributed enterprise application. So I always make my methods have a void return value. And I always make my methods take a SOAP envelope now that I’m using WSDL. SOAP envelope is the name of the type that I make them take. So all my methods take one parameter and they always return void and that’s the interface that I expose over the wire. And that gives me the greatest amount of flexibility in terms of high performance and scalability because everything is asynchronously one-way messaging there. And it also allows me richness of message patterns because there’s a lot of message patterns in the world that are not request/reply, a lot of times you have this machine sends a message to this guy who sends a message to this guy and then this guy is going to send a reply back to the first guy. And if you do request/reply, you’re kind of doing this guy goes here, this guy goes here, this guy goes back here, this guy goes back here and it really hurts performance a lot and it also adds a bunch of brittleness into it. So, those are two of the big takeaways that I walked away with after my six months on the team. I contract first, and I do void APIs to take a SOAP envelope, which allows high performance, scalability, and a variety of message exchange patterns. Does that answer your question?

Q:
Question from the audience.
Jeff Richter:
Well, a lot of times, I mean the question is: do I have any comments on item potency?

Q:
Question from the audience.
Jeff Richter:
Well, so, in Indigo, his question is so do I have any ideas on how to handle item potency when the sender might send the same message multiple times to the client. And there’s a WS specification, WS reliable messaging that takes into account item potency and the Indigo team is building APIs. When I was back there it was called their dialogue messaging pattern, that when you opened up a dialogue communication between two machines, they internally, basically, every time you send a message, they just increment a counter. And on the client side, they keep track of the last number that they saw. And so if they see a number that’s earlier then the last one they processed they say, “Oh, we handled that before” and so they handle item potency by just throwing the second request away. And that’s part of the WS reliable messaging specification. And built into Indigo.

Brad Adams:
So are there other questions? Yeah?

Q:
Question from the audience.
Brad Adams:
So I think the question is that there’s a well defined set of literature around design patterns. There’s this “Gang of Four” book that kind of popularized it and how to design patterns to intersect with API design. And I think it’s interesting that design patterns are really focused on implementation issues. How can we save some implementation costs or make more maintainable and usable implementations? And that is sometimes the same thing as what I stated our primary premise is with designing public APIs, which is as a communication mechanism to users or to developers calling our APIs. So I think that there’s some overlap but they’re not identical. And then this specific point around, like the singleton pattern, for example, I think that it one that’s kind of a well understood pattern and to the extent that it makes sense, we have a singleton object in the framework then makes sense to use that in our public API. Did somebody else want to comment?

Q:
Question from the audience.
Brad Adams:
Right.

Q:
Now there’s been a lot of discussion recently about how is count really thread safe on, you know, weird scenarios and it’s a lot to ask of any end user in Microsoft, let alone in the unwashed masses, to keep abreast of that kind of thing. Now should we manage to somehow incorporate that into the APIs?

Brad Adams:
Okay. So now we’re talking about there’s a specific question around double-check locking and that’s a mechanism that you frequently use in the singleton pattern to ensure that locks are only taken once. And there’s been some debate in the community about how best to go implement double-check lock in a way that’s actually reliable, regardless of the architecture that you’re on. Kind of a pretty well known problem with Java and the double-check locking. The strict pattern doesn’t work because you actually need the appropriate fields to be volatile so that they don’t get reordered on some of the processors that will be popular in the next few years. So they kind of work today, but may not work in the future, which is kind of the thrust of the question. Is it really something we can ask of our users to keep up to date on things like when the double-check locking pattern works or not. I think it’s a great point, so a couple of things. One is that we have the advantage of being the CLR in an abstract machine and we can decide as we move forward to new computing architectures, what guarantees we’re going to strictly maintain and what ones we’re not. So for example, in that particular case, if I were a betting man I would bet that no matter what happens with the computing architectures, we’re going to make sure that the kind of traditional double check locking thing without volatile continues to work for the foreseeable future. Now you might have an option to run it in a more performant way that that wouldn’t work on, but it wouldn’t be the default. And then again, the general issue around API design and how should we deal with that, I think a classic example here is to implement singleton I wouldn’t use double check locking at all. I wouldn’t use, in fact, any threading or synchronization. I would just use the pattern we talked about in the class, which was just to have a single static field that you only, that the runtime initializes and then the runtime handles all of that kind of garbage for you and guarantees that it always works in the most efficient way. Does that sort of address your – kind of? Good enough for now. Anybody else want to comment on that?

Rico Mariani:
I think I can add a little bit of (inaudible). I guess any time you’re writing code where you need to think about what the processor’s memory model is, you’re in a world of hurt. Very smart people think very hard about the processor memory model when they’re implementing a virtual machine, you know, we have to make those decisions when we decide what kind of code the jitter is going to create. We take all those decisions and then we decide what memory model we’re going to expose to people who are writing at the IL level. At the moment, we’re exposing a comparatively strong memory model, which means you don’t have to worry about some of the things we just talked about here. Inasmuch as I’m not aware of any developers anywhere that actually can code against the weak memory model successfully, it’s not likely that we’re going to change to a weak model anytime in the future, but you know, never say never. As Brad said, if we did go to a weak model at some point, I think we’d want to be very careful about how we let people opt into that and where they could milk it. And probably we’d want to offer some abstractions that sort of let you take advantage of some of that weakness without having to have your head explode. It’s really quite difficult. So if you’re writing any code where you need to assume what the processor’s memory model is or you’re doing exotic, “I think I’m locking, but I don’t really want to lock,” just don’t. Rarely is it worth the grief. And if it is worth grief, much better to push that grief on the CLR team and say, “Hey we need locks with these semantics, get those in the BCL and get them right once and for all for everyone.” Because rolling your own is going to make your head explode.

Brad Adams:
Okay. Thanks, any other questions? Yeah.

Q:
Question from the audience.
Brad Adams:
Any volunteers?

Rico Mariani:
Let me repeat the question. The question is given that I have a couple of assemblies and they have to have contracts that are common between them, but that are not otherwise public, should I use friend assemblies and have my contracts remain internal; or should I use public interfaces and use link demands to enforce that only a certain person is doing the thing? I think the answer for me is pretty clear. I would definitely go with friend assemblies. The performance of link demands could change over time. Their behavior could change over time and there’s complexity associated with attributing the right thing. With friend assemblies, you know where you’re standing. It’s the design point. I mean, this is what friend assemblies are for. Link demands, you could use them for this, but that’s not what they’re designed for, particularly. So I would definitely go with, you know, the forehand, rather than the backhand. Is that pretty clear?

Brad Adams:
Yeah. I totally agree. Can’t add anything to that. Other questions? Yeah.

Q:
Question from the audience.
Brad Adams:
Jeff, I think of all of us you’ve probably spent the most time in front of customers. What do they ask you in your classes? And repeat the question.

Jeff Richter:
The question was as we meet with customers, what are their sticky points for them moving to .NET? I met with a company, I guess I shouldn’t say the name of the company, but here, it’s just two letters. And the group that I met with had spent a lot of time with our threading stuff, the thread pool and things like that and they were very disappointed with it and they refused to adopt a .NET framework because of threading stuff. A lot of that stuff is being fixed in Whidbey, though, so hopefully that’ll help. I’ve also been to a lot of companies where they’re VD6 programmers, they’ve been telling them you have to adopt this new platform and it’s really difficult for them, for some of them, to adopt this new platform. So I’ve been to a bunch of companies where they’ve actually been fired or laid off, the VD6 people, if they couldn’t do it. And then some companies have forced their VD people to move to C#, as well. Sometimes people are really concerned about performance of the runtime. I think its reputation is almost worse than what it truly is, though. And if they would do a little bit of experimentation with it, they might find that it’s not quite as bad as they think. But sometimes that’s certainly been a big thing. Especially, too, because a lot of people want the .NET framework to be an embedded, like hardware devices and things like that. For some reason I seemed to get a bunch of companies that are interested in that. And the .NET framework takes you further away from real time then Windows does. And Microsoft never claimed Windows to be a real time operating system, just really timely operating system. And the .NET framework just makes that worse because a GC might kick in and you don’t really know how long it’s going to run before you can go and do the next thing. So that’s been a problem. And, of course, I mean the biggest problem of all is just a massive code base that companies have and they don’t want to rewrite it or re-architect it and rewrite it. That’s the biggest problem by far, I would say.

Brad Adams:
Anybody have any other comments to add?

Unknown:
So for us, specifically for client applications, the other big issue is getting the runtime out of the box to begin with.

Brad Adams:
Oh, yeah, right.

Unknown:
Getting it out of the box and servicing it. If you’ve got 10,000 desktops you need to push this thing down to, you’d be surprised the number of companies that have like 10,000 or 20,000 desktop installations, and don’t use a system like SMS to actually push bits down to the box. So they really don’t have a very good story getting the runtime going.

Brad Adams:
Yeah. Along those lines, though, if anybody’s bought a machine recently, from a OEM, you’ll notice that the .NET framework is installed on almost every OEM machine now so it is kind of just a matter of the replacement cycle before we’re there. Other questions? Yeah?

Q:
Question from the audience.
Brad Adams:
Jeff, do you want to?

Jeff Richter:
You know I have opinions on this.

Brad Adams:
Yes, I do. Repeat the question.

Jeff Richter:
The question is where is the best place to catch all exceptions? And I have a very simple answer for that. The only place where you should be catching all exceptions and not re-throwing is in the un-handled exception policy of your application. So like app domains, un-handled exception event, or whatever it’s called. I forget exactly what it’s called, but I think that’s it.

Q:
Question from the audience.
Jeff Richter:
You should only throw the thread (inaudible) message if your application is going to die, not if the exception is caught and then handled. And the only place that you know if the application is going to die is in the un-handled exception filter, or handler, and that’s where you would put your UI. And you only want to code up your UI code in one place and have it caught from the un-handled exception.

Brad Adams:
But I think what he is saying is he wants to like catch the exception, put up some UI –

Q:
Question from the audience.
Jeff Richter:
Are you catching exception or a specific exception?

Unknown:
No, an exception that I know what to do.

Jeff Richter:
An exception when you know what to do, oh, you should catch it wherever you - I mean that’s, well, that’s the art form versus the engineering thing. I think that programming has a lot of art involved in it and I think that experience – well, I have to say it now –

Brad Adams:
Yes, yes, please. We led you into it.

Jeff Richter:
Yes, you did. It’s like he’s a plant in the audience. And you have to let experience, to some degree, guide you in decisions that you make. So, I might decide to put like a try-catch around single method call, if that might fail and I can recover from it. Or maybe I would put the try-catch around, you know, five or ten method calls. If I felt fairly confidant that if the same exception was thrown from those various things, it would be the same kind of recovery. And that you have to get some experience with, give it a try and see what the best thing to do is. Do you want to comment to the contrary?

Rico Mariani:
Let me give you the engineering spin. The software-engineering spin on that answer goes something like this. Engineering is also a discipline that is based on experience. And I think anyone who has ever studied the history of bridge building versus modern railroads can tell you that experience is a big part in engineering. But we don’t make guesses. We don’t think, “Oh, well, maybe this looks good enough.” We measure. Okay? So you have to tell me what experience it is that you’re trying to deliver and quantify that experience for me. Okay? And once you’ve decided that you need to quantify the experience, a lot of decisions will be made for you. So think to yourself, what is it that I’m trying to deliver to my customer? Mean time to failure of what, a day, a week, a month? Right? And how do I do that? Where do I have to catch exceptions such that the number of times the customer’s going to see an apologetic dialogue before we exit or a forced save situation. Okay? How do I engineer that into my product? If these things are, I mean if we’re talking about exceptions that we know what they are and we know that they happen sometimes and they have to be caught, I don’t know why we’re haggling over where we put UI for them, right? Because we don’t put up UI for things that we’re supposed to know how to catch and handle, right? We catch them and handle them and do the right thing. If we’re, on the other hand, talking about a situation that we maybe don’t know what happens. Well, it hardly behooves us to go and catch an exception, not knowing what it is, and then blindly continue, okay? That’s lunacy, right? I mean how do we know that it’s even safe to continue? I mean, maybe we have some failsafe document recovery tactic or maybe we don’t, but just blindly proceeding is as likely to damage the customer’s work as it is to help it. So if you’re then in that position, the best thing you can possibly do is put yourself in a position where you’re going to get the diagnostics to a support person. You’re going to get the richest logging information. And that argues for not catching down in the bowels of the code somewhere and having some unified place where we’re going to do this and we’re going to do this in a careful way, where we’re going to record the information that we need. We’re going to capture our statistics. Maybe we’re going to find out something about, you know, what the machine is doing. We’re going to do a Watson thing. But in any case, whatever decision you make, it should be based on trying to achieve some goal. Whether it’s a reliability goal or you know, a mean time to bad experience goal. There’s lots of ways that you can state this. But it doesn’t suffice to just say, “Well, we’re going to try our best and do what we think is right.” I mean, we should be thinking about quantifying what it is we’re trying to accomplish and then we should be taking steps that are substantially likely to meet those goals, whether they’re performance goals or reliability goals. I don’t think those answers are at odds with one another.

Jeff Richter:
No, I agree with everything you said. You know.

Rico Mariani:
I think it’s just a question of whether you are disciplined about it or whether you just kind of make your best effort and hope for the best. And our engineering excellence people will tell you that that’s the difference between craftsmanship and engineering. So I encourage you to engineer your software.

Brad Adams:
Okay. Other questions?

Unknown:
Here’s one here in front.

Brad Adams:
Oh, okay. Yes, thanks.

Q:
Question from the audience.
A:
I’d be happy to answer this. Do you want me to?

A:
Repeat it, because I’m not sure I heard it either.

A:
The question is what’s the reason to use another app domain? That’s basically the question. For me there are three reasons to use an app domain. An app domain gives you the ability to unload assemblies. That’s usually the highest, I mean, I’m actually giving these in order. Okay? That’s usually what people want is the ability to say I want to load this in, I want to do some stuff with it and then I might want to unload it later on. So app domains give you that ability. The second is app domains give you security. So I might want to load some code, but I want to put it in a sandbox so that it’s only allowed to do certain things I’m allowing it to do and not other things. And then the third reason is configuration. When you create an app domain you can say, “Here is the probing path that I want the CLR loader to look for other assemblies” and things like that. That one’s less common. Security is middle and the ability to unload is generally the biggest thing that people want and why they use an app domain.

Q:
Question from the audience.
A:
The threading model in app domain is like people are hiding code?

Q:
Question from the audience.
A:
The question is, for example, on ASP.NET, how is it that they’re creating an app domain, and then they create a thread to run the code in there? Is that?

Q:
Yeah.

A:
There is no affinity between threads and app domains, like there is between threads and processes in Windows. So a thread in a single process can move agilely between app domains inside that process. So what ASP.NET does is it sees a request that comes in from a client and then it pulls a thread out of a thread pool and then sends it off to the app domain that’s hosting the code for that website and then it goes and runs. And then the thread returns back and then it goes back into thread pool. It might wake up for another client request and go into a completely different app domain to return HTML back for a different website that’s running on the same box. Does that answer your question?

Q:
Yeah. It seems to me ASP.NET is running and (inaudible).

A:
No, actually there could be multiple threads running inside that one app domain. The thread pool could have five threads that wake up right now and handle five client requests but for the same website.

Q:
But your code will run (inaudible).

A:
No, that’s not true. Your code could be executed concurrently by multiple threads.

Q:
Okay.

A:
By multiple threads.

Q:
Question from the audience.
A:
If multiple threads come through simultaneously for the same website. Yes. That’s possible.

Q:
I’d just like to say one thing, so Jeff already made reference to this in his answer. But with his third reason, which was configuration, he said that you can give the load a separate probing pass and that sort of thing. So a concrete example of why you’d want to do this is with add-ins. So for example, say you have some application that has host-like properties and you’re posting multiple add-ins, which you do or do not write. Well, and in the case where you do not write them, you could imagine the case where these add-ins are relying on the same assemblies as you, but they’re relying on different versions. So you can get into a case where one day you have a customer who loads, you know, three add-ins in one particular order, and everything works fine. Then the next day they load those same three items in a slightly different order and the last one, the third one, doesn’t load. And that’s because of a loader-end problem and that would mean that requires a higher version of this same assembly than the ones that are already loaded and you’d get that problem. Just adding that for a concrete example.

A:
Okay. Other questions? Yeah.

Q:
Question from the audience.
A:
I think, Rico, you’re the natural.

Rico Mariani:
I think this question was born for me. The question can you confirm or deny the terrible performance of Reflection and our intents to completely rewrite it from the ground up. I don’t know that I would characterize that past performance is terrible, but from a space perspective, anyway, the space discipline of the previous implementation of Reflection was such that hardly anything got unloaded. So you would sort of drag more and more and more of the managed version of the metadata in the memory and it would never go away. And that caused some problems. And there were other patterns that were, well, less than good. So I would say that there was room for improvement, abundant room for improvement in the Everett and the one implementation of Reflection. And that we did significant work in Whidbey to address some of those problems and that that work has been completed. And I think there are still significant weaknesses in Reflection and I may be able to make that statement for the rest of time, frankly, because it’s a really hard problem. But there remain significant weaknesses but I can say that the implementation has been significantly improved. And it’s probably changed enough that you could call it a rewrite but take your pick.

Q:
Can you give an order of magnitude difference?

Rico Mariani:
No, I can’t because it’s entirely dependent upon the scenario, I mean you’d have to measure. But in terms of space, well, I guess they heard the question. In terms of space, what’s happening now is that the amount of space that’s used is comparable to the number of objects that you’re actually continuing to reference as opposed to being monotonically increasing for all time. So how do I give that as an order of magnitude? It could be many orders of magnitude or you might not notice at all if you really needed everything or if you’ve hardly touched anything then you wouldn’t notice much either. So your mileage might vary but generally speaking - and, again, there’s cases where the new discipline with, you know, managing the stuff and being able to unload it actually creates a burden. So there could be cases where it’s actually slower, but the overall mix is substantially more frugal in terms of space and that turns into real time wins, as well. So I think you’ll be satisfied, you know, that it’s an improvement, although I don’t know whether you’ll be satisfied that it’s good enough for you, yet.

Brad Adams:
Jeff, do you have something to add?

Unknown:
Also next Reflection being not as fast as you’d like it, there are also a lot of cases where people use Reflection where it’s not needed. And we just added the rule suffix called that flex, some of these patterns, and suggestions on how to fix that. So just check your apps through (inaudible) and see if you can improve something there.

Brad Adams:
Yeah. Just to give more color there. We actually looked through the Longhorn code base and there are several places in Longhorn where we were using Reflection doing late-bound programming where we could’ve actually been doing that statically and kind of resolving stuff at compiled time and then just evaluating it there and it is, no matter how good the implementation of Reflection is, it’s never going to be better than doing it statically. So if the problem is one that you could actually solve without using Reflection, by all means, do not use Reflection. But if you need to use Reflection, then, as Rico says, it is getting a lot better.

Rico Mariani:
I’ve guess I can’t underscore that enough. I mean, I was saying just a couple months ago we were talking about Avalon and some of the stuff they’re doing and I said, I don’t know, we managed to ship like four major versions of Windows, five major versions of Windows without getting all introspective and now suddenly we need to know the type of everything and we can’t possibly deliver bits to the screen without doing late-bound programming. I don’t understand. It still looks like a button to me. I don’t know, so really it’s like a drug. People start thinking “Oh, yeah, this Reflection thing is really cool. Look at the stuff I can do” and it is cool and I’m glad that it’s easy to use. I mean that’s never really been a complaint. I’m glad that it’s easy to use and it’s there for you when you want it. But you know, just because it’s easy to use doesn’t mean it’s the right thing for your scenario. So go back and think about what customer problem you’re trying to solve and think about what you’re going to pay for Reflection. Model it, get some metrics and then make a quantitative decision and you’ll be in pretty good shape, you know. Where you need it, it’s good to have it there for you, but don’t just grab for it because it’s convenient.

Brad Adams:
Okay. Yeah. Okay.

Q:
Question from the audience.
Rico Mariani:
Okay. Can I give quantitative numbers comparing Everett and Whidbey? I mean you know, yes.

Brad Adams:
Seven.

Rico Mariani:
But there’s so many numbers. And the follow up is okay, and I think you realize the futility of asking - and ask me a question that I’m much happier to answer, thank goodness, which is what are the big areas for improvement, okay? And I can tell you what those are very easily because if I didn’t know those, man, I’d really be a schmuck. Number one, working set. Number two, private pages, specifically the percentage of pages of any n-gen’d modules that are private. Okay? We used to be around 40%; we’re now down around 15%, we want to get to five.

Brad Adams:
Yeah, these are pages owned by the CLR.

Rico Mariani:
Pages owned by the CLR, excuse me. These are module private pages that management uses, okay? All right. So working set, private pages, per app domain cost, okay, both in terms of app domain startup cost and in terms of the memory and other resources associated with starting up an app domain. And last but not least, overall startup time. Those are sort of your big four.

Jeff Richter:
I heard that marshalling across that domain is also much faster to do.

Rico Mariani:
We did a variety of other things, too, some of which I was responsible for. But I don’t know if I’d put that one in the big four, but a significant one that we did was there’s a fast path for marshalling across app domains now that can be as much as 200 times faster than Everett but it depends on what you’re marshalling.

Q:
Question from the audience.
Rico Mariani:
We think about both things. Our goals have been stated.

A:
Repeat it, please.

Rico Mariani:
Okay. I’m sorry. The question was are we thinking about working set or reference set because reference set is what is typically measured in Windows. We think about both. We look at extra info traces and so forth. Reference that basically counts all the files and not just the modules that are committed and other kinds of I/Os as well, like file I/O; or like when we look at the contents of an XML config file, for instance, okay, that’s very important. The reference set goals contrasting with working set have largely fallen out in terms of addressing startup time because reference set means soft faults, and soft vaults mean slowness and slowness means slower startup time. So yes, we think about reference set but in terms of stating the goals, we’ve consistently stated that it is a working set goal. We may change our mind about that for the next version.

Q:
Question from the audience.
Rico Mariani:
Well, lots of teams have worked on their performance. I can’t really speak to the changes that were made in systems.xml specifically, for instance, but I do know that they did work there, maybe if one of my esteemed colleagues can –

Brad Adams:
Yeah. I don’t have much more to add than Rico, but I know that it’s been a theme across the board with the stuff we shipped in V.1, we spent a lot of time. And, in fact, large chunks of the system.xml, the readers and writers were actually re-implemented with some more kind of better performance-related algorithms in place. So you should see some improvement there in Whidbey.

Rico Mariani:
The biggest problem with system.xml, in my opinion, isn’t that there’s awful performance in system.xml. The biggest problem is people don’t do their homework with regards to what the characteristics of that assembly are and what it’s good at and what it’s not good at. And they pick it up to parse their 1K XML file and they make a decision to persist their state into 1k of XML on the basis of, “Oh, well, I’ll just write two lines of code that call system.xml,” and they didn’t need that file to inter-operate with anyone. They didn’t need it to be human readable. They’re getting no benefit from XML schema or whatever else and they drag in an assembly that they’re now getting virtually no value for and asking it to do this toy little task, which it will happily do for you. But, okay, you had a 1K file. I mean I literally know people that are using it to store window rects for their client state. X top left, bottom right, four integers, okay? So then at startup time, get this, at startup time they go and drag in system.xml so that they can get the corners of their windows. Now apparently we don’t know how to get four ints from a text file without putting in angle brackets.

Brad Adams:
Angle brackets are in, Rico.

Rico Mariani:
I guess. You know they must be way in if you’re willing to pay that much working set. And then, here’s the best part, then they call me up and complain that system.xml is too slow and somehow it’s the CLR’s fault. So I don’t know, okay, I guess we could’ve said, “Are you out of your mind? You only added two tags to the XML file.” And can we get that one into FX Cop, do you think?

Brad Adams:
The “out of your mind” –

Rico Mariani:
I don’t know what to do here. Go back to your basics of engineering. Okay? Quantify what the heck it is you think you’re going to do, what your performance needs to be and then look at the cost you’re paying and you’ll be able to make sensible decisions, okay. Just because it’s in text doesn’t mean it has to have angle brackets. You don’t have to use like the parser from hell that can parse any, I mean, there’s great times. When I was working at MSN we used the system.xml for feeds that came in and we had RSS stuff, we had all kinds of stuff coming in. And it was fantastic to have a robust parser just sitting there that could handle all the stuff. We could go, find the attributes we needed in a rich way that was programmable from a database and we didn’t have to special case, all the different stuff. But you know if you have a very limited language, even if you choose to express it in XML, XML is parsable by a yacc parser, for instance. So if you have a high performance application that’s against the particular schema you can write a LAR1 parser, just like you would’ve before, the same way we would’ve done it in 1959 and it’ll be the fastest app. It’ll be maintainable as heck. It’s nice, rich tools for diagnostics, readily verifiable, blazingly fast, no memory. Only works in one language, though, but a lot of times that's where people find themselves. So don’t pick up system.xml just because it could do the job, right? It needs to be suitable for the job. Okay. There are a lot of cases where it is and that’s where the design point is.

Brad Adams:
I think you were next. Yeah.

Q:
Can you talk a little bit what specific to what dock to reduce working set?

Brad Adams:
Performance seems to be the topic of choice here.

Rico Mariani:
I’m on a roll, here. So specifically what was done to reduce working set? Oh, boy. I mean, there are jillions of items. One I’m responsible for is our handling of string literals; for instance, it’s superior in Whidbey time frame. Where string literals appear in shared assemblies we can burn the string literal as an object into the resulting native image so that we don’t then have to realize it on the heat. And that brings me to point number two, which is a bunch of things were done so that we’d have fewer fix-ups in our methods. Now, what the heck am I talking about there? We have to put fix-ups in our methods, even the ones that have already been generated with the engine tool up front, to get access to things that aren’t around until run-time, like for instance, a string that is on the GC heat, or a reference to another or something. Now those fix-ups cause lots of problems, not the least of which is we have to have them in the image in the first place and there’s a lot of them. And then we have to apply them which frequently dirties a piece of code we would otherwise not like to have be dirty. So targeting the private page code. So anytime we can eradicate fix-ups, that’s a good thing. And what’s the number one thing we did to eradicate fix-ups? That’s hard bind. So we made it so that one native assembly can assume the load address of another native-generated version of the assembly and burn in directly the addresses of all the methods. So if you’re trying to call this method that’s over in that assembly, we could put a hard jump to it or a hard call, if we know that everything is going to be hardbound. And before what we had to do was the first time you ran that method we would have to go and find out what token you wanted from the other assembly, figure out where that assembly had been loaded and look it up in the metadata, compute the address and then patch it into the call site via fix-up. Okay?

Q:
Can you guarantee the load address?

Rico Mariani:
We can’t guarantee load addresses. So in the event that you’ve hard bound and we don’t get the address, you’re kind of in the same situation as Windows is, the DLL has to be relocated. So we could be in a variety of different –

Q:
Question from the audience.
Rico Mariani:
You pay a price, right. You could be so bad off that we just decide we can’t use the native image at all, we’re going to jit. But there’s a variety of cases where it’s possible to just apply some of the fix ups and do relocation but when that happens you’re screwed anyway. I mean your perf just went right out the window. And so it’s important to get those base addresses right for sharable assemblies just like it was for kernel 32. It’s really the same sort of value proposition and actually we’re doing even more on that vein in Orcas to make it better for a variety of reasons, not the least of which is improving the hard binding case and getting fewer private pages.

Brad Adams:
So in the interest of variety, non-performance related questions? There is one, okay, good. Yeah.

Q:
Question from the audience.
A:
Okay.

Q:
(Inaudible)? So the question is how can express similar (inaudible) in the .NET without (inaudible) but just trying (inaudible)? So in general there is a synchronized process?

A:
Yeah.

Q:
Question from the audience.
Brad Adams:
One of you guys want to do it, or you want me to do it?

Jeff Richter:
I can do something.

Brad Adams:
Let me start and then I’ll let you guys.

Jeff Richter:
All right. You can go.

Brad Adams:
So let me start by telling a story. So the question is essentially around locking and how should we lock in our framework when you’re building a library? How should I make it multi-threaded aware and it was noted that COM has apartments and Java has the synchronized keyword. What’s the .NET answer? And I mentioned I’ll start by telling a story. So a few years ago IBM got very interested in Java and the Java programming language for a variety of reasons we won’t go into here. But one of the first things they did, the engineers over at IBM did is rewrite the Java collection classes. They just rewrote them all. And the reason why they did that is because the Java collection classes didn’t scale at all. They didn’t scale in the way they needed to on the server in the mid-tier and the reason was that there was so much incredible amount of lock contention going on. Because Java has this great little synchronized keyword, the designers of those libraries were like, “Hey, man, this synchronized keyword is great. I’m going to write this really rich, collection class. It’ll have all the bells and whistles on it and it’ll be thread safe, by God. And it’s very easy for me to do. I can actually get that done in five minutes. I’m just going to put this synchronized keyword on there.” And what that meant is every entry point into the collection classes took a lock and that caused lock contention. And so the fix that IBM did was a very simple one and they just rewrote the collection classes to not have those. So I think the moral of this story is that you - as my kind of strong advice and design guidelines and my advice to you here is for the most part, if you care about the threading scenario, the thing you should do is not take locks in your code. In fact, we say instance methods and classes should not do locking of any kind. And even more than that, it is not necessary to go do work to make your code thread safe. And the reason is that it turns out that most usage in applications that need the thread safety, most uses of that require locking at a granularity that you, as a low-level framework provider, you can’t do. Because what they want to do is suck the value out of a file and add it to the collection or remove it from this collection and add it to that collection and then you take locks at a higher level of granularity. So my general advice is we don’t have a lot of apartments. We don’t advocate using the synchronized kind of model in .NET. It’s something that applications should do on top of the framework. So with that said, any other agreements, disagreements?

Rico Mariani:
I’ll say it more strongly.

Brad Adams:
All right.

Rico Mariani:
First, in the performance and scalability PAG, and I gave a link to it in my talk, it’s msdn.microsoft.com/perf. It’s in chapter five. There’s stuff on threading and scalability and where to take locks. And the default answer is “Don’t.” Apartment threading is the single biggest performance disaster that I’ve ever had to deal with in my life. Don’t foist it on our customers. Be glad that it’s not there. Be glad that it’s hard to lock. Be glad that you can’t accidentally with just one word totally trash your otherwise perfectly good performance and please do not lock in your instance methods. You have no knowledge of what the atomicity is that’s needed is. And so probably, it depends on what layer you’re at, but unless you’re the guy who knows what the transaction is, you don’t know what locking is necessary and all you’re going to do is get in the way. This is why collection class locking is worthless because it’s never the case that all you have to lock is one collection, right? As soon as you have to have the collection updating in sync with something else and you always do, somebody else higher up on the stack knows what the model is and understands what the isolation contract is nd how big the transaction is, is going to have to take the appropriate lock and that’s not you. So just don’t, all right. Now if you’re writing ASP.NET and you’re the monitor guy that dispatches threads across app domains, maybe you then know something about the unit of work. Okay? And you can do something sensible. But if you’re not, stay the heck out of it. Someone can easily implement – what’s the official name for the rental model now? It used to be called Rental but there’s a better – shared or something?

Brad Adams:
I don’t know.

Rico Mariani:
I can’t remember. But that’s where the object can move from thread to thread as long as only one thread has it at any given moment, right. So effectively, you don’t have to worry about threading issues, right, because you know that only one thread has it. That’s the most popular one. It’s not quite as flexible as free, and free-threaded; anybody can enter the object at any time. But typically the rental model - and that’s again not the official name, I can’t remember what the official name is. The rental model is going to give you great perf. It’s going to scale like gangbusters and it requires hardly any code. It’s tremendously easy to verify that you did it right. Don’t do much of anything with locking primitives. Be very careful.

Brad Adams:
Great.

Q:
Question from the audience.
A:
Right.

Rico Mariani:
The default position is by default you should think about I don’t want to take any locks. That should be the normal thing of doing. Every rule has exceptions. So there could be instances where you have to lock because you have internal consistency rules that you have to keep independent of what your customer is doing or you know you’re going to be using a free-threaded model and so you’re going to have certain sorts of consistencies. Maybe you’ll do double interlocking, maybe you’ll do it another different kind of way. Typically, though, if you just have an object and it’s only manipulating its own instance variables, you don’t have issues because you can assume only one thread has the one object and there aren’t two threads racing against the current object because somebody above you is supposed to prevent that from happening. I think that’s sort of the default position rather than sprinkling something to try to get, say, apartment threading by default. Did I mention apartment threading is a total perf disaster? Did everyone hear that?

Brad Adams:
Okay, other questions?

Q:
Question from the audience.
Brad Adams:
The question is do I have to mark that I’m not thread safe? Actually it’s the default to not be thread safe. So our users using the framework to the extent that they assume something about thread safety, they assume we’re not thread safe unless you state otherwise.

Rico Mariani:
I will provide the threading model in my app layer where I know what threading model should be applied and then I can use your code in a variety of contexts.

Brad Adams:
So I think there was a question in the back, yeah, you, yep.

Q:
Question from the audience.
Brad Adams:
All right. Sonja, do you want to repeat the question?

A:
So question was when should you use safe handle as opposed to the critical handle? So same handle has just one more guarantee than critical handle doesn’t have. So it’s more heavyweight than a critical handle. So you should use safe handles only if you know that your handles might be subject to handle recycling attacks. So if you know that it’s possible on one thread you release a handle and on the other threads OS might be deciding to recycle aggressively this same handle values so somebody else can get it. That’s called handle recycling attack. And if you know that that’s possible to happen with your native OS handles, in that case you need to use safe handles. Because there’s reference counting and then we are protecting you from that. Is that answering your questions? Okay.

Brad Adams:
Okay, so with that we only have a couple minutes left. I thought I would allow my colleagues here to leave this group of framework developers with one sort of piece of advice, so kind of your 10 or 15 seconds to be able to give people one sort of thing to walk away with and remember. So I’m going on to give them a chance to think about what theirs will be. I’ll give you one. Everything that we’ve talked about today, 99% of it is available in the .NET framework design guidelines. So print off a copy of that thing and reference it in your daily life, that section 5.2.1, what it says and it can help you a lot in what you’re doing. Jeff?

Jeff Richter:
Yeah. I’m first, huh? I’ve been hanging around Microsoft for about 11 years in various consulting, as a vendor in various groups. And one thing that I think would help people the most is if they just spent a little more time thinking about the problems first rather than just starting to solve the problem immediately. And I have seen a lot of people have aversion to reading books, so that hurts me personally. And I’d like to see that change. You know, going to classes like this I think is really good. And then, just thinking about the problem, writing it down, maybe in prose, in English prose for a little bit, and then architecting a solution, I think ends up saving a lot of time in the back end and you feel more confident with the code and what you’re doing from the start. That’s what I would like to see happen more here at Microsoft.

Brad Adams:
All right. Thanks, Jeff.

Sonja Keserovic:
So Brad didn’t warn us about this. So I’ll just repeat what I already was telling you guys all the time. You’re probably sick of it. But .NET framework is really not a rewrite-everything strategy. So there are lots of things you can do to reuse your existing code but please, please, please first check all the options we are offering to you. And, you know, as Jeff said, architect and think before you pick the one that’s really working for your scenario.

Brad Adams:
Okay. Thank you.

Unknown:
So I want to bring the thinking about things like Jeff said in general. Please don’t go fix every (inaudible) violation. Think about every violation seed. If you don’t agree with or don’t know what it means, contact us at (inaudible), discuss with us. If you totally don’t agree with the design guidelines or other rules, please go ahead and discuss with us, don’t just fix it, because you’ll probably get to become uglier instead of better.

Brad Adams:
All right.

Unknown:
So think about the code you’re going to write. The reason why we have this class really is because over the years we’ve managed to build a sort of mountainous pile of APIs that some are better than others. And the end result is that our developers just really don’t really understand how to write Windows software anymore. And besides the fact that there’s been kind of a sea of change in where things are going, (inaudible) API isn’t really going to be anything that’s entice people back anytime soon. So with the .NET framework we have a chance to achieve a level of consistency and design that Microsoft has never known. So either you guys were forced to come here or you know that, but just keep in mind that the reason why we do all this stuff is so that we can actually kind of help our customers out.

Brad Adams:
All right. Richard?

Richard:
I think Rico wants to be the one to finish this off. So I have some advice. I’m the PM of the CLR Loader, so my advice is specific to that. So we talked a little bit about using Reflection. So if you need to load something late-bound, we definitely prefer assembly.load. Never use assembly.file or assembly.load with partial name and be very reticent about where you’re using assembly.load from. The other piece of advice that I have, which is also kind of my area, is be very slow to adopt CLR hosting.

Brad Adams:
That’s also your feature, isn’t it?

Richard:
Kind of. And only do it if you own the process otherwise definitely use interop instead.

Brad Adams:
Okay. Rico.

Rico Mariani:
I guess I get to finish. I thought I was being polite by letting other people have the mike. <laughing> Now people are telling me I want to hog this
Brad Adams:
Well, we have to wrap up, so all right. <laughing>
Rico Mariani:
I’ve got three things. The first thing is we wrote this great - I think it’s great - performance and scalability PAG. Please go read it. During my talks I stress a couple of things, one is that engineering is a quantitative discipline. And I want you to remember that. Because all of you, whether the word engineer appears in your title not, you’re working at an engineering company and so if we can remember to take that approach it’ll help a lot. And to do that I have my sort of two rules of performance. Rule number one, measure. Rule number two, do your homework. Maybe I should add rule number three, think. Please. That’s all.

Brad Adams:
All right. Thank you very much. Thank our panelists.

Designing .NET Class Libraries

Page 1 of 17
© 2004 Microsoft Corporation

