ASP.NET MVC 3 Preview 1 Release Notes

2Installation Notes

2Documentation

2Support

2Software Requirements

2Upgrading an ASP.NET MVC 2 Project to ASP.NET MVC 3

3New Features in Preview 1

4Razor Syntax View Engine

4Dynamic View and ViewModel properties

4"Add View" Dialog Box Supports Multiple View Engines

5Service Location and Dependency Injection Support

5Global Filters

6New JsonValueProviderFactory Class

6Support for .NET Framework 4 Validation Attributes and IValidatableObject

7New IClientValidatable Interface

7Support for .NET Framework 4 Metadata Attributes

7New IMetadataAware Interface

7New Action Result Types

8Permanent Redirect

8Breaking Changes

9Known Issues

10Disclaimer

This document describes the release of ASP.NET MVC 3 Preview 1 for Visual Studio 2010.

Installation Notes
The ASP.NET MVC 3 Preview 1 for Visual Studio 2010 can be downloaded from the following page:

http://go.microsoft.com/fwlink/?LinkID=157073
ASP.NET MVC 3 can be installed and can run side-by-side with ASP.NET MVC 2.

Documentation
Documentation for ASP.NET MVC is available on the MSDN Web site at the following URL:

http://go.microsoft.com/fwlink/?LinkId=145989
Tutorials and other information about ASP.NET MVC are available on the MVC page of the ASP.NET Web site (http://www.asp.net/mvc/).

Support
This is a preview release and is not officially supported. If you have questions about working with this release, post them to the ASP.NET MVC forum (http://forums.asp.net/1146.aspx), where members of the ASP.NET community are frequently able to provide informal support.

Software Requirements
The ASP.NET MVC 3 runtime components require the .NET Framework 4. The ASP.NET MVC 3 components for Visual Studio require either Visual Studio 2010 or Visual Web Developer Express 2010.

Upgrading an ASP.NET MVC 2 Project to ASP.NET MVC 3
ASP.NET MVC 3 can be installed side by side with ASP.NET MVC 2 on the same computer, which gives you flexibility in choosing when to upgrade an ASP.NET MVC 2 application to ASP.NET MVC 3.

The simplest way to upgrade is to create a new ASP.NET MVC 3 project and copy all the views, controllers, code, and content files from the existing MVC 2 project to the new project and then to update the assembly references in the new project to match the old project. If you have made changes to the Web.config file in the MVC 2 project, you must also merge those changes with the Web.config file in the MVC 3 project.

To manually upgrade an existing ASP.NET MVC 2 application to version 3, do the following:

1. In both Web.config files in the MVC 3 project, globally search and replace the MVC version. Find the following:

System.Web.Mvc, Version=2.0.0.0
Replace it with the following

System.Web.Mvc, Version=3.0.0.0

There are three changes in the root Web.config and four in the Views\Web.config file.

2. In Solution Explorer, delete the reference to System.Web.Mvc (which points to the version 2 DLL). Then add a reference to System.Web.Mvc (v3.0.0.0).

3. In Solution Explorer, right-click the project name and then select Unload Project. Then right-click again and select Edit ProjectName.csproj.

4. Locate the ProjectTypeGuids element and replace {F85E285D-A4E0-4152-9332-AB1D724D3325} with {E53F8FEA-EAE0-44A6-8774-FFD645390401}.

5. Save the changes and then right-click the project and select Reload Project.

6. If the project references any third-party libraries that are compiled using ASP.NET MVC 2, add the following highlighted bindingRedirect element to the Web.config file in the application root under the configuration section:

<runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <dependentAssembly>

 <assemblyIdentity name="System.Web.Mvc"

 publicKeyToken="31bf3856ad364e35"/>

 <bindingRedirect oldVersion="2.0.0.0" newVersion="3.0.0.0"/>

 </dependentAssembly>

 </assemblyBinding>

</runtime>

New Features in Preview 1
This section describes features that have been introduced in the MVC 3 Preview 1 release.

Razor View Engine

The Razor view engine is a new view engine option for ASP.NET MVC that supports the Razor templating syntax. The Razor syntax is a streamlined approach to HTML templating designed with the goal of being a code driven minimalist templating approach that builds on existing C#, VB.NET and HTML knowledge. The result of this approach is that Razor views are very lean and do not contain unnecessary constructs that get in the way of you and your code.
ASP.NET MVC 3 Preview 1 only supports C# Razor views which use the .cshtml file extension. VB.NET support will be enabled in later releases of ASP.NET MVC 3. For more information and examples, see Introducing "Razor" – a new view engine for ASP.NET on Scott Guthrie's blog.

Dynamic View and ViewModel Properties

A new dynamic View property is available in views, which provides access to the ViewData object using a simpler syntax. For example, imagine two items are added to the ViewData dictionary in the Index controller action using code like the following:

public ActionResult Index() {

 ViewData["Title"] = "The Title";

 ViewData["Message"] = "Hello World!";

}

Those properties can be accessed in the Index view using code like this:

<h2>View.Title</h2>

<p>View.Message</p>

There is also a new dynamic ViewModel property in the Controller class that lets you add items to the ViewData dictionary using a simpler syntax. Using the previous controller example, the two values added to the ViewData dictionary can be rewritten using the following code:

public ActionResult Index() {

 ViewModel.Title = "The Title";

 ViewModel.Message = "Hello World!";

}

"Add View" Dialog Box Supports Multiple View Engines

The Add View dialog box in Visual Studio includes extensibility hooks that allow it to support multiple view engines, as shown in the following figure:

[image: image1.png]AddView =

View name:
ViewPagel

Create a partial view
Create a strongly-typed view

View data class

ASPX (CH#)

e

ML)

~iews/Shared/Site.Master

ContentPlaceHlder ID:
MainContent

Add Cancel

Service Location and Dependency Injection Support

ASP.NET MVC 3 introduces improved support for applying Dependency Injection (DI) via Inversion of Control (IoC) containers. ASP.NET MVC 3 Preview 1 provides the following hooks for locating services and injecting dependencies:

· Creating controller factories.

· Creating controllers and setting dependencies.

· Setting dependencies on view pages for both the Web Form view engine and the Razor view engine (for types that derive from ViewPage, ViewUserControl, ViewMasterPage, WebViewPage).

· Setting dependencies on action filters.

Using a Dependency Injection container is not required in order for ASP.NET MVC 3 to function properly.
Global Filters

ASP.NET MVC 3 allows you to register filters that apply globally to all controller action methods. Adding a filter to the global filters collection ensures that the filter runs for all controller requests. To register an action filter globally, you can make the following call in the Application_Start method in the Global.asax file:

GlobalFilters.Filters.Add(new MyActionFilter());

The source of global action filters is abstracted by the new IFilterProvider interface, which can be registered manually or by using Dependency Injection. This allows you to provide your own source of action filters and choose at run time whether to apply a filter to an action in a particular request.

New JsonValueProviderFactory Class

The new JsonValueProviderFactory class allows action methods to receive JSON-encoded data and model-bind it to an action-method parameter. This is useful in scenarios such as client templating. Client templates enable you to format and display a single data item or set of data items by using a fragment of HTML. ASP.NET MVC 3 lets you connect client templates easily with an action method that both returns and receives JSON data.

For an example of how JsonValueProviderFactory is used, read Sending JSON to an ASP.NET MVC Action Method Argument on Phil Haack's blog.

Support for .NET Framework 4 Validation Attributes and IValidatableObject

The ValidationAttribute class was improved in the .NET Framework 4 to enable richer support for validation. When you write a custom validation attribute, you can use a new IsValid overload that provides a ValidationContext instance. This instance provides information about the current validation context, such as what object is being validated.

This change enables scenarios such as validating the current value based on another property of the model. The following example shows a sample custom attribute that ensures that the value of PropertyOne is always larger than the value of PropertyTwo:

public class CompareValidationAttribute : ValidationAttribute {

 protected override ValidationResult IsValid(object value,

 ValidationContext validationContext) {

 var model = validationContext.ObjectInstance as SomeModel;

 if (model.PropertyOne > model.PropertyTwo) {

 return ValidationResult.Success;

 }

 return new ValidationResult("PropertyOne must be larger than PropertyTwo");

 }

}

Validation in ASP.NET MVC also supports the .NET Framework 4 IValidatableObject interface. This interface allows your model to perform model-level validation, as in the following example:

public class SomeModel : IValidatableObject {

 public int PropertyOne { get; set; }

 public int PropertyTwo { get; set; }

 public IEnumerable<ValidationResult> Validate(ValidationContext validationContext) {

 if (PropertyOne <= PropertyTwo) {

 yield return new ValidationResult(

 "PropertyOne must be larger than PropertyTwo");

 }

 }

}

New IClientValidatable Interface

The new IClientValidatable interface allows the validation framework to discover at run time whether a validator has support for client validation. This interface is designed to be independent of the underlying implementation; therefore, where you implement the interface depends on the validation framework in use. For example, for the default data annotations-based validator, the interface would be applied on the validation attribute.

Support for .NET Framework 4 Metadata Attributes

ASP.NET MVC 3 now supports .NET Framework 4 metadata attributes such as DisplayAttribute.

New IMetadataAware Interface

The new IMetadataAware interface allows you to write attributes that simplify how you can contribute to the ModelMetadata creation process. Before this interface was available, you needed to write a custom metadata provider in order to have an attribute provide extra metadata.

This interface is consumed by the AssociatedMetadataProvider class, so support for the IMetadataAware interface is automatically inherited by all classes that derive from that class (notably, the DataAnnotationsModelMetadataProvider class).

New Action Result Types

In ASP.NET MVC 3, the Controller class includes two new action result types and corresponding helper methods.

HttpNotFoundResult Action

The new HttpNotFoundResult action result is used to indicate that a resource requested by the current URL was not found. The status code is 404. This class derives from HttpStatusCodeResult. The Controller class includes an HttpNotFound method that returns an instance of this action result type, as shown in the following example:

public ActionResult List(int id) {
 if (id < 0) {

 return HttpNotFound();

 }

 return View();

}

HttpStatusCodeResult Action
The new HttpStatusCodeResult action result is used to set the response status code and description.

Permanent Redirect

The HttpRedirectResult class has a new Boolean Permanent property that is used to indicate whether a permanent redirect should occur. A permanent redirect uses the HTTP 301 status code. Corresponding to this change, the Controller class now has several methods for performing permanent redirects:
· RedirectPermanent
· RedirectToRoutePermanent
· RedirectToActionPermanent
These methods return an instance of HttpRedirectResult with the Permanent property set to true.
Breaking Changes
The order of execution for exception filters has changed for exception filters that have the same Order value. In ASP.NET MVC 2 and earlier, exception filters on the controller with the same Order as those on an action method were executed before the exception filters on the action method. This would typically be the case when exception filters were applied without a specified order Order value. In MVC 3, this order has been reversed in order to allow the most specific exception handler to execute first. As in earlier versions, if the Order property is explicitly specified, the filters are run in the specified order.

Known Issues
When you are editing a Razor view (CSHTML file), the Go To Controller menu item in Visual Studio will not be available, and there are no code snippets.

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2010 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

ASP.NET MVC 3 Preview 1 Release Notes

Page 10
Copyright © 2010 Microsoft Corporation

