[image: image1.jpg]Microsoft: .

Windows Server 2003

Managing System Services
Microsoft Corporation

Created: November 2003

Abstract

The Microsoft® Windows Server™ 2003 family of operating systems starts some applications during system startup that are not tied to an interactive user. These applications are called services or Win32 services because they rely on the Win32 application programming interface (API) to interact with the operating system. Similar to UNIX daemons, services often implement the server side of the client/server application model. A basic understanding of service functionality, monitoring services, managing services, and troubleshooting services can improve your ability to perform diagnostic procedures to resolve service-related problems.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

 2001, 2002, 2003 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Win32, Windows, Windows NT, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
Chapter 13

Managing System Services

[image: image2.wmf]
The Microsoft® Windows Server™ 2003 family of operating systems starts some applications during system startup that are not tied to an interactive user. These applications are called services or Win32® services because they rely on the Win32 application programming interface (API) to interact with the operating system. Similar to UNIX daemons, services often implement the server side of the client/server application model. A basic understanding of service functionality, monitoring services, managing services, and troubleshooting services can improve your ability to perform diagnostic procedures to resolve service-related problems.

Services Overview
A service is a software-based application that performs a specific system function and often provides an API for other processes to call. Services are applications that run in the background on your local computer. Many also provide functionality for other computers on the network. For example, the Server service enables a Windows Server 2003–based computer to act as a server and offer shared resources to other computers on the network. Similarly, the Workstation service enables computers to act as clients and access shared resources on servers.
In Windows Server 2003 and earlier versions of Microsoft® Windows®, services are remote procedure call (RPC)–enabled so that they can be called from remote computers on the network. Most services can be added or removed by using the Add/Remove Windows Component option in Add or Remove Programs in Control Panel, and they can be managed and configured by using the Services snap-in, which is accessible from Administrative Tools or the Sc.exe command-line tool.

For more information about the Services snap-in or the Sc.exe tool, see “Managing and Configuring Services” later in this chapter.
Client/Server Application Model

In the client/server computing paradigm, one or more clients and one or more servers, along with the underlying operating system and interprocess communication (IPC), form a model that allows distributed computation, analysis, and presentation.
In this model, the client is a process that interacts with the user and has the following characteristics:

· Presents the user interface, which is often a graphical user interface (GUI).

· Presents queries to the server, and forms queries or commands in a predefined structure for presentation to the server, based on user input.
· Communicates with the server through an IPC method such as RPC, and uses this method to transmit queries or commands to the server.

· Performs data analysis on the results sent by the server and presents those results to the user in an application-defined format.

In a client/server system, a server is a process, or a set of processes, all of which can exist on a single computer that provides a service to one or more clients. The server has the following characteristics:

· Generally works for the client. The nature and extent of its service is defined by the business goals of the client/server system.
· Responds to queries or commands from clients. It does not initiate a conversation with any client, although there can be dialog between client and server after the initial contact by the client. A server primarily acts as a repository of data or knowledge, or as a service provider.

· Hides the composite client/server system from both client and user. A client communicating with a server can be completely unaware of the server hardware and software platform and the communication technology involved. Essentially, the client only needs to know the interface, not the details of how the server is implemented. This allows the server to change or scale as demands change, without affecting the client.

In the client/server model, one server — sometimes called a daemon — is activated and awaits client requests. A daemon is a program that runs continuously and exists for the purpose of handling periodic service requests that a computer system expects to receive. The daemon forwards the requests to other programs (or processes) as appropriate. Services in Windows Server 2003 perform a similar role.

For more information about RPCs and Windows Server 2003 server network architecture, see the Internetworking Guide of the Microsoft® Windows Server™ 2003 Server Resource Kit.
Services Architecture

The main components of the core service architecture are the Service Control Manager (SCM), service control programs, and service applications. Figure 13.1 shows how the components communicate with one another.
The service control programs do not communicate with services directly; all communication goes through the SCM. This architecture is precisely what makes remote administration transparent to the service control program and service applications.
[image: image3.wmf]
Note

It is possible to implement architecture and a protocol that enables your service control program to communicate directly with your service application. However, you must write the communication code.

Figure 13.1 System Services Architecture
[image: image4.png]Services snap-in
Services.msc
Command-line tocl
Scexe

Clients of services

Any RPC dient that sam that communicate

communicates by
Services.exe directly with the
using the Services APT directly wi

T*"C_service control Manager

Service Control
Programs

Instance of
service Svehost.exe
Applications service & ||[| service ||| service c hosting services

clients of ||[| cients of [||| clients of
Service & ||[| Service B ||| Service

SCM

The SCM is a special system process that runs the image systemroot\System32\Services.exe, which is responsible for starting, stopping, and interacting with services. Services are Win32 applications that call special Win32 functions to interact with the SCM to perform such actions as registering the service’s successful startup, responding to status requests, and pausing or shutting down the service. For more information about the SCM, see “Functions of the SCM” later in this chapter and the Software Development Kit (SDK) information in the MSDN Library link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

Service Control Programs

Service control programs are standard Win32 applications that use the SCM APIs CreateService, OpenService, StartService, ControlService, QueryServiceStatus, and DeleteService to communicate with or control services. To use the SCM functions, a service control program must first open a communications channel to the SCM. At the time of the open call, the service control program must specify what types of actions it wants to perform. For example, if a service control program simply wants to enumerate and display the services present in the SCM database, it requests Enumerate Service access. During its initialization, the SCM creates an internal object that represents the SCM database and uses Windows security functions to protect the object with a security descriptor that specifies which accounts can open the object by using which access permissions.

The SCM stores the security descriptor in the service’s registry subkey as the Security value, and it reads the value of Security when it scans the registry’s Services key during initialization so that the security settings persist when the computer is restarted.
[image: image5.wmf]
Note

The SCM uses a secure default security descriptor if there is no Security subkey specified for a service.

In the same way that a service control program must specify what types of access it wants to the SCM database, a service control program must also tell the SCM what access it wants to a service. Examples of accesses that a service control program can request include the ability to query a service’s status and to configure, stop, and start a service.

For example, the security descriptor indicates that the Authenticated Users group can open the SCM object with enumerate-service access. However, only administrators can open the object with the access required to create or delete a service.
The service control program with which you should become most familiar is the Sc.exe command-line tool. For more information about Sc.exe, see “Troubleshooting Services” later in this chapter.

Service Applications

A service application contains the infrastructure necessary for communicating with the SCM, which sends commands to the service telling it to stop, pause, continue, or shut down. A service also calls special functions that communicate its status back to the SCM. For more information about service functionality, see “Service Components” in this chapter.

Service applications, such as Web servers, consist of at least one application that runs as a service. A user who wants to start, stop, or configure a service uses a service control program. Although Windows Server 2003 provides built-in service control programs that provide general start, stop, pause, and continue functionality, some service applications include their own service control program that allows administrators to specify configuration settings particular to the service they manage.

Because most services do not (and absolutely should not) have a user interface, they are built as console programs. In Figure 13.1, Services A, B, and C represent service applications.

When you install an application that includes a service, the application’s setup program must register the service with the SCM. To register the service, the setup program calls the Win32 CreateService function, a services-related function whose client side is implemented in Advapi32.dll (located in the systemroot\System32 folder). Advapi32.dll, the “Advanced API” DLL, implements all the client-side SCM APIs. For more information about registering a service, see “Registering a Service with the SCM” later in this chapter.

For more information about the CreateService function and the SCM APIs, see the Software Development Kit (SDK) information in the MSDN Library link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

RPC Clients and Servers

For service applications that use APIs such as QueryServiceStatus and OpenService, the RPC client communicates directly with the SCM because the SCM is the server for those APIs.

For service applications that use APIs where the service itself is the RPC server, the RPC client communicates with the RPC server directly. Thus, the SCM does not interfere with RPC calls unless it implements them. An example of this is the NetUseAdd API, which is implemented by the Workstation service.

Service Components

Services are Win32 applications that run without needing an interactive logon. Service applications are simply Win32 applications with additional code to receive commands from the SCM and communicate the application’s status back to the SCM.
If the key the SCM starts contains a Type registry value of SERVICE_WIN32_OWN_PROCESS, SERVICE_WIN32_SHARE_PROCESS, or SERVICE_INTERACTIVE_PROCESS, the key is a service and the SCM starts the service. If the subkey for an application contains the value 16 (SERVICE_WIN32_OWN_PROCESS), 32 (SERVICE_WIN32_SHARE_PROCESS), or 256 (SERVICE_INTERACTIVE_PROCESS) in the Type entry, the application is a service and is started by the SCM.
The Type registry entry for a service is located in the following subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\service name where service name is the name of a corresponding service.

[image: image6.wmf]
Note

A service of type SERVICE_INTERACTIVE_PROCESS cannot start by itself. It needs to be included with one of the SERVICE_WIN32_*_PROCESS constants. A service that is represented by a subkey with the value 256 (SERVICE_INTERACTIVE_PROCESS) in the Type entry cannot start by itself.
Service Registry Entries

A number of parameters of a service are described by a service’s registry entries. The SCM stores each characteristic as an entry in the service’s corresponding subkey. Subkeys for individual services are located in the HKLM\SYSTEM\CurrentControlSet\Services subkey.

Table 13.1 lists all the registry entries for service and driver subkeys. (Note that not every service has every type of entry.) If a service needs entries for configuration information that is private to the service, the convention is for the service to create a subkey named Parameters in its own subkey, and then store the configuration information in entries in that subkey. The values are retrieved by the SCM from the entries found in Table 13.1 in each service’s subkeys.
[image: image7.wmf]
Caution

Do not edit the registry directly unless you have no alternative. The registry editor bypasses standard safeguards, allowing settings that can degrade performance, damage your system, or even require you to reinstall Windows. You can safely alter most registry settings by using the programs in Control Panel or Microsoft Management Console (MMC). If you must edit the registry directly, back it up first. Read the Registry Editor Help for more information.

Table 13.1 Service Entries
	Entry Name
	Value
	Description

	Start
	0

SERVICE_BOOT_START
	Ntldr or Osloader preloads the driver so that it is in memory during the startup sequence. These drivers are initialized just prior to drivers with Start set to 1.

	
	1

SERVICE_SYSTEM_START
	The driver is loaded and initialized after drivers with Start set to 0 are initialized.

	
	2

SERVICE_AUTO_START
	The SCM starts the driver or service as part of the boot sequence.

	
	3

SERVICE_DEMAND_START
	The SCM will start the driver or service only on demand. These drivers have to be started manually by calling a Win32 SCM API such as the Services snap-in.

	
	4

SERVICE_DISABLED
	The driver or service is not loaded or initialized.

	ErrorControl
	0

SERVICE_ERROR_IGNORE
	The SCM and/or I/O Manager ignore errors the driver returns. No warning is logged or displayed.

	
	1

SERVICE_ERROR_NORMAL
	If the service/driver returns an error, an error is displayed in Event Viewer.

	
	2

SERVICE_ERROR_SEVERE
	If the driver returns an error and the Last Known Good configuration is not being used, restart the computer with the Last Known Good configuration; otherwise, continue startup.

	
	3

SERVICE_ERROR_CRITICAL
	If the driver returns an error and the Last Known Good configuration is not being used, restart the computer and select the Last Known Good configuration; otherwise, cease the startup process with a stop message.

	Type1
	1

SERVICE_KERNEL_DRIVER
	Device driver.

	
	2

SERVICE_FILE_SYSTEM_DRIVER
	Kernel-mode file system driver.

	
	4

SERVICE_ADAPTER
	A set of arguments for an adapter.

	
	8

SERVICE_RECOGNIZER_DRIVER
	A file system driver such as a file system recognizer driver.

	
	16

SERVICE_WIN32_OWN_PROCESS
	The service runs in a process that hosts only one service.

	
	32

SERVICE_WIN32_SHARE_PROCESS
	The service runs in a process that hosts multiple services.

	
	256

SERVICE_INTERACTIVE_PROCESS
	The service is allowed to display windows on the console and receive user input.

	Group
	Group name
	The driver or service is initialized when its group is initialized.

	Tag
	Tag number
	The specified location in a group initialization order. This parameter does not apply to user-mode services.

	ImagePath
	Path to service or driver executable file
	If ImagePath is not present in the registry for a service, the SCM will fail to start and will return the error ERROR_PATH_NOT_FOUND.
If ImagePath is not specified for a driver, the I/O Manager looks for drivers in the file system in \Windows\System32\Drivers. For more information about the I/O Manager, see the Driver Development Kits link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

	DependOnGroup
	Group name
	The driver or service will not start unless a driver or service from the specified group is loaded.

	DependOnService
	Service name
	The service will not be loaded until after the specified service is loaded. This parameter does not apply to device drivers.

	ObjectName
	Usually LocalSystem, but can be an account name such as NT Authority\LocalService or NT Authority\NetworkService
	Specifies the account in which the service will run. If ObjectName is not specified for a service, starting the service will cause the message ERROR_INVALID_SERVICE_ACCOUNT to be returned.

This parameter does not apply to device drivers.

	DisplayName
	Name of service
	The service application shows services by this name. If no name is specified, the name of the service’s registry subkey becomes its name. The limit is 256 characters.

	Description
	Description of service
	There is a limit of 32,767 characters.

	FailureActions
	Description of actions the SCM should take when the service process exits unexpectedly
	Failure actions include restarting the service process, restarting the operating system, and running a specified program. This value does not apply to drivers.

	FailureCommand
	Program command line
	The SCM reads this entry only if FailureActions specifies that a program should run when a service fails. FailureCommand does not apply to drivers.

	Security
	Security descriptor
	This value contains the security descriptor that defines which users have what type of access to the service.

1. Type entries include three that apply to device drivers: device driver, file system driver, and file system recognizer. These are used by Windows Server 2003 device drivers, which also store their parameters as registry entries in the Services registry subkey. The SCM is responsible for starting drivers with a Start value of 2 or 3, so it is natural for the SCM database to include drivers. Services are specified by other values, 16 and 32, which are mutually exclusive. A process that hosts more than one service is specified by Type having a value of 32. An advantage to having a process run more than one service is that it saves the system resources that would otherwise be required to run services in separate processes. A potential disadvantage is that if one of the services running in a process causes an error that stops the process, all the services that run in that process also stop.

Service Processes

Running every service in its own process, instead of having services share a process whenever possible, wastes system resources. However, sharing processes means that if any of the services in the process encounters a problem that causes the process to exit, all the services in that process stop.

Some Windows Server 2003 built-in services run in their own process; however, most services share a process with other services. For example, the SCM process, Services.exe, hosts the Event Log and the Plug and Play services.

The security-related services, such as the Security Accounts Manager service, the Net Logon service, and the IPSEC Services service, share the Lsass.exe process.

There is also a “generic” process named Service Host (Svchost, or the Svchost.exe application), which contains multiple services, located in the systemroot\Windows\System32 folder.
Generic Process

A “generic” process named Svchost contains multiple services, and multiple instances of Svchost can run under different security contexts. Services that run in Svchost processes include Telephony, Remote Procedure Call (RPC), and Remote Access Connection Manager.
Windows Server 2003 implements services that run in Svchost as DLLs and specifies the location of the DLL of a service in the value of the registry entry ImagePath (which has the form “systemroot\System32\svchost.exe -k svchost instance name”) in the corresponding service subkey. Every service’s registry subkey must also have a registry entry named ServiceDll under its Parameters subkey that points to the service’s DLL file. All services that share a common Svchost process specify the same parameter (“-k svchost instance name”).
Typically, each Svchost instance running on a Windows Server 2003-based computer corresponds to a distinct account. For example, the “netsvcs” instance runs as LocalSystem, the “LocalService” instance runs as NT AUTHORITY\LocalService, and the “NetworkService” instance runs as NT AUTHORITY\NetworkService. There are one or two exceptions – for example, the Remote Procedure Call (RPC) service runs in its own LocalSystem instance for security reasons.

When the SCM encounters the first service that has an image path of “svchost.exe -k svchost instance name” during service startup, it creates a new image database record for the Svchost instance name and starts the process as configured.
[image: image8.wmf]
Note

The SCM does not actually modify the parameter in any way. It just treats it as part of the full image path.

The new Svchost process takes the parameter and looks for a registry subkey having the same name as the parameter in HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SvcHost. Svchost reads the contents of the SvcHost subkey, interpreting its contents as a list of service names, and notifies the SCM that it is hosting those services when Svchost registers with the SCM.

When the SCM encounters a Svchost process during service startup for which the value of its ImagePath matches that of an entry that SCM already has in the image database, SCM does not start a second process but instead just sends a start command for the service to the Svchost process it already started for that ImagePath value. The existing Svchost process reads the value of ServiceDll in the service’s subkey and loads the DLL into its process to start the service.

In general, the reason services share processes is to diminish memory footprint and thread usage, both of which increase dramatically as you add additional processes to the system. For example, every process typically ends up with its own thread pool, such as RPC server threads. The different Svchost instances on your computer are, for the most part, all running in different accounts, and each one hosts the services that run in that particular account. By running the Tasklist.exe tool with the /svc switch, you can see the account name listed for each Svchost instance.

For more information about Tasklist.exe, in Help and Support Center for Microsoft Windows Server 2003, click Tools, and then click Command -line reference A-Z. For more information about Svchost.exe, see “Identifying Services in Svchost Processes” later in this chapter.

Service Groups

Many services will not work properly unless other components of the system are already running. When a computer is started, it follows an algorithm that dictates the order in which services are started. In Windows, system services are divided into a set of predefined groups. Assigning a service to a group has no effect other than to fine-tune its startup with respect to other services that belong to different groups.

The SCM builds the internal service database and reads and stores the contents of the List entry in the HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder subkey, a string value that lists the names and order of the defined service groups. A service’s registry subkey contains an optional Group entry to be used if that service or device driver needs to control its startup ordering with respect to services from other groups.
The SCM reads the value of a service’s Group entry to determine whether it is a member of a group and associates this value with the group’s entry in the ServiceGroupOrder subkey mentioned earlier. The SCM also reads and records in the database the service’s group and service dependencies by querying its DependOnGroup and DependOnService registry entries.
For example, the Windows Server 2003 networking stack is built from the bottom up, so networking services must specify Group entries that place them later in the startup sequence than networking device drivers. The SCM internally creates a group list that preserves the ordering of the groups it reads from the registry. Groups include (but are not limited to) NDIS, TDI, Primary Disk, Keyboard Port, and Keyboard Class. Add-on and third-party applications can even define their own groups and add them to the list.
Since the introduction of Plug and Play in Microsoft® Windows® 2000, the service group order mechanism has become less significant. In Windows Server 2003, Plug and Play is responsible for loading kernel drivers and services. Plug and Play manages the loading of kernel-mode drivers based on the presence of their associated devices.
The SCM is almost never involved in the loading of a driver. The most interesting remaining use of the service group order mechanism in kernel mode is for file system filter drivers.
[image: image9.wmf]
Note

File system filter drivers are used in products that need to closely monitor disk input/output (I/O). Examples of software file system drivers are antivirus products, real-time replication products, quota products, undelete products, and encryption products. The filters are linked together through a device object chain that is rooted at the file system for a given volume.

The order in which file system filter drivers are loaded affects the order in which these drivers will attach to a given volume. Drivers are required to attach to a device in the same order in which they were loaded by the operating system. Because of this, it is important to configure the operating system so that the filter drivers are loaded in an order that works. For example, an encryption filter should be loaded before an antivirus filter so that the antivirus filter will see the plaintext for virus scanning.

The auto-start option for kernel-mode drivers is being phased out. Even if a driver is marked as AUTO_START, as soon as it starts the first time, it will receive a root-enumerated devnode registered on its behalf, and on all subsequent boots that root-enumerated devnode will cause the driver to be loaded by Plug and Play during the system start phase, before the SCM is started.
The demand-start option is recommended for almost all Plug and Play drivers. Demand-start no longer means “when SCM is requested to start the driver” (for example, in response to a net start command) as it did in prior versions of Windows. It now means when Plug and Play “demands” it because of the discovery of devices associated with that driver.

Service Dependencies

In addition to notifying the SCM that a service is part of a particular load order group, you can tell the SCM that this service requires other services to be running before this service can run. For example, many Internet services — including the FTP Publishing Service, the World Wide Web Publishing Service, and the Simple Mail Transfer Protocol (SMTP) Service — are dependent on the IIS Admin Service. If the IIS Admin Service is not available, then none of these dependent services can run.

Conversely, you cannot stop the IIS Admin Service without first stopping the dependent services. If you could stop the IIS Admin Service first, all its dependent services would fail because those services cannot run unless IIS Admin Service is also running. The IIS Admin Service is therefore antecedent to its dependent services.

There are two types of service dependencies:

· The current service depends on other services to start. If Service X is antecedent to Service Y, Service X must be running before you can run Service Y.
· Other services depend on the current service to start. If Service X is dependent on Service Y, Service Y must be running before you can run Service X.

For example, if you run the Sc.exe tool, you will see that three services depend on the Telephony service. If an administrator attempts to stop the Telephony service and any dependent services are running, the call fails and the SCM returns the following error:

ERROR_DEPENDENT_SERVICES_RUNNING

For another example, if you stop the Workstation service by using the following Net.exe command, you will receive a list of dependent services that need to be stopped as well.
net stop workstation
This command displays the following information:
The following services are dependent on the Workstation service.

Stopping the Workstation service will also stop these services.

 Net Logon

 Distributed File System

 Computer Browser

Do you want to continue this operation? (Y/N) [N]: y

The Net Logon service is stopping.

The Net Logon service was stopped successfully.

The Distributed File System service is stopping.

The Distributed File System service was stopped successfully.

The Computer Browser service is stopping.

The Computer Browser service was stopped successfully.

The Workstation service is stopping.

The Workstation service was stopped successfully.

[image: image10.wmf]
Note

This example illustrates the behavior of the Net.exe command-line tool or other applications that check which dependent services are running when your stop request (such as net stop) fails and the error ERROR_DEPENDENT_SERVICES_RUNNING is returned.
If you restart the Workstation service by using the following command, the dependent services are not started automatically; you need to manually restart the services.
net start workstation
This command displays the following information:

The Workstation service is starting.

The Workstation service was started successfully.

The reason is that the services being stopped are all the currently running services that depend on the Workstation service. They cannot run unless the Workstation service has already started. Since the Workstation service does not depend on any of those services, there is no requirement for the Workstation service to start the other services
However, if you were to start a dependent service while the Workstation service was stopped, the Workstation service would be started first.

[image: image11.wmf]
Note

It is a best practice to ensure that the service you are starting is not dependent on a service that is disabled. Also, ensure that the service you are stopping is not required in order for a dependent service to function properly.

Functions of the SCM

The SCM runs within Services.exe. The SCM automatically starts when the operating system is loaded, and stops when the operating system is shut down. The SCM runs with system privileges, and provides a unified and secure means of controlling service applications. The SCM is responsible for communicating with the various services and instructing them to start, stop, pause, and continue.

Starting Services

The SCM maintains a database of installed services and device drivers in the registry. The database is used by the SCM and programs that add, modify, or configure services. The registry subkey for this database is HKLM\SYSTEM\CurrentControlSet\Services.

This subkey contains a subkey for each installed service and driver. The name of the subkey is the name the service or driver had when the SCM installed it.
[image: image12.wmf]
Note

A driver refers to code that manages a peripheral device. Drivers encompass file systems, network components, and physical devices. If the subkey the SCM starts with contains a value for the Type registry entry of 1 (SERVICE_KERNEL_DRIVER), 2 (SERVICE_FILE_SYSTEM_DRIVER), 4 (SERVICE_ADAPTER), or 8 (SERVICE_RECOGNIZER_DRIVER), the subkey is a device driver, and the SCM loads the driver. The SCM starts drivers marked as AUTO_START, and detects startup failures for drivers marked boot-start and system-start. For more in-depth information about drivers, see the Driver Development Kits link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

An initial copy of the SCM database is created during Windows Server 2003 setup. The database includes all the service-related parameters defined for a service, in addition to fields that track the service’s status. Additionally, the database contains records for the device drivers required during system restart. The Type entries are found in the registry in the service subkeys under the HKLM\SYSTEM\CurrentControlSet\Services subkey. There are four values that apply to device drivers:
· 1 (SERVICE_KERNEL_DRIVER)

· 2 (SERVICE_FILE_SYSTEM_DRIVER)

· 4 (SERVICE_ADAPTER)

· 8 (SERVICE_RECOGNIZER_DRIVER)

The value of the Start entry determines if and when the service or driver is loaded during system startup.
For more information about the SCM database and what is included for each installed service and driver, see the Software Development Kit (SDK) information in the MSDN Library link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

Starting Service Processes

When the SCM starts a service process, the following occurs:

1. The process immediately invokes a service function, StartServiceCtrlDispatcher, which accepts a list of entry points into services, with one entry point for each service in the process. Each entry point is identified by the name of the service the entry point corresponds to.
2. StartServiceCtrlDispatcher creates a named pipe communications connection to the SCM, and then sits in a loop waiting for commands to come through the pipe.
3. The SCM sends a service-start command each time it starts a service the process owns. For each start command it receives, the function creates a thread, called a service thread, to invoke the starting service’s entry point.

4. The StartServiceCtrlDispatcher service function waits indefinitely for commands from the SCM and returns control to the process’s main function only when all the process’s service threads have terminated, allowing the service process to clean up resources before exiting.

5. The first action of a service’s entry point (ServiceMain routine) is to call the RegisterServiceCtrlHandler(Ex) API, which takes a pointer to the service’s Handler(Ex) function. The Handler(Ex) function is designed to receive and handle control messages sent to the service, which are passed along from the SCM.

6. The StartServiceCtrlDispatcher service function stores the table in local process memory, and the RegisterServiceCtrlHandler finishes populating it with the service’s HandlerEx pointer and SERVICE_STATUS_HANDLE. The service entry point continues initializing the service, which can include allocating memory, creating communications end points, and reading private configuration data from the registry. A convention most services follow is to store their service-specific parameters under a Parameters subkey in their service registry subkey.
7. While the entry point is initializing the service, it might periodically send status messages to the SCM to indicate how the service’s startup is progressing. After the entry point finishes initialization, a service thread usually sits in a loop waiting for requests from client applications. For example, a Web server would initialize a Transmission Control Protocol (TCP) listen socket and wait for inbound Hypertext Transmission Protocol (HTTP) connection requests.

A service process’s main thread, which invokes and runs inside of StartServiceCtrlDispatcher, receives SCM commands directed at services in the process and uses the table of the services’ handler functions to locate and invoke the service function responsible for responding to a command. SCM commands include stop, pause, resume, interrogate, shut down, and application-defined commands.

For more information about the StartServiceCtrlDispatcher and RegisterServiceCtrlDispatcher APIs, see the Software Development Kit (SDK) information in the MSDN Library link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

Automatically Starting Services

During service initialization, the SCM starts all services that have Start registry entries with a value of 2 (SERVICE_AUTO_START) and the services on which they depend. For example, if services that are automatically started depend on a manually started service, the demand-start service is also started automatically. The load order is determined by the following:
8. The order of service groups in the load-ordering group list subkey, HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder.
9. The order of drivers within a group specified in the HKLM\SYSTEM\CurrentControlSet\Control\GroupOrderList subkey.

10. The dependencies listed for each service.
When the startup process is complete, the system executes the boot verification program specified in the HKLM\SYSTEM\CurrentControlSet\Control\BootVerificationProgram subkey.

By default, this value is not set. The system reports that the startup process was successful after the auto-start sequence completes.
After the computer has started successfully, the operating system saves a clone of the database in the Last Known Good configuration. The system can restore this copy of the database if changes made to the active database cause restarting the computer to fail.

[image: image13.wmf]
Note

If the ErrorControl registry entry for an auto-start service has a value of 2 (SERVICE_ERROR_SEVERE) or 3 (SERVICE_ERROR_CRITICAL) and that service fails to start, the SCM restarts the computer by using the Last Known Good configuration. If the Last Known Good configuration is already being used, the startup process fails.

For more information about the Last Known Good configuration, see “Accepting the Boot and Last Known Good Configuration” later in this chapter.
The following sequence describes how services are automatically started:

11. The SCM starts all services that have a Start registry entry with a value of 2 (SERVICE_AUTO_START). The SCM also starts auto-start device drivers.
The algorithm for starting services in the correct order proceeds in various stages, whereby a stage corresponds to a group, and stages proceed in the sequence defined by the group ordering stored in the List registry entry in the HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder subkey. The value of the List entry includes the names of groups in the order that the SCM starts them.
For more information about the ServiceGroupOrder subkey, see “Service Groups” earlier in this chapter.

12. The SCM marks all the service entries that belong to the stage’s group for startup.
13. The SCM loops through the marked services, verifying whether it can start each service. The verification consists of determining whether the service has a dependency on another group, as specified by the existence of the DependOnGroup entry in the subkey for a service.
· If a dependency exists, the group on which the service is dependent must have already been initialized, and at least one service in that group must have successfully started.
· If the service depends on a group that starts later than the service’s group in the group startup sequence, the SCM logs a circular dependency error for the service.
14. The SCM checks to see whether the service depends on one or more services, and whether those services have already started. Service dependencies are indicated by the value of the DependOnService entry in the subkey for a service.
· If a service depends on other services that belong to groups that come later in the List entry in the HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder subkey, the SCM also returns a circular dependency error such as “Detected circular dependencies demand starting,” and does not start the service.
· If the service depends on any services from the same group that have not yet started, the service is skipped.
15. When the dependencies of a service have been satisfied, the SCM makes a final check to see whether the service is part of the current boot configuration before starting the service.
[image: image14.wmf]
Note

After the SCM decides to start a service, it performs different steps for services than for device drivers.

16. When the SCM starts a service, it first determines the name of the file that runs the service’s process by reading the value of the ImagePath entry in the service’s registry subkey.
17. It then examines the value of the Type entry in the service’s subkey, and if that value is 32 (that is, the service shares a process), the SCM ensures that the process the service runs in — if already started — is logged on by using the same account as specified for the service being started. A service’s ObjectName registry entry stores the user account where the service runs. The SCM will fail to start a service with a missing ObjectName, and will return the error ERROR_INVALID_SERVICE_ACCOUNT.

18. The SCM verifies that the service’s process has not already been started in a different account by checking to see whether the value of the service’s ImagePath entry has a record in an internal SCM database identified as the image database.

· If the image database does not have a record for the ImagePath entry, the SCM creates one. When the SCM creates a new record, it stores the logon account name used for the service and the data from the value of the service’s ImagePath entry. The SCM requires services to have an ImagePath entry.
· If a service does not have an ImagePath entry, the SCM returns an error stating that it could not find the service’s path and is not able to start the service.

· If the SCM locates an existing image database record with matching data from the value of the ImagePath entry, the SCM ensures that the user account information for the service it is starting is the same as the information stored in the database record. A process can be logged on as only one account, so the SCM returns an error (ERROR_DIFFERENT_SERVICE_ACCOUNT) when a service specifies a different account name than another service that has already started in the same process.

19. The SCM logs on a service if the service’s configuration specifies the service’s process should be started. The SCM logs on services that do not run in the system account by calling the LogonUserEx API, implemented by the Local Security Authority (Lsass.exe). Lsass.exe normally requires a password, but the SCM indicates to Lsass.exe that the password is stored as a Local Security Authority (LSA) secret in the registry subkey HKLM\SECURITY\Policy\Secrets.

[image: image15.wmf]
Note

The contents of HKLM\SECURITY are not typically visible because its default security settings permit access only from the System account
20. When the SCM calls LogonUserEx, it specifies a service logon as the logon type. Lsass.exe looks up the password in the Secrets subkey in HKLM\SECURITY\Secrets that has a name in the form _SC_<service name>. The SCM directs Lsass.exe to store a logon password as a secret when a service control program configures a service’s logon information by using the CreateService or ChangeServiceConfig APIs.
21. When a logon is successful, LogonUserEx returns a handle to an access token to the caller. Windows Server 2003 uses access tokens to represent your security context, and the SCM later associates the access token with the process that implements the service.

22. After a successful logon, the SCM loads the account’s profile information, if it is not already loaded, by calling LoadUserProfile, which is implemented in Userenv.dll from systemroot\System32. The ProfileImagePath registry entry in the HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList\<user profile key> subkey contains the location on disk of a registry hive that loads into the registry, making the information in the hive the HKEY_CURRENT_USER key for the service.

23. The SCM proceeds to start the service’s process, if the process has not already been started (for a previous service, for example). The SCM starts the process in a suspended state and creates a named pipe through which it communicates with the service process, and it assigns the pipe the name \Pipe\Net\NetControlPipeX, where X is a number that is incremented each time the SCM creates a pipe.
24. The SCM resumes the service process and waits for the service to connect to its SCM pipe.
· If the pipe exists, the value of the ServicesPipeTimeout registry entry in the HKLM\SYSTEM\CurrentControlSet\Control subkey determines the length of time that the SCM waits for a service to connect before it gives up and terminates the process.
· If the ServicesPipeTimeout entry does not exist, the SCM uses a default time-out of 30 seconds. The SCM uses the same time-out value for all its service communications.

When a service connects to the SCM through the pipe, the SCM sends the service a start command. If the service fails to respond positively to the start command within the time-out period, the SCM gives up and moves on to start the next service.
When a service does not respond to a start request, the SCM will stop the process if the process does not contain other running services. The SCM will stop the process if an OWN_PROCESS service fails or if the first SHARED_PROCESS service to be started in a process fails. In the latter case, the SCM will return ERROR_SERVICE_REQUEST_TIMEOUT (for demand-start requests) and log EVENT_CONNECTION_TIMEOUT.

A hung auto-start service — for example, a service stuck in SERVICE_START_PENDING forever — is not stopped by the SCM, but will generate an event log message (EVENT_SERVICE_START_HUNG) and possibly a message box popup.

25. Thus, the SCM continues looping through the services belonging to a group until all the services have either started or returned errors (the services could fail to start for other reasons). Looping is way the SCM automatically orders services within a group according to the value of their DependOnService entries. Looping helps the SCM send start parameters to a dependent service while the arguments are held in the stack until the dependent service is started. The SCM will start the services that other services depend on in earlier loops, skipping the dependent services until subsequent loops.
[image: image16.wmf]
Note

The SCM ignores Tag entries for device drivers in subkeys under the HKLM\SYSTEM\CurrentControlSet\Services subkey. The I/O Manager honors Tag entries to order device driver startup for boot and system-start drivers. For more information about Tag entries, see “Service Groups” earlier in this chapter.

26. After the SCM completely checks for all the groups in the List entry in the HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder subkey, it performs a check for all the remaining (that is, ungrouped) services.

27. When the dependencies of a service have been satisfied, the SCM makes a final check to see whether the service is part of the Last Known Good configuration before starting the service.
Starting a Device Driver

The SCM adds entries to the SCM database for device drivers in addition to services. The SCM starts drivers configured as auto-start and detects startup failures for drivers configured as boot-start and system-start. The I/O Manager loads drivers configured as boot-start and system-start before any user-mode processes start, and therefore any drivers having these start types are loaded before the SCM starts itself.

If a service the SCM starts has a value of 1 (SERVICE_KERNEL_DRIVER) or 2 (SERVICE_FILE_SYSTEM_DRIVER) for its Type registry entry, the service is a device driver, and the SCM loads the driver.
The SCM enables the load driver security privilege for the SCM process and then invokes the kernel API NtLoadDriver, passing in the value of the ImagePath entry in the driver’s registry subkey.
[image: image17.wmf]
Note

Unlike services, drivers do not need to specify a value for the ImagePath registry entry. If the service subkey does not have an ImagePath entry, the SCM builds an image path by appending the driver’s name to the string systemroot\System32\Drivers.

Starting Services and Drivers Under Safe Mode

When the operating system is started in Safe Mode, the SCM ensures that each service and driver is either identified by name or by group in the appropriate subkey in the SafeBoot registry subkey. There are two safe boot registry subkeys, Minimal and Network, located in the HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot subkey. The one that the SCM checks depends on which mode the user selected during a restart of the computer.
· If you select Safe Mode or Safe Mode with Command Prompt at the special boot menu (which you can access by pressing F8 when prompted in the boot process), the SCM references the HKLM\SYSTEM\CurrentControlSet\SafeBoot\Minimal subkey.
· If you select Safe Mode with Networking, the SCM references the HKLM\SYSTEM\CurrentControlSet\SafeBoot\Network subkey. The existence of an Option entry of data type string in the SafeBoot subkey indicates not only that the system booted in Safe Mode but also the mode the user selected.

The minimum services and drivers started under Safe Mode or Safe Mode with Command Prompt are the following:

· Cryptographic Services

· Event Log

· Help and Support

· Logical Disk Manager Administrative Service

· Net Logon

· Plug and Play

· Remote Procedure Call (RPC)
· Windows Management Instrumentation

The minimum services and drivers started under Safe Mode with Networking are the following:
· AFD Networking Support Environment

· Computer Browser

· DHCP Client

· DNS Client

· Event Log

· Help and Support

· Logical Disk Manager

· NetBIOS Interface

· NetBios over Tcpip

· Net Logon

· Network Connections

· Plug and Play

· Remote Procedure Call (RPC)
· Server

· TCP/IP NetBIOS Helper

· TCP/IP Protocol Driver

· Terminal Services

· Windows Management Instrumentation

· Workstation

Accepting the Boot and Last Known Good Configuration

Besides starting services, the system charges the SCM with determining when the system’s registry configuration, HKLM\SYSTEM\CurrentControlSet, needs to be saved as the Last Known Good configuration control set. The CurrentControlSet registry subkey contains the Services subkey. Therefore, CurrentControlSet includes the registry representation of the SCM database. It also contains the Control subkey, which stores many kernel-mode and user-mode subsystem configuration settings.
By default, a successful startup consists of a successful startup of auto-start services and a successful user logon. A startup process fails if the operating system halts because a device driver fails and stops the operating system during startup, or if an auto-start service that has an ErrorControl registry entry with a value of 2 (SERVICE_ERROR_SEVERE) or 3 (SERVICE_ERROR_CRITICAL) returns a startup error. For more information about ErrorControl registry entries, see the Software Development Kit (SDK) information in the MSDN Library link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

The SCM knows when it has completed a successful startup of the auto-start services; however, the Winlogon application, located in systemroot\System32, must notify the SCM when there is a successful logon, indicating that the system has successfully proceeded so that the current control set can be saved and selected as the new Last Known Good configuration control set. When you log on, Winlogon sends a message to the SCM. Following a successful start of the auto-start services, the SCM saves the current registry startup configuration.

Third-party vendors can supersede the Winlogon definition of a successful logon with their own definition. For example, a system running SQL Server might not consider the startup process successful until after SQL Server is able to accept and process transactions.
SCM Role in System Shutdown

When your computer is shut down, the following occurs:

28. The Winlogon process sends a message to the Client Server Runtime Subsystem (Csrss.exe), the Win32 subsystem process, to invoke the Csrss.exe shutdown routine.
29. Csrss.exe loops through the active processes and notifies them that the system is shutting down. For every system process except Services.exe, Csrss.exe waits up to the number of seconds specified by the value of the registry entry WaitToKillAppTimeout in the HKEY_USERS\.DEFAULT\Control Panel\Desktop subkey for the process to exit before moving on to the next process. The default value of the WaitToKillAppTimeout entry is 20 seconds.

30. When Csrss.exe encounters the Services.exe process, it also notifies it that the operating system is shutting down, but a time-out specific to the SCM.
31. Csrss.exe recognizes the SCM by using the process identifier (PID) Csrss.exe saved when the SCM registered with Csrss.exe during system initialization.
The SCM time-out differs from that of other processes because the Csrss.exe process waits while the SCM communicates with services that need to perform cleanup when they shut down; therefore, an administrator might need to adjust only the SCM time-out. The SCM time-out value resides in the registry entry WaitToKillServiceTimeout in the HKLM\SYSTEM\CurrentControlSet\Control subkey. Its default value is 20 seconds.

32. The SCM shutdown handler is responsible for sending shutdown notifications asynchronously to only those services that requested shutdown notification when they initialized with the SCM. The shutdown control code is SERVICE_CONTROL_SHUTDOWN.

33. The SCM loops through the SCM database, searching for services that need shutdown notification, and sends each one a shutdown command.
34. For each service that is about to be shut down, the SCM sends a shutdown command and it records the value of the service’s wait hint — a value that the service also specifies when it registers with the SCM.
A service’s wait hint is the amount of time the SCM sits in a loop waiting for a service to start or shut down. The wait hint must indicate how many milliseconds the program that is sending the control code should wait before polling the service’s status again. The SCM keeps track of the largest wait hint it receives.
35. After sending the shutdown messages, the SCM waits until all of the services it notified of shutdown have exited, until the time specified by the largest wait hint passes, or until the value of the WaitToKillServiceTimeout entry is exceeded. Services.exe itself is stopped by Csrss.exe.
[image: image18.wmf]
Note

The SCM does not wait for acknowledgment, but simply sits in a loop examining the state of all the services that requested shutdown notification. Also, to decrease shutdown time, the SCM does not follow dependency order when shutting down services.
· If the wait hint expires without a service exiting, the SCM determines whether one or more of the services it was waiting on to exit have sent a message to the SCM telling the SCM that the service is progressing in its shutdown process.
· If at least one service made progress, the SCM waits again for the duration of the wait hint. The SCM continues executing this wait loop until either all the services have exited or none of the services upon which it is waiting has notified it of progress within the wait hint time-out period.

While the SCM is busy telling services to shut down and waiting for them to exit, Csrss.exe waits for the SCM to exit.
· If all services end in the SERVICE_STOPPED state, the SCM exits on its own.

· If the services do not all end up in the SERVICE_STOPPED state, the SCM loops for 30 seconds. The services that did not end up in the SERVICE_STOPPED state are eventually stopped, along with Services.exe itself, by Csrss.exe as the system shuts down.
[image: image19.wmf]
Note

The SCM never actually stops the services on shutdown. This situation would only happen when the computer shuts down services that do not exit on their own.

· If the wait by Csrss.exe ends without the SCM having exited (that is, the WaitToKillServiceTimeout time expires), Csrss.exe just continues the shutdown process and eventually stops Services.exe as a result.

SCM Handles

The SCM supports handle types or entry points to allow access to the following objects:
· The database of installed services

· A service

· The database lock

The database of installed services is represented by an internal container object that holds service objects. This handle or entry point is used when installing, deleting, opening, and enumerating services and when locking the services database.
An installed service is represented by a service object. The requested access is granted or denied depending on the access token of the calling process and the security descriptor associated with the internal or service object. This level of access is then associated with all subsequent calls that use this handle. If a subsequent call requires a level of access that was not originally requested for that handle, the call will fail, regardless of whether the current user could have requested a handle that allowed that level of access. A best practice for clients of the SCM APIs is to request only the level of access that will be required.

The database lock is represented by a lock object that is created during SCM initialization to serialize access to the database of installed services. The SCM acquires the lock before starting a service or driver. Thus if an installer program has acquired a database lock, a demand-start cannot progress until the lock is released. It is important for installer programs to release this lock as soon as they can. Any installer program that subsequently tries to acquire this lock will receive the ERROR_SERVICE_DATABASE_LOCKED error, and retry after a short wait.

For more information about SCM handles and database locks, see the Software Development Kit (SDK) information in the MSDN Library link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

Registering a Service with the SCM

When a setup program registers a service by using the CreateService API, the following occurs:

36. The setup program sends a message to the SCM on the computer where the service will reside.
37. The SCM creates a registry subkey for the service under HKLM\SYSTEM\CurrentControlSet\Services. The Services subkey is the nonvolatile representation of the SCM database. The individual subkeys for each service define the path of the executable image that contains the service, in addition to parameters and configuration options.

38. After the SCM creates the registry subkey for the service, an installation or management application can start the service by using the StartService function. Because some service-based applications must be initialized during the startup process to function, it is not unusual for a setup program to register a service as an auto-start service, restart the computer to complete an installation, and let the SCM start the service as the computer is restarted.
[image: image20.wmf]
Note

Auto-start services have a significant impact on boot time.

Service Security Accounts

Traditionally, services in Windows operating systems earlier than Microsoft® Windows® XP and Windows 2000 have had the choice of running under either the LocalSystem security context or under an arbitrary user account. Creating user accounts for each service is cumbersome, especially because of password management for those accounts. Because of this, nearly all local services were configured to run as LocalSystem. The problem with this is that the LocalSystem account is highly privileged, and breaking into the service is often an easy way to achieve a privilege elevation attack.
Many services do not need an elevated privilege level; hence the need for a lower privilege level security context available on all computers.
In Windows Server 2003 and Windows XP, services can run under the following security contexts:

· LocalSystem account

· NetworkService account (NT AUTHORITY\NetworkService)

· LocalService account (NT AUTHORITY\LocalService)

· Domain user account
· Local user account

The security context under which the service runs affects the access rights that the service has on the computer and on the network. The security context of a service is an important consideration for service developers and system administrators because it dictates what resources the process can access. Unless a service installation program or administrator specifies otherwise, services run in the security context of the LocalSystem account (displayed sometimes as SYSTEM and other times as LocalSystem), which has some special characteristics.

[image: image21.wmf]
Caution

Changing the account under which a service is run might prevent the service from running properly. Administrators should be careful when changing the account settings for an existing service. Most services are configured to run under the proper account, and will not function properly or will not run at all if reconfigured. Some services require the account settings to be manually set according to the software manufacturer’s recommendations.

LocalSystem Account

LocalSystem is a special, predefined local account available only to system processes. This account does not have a password.

On computers running any version of Microsoft® Windows NT®, a service that runs in the context of the LocalSystem account inherits the security context of the SCM. The service is not associated with any logged-on user account and does not have credentials (domain name, user name, and password) to be used for verification. The service has limited access to network resources, such as shared folders and named pipes, because it has no credentials and must connect by using a null session.
On computers running Windows 2000 or Windows Server 2003, a service that runs in the context of the LocalSystem account uses the credentials of the computer when accessing resources over the network and has full access to local resources. For services that access the Active Directory® directory service, the LocalSystem context is constraining. When a service runs under the LocalSystem account on a computer that is a domain member, such as a Windows Server 2003–based computer running as a member server or Microsoft Windows XP Professional, the service runs under the context of the computer account when it accesses domain resources. Computer accounts typically have very few privileges and do not belong to groups. Adding computer accounts to groups is not recommended because the accounts are subject to deletion and re-creation if the computer leaves and then rejoins the domain.

On the other hand, a service that runs in the context of LocalSystem on a domain controller has full access to the directory, because the domain controller hosts a directory replica and LocalSystem has complete access to local resources. The Net Logon service is an example of a service that runs under the LocalSystem account.
[image: image22.wmf]
Caution

If possible, do not run services under the LocalSystem account on a domain controller. Doing so gives your service too much access to Active Directory, because LocalSystem on a domain controller has complete control of Active Directory and can cause serious damage to directory information.

The LocalSystem account is the same account in which all the Windows Server 2003 user-mode operating system components run, including Session Manager (Smss.exe), Csrss.exe, Lsass.exe, the Winlogon process (Winlogon.exe), some services located in the systemroot\System32 folder, and the SCM (Services.exe).

From a security perspective, the LocalSystem account is extremely powerful — more powerful than any local or domain account when it comes to security on a local computer. This account has the following characteristics:

· It is a member of the local Administrators group.
· It has the right to enable virtually every privilege, even privileges not normally granted to the local administrator account, such as creating security tokens.
· Most files and registry keys grant full access to the LocalSystem account. Even if they do not grant full access, a process that runs under the LocalSystem account can exercise the Take Ownership privilege to gain access.
· Processes running under the LocalSystem account run with the default user profile (HKEY_USERS\.DEFAULT). They can access configuration information stored in the user profiles of other accounts through the registry key HKEY_USERS\<SID>.

· When a computer is a member of a Windows Server 2003–based domain, the LocalSystem account includes the computer security identifier (SID) for the computer on which a service process is running. Therefore, a process running in the LocalSystem account will be automatically authenticated on other computers in the same forest by using the computer account of the computer running the service process. (A forest is a grouping of domains.)
· Unless the computer account is specifically granted access to resources (such as shared folders, named pipes, and so on), a process can access network resources that allow null sessions — that is, connections that require no credentials. You can specify the shared folders and named pipes on a particular computer that permits null sessions in the NullSessionPipes and NullSessionShares registry entries in the HKLM\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters subkey.

A service running under the LocalSystem account has the security privileges listed in Table 13.2.

Table 13.2 LocalSystem Security Privileges

	Privilege
	Description

	SeCreateTokenPrivilege
	Create a token object — Allows a process to create an access token by calling NtCreateToken() or other token-creating APIs.

By default, this privilege is not assigned to anyone. When a process requires it, use the LocalSystem (or System) account, which has the privilege inherently. Do not create a separate user account and assign the privilege to it.

	SeAssignPrimaryTokenPrivilege
	Replace a process-level token — Allows a parent process to replace the access token that is associated with a child process.

By default, this privilege is not assigned to anyone.

	SeLockMemoryPrivilege
	Lock pages in memory — Allows a process to keep data in physical memory, which prevents the system from paging the data to virtual memory on disk. Assigning this privilege can result in significant degradation of system performance.

By default, this privilege is not assigned to anyone. LocalSystem (or System) has the privilege inherently.

	SeIncreaseQuotaPrivilege
	Increases quotas — Allows a process that has Write Property access to another process to increase the processor quota assigned to the other process. This privilege is useful for system tuning, but it can be misused. In the wrong hands, it could be used to start a denial of service attack.

By default, this privilege is assigned to Administrators.

	SeTcbPrivilege
	Act as part of the operating system — Allows a process to authenticate as if it were a user and thus gain access to the same resources as a user. Typically, only low-level authentication services require this privilege.

Note that potential access is not limited to what is associated with the user by default; the calling process might request that arbitrary additional privileges be added to the access token. The calling process might also build an access token that does not provide a primary identity for tracking events in the audit log.

By default, this privilege is not assigned to anyone. When a service requires it, configure the service to log on using the LocalSystem account, which has the privilege inherently. Do not create a separate account and assign the privilege to it

	SeSecurityPrivilege
	Manage auditing and security log — Allows a user to specify object access auditing options for individual resources such as files, Active Directory objects, and registry keys. Object access auditing is not actually performed unless you have enabled it in Audit Policy (under Security Settings, Local Policies). A user who has this privilege can also view and clear the Security log from Event Viewer.

By default, this privilege is assigned to Administrators.

	SeTakeOwnershipPrivilege
	Take ownership of files or other objects — Allows a user to take ownership of any securable object in the system, including Active Directory objects, NTFS file system files and folders, printers, registry keys, services, processes, and threads.

By default, this privilege is assigned to Administrators.

	SeLoadDriverPrivilege
	Load and unload device drivers — Allows a user to install and uninstall Plug and Play device drivers. This privilege does not affect the ability to install drivers for devices that are not Plug and Play. Drivers for non–Plug and Play devices can be installed only by Administrators.

By default, this privilege is assigned to Administrators. It is recommended that this privilege not be assigned to any other user. Device drivers run as trusted (highly privileged) programs. A user who has SeLoadDriverPrivilege could unintentionally misuse it by installing malicious code masquerading as a device driver. It is assumed that administrators will exercise greater care and install only drivers that have verified digital signatures.

	SeSystemtimePrivilege
	Change the system time — Allows the user to set the time for the internal clock of the computer.

By default, this privilege is assigned to Administrators, Power Users, LocalService, and NetworkService on member servers and workstations. On domain controllers, it is assigned to Administrators, Server Operators, LocalService, and NetworkService.

	SeProfileSingleProcessPrivilege
	Profile a single process — Allows a user to run Windows Server 2003 performance-monitoring tools to monitor the performance of nonsystem processes.

By default, this privilege is assigned to Administrators and Power Users on member servers and workstations. On domain controllers, it is assigned only to Administrators.

	SeIncreaseBasePriorityPrivilege
	Increase scheduling priority — Allows a process that has Write Property access to another process to increase the execution priority of the other process. A user with this privilege can change the scheduling priority of a process by using Task Manager.

By default, this privilege is assigned to Administrators.

	SeCreatePagefilePrivilege
	Create a paging file — Allows the user to create and change the size of a paging file. This is done by specifying a paging file size for a particular drive under Performance Options on the Advanced tab of System Properties.

By default, this privilege is assigned to Administrators.

	SeCreatePermanentPrivilege
	Create permanent shared objects—Allow processes to create objects that will remain in the global namespace even after the handle to objects are closed, or if the processes exit. This privilege is useful to kernel-mode components that extend the object namespace. Components that are running in kernel mode already have this privilege inherently; it is not necessary to assign them the privilege.

By default, this privilege is not assigned to anyone. LocalSystem (or System) has the privilege inherently.

	SeBackupPrivilege
	Back up files and directories — Allows the user to circumvent file and directory permissions to back up the system. The privilege is selected only when an application attempts access through the NTFS backup API. Otherwise, normal file and directory permissions apply.

By default, this privilege is assigned to Administrators and Backup Operators. On domain controllers, it is also assigned to Server Operators.

See also the SeRestorePrivilege description later in this table.

	SeRestorePrivilege
	Restore files and directories — Allows a user to circumvent file and directory permissions when restoring backed‑up files and directories and to set any valid security principal as the owner of an object.

By default, this privilege is assigned to Administrators and Backup Operators.
See also the SeBackupPrivilege description earlier in this table.

	SeShutdownPrivilege
	Shut down the system — Allows a user to shut down the local computer.

By default, this privilege is assigned to Administrators, Backup Operators, Power Users, and Users on workstations. On member servers, it is assigned to Administrators, Power Users, and Backup Operators. On domain controllers, it is assigned to Administrators, Account Operators, Backup Operators, Print Operators, and Server Operators.

	SeDebugPrivilege
	Debug programs — Allows the user to attach a debugger to any process. This privilege provides access to sensitive and critical operating system components.
By default, this privilege is assigned to Administrators.

	SeAuditPrivilege
	Generate security audits — Allows a process to generate audit records in the Security log. The Security log can be used to trace unauthorized system access.
By default, this privilege is assigned to LocalService and NetworkService. LocalSystem (or System) has the privilege inherently.

See also the SeSecurityPrivilege description earlier in this table.

	SeSystemEnvironmentPrivilege
	Modify firmware environment values — Allows modification of system environment variables either by a process through an API or by a user through System Properties.

By default, this privilege is assigned to Administrators.

	SeChangeNotifyPrivilege
	Bypass traverse checking — Allows the user to pass through folders to which the user otherwise has no access while navigating an object path in NTFS or in the registry. This privilege does not allow the user to list the contents of a folder; it allows the user only to traverse its directories.

By default, this privilege is assigned to Administrators, Backup Operators, Power Users, Users, and Everyone on member servers and workstations. On domain controllers, it is assigned to Administrators, Authenticated Users, and Everyone.

	SeUndockPrivilege
	Remove computer from docking station — Allows the user of a portable computer to undock the computer by clicking Eject PC on the Start menu.

By default, this privilege is assigned to Administrators, Power Users, and Users.

	SeImpersonatePrivilege
	Ability to impersonate — Allows the user to add the impersonate privilege to the process token.
By default, this privilege is granted to all service-type logon accounts and Administrators.

Interactive Services
Another restriction for services running under the LocalSystem account is that they generally cannot display dialog boxes or windows interactively on the user’s desktop without using a special flag on the MessageBox function. This limitation is not the direct result of running under the LocalSystem account, but rather is a consequence of the way the SCM assigns service processes to window stations.

Csrss.exe associates every Win32 process with a window station. A window station contains desktops, and desktops contain windows. Only one window station can be visible on a console and receive user mouse and keyboard input. In a Terminal Services environment, one window station per session is visible, but services all run as part of the console session. Win32 names the visible window station WinSta0, and all interactive processes access WinSta0.

An interactive service must open the WinSta0 window station, but before the SCM allows an interactive service to access WinSta0, it checks to see whether the value of the registry entry NoInteractiveServices in the HKLM\SYSTEM\CurrentControlSet\Control\Windows subkey is 1. Administrators set this value to prevent services configured as interactive from displaying windows on the console. This option is desirable in unattended server environments in which no user is present to respond to message boxes from interactive services.

[image: image23.wmf]
Note

The command-line tool Objdir.exe can be used to view named objects, including window stations in the systemroot\WindowStations object directory. Winobj is the GUI version. To list all interactive services, you must enumerate all services and call QueryServiceConfig for each service. A best practice is to create a script to do this by using WMI or a batch file.

Unless otherwise directed, the SCM associates services with a nonvisible window station named Service-0x0-3e7$ that all noninteractive services share. The number in the name, 3e7, represents the logon session identifier Lsass.exe assigns for the LocalSystem account.

More specifically, the SCM uses Service-<LUID> where <LUID> is the logon ID of the logon performed for that service. Services running under the LocalService account receive 0x0-3e5 and services running under the NetworkService account receive 0x0-3e4. Services running under the LocalSystem account normally receive 0x0-3e7.

Services configured to run under a user account (that is, not the LocalSystem account) are run in a different nonvisible window station named with the Lsass.exe logon PID assigned for the service’s logon session.
Regardless of whether services are running in a user account or in the LocalSystem account, services that are not running on the visible window station cannot receive input from you or display windows on the console. In fact, if a service were to open a normal dialog box on the window station, the service would appear to be hung because no user would be able to see the dialog box, which of course would prevent the user from providing keyboard or mouse input to dismiss it.
[image: image24.wmf]
Note

Only services configured to run under the LocalSystem account can be configured as interactive.

When the SCM starts a service configured as interactive, it starts the service’s process in the LocalSystem account’s security context but connects the service with WinSta0 instead of the noninteractive service window station. This connection to WinSta0 allows the service to display dialog boxes and windows on the console and allows those windows to respond to user input.

For more information about the MessageBox function see, the Software Development Kit (SDK) information in the MSDN Library link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

NetworkService Account

On computers running Windows Server 2003, services can also be configured to log on under the NetworkService account. Like LocalSystem, this account does not require a password. The password is an empty password.

The NetworkService account is a built-in system account that has the privileges of an authenticated user; therefore, it provides an alternative to running services under the LocalSystem account. There is no lockout policy for the NetworkService account because it is not password-protected. The protection mechanism is that only a process running under the LocalSystem account can perform a NetworkService (or LocalService) logon and it must be a service-type logon.
The NetworkService account is intended for services that have no need for extensive local privileges, but do need authenticated network access. Services running as the NetworkService account access local resources as ordinary users. When they access network resources, they do so using the credentials of the computer. A service running as NetworkService has the same network access as a service running as LocalSystem, but it has significantly reduced local access. The following security privileges are available to services running in the NetworkService account:

· SeShutdownPrivilege

· SeAuditPrivilege

· SeChangeNotifyPrivilege

· SeUndockPrivilege

· SeImpersonatePrivilege

For more information about these privileges, see Table 13.2.

LocalService Account

On computers running Windows Server 2003, services can be configured to log on under the LocalService account. Like the LocalSystem account, this account does not require a password.

The LocalService account is intended for services that are local to the computer, have no need for extensive local privileges, and do not need authenticated network access. Accounts running under the LocalService and NetworkService accounts have identical privileges. Services running under the LocalService account access local resources as ordinary users. When they access network resources, they do so as anonymous users. A service running under the LocalService account has significantly less authority than a service running under the LocalSystem account, both locally and on the network. The following security privileges are available to services running in the LocalService account:

· SeShutdownPrivilege

· SeAuditPrivilege

· SeChangeNotifyPrivilege

· SeUndockPrivilege

· SeImpersonatePrivilege

For more information about these privileges, see Table 13.2.

Domain User Account

Many services need to run under a separate service logon account with more specific permissions than LocalSystem, NetworkService, or LocalService. These services’ installation programs create the service logon account and configure access control lists (ACLs) appropriately to give the rights to the service logon account

Installing a service by using a domain user account and password allows the service to have the access that the domain account offers. The domain account can be a member of multiple security groups and is not subject to deletion and re-creation if the computer leaves and rejoins the domain. To grant access to areas of Active Directory to services that use service logon accounts, you can easily use group memberships; however, running a service in the context of a service logon account has the following disadvantages:

· The account must be created before the service can run. If the setup program for the service creates the account, Setup must run from an account that has sufficient administrative credentials to create accounts in the directory service.

· Service account names and passwords are stored on each computer on which the service is installed. If the password for a service account on a computer is changed or expires, the service cannot start on that computer until the password is set to the new password for that service. The recommendation is to use LocalService and Network Service instead of using an account that requires a password: this simplifies password management.

· If a service account is renamed, locked out, disabled, or deleted, the service cannot start on that computer until the account is reset.

A domain user account has two name formats that you need to use for various operations: the distinguished name of the user object in the directory and the domain\username format used by the local SCM.

[image: image25.wmf]
Note

When you configure a service to run under a certain account, the SCM will call Lsass.exe to look up the account name by using the LsaLookup* APIs. LocalSystem is an exception because there are so many variations for the name. If the account is valid, the SCM allows the configuration change to proceed. The next time the service is started, the SCM calls LogonUser for the account by using the specified password (using the _SC_service name as the password, technically) to do a service-type logon, and starts the process with the returned logon token. If the process receives the service SID in its token, the process is identified as a service process.

Local User Account

A local user account (name format: .\username) exists only in the Security Accounts Manager database of the host computer; it does not have a user object in Active Directory. This means that a local user account cannot be authenticated by the domain. Consequently, the service running in a local user account does not have access to network resources (except as an anonymous user) and it cannot support Kerberos mutual authentication in which the service is authenticated by its clients. For these reasons, local user accounts are typically inappropriate for directory-enabled services. However, accounts running under the security context of a local user account have very few privileges and will cause very little damage if the account is used for malicious purposes.
[image: image26.wmf]
Note

By default, the local user account does not have the logon as service permission. Therefore, you cannot run a service under this account.
Services running as administrators on domain controllers are an exception for accounts running under the security contexts of local user accounts for directory enabled services; consequently, the same cautions apply to local user accounts regarding the account name and password as apply to domain user accounts.

Managing and Configuring Services

Windows Server 2003 offers a number of administrative tools that allow a service to be managed and configured either locally or remotely from other computers connected on the network. When you use these tools, it is not necessary for someone to physically check (or even have physical access to) the computer running the service.

These tools are built into Windows Server 2003 to help you manage and configure services:

· Services snap-in. The Services snap-in is an MMC console that allows you to manage and configure services.

· Sc.exe. This command-line tool communicates with the SCM and installed services. Sc.exe retrieves and sets control information about services.

· Net.exe. This command-line tool stops, starts, continues, and pauses services.

· Security Templates snap-in. A security template is a file that represents a security configuration or security policy setting. These templates can then be applied to your local computer or imported to a Group Policy object (GPO). For more information about the Security Templates snap-in, see “Security Templates overview” in Help and Support Center for Windows Server 2003.

The Services snap-in, Sc.exe, and Net.exe are service control programs.

To use the Services snap-in to administer a remote computer, you can go to Computer Management from Administrative Tools in Control Panel, click the Computer Management (Local) node in the console tree, and then choose Connect To Another Computer from the Action menu. The Services node appears under Services and Applications.
Alternately, you can select the Services (Local) node in the Services console tree and then choose Connect To Another Computer from the Action menu.

To use Sc.exe on a remote computer, use the ServerName parameter to specify the name of the remote server on which the service is located. Use Universal Naming Convention (UNC) format for the server name (for example, \\myserver).

After you have established a connection on the remote computer, you can begin to query and communicate with the SCM.

Communication Between Service Control Programs and the SCM

Service control programs sometimes layer service policy on top of what the SCM implements. A useful example is the time-out that the Services snap-in implements when a service is started manually. The Services snap-in presents a progress bar that represents the progress of a service’s startup. The Services snap-in will wait up to two minutes before its progress bar reaches 100 percent and it announces that the service did not start in a timely manner. In contrast, the SCM will not wait for a service to transition to the running state after being sent a start command. The SCM’s API to start, stop, pause, or resume services is asynchronous; you have to poll to find out what is happening.

Services indirectly interact with service control programs by setting their configuration status to reflect their progress as they respond to SCM commands such as the start command. Service control programs query the status so they can tell when a service has actively updated its status versus appearing to be hung, and the SCM can take appropriate actions in notifying you about what the service is doing.
[image: image27.wmf]
Caution

All service APIs can be called remotely; however, you should avoid modifying the SCM database directly in the registry if possible. Use the service control programs instead

Do not edit the registry directly unless you have no alternative. The registry editor bypasses standard safeguards, allowing settings that can degrade performance, damage your system, or even require you to reinstall Windows. If you must edit the registry, back it up first and see the Registry Reference (http://go.microsoft.com/fwlink/?linkid=4543) at http://www.microsoft.com/reskit.

Starting, Stopping, Disabling, and Resuming Services
The most common tasks associated with managing services are starting, stopping, and disabling a service, and changing the startup method to manual. For example, you might need to start a service in order to use certain server-based applications, or you might need to stop or pause a service in order to perform testing or to troubleshoot a problem.
You can perform the following actions either locally or remotely by using the Services snap-in:

· Start a service. Right-click the name of the service, and then click Properties. On the General tab, click Start. Only services with a startup type of Automatic or Manual can be started; disabled services cannot.
· Disable a service. Right-click the name of the service, and then click Properties. On the General tab, in the Startup type list, click Disabled. Disabling a service is useful for troubleshooting problems with a computer.
[image: image28.wmf]
Note

If you enable or disable a service and you encounter a problem starting the computer, you might be able to start the computer in Safe Mode. Then you can change the service configuration or restore the default configuration.

· Stop a service. Right-click the name of the service, and then click Properties. On the General tab, click Stop. Note that some services do not allow themselves to be stopped after they are started. The Event Log service, for example, stops only when the computer shuts down.
· Pause or resume a service. Right-click the name of the service, and then click Properties. On the General tab, click Pause. To resume the service, click Resume.
[image: image29.wmf]
Note

Most services do not allow themselves to be paused. Pause has no exact definition; for one service, pausing can mean that the service will not accept client requests until it finishes processing the outstanding requests. For another service, pausing can mean that the service can no longer process any of its operations.

· Restart a service. Right-click the name of a running or paused service, and then click Properties. On the General tab, click Resume. Restarting a service causes the snap-in to stop the service and then start the service. This is simply a convenience feature; it can be very useful when you are debugging your own service.
These tasks can also be performed by using the buttons on the toolbar in the Services snap-in.

Configuring General Properties

The Services snap-in can be used to reconfigure a service. To reconfigure a service, open the Services snap-in, right-click the service, and then click Properties. The Properties dialog box contains four tabs; each tab allows you to reconfigure parts of the selected service. Use the General tab to examine and reconfigure general information about a service.
A service is identified by two string names: an internal name (service name) used for programmatic purposes and a display name (a string that is presented to administrators and users). After being added to the computer’s service database, a service’s internal name cannot be altered.

The administrator can change the startup type to one of the following:

· Automatic. If a service’s startup type is Automatic, the SCM spawns the service when the operating system is restarted. Automatic services run before any user interactively logs on to the computer. In fact, many computers are set up only to run services; no one ever logs on to the computer interactively.
[image: image30.wmf]
Note

If the service is stopped later by using the ControlService API, it can be restarted by using the StartService API. The commands sc stop and net stop call the ControlService API, and sc start and net start call the StartService API.
· Manual. If a service’s startup type is Manual, the SCM does not start the service when the computer is restarted. An administrator can start the service manually by using a service control program such as Sc.exe or Net.exe; this is essentially an explicit call to StartService. A manual service, otherwise known as a demand-start service, will also start when another service that depends on the manual service is started.
· Disabled. If a service’s startup type is Disabled, the SCM does not start the service under any circumstance. For example, you disable the DHCP Client service when you manually assign an IP address to your computer rather then have it dynamically obtain an IP address from a computer running the DHCP Server service. Disabling a service is also quite useful when you are troubleshooting a system because it allows you to isolate a certain variable or service as a problem.
Any attempt to start a disabled service by using the StartService API will fail and the ERROR_SERVICE_DISABLED message will be returned.

For more information about configurable service settings, see “Services” in Help and Support Center for Windows Server 2003.

Using Command-Line Tools to Manage and Configure Services

In addition to the Services snap-in, Windows Server 2003 ships with two command-line service control programs.

Net.exe

This tool is limited in that it allows you to control only those services residing on the local computer. Using Net.exe, you can start, stop, pause, and continue services.

For example, to stop the Background Intelligent Transfer Service (BITS), type the following at the command line:

net stop bits
This command displays the following information:

The Background Intelligent Transfer Service service is stopping.

The Background Intelligent Transfer Service service was stopped successfully.

To start the BITS service, type the following at the command line:

net start bits

This command displays the following information:

The Background Intelligent Transfer Service service is starting.

The Background Intelligent Transfer Service service was started successfully.

For more information about Net.exe, see “Net services commands” in Help and Support Center for Windows Server 2003.

Sc.exe

Another service control program is the command-line tool Sc.exe. It is located in the systemroot\System32 folder and implements calls to all of the Windows service control API functions. You can set the parameters to these functions by specifying them on the command line. Sc.exe also displays service status and retrieves the values stored in the status structure fields. The tool also lets you specify the name of a remote computer so that you can call the service API functions or view the service status structures on the remote computer. You can also alter the path to the service by using the Sc.exe tool.

For more information about the Sc.exe tool, see “Troubleshooting Services” later in this chapter.

Setting Service Recovery Options

The Recovery tab in a service’s Properties dialog box enables an administrator to define a set of actions to take in the event of a service failure, in which the service exits while the service is in a state other than stopped. There are three service failure recovery options: first failure, second failure, and subsequent failures. The underlying API allows an unrestricted number of specific failures before the response specified in the Subsequent failures list takes place; however the Services snap-in only exposes two.

There are four settings available for configuring service recovery options:

· Take No Action. If this service fails, no action will be taken. This is the default for all services.
· Restart the Service. If this service fails, the service will be restarted.

· Run a Program. If this service fails, a program selected by an administrator will run in the service’s context. If this option is selected, the fields under Run program are enabled and additional parameters, such as the program to be run, need to be specified.

· Restart the Computer. If this service fails, the computer will be restarted. If this option is selected, the Restart Computer Options button is enabled and additional parameters — such as the length of time to wait until the computer is restarted — can be specified. The SCM sends a message to all computers with active sessions connected to the computer before the computer restarts.

Limitations to Configuring Recovery Options

You can configure the recovery options for how the system should respond in the event of a service failure. However, there are limitations to configuring the services. Because they run in system-critical processes, the following services are preconfigured to automatically restart the computer if they fail and their recovery options cannot be reconfigured:

· Event Log

· IPSEC Services

· Net Logon

· Plug and Play

· Protected Storage

· Security Accounts Manager

The RPC service is also preconfigured to restart the computer if it fails, but its recovery options can be reconfigured.

The following services are preconfigured to be restarted by the SCM for their first and second failures:
· Distributed Transaction Coordinator

· Help and Support

· Print Spooler

· Upload Manager

· Windows Time

[image: image31.wmf]
Note

Recovery occurs only if the service fails, not if other types of failures, such as hangs, occur.

Managing Service Security

Each service has special permissions that you can grant or deny for each user or group. You can set permissions for individual services by using Sc.exe, Group Policy, or Security Templates. You can set service permissions for groups by using the Active Directory Users and Computers snap-in.

Services must log on to an account to access resources and objects on the operating system. Some services are configured by default to log on to the LocalSystem account, which is a powerful account that has full access to the system. If a service logs on to the LocalSystem account on a domain controller, that service has access to the entire domain. Other services are configured to log on to LocalService or NetworkService accounts, which are special built-in accounts that are similar to authenticated user accounts. These accounts have the same level of access to resources and objects as members of the Users groups. This limited access helps safeguard your system if individual services or processes are compromised.

Table 13.3 lists the individual service permissions that you can apply.

[image: image32.wmf]
Caution

Changing the account under which a service is run might prevent the service running properly.

Table 13.3 Service Permissions

	Permission
	Allows you to

	Full Control

(SERVICE_ALL_ACCESS)
	Perform all functions. This permission automatically grants all service permissions to the user.

	Query Template

(SERVICE_QUERY_CONFIG)
	Determine the configuration parameters associated with a service object.

	Change Template

(SERVICE_CHANGE_CONFIG)
	Change the configuration of a service.

	Query Status

(SERVICE_QUERY_STATUS)
	Access information about the status of a service.

	Enumerate Dependents

(SERVICE_ENUMERATE_DEPENDENTS)
	Determine all of the other services that are dependent on the specified service.

	Start

(SERVICE_START)
	Start a service.

	Stop
(SERVICE_CONTROL_STOP)
	Stop a service.

	Pause and Continue

(SERVICE_PAUSE_CONTINUE)
	Pause and continue a service.

	Interrogate

(SERVICE_CONTROL_INTERROGATE)
	Report the current status information for a service.

	User Defined Control

(SERVICE_USER_DEFINED_CONTROL)
	Send a user-defined control request, or a request that is specific to the service, to a service.

	Delete

(DELETE)
	Delete a service.

	Read Permissions

(READ_CONTROL)
	Read the security permissions assigned to a service.

	Change Permissions

(WRITE_DAC)
	Change the security permissions assigned to a service.

	Take Ownership

(WRITE_OWNER)
	Change a security key or change permission on a service that is not owned by the user.

Implementing security on system services in Windows Server 2003 enables you to control who can manage services on a client, member server, or domain controller. Currently, the only way to change a system service is through a Group Policy setting. If you implement Group Policy at the Default Domain Policy, the policy takes effect on all computers in the domain. If you implement Group Policy at the Default Domain Controllers policy, the policy applies only to the servers in the domain controller’s organizational unit (OU). You can create OUs that contain workstations for which policy settings can be applied.
[image: image33.wmf]
Note

You need to move the computer accounts into the OU that you want to manage. After the computer accounts are in the OU, the authorized user or groups in the security permissions can manage the service.

Setting Service Permissions
The following procedure describes the steps to implement a Group Policy on an OU to change permissions on all, or a subset of, system services.

[image: image34.wmf]
To assign system service permissions in a domain

39. On the appropriate domain controller, start Active Directory Users and Computers.
40. Right-click the domain in which you want to add the OU, click New, and then click Organizational Unit.

41. Give the OU an appropriate name, and then click OK. The new OU is listed below the domain.
42. Right-click the new OU, and then click Properties.

43. On the Group Policy tab, click New.
44. Give the new policy setting an appropriate name (for example, the name of the OU for which it is implemented).

45. After the policy setting is created, make sure it is highlighted, and then click Edit.

46. Double-click Computer Configuration, double-click Windows Settings, double-click Security Settings, and then double-click System Services.

47. Double-click the service for which you want to apply permissions.
48. Select the Define this Policy Setting check box.
49. Click Edit Security.

50. Click Add to add the LocalSystem account and any other user accounts to which you want to grant access. To add the LocalSystem account, type SYSTEM in the Enter the objects name to select box, and then click OK.

51. For each user account or group that you have added, highlight the name, and then select the Allow check box under Full Control, in addition to the appropriate permissions for the user account or group.
By default, only the start, stop, and pause permissions are granted to all new users.

[image: image35.wmf]
Note

For additional information about necessary permissions for starting a service, see Table 13.3
52. After you finish adding the appropriate users and groups with the appropriate permissions to the service, click OK.

53. The service startup mode is set to Disabled by default. Change this setting to the startup mode you want (usually Automatic).

54. Click OK, close the Group Policy Object Editor, and then click Close in the Properties dialog box of the OU.

The local policy setting does not provide the ability to configure services. If you want to configure random computers to join a domain and restrict a user to stop or start a service, use the Security Templates snap-in to define a security template. Apply the template to the computer by using the Security Configuration and Analysis administrative tool or the Secedit.exe command-line tool.

[image: image36.wmf]
Note

If the user is not a domain member, you cannot configure services by using Group Policy because you cannot define the setting for a service unless you are able to select the user from the ACL Editor. With a computer-specific user account, it is not practical to create a Group Policy setting and apply it to other computers that do not recognize the account.

A domain user can use the Group Policy infrastructure to configure multiple computers. You define a service setting the same way the Security Templates snap-in does, except you use the Group Policy Object Editor, and the policy setting is applied automatically.

Security Templates

To make it easier to set up and manage the security settings for an organization’s network, Windows Server 2003 includes the Security Templates snap-in. This snap-in lets administrators define standard templates and apply them uniformly to multiple computers or users.
A security template is a physical representation of a security configuration; in other words, it is a file where a group of security settings might be stored. Windows Server 2003 includes a set of standard security templates, each appropriate to the role of a computer: The templates range from security settings for low-security domain clients to highly secure domain controllers. You can use these templates as provided, modify them, or use them as a basis for custom security templates you create.
The Security Configuration and Analysis tool is a companion to the Security Templates snap-in. It is used to apply the restrictions defined in a security template to actual systems. It can also be used to analyze a system’s security and to compare the settings on computers that have been deployed to make sure they conform to company standards.
For more information about setting up security templates, see “Security Templates Overview” in Help and Support Center for Windows Server 2003.
Running Services in Alternate Accounts
Some services need to run with the security credentials of a domain user account. You can configure a service to run in different types of accounts when the service is created, or you can specify an account and password that the service can run under by using the Windows Server 2003 Services snap-in.

[image: image37.wmf]
To select the account under which a service will run

55. Open the Services snap-in.
56. Right-click the service to which you want to assign a user or group account, and then click Properties.
57. Click the Log On tab, and then do one of the following:
· To specify that the service use the LocalSystem account, click LocalSystem account.
· To specify that the service use the LocalService account, click This account, and then type NT AUTHORITY\LocalService.
· To specify that the service use the NetworkService account, click This account, and then type NT AUTHORITY\NetworkService.
· To specify a domain user account, click This account, click Browse, and then specify a user account in the Select User dialog box. Type the password for the user account in the Password box and in the Confirm password box.
58. Click OK.
[image: image38.wmf]
Important

Changing the default service settings might prevent key services from running correctly. It is especially important to use caution when changing the Startup Type and Log On As settings of services that are configured to start automatically.

Monitoring Services

Many of the important operations that take place on a computer (especially on servers) run as services. This makes it imperative that you carefully monitor the services running on the computers in your network. A best practice for monitoring services in an enterprise environment is to use scripts.
Many services (such as DNS and DHCP) are so critical that a failure on a single server could adversely impact hundreds or even thousands of users by preventing them from logging on to the network or from accessing network-based resources.

In general, there are three forms of service monitoring:

· Monitoring service availability. Measures the percentage of time that a service is available.
The exact definition of availability depends on the expectations for each service. If a database service must be available to users from 8:00 A.M. to 6:00 P.M. Monday through Friday, it can be considered completely available as long as the service is running during those times. If the service fails on a Saturday, or at 2:00 A.M. on Tuesday, this does not affect availability. It does, however, affect service reliability.

· Monitoring service reliability. Measures how frequently a service fails and the amount of time required to restore a failed service to full functionality.
Reliability is calculated by dividing the time the service is functioning by the total number of days in a year. For example, a service that experiences a total downtime of 2 days during the course of a year is 99.5 percent reliable (363 days of availability divided by 365 days in a year).
· Monitoring service performance. Measures whether the service carries out its tasks in the expected manner (for example, whether the service handles the expected number of requests in the expected amount of time).
Monitoring Service Availability

When you monitor a service for availability, you verify only that the service is running. If you need to know whether the service is running at peak efficiency, you need to use a more in-depth type of monitoring (such as performance monitoring). Although relatively simple, availability monitoring is extremely important: other questions, such as whether the service is performing at the expected level, are meaningless if the service is not even running.

Availability monitoring generally involves a probe that returns the status of a service. By saving the results of each probe to a database, you can calculate the availability of a service. For example, if you issue 100 probes and the service responds 99 times, the service has an approximate availability of 99 percent.
Availability is often expressed as the average amount of time during a year when the service is not available. For example, a service with an availability of 99 percent means the service was unavailable for a total of 3.7 days per year. This could be caused by one outage of 3.7 days or several outages that, combined, add up to 3.7 days.
To increase the availability of a service, you can do one of two things:

· Increase the mean time between failures.
Unfortunately, a service failure is often caused by a bug either in the service or in the operating system. Unless you wrote the code for both the service and the operating system, it might be difficult for you to increase the mean time between failures.

· Decrease the time it takes to restart the service.
If you have to manually restart the service each time it fails, the service does not return to full functionality unless you are available to restart it. To increase availability, you can write a script that monitors the service state on a periodic basis and automatically restarts the service each time it fails.

Scripting Enablers

The scripting enablers listed in Table 13.4 are available to help you monitor service availability.

Table 13.4 Scripting Enablers for Monitoring Service Availability

	Technology
	Tool

	Shell script
	Sc.exe

Net.exe

	WSH
	None

	WMI
	Win32_Service

	ADSI
	IADsService

Scripting Steps

Reporting on the availability of services can be done by:

· Reporting the status of all services.

· Reporting on services that are in a specific state (for example, services that are running or services that are not running).

Reporting the state of all services

Listing 13.1 contains a script that monitors service availability; it does this by querying the list of services installed on a computer, and reporting the current state of each service. To run this script on a remote computer, replace the variable in line 1 for the target computer name with the name of remote computer.

59. Create a variable to specify the target computer name.
60. Use a GetObject call to connect to the WMI namespace \root\cimv2 on the target computer and set the impersonation level to “impersonate.”

61. Use the ExecQuery method to connect to the Win32_Service class. This returns a collection consisting of all the services installed on the computer.

62. For each service in the collection, echo the service display name and the current state of each service.

Listing 13.1 Monitoring Service Availability

	1

2

3

4

5

6

7

	strComputer = “.”
Set objWMIService = GetObject(“winmgmts:” & _

 “{impersonationLevel=Impersonate}!\\” & strComputer & “\root\cimv2”)

Set colServices = objWMIService.ExecQuery(“SELECT * FROM Win32_Service”)

For Each objService in colServices

 Wscript.Echo objService.DisplayName & “ = “ & objService.State

Next

Reporting on services that are not running

Listing 13.2 contains a script that monitors service availability; it does this by querying the list of services installed on a computer, and reporting on all services that are not running. To carry out this task, the script must perform the following steps:

63. Create a variable to specify the target computer name.
64. Use a GetObject call to connect to the WMI namespace \root\cimv2 on the target computer and set the impersonation level to “impersonate.”

65. Use the ExecQuery method to query the Win32_Service class. This returns a collection consisting of the services on the target computer. To restrict data retrieval to the set of services that are not running, the query includes a Where clause that limits the return to services with a state that does not equal “Running.”

Unlike the WMI Query Language (WQL) statement in Listing 13.1 that retrieved all the properties for every service, the query in Listing 13.2 only retrieves the values of the display name and state properties, as specified by the comma-separated property names immediately following the SELECT keyword. Limiting the returned properties to only those of interest minimizes the amount of data that must be sent across the network.

66. For each service in the collection, echo the service display name and the service state.

An attempt to echo a Win32_Service property other than display name and state results in an error based on the property list defined in the WQL query.

Listing 13.2 Monitoring Inactive Services

	1

2

3

4

5

6

7

8

	strComputer = “.”
Set objWMIService = GetObject(“winmgmts:” & _

 “{impersonationLevel=Impersonate}!\\” & strComputer & “\root\cimv2”)

Set colStoppedServices = objWMIService.ExecQuery _

 (“SELECT DisplayName,State FROM Win32_Service WHERE State <> ‘Running’”)

For Each objService in colStoppedServices

 Wscript.Echo objService.DisplayName & “ = “ & objService.State

Next

You can also report on the availability of services by using Sc.exe or Net.exe.

Monitoring Service Reliability

Reliability monitoring enables you to track the mean time between service failures. The mean time between failures tells you the amount of time you can expect a service to run before it fails. A service with a mean time between failures of 1,000 hours is expected to run approximately 1,000 hours before encountering problems.
Knowing the mean time between failures can help you to prevent problems before they occur. For example, you might have a service that fails every 10 days because of a memory leak. Rather than wait for the service to fail (perhaps at a highly inconvenient time for your users), you might periodically schedule the service to stop and restart at a time that minimizes the impact on users, on other services, and on other parts of the computing environment.

Reliability monitoring can also tell you how long it takes for a service to be restored in the event that it does fail. For example, your reliability statistics might show that it takes 6 hours to fully restore a particular service. This information can help you plan routine service maintenance: if you need to upgrade or reconfigure the service, schedule this maintenance during a 6-hour block that minimally disrupts users.

Methods that help you chart service reliability include the following:

· Event subscriptions. You can create an event subscription that notifies you each time a service changes state (for example, goes from running to stopped). By saving these state changes in a database, you can calculate the mean time between failures and the time required to restore full functionality.

· Event logs. In Windows Server 2003, changes in service state are recorded in the System log. By periodically extracting these events, you can also calculate the reliability of all your services.

Scripting Enablers

The scripting enablers listed in Table 13.5 are available to perform this task.

Table 13.5 Scripting Enablers for Monitoring Service Reliability

	Technology
	Tool

	Shell script
	EventQuery.vbs

EventTriggers.exe

	WSH
	None

	WMI
	Win32_Service

Win32_NTLogEvent

	ADSI
	None

Scripting Steps

You can monitor changes in service status by:
· Using a temporary or permanent event subscription.

· Using event logs.

Monitoring changes in service status by using a temporary event subscription

Listing 13.3 contains a script that uses a temporary event subscription to monitor changes in service state. To carry out this task, the script must perform the following steps:

67. Create a variable to specify the target computer name.
68. Use a GetObject call to connect to the WMI namespace \root\cimv2 on the target computer and set the impersonation level to “impersonate.”

69. Use the ExecNotificationQuery method to register for notification each time there is an instance modification (that is, each time an instance within the namespace changes in some way).

Because the script monitors only changes to services, a Where clause is included to limit monitoring and data retrieval to instance modifications that involve the Win32_Service class.

70. Create a loop that allows the script to run indefinitely.

To stop monitoring, you need to terminate the script by using CTRL+C or by using a tool such as Taskkill.exe or Task Manager. Logging off the computer also causes the script to stop.

71. Use the NextEvent method to retrieve each event when it occurs.

72. Each time a service is modified in some way, the script checks to see if the current state of the service differs from the previous state of the service. If it does not, the script resumes by waiting for the next event.

By comparing the previous state with the current state, you can identify whether the modification involved a change in service state. For example, a change in service state would be indicated by a service that was started when last monitored, but is now stopped. If the previous and current states are the same, then the modification did not involve service state, but instead reflects a change to some other property of the service, such as changing the startup type from Manual to Automatic.

73. If the service states differ, echo the display name of the service, its current state, and its previous state.

In a production script, it is useful to save the information to a database or text file rather than merely echoing it to the screen.
Listing 13.3 Monitoring Changes in Service Status by Using a Temporary Event Subscriber

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
	strComputer = “.”
Set objWmiService = GetObject(“winmgmts:” & _

 “{impersonationLevel=impersonate}!\\” & strComputer & “\root\cimv2”)

Set objWmiEventSource = objWMIService.ExecNotificationQuery _

 (“SELECT * FROM __InstanceModificationEvent “ & _

 “WITHIN 3 WHERE TargetInstance ISA ‘Win32_Service’”)

Do

 Set objService = objWmiEventSource.NextEvent

 If objService.TargetInstance.State <> _

 objService.PreviousInstance.State Then

 Wscript.Echo objService.TargetInstance.DisplayName & _

 “ is “ & objService.TargetInstance.State & _

 “. The service previously was “ & _

 objService.PreviousInstance.State & “.”
 End If

Loop

[image: image39.wmf]
Note

If you are only interested in changes in service state, you can optimize the query in Listing 13.3 by adding the following:

targetinstance.state <> previousinstance.state
If you optimize the above query, you will not get events for other changes in the service, such as changes to startup type.

Monitor changes in service status by using event logs

In versions of Windows earlier than Windows Server 2003 and Windows XP Professional, changes in service status are not written to the System log. Instead, a service-related event is recorded in the event logs only when a service fails. This makes it difficult to monitor how services are performing throughout the organization. Although a monitoring tool can discover that a service has been stopped, you cannot know who stopped it, when it stopped, or why. As a result, you do not know if another administrator intentionally stopped the service, or if the service stopped because of a hardware or software problem.

In Windows Server 2003 and Windows XP Professional, however, events are automatically written to the System log whenever a service changes status, or whenever a control code is sent to a service. For example, when a service changes status, an event 7036 such as the following is written to the event log:

The WMI Performance Adapter Service entered the stopped state.

Likewise, an event 7035 such as the following is recorded each time a control code is sent to a service:

The IMAPI CD-Burning service was successfully sent a start control by .\Administrator.

Because WMI can be used to retrieve selected events from the event logs, you can track service reliability by periodically querying the event logs and noting the dates and times when services started or stopped.

Listing 13.4 contains a script that tracks changes in service status by retrieving events from the event logs. To carry out this task, the script must perform the following steps:

74. Create an SWbemDateTime object named dtmConvertedDate.
This is used to convert the date of any retrieved event from UTC format to a standard Date and Time format.

75. Create a variable to specify the computer name.

76. Use a GetObject call to connect to the WMI namespace \root\cimv2 and set the impersonation level to “impersonate.”

77. Use the ExecQuery method to query the Win32_Service class. This returns a collection consisting of all the services installed on the computer. To restrict data retrieval to a subset of events, the query includes a Where clause to return only those records in the System log that have an event 7036.

78. For each service in the collection, use the Value method of the SWbemDateTime object to convert the event date and time to a standard Date and Time format.

Without doing this conversion, the date and time is left in UTC format. This means that a date and time such as May 15, 2002, 11:05 A.M. looks like this: 20020515110500.000000+420.

79. Echo the date and time the event is recorded, in addition to the event message. In a production script, it is useful to save this information to a database or text file.

Listing 13.4 Monitoring Changes in Service Status by Using Event Logs

 Wscript.Echo strEvent.Message

	Next

	

[image: image40.wmf]
Note

A best practice is to use a notificationquery to monitor event 7036 in real time.

Monitoring Service Performance

Monitoring for service availability and service reliability are necessary tasks for service management. However, these activities are not sufficient to effectively manage services across the enterprise. Instead of identifying and correcting a situation only after a failure has occurred, you might want to perform monitoring to prevent those failures. Ideally, a good monitoring strategy helps you do the following:

· Determine why the service stopped. For example, is available memory exhausted? Is the service trying to handle too many user requests at one time? Is there a disk or network bottleneck that is causing the service to crash?

· Predict failures in advance. With certain services, you might be able to predict failure if the service exceeds a specified threshold. For example, suppose the performance of a service begins to degrade rapidly when it performs more than 100 operations per second. In this situation, you might create a script that monitors the number of operations per second. As the value approaches 100, the script can either limit the number of simultaneous connections or route users to a similar service on another computer.

You can monitor service performance by doing the following:

· Monitor the service process. You can obtain a rough estimate of service performance by monitoring the process responsible for the service. By monitoring the process, you can ensure that the service is using memory and other system resources efficiently. However, you cannot know whether the service is carrying out its functions efficiently. The service might have plenty of memory available simply because it is no longer responding to user requests.
· Perform a standard test. For some services, you can perform a standard test and then measure the response time for the service. For a mail service, you might send a test message and measure how long it takes the message to appear at the appointed destination. By comparing the measured time with the baseline time, you can determine whether the service is performing within the expected range.

· Monitor performance by using performance counters. Performance counters represent the best way to monitor the actual performance of a service. With the DHCP service, for example, you can monitor such key performance counters as the number of DHCP requests made per second or the number of DHCP offers made per second.
Performance counters are included for many Windows Server 2003 family and Windows XP Professional services, such as DHCP, DNS, Windows Internet Name Service (WINS), and Internet Information Services (IIS). However, many services, particularly those not supplied with the operating system, do not include performance counters. This means you might not be able to use performance counters to monitor all the services in your organization.

The script shown in Listing 13.5 demonstrates how to monitor the performance of the DHCP service by using formatted performance counters.

Scripting Enablers

The scripting enablers listed in Table 13.6 are available to perform this task.

Table 13.6 Scripting Enablers for Monitoring Service Performance

	Technology
	Tool

	Shell script
	TypePerf.exe

Logman.exe

	WSH
	None

	WMI
	Win32_PerfFormattedData

	ADSI
	None

[image: image41.wmf]
Note

The Win32_PerfFormattedData enabler was created so that performance counters could be accessed through WMI and scripting. The same data is available through the Performance console.
Scripting Steps

Listing 13.5 contains a script that monitors the performance of the DHCP service. To carry out this task, the script must perform the following steps:

80. Create a variable to specify the computer name.
81. Use a GetObject call to connect to the WMI namespace \root\cimv2 and set the impersonation level to “impersonate.”
82. Create an instance of the SWbemRefresher object.

83. Add the ObjectSet for the Win32_PerfFormattedData_DHCPServer_DHCPServer class to the Refresher object.

84. Use the Refresh method to retrieve a starting set of performance values.
85. Create a loop that measures performance 60 times.

86. Retrieve performance data for the DHCP service, including such values as the number of offers made per second and the number of requests received per second.

87. Pause for 10 seconds (10,000 milliseconds).

88. Refresh the Refresher object, and continue the loop.

Listing 13.5 Monitoring Service Performance by Using Formatted Performance Counters

 objRefresher.Refresh

	Next

	

Troubleshooting Services

Regardless of whether an issue stems from a hardware or software problem, you need a reliable troubleshooting plan. An effective troubleshooting plan begins with gathering information, observing symptoms, and researching.

When you troubleshoot services, you need to formulate a troubleshooting plan to determine the cause of the service problem and decide which tools are needed to isolate and resolve the problem.
Services can encounter startup errors, service hangs, and many other types of failures. Some common service error messages are ERROR_SERVICE_LOGON_FAILED, ERROR_SERVICE_DEPENDENCY_FAILED, and ERROR_SERVICE_START_HANG.
As you read through this section, you will be able to select several ways to troubleshoot and debug services. For more information about service-related error messages, see “Service Error Messages” later in this chapter.

Tools for Troubleshooting Services

The most efficient tool to use for testing and debugging service programs is Sc.exe. You can use Sc.exe to set service properties stored in the registry to control how service applications are started at boot time and run as background processes.

While developing and debugging a service, this tool can help because it offers a rich command-line interface to all the service control options and can easily be used in a script file.
Sc.exe is a development tool that provides more detailed and accurate information about services than the two end-user tools that are provided with the operating system. The Services snap-in and the network command-line interface, Net.exe, can tell you that a service is running, stopped, or paused. The Sc.exe tool helps to diagnose when your service stops responding, or “hangs.” For more information about services that are not responding, see “Detecting Services That Stop Responding” later in this chapter.
Sc.exe lets you query the service status and retrieve the values stored in the status structure fields. Net.exe and the Services snap-in do not provide the complete status for the service. Sc.exe, however, can tell you the exact state of the service in addition to showing you the last checkpoint number and wait hint. The checkpoint can then be used as a debugging tool because it provides a clear indication of how far along the initialization had progressed before the service stopped responding.

Sc.exe also allows you to call any of the service control API functions and vary any of the parameters from the command line. This offers you several advantages. For example, it provides a convenient way for you to create or configure service information in the registry and the SCM database. You do not have to configure the service by manually creating entries in the registry and then restarting the computer in order to force the SCM to update its database.

[image: image42.wmf]
Caution

Do not modify the subkeys for services in the registry directly, because this might cause unpredictable behavior in starting, stopping, or controlling the service.

[image: image43.wmf]
Caution

Do not edit the registry unless you have no alternative. The registry editor bypasses standard safeguards, allowing settings that can damage your system, or even require you to reinstall Windows. If you must edit the registry, back it up first and see the Registry Reference (http://go.microsoft.com/fwlink/?linkid=4543) on the Microsoft Windows Server 2003 Resource Kit companion CD or at http://www.microsoft.com/reskit.

As a command-line tool, Sc.exe can also be used to create tests for your service. You can create batch (command) files that call Sc.exe with various parameters that control the service. This is useful if you want to see how your service behaves when it is repeatedly started and stopped, for example. If you have more than one service in your service process, you can leave one service running so that the process does not go away, and then repeatedly start and stop the other service while looking for evidence of memory leaks or faults due to an incomplete cleanup.

Common Sc Commands

Sc.exe implements calls to all of the Windows Server 2003 service control API functions. It also displays service status and retrieves the values stored in the status structure fields. The tool also allows you to specify the name of a remote computer so that you can call the service API functions to view the service status structures on the remote computer.
Table 13.7 describes some of the most common Sc.exe commands you will need.

Table 13.7 Sc.exe Commands

	Sc.exe command
	Sc.exe command description

	Query
	Queries the status for a service, or enumerates the status for types of services.

	Queryex
	Queries the extended status for a service, or enumerates the status for types of services.

	Start
	Starts a service.

	Pause
	Sends a PAUSE control request to a service.

	Interrogate
	Sends an INTERROGATE control request to a service.

	Continue
	Sends a CONTINUE control request to a service.

	Stop
	Sends a STOP request to a service.

	Config
	Changes the configuration of a service (persistent).

	Description
	Changes the description of a service.

	Failure
	Changes the actions taken by a service when it fails.

	Qc
	Queries the configuration information about a service.

	Qdescription
	Queries the description of a service.

	Qfailure
	Queries the actions taken by a service when it fails.

	Delete
	Deletes a service from the registry.

	Create
	Creates a service and adds it to the registry.

	Control
	Sends a control to the service.

	Sdshow
	Displays a service’s security descriptor.

	Sdset
	Sets a service’s security descriptor.

	GetDisplayName
	Gets the DisplayName for the service.

	GetKeyName
	Gets the ServiceKeyName for a service.

	EnumDepend
	Enumerates service dependencies.

	Boot
	Indicates whether the last boot should be saved as the Last Known Good configuration.

	Lock
	Locks the SCM database.

	QueryLock
	Queries the LockStatus for the SCM database.

For more information about Sc.exe, in Help and Support Center for Windows Server 2003, click Tools, and then click Command-line reference A-Z.

Service Startup Errors

Service startup errors are errors that occur when the SCM loads a service during system startup. Some common startup error messages are ERROR_SERVICE_ALREADY_RUNNING and ERROR_SERVICE_DEPENDENCY_FAIL.

When a driver or a service returns an error in response to the SCM startup command, the value of the ErrorControl entry in the service’s registry subkey determines how the SCM reacts.

· If the value of the ErrorControl entry is 0 or the ErrorControl entry is not specified, the SCM ignores the error and continues processing service startups.
· If the value of the ErrorControl entry is 1, the SCM writes an event to the System log that says, “The <service name> service failed to start due to the following error:” and continues processing service startups. The SCM includes the textual representation of the Win32 error code that the service returned to the SCM as the reason for the startup failure in the event log record.
· If the value of the ErrorControl entry is 2 or 3, the SCM logs a record to the event log and changes the system’s registry configuration to the Last Known Good configuration, with which the computer last started successfully. Then it restarts the computer by using the system service shutdown function, which is implemented in the executive part of the kernel. If the computer is already running with the Last Known Good configuration, it is simply restarted.

Detecting Services That Stop Responding

Determining that a service has stopped responding, or has “hung,” can be very difficult. If a service stops responding in any state except SERVICE_STOPPED, the Services snap-in and Net.exe report its state as running. For example, if a service stops responding when it is in the SERVICE_STOP_PENDING state, the net start command reports the status as running and the Services snap-in reports it as stopped. A comparison of status reports is shown in Table 13.8.

Table 13.8 How Service Tools Report the Status of Services

	Service Status
	How Each Tool Reports the Status

	
	Services Snap-in
	Net.exe
	Sc.exe

	SERVICE_STOP_PENDING
	SERVICE_RUNNING
	SERVICE_RUNNING
	SERVICE_STOP_PENDING

	SERVICE_START_PENDING
	SERVICE_RUNNING
	SERVICE_RUNNING
	SERVICE_START_PENDING

If you attempt to start a service after it has stopped responding in the SERVICE_STOP_PENDING or SERVICE_START_PENDING state, Net.exe tells you that the service is already running.
To find out accurately all the services that are not running on a computer, use the following command:

sc query type= service state= inactive
To find out accurately if a specific service is not running, use the following command:

sc query service name
Services have a tendency to hang in the SERVICE_ START_PENDING state. For example, you can determine if a service has stopped responding if a service is hung on start or hung in the SERVICE_START_PENDING state, and not responding to its Handler(Ex) routine.
Services can hang in the SERVICE_RUNNING state if the service locks up or takes too long while processing a service control.

Services also have a tendency to hang in the SERVICE_STOP_PENDING state if there are problems with the service shutdown logic and the service never calls SetServiceStatus (SERVICE_STOPPED) as a result.

Sometimes a service appears to be hung because the SCM is waiting for a service to change its state. The SCM waits for a service to start in two cases:

· The service is being automatically started (versus explicitly demand-started from a StartService call).

· The service is being started by the SCM because StartService was called for a service that depends on it.

In both cases, the SCM will wait 80 seconds plus the service’s wait hint (specified by the service in its most recent SetServiceStatus call) for the service to change its state from SERVICE_START_PENDING or for the service to call SetServiceStatus again with an updated checkpoint.
If the service takes longer to start than the SCM’s total wait, the SCM marks the service as failed (hung on start), logs an event, EVENT_SERVICE_START_HUNG, and moves on. This event is logged only if the service error level is not ignored. If the service error is ignored, you will see a message box the next time Windows starts. Because SCM does not stop such a hung service, you can use Sc.exe to look for services that remain in the SERVICE_START_PENDING state and determine which services are not responding.

If the service calls SetServiceStatus at some point during that interval and specifies an updated checkpoint (the dwCheckPoint field in the SERVICE_STATUS structure), the SCM resets its wait hint time. An updated checkpoint is the service’s way of telling the SCM that it is still in the SERVICE_START_PENDING state but is making progress.

The wait hint time can be detected through the dwWaitHint field of the SERVICE_STATUS structure passed in. You can verify the value of the WAIT_HINT during the START_PENDING state. For example, to query the WAIT_HINT of a hung service, type the following at the command line:

sc query service
where service is the service that is not responding. The wait hint is valid only when the service is in its SERVICE_START_PENDING state.
For example, to find the wait hint of the BITS service when it is not responding, type the following at the command line:

sc start bits
This command gives you the following information:

SERVICE_NAME: bits

 TYPE : 20 WIN32_SHARE_PROCESS

 STATE : 2 START_PENDING

 (NOT_STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)

 WIN32_EXIT_CODE : 0 (0x0)

 SERVICE_EXIT_CODE : 0 (0x0)

 CHECKPOINT : 0x0

 WAIT_HINT : 0x7d0

 PID : 636

 FLAGS :

The state is set to SERVICE_START_PENDING and the wait hint is set to 0x7d0, or 2,000 milliseconds.

[image: image44.wmf]
Note

A common service bug is having a separate thread sit in a loop calling SetServiceStatus with updated checkpoints while the main thread is initializing. Essentially, this prevents the service from being marked as hung — if the main thread actually hangs, service auto-start ends up infinitely wedged because the second thread keeps calling into the SCM and telling it that it is making progress, which prevents the SCM from being able to mark it as hung. Another reason for a hang is an auto-start service trying to demand-start another service before it declared to the SCM that the service is running. Thus, implicit dependencies between services can result in hangs that are hard to diagnose.
For more information about analyzing service hangs, see the flowcharts in Figure 13.2 through Figure 13.7 and “Service Error Messages” later in this chapter.

Analyzing Service Failures

A service failure occurs when the service process exits unexpectedly rather than simply failing to respond. A service can have optional FailureActions and FailureCommand entries in its registry subkey that the SCM records during the service’s startup. The SCM registers with the operating system so that the operating system signals the SCM when a service process exits. When a service process stops unexpectedly, the SCM determines which services ran in the process and takes the recovery steps specified by their failure-related registry entries.

The actions or recovery steps that a service can configure for the SCM to carry out include restarting the service, running a program, and restarting the computer. Furthermore, a service can specify the failure actions that take place the first time the service process fails, the second time, and subsequent times. It can also indicate a delay period that the SCM waits before initiating the actions after the service process fails. You can easily manage the recovery actions for a service on the Recovery tab of the service’s Properties dialog box in the Services snap-in, or by using the sc failure and sc qfailure commands.

Suggested Ways to Troubleshoot Service Failures

Service failures can be complex to diagnose and troubleshoot. You can find some information about an error by looking at the errors in the System log in Event Viewer. For information about individual service error messages, see “Service Error Messages” later in this chapter.
In addition, the flowcharts in Figure 13.2 through Figure 13.7 might be useful for narrowing down the specific failure.

Figure 13.2 Service Error Troubleshooting Flowchart

[image: image45.png]Service fails
Lok invent viewer for
g eaed A
e e
Henase i th Soure el
O
oo @ o
Held R
defined as an lowehar
vos
o for s K artcles
S et
et 56t retrdi in
sttty
S
S o o Troubeshosing
S el L,
[
pid vy

Yes call PSS

Use KB article to
help resolve the
problem.

Figure 13.3 Service Error Troubleshooting Flowchart A

[image: image46.png]Flowchart &

Run
scauery service name

No

1s STOPPED o to
displayed i the o
STATE field? Flowchart &

Yes

o

15 (0) returned for Is any value besides (0)
both the returned for sither of the
WIN32_EXIT_CODE WIN32_EXIT_CODE
and the o
SERVICE_EXIT_CODE SERVICE_EXIT_CODE
felds? felds?

Yes Yes

No—

“The service s 5 Win32 Goto
exited o its own error message “Troubleshaoting
uithout an ercr returned? Services” in this
is happens chapter. I this
Yes o
repesly comac & does not help to
our service resolve your
vendor. Soto problem, restart
Flowchart C the computer,

consult the PSS
KB or call PSS,

Figure 13.4 Service Error Troubleshooting Flowchart B

[image: image47.png]Flowchart &

Is
START_PENDING
ar STOP_PENDING
displayed in the
STATE field?

Yes

“The driver or service
hung in the

STOP PENDING or
in START_PENDING
Stafe is the ane at
fault, If 2 driver s
hung in the
STOP_PENDING
state, It probably
d not Unioad
properly.

Contact your driver
o Service vendor

Ho—ef]

Goto
“Troubleshacting
Services” in this
chapter. IF this doss
not resalve yaur
problem, restart the
computer.

1f you sill
encounter problems
after restarting the
computer, consult
the PSS KB ar call
Pss,

Figure 13.5 Service Error Troubleshooting Flowchart C

[image: image48.png].

fre Winaz errors
126, 127, or 1083
retumed in the
WIN32_EXIT_CODE

Run
net helpmsg error code

No.

SERVICE_EXIT_CODE | Is the error Goto

Fields? message a valid "Troubleshosting
Windows network Services” in this
Yes message number? chapter. IFthis
does nct help to
resolve your
o problem, restart
Goto the computer.
Flowchart D If after restarting
Thisis a Win2 error the computer you
message sill encounter
o to "General cansult the PSS
Win32 Service Emor K8 or call PSS

Messages” in this
chapter. If this does
not help to resolve
your prablem,
cansult the PSS KB
or call PSS,

Figure 13.6 Service Error Troubleshooting Flowchart D

[image: image49.png]Flowchart D

Run
tasklist fsvc

verify the PID

by running

sc queryex seruice name

No—f]

Daes the "The service s not running
service appear under an instance of
under an svehost.exe. It is running
instance of under a PID for the
svchost.exe? service.

ves Go to “Traubleshooting

Services” in this chapter.

f this does not help to
Gota resolve your problem,
Flowchart £ consult the PSS KB or cal

pes.

Figure 13.7 Service Error Troubleshooting Flowchart E

[image: image50.png]Flowchart £

Determine PID,

In the registry under
HKUN\SYSTEM\CurrentControlSet
\Services\servicsname,

find the path located under the
ImagePsth value name.

L —

systemroct\system3z\ service vendor,
svchost.exe -k instance?

Yes

In the registry under
HKUM\SOFTWARE Microsoft
\Windows NT\QurentiersionSvchost,
search for your service under each
Svehost name.

No
Is the service Contact your
listed under service vendar,
value data?

Yes

‘Cansult the PSS KB or call
PSS to investigate further
issues possibly invalving
network connectivity or

To help analyze service failures, you need to understand how to query service configurations, service status, find service dependencies, and identify Svchost processes.

Querying Service Configuration

The sc qc service name command queries the configuration information for the service. Administrators can use this command to determine the binary name of any service and find out if it shares a process with other services. The command lists information about the service configuration from the QUERY_SERVICE_CONFIG structure.

The following sample output shows information displayed by the sc qc service name command, followed by the corresponding field from the QUERY_SERVICE_CONFIG structure.

TYPE dwServiceType

START_TYPE dwStartType

ERROR_CONTROL dwErrorControl

BINARY_PATH_NAME lpBinaryPathName

LOAD_ORDER_GROUP lpLoadOrderGroup

TAG dwTagId

DISPLAY_NAME lpDisplayName

DEPENDENCIES lpDependencies

SERVICE_START_NAME lpServiceStartName

The following example queries the configuration of the service named Background Intelligent Transfer Service.

sc qc bits

This command displays the following information:

[SC] GetServiceConfig SUCCESS

SERVICE_NAME: bits

 TYPE : 20 WIN32_SHARE_PROCESS

 START_TYPE : 3 DEMAND_START

 ERROR_CONTROL : 1 NORMAL

 BINARY_PATH_NAME : C:\WINNT\System32\svchost.exe -k netsvcs

 LOAD_ORDER_GROUP :

 TAG : 0

 DISPLAY_NAME : Background Intelligent Transfer Service

 DEPENDENCIES : RpcSs
 SERVICE_START_NAME : LocalSystem

BITS runs in a shared process. It will not be auto-started. The binary file name is C:\Winnt\System32\Svchost.exe -k netsvcs. This service depends on the Remote Procedure Call (RPC) service, and will run in the LocalSystem security context. Because this command displays the results from a call to QueryServiceConfig, a more detailed explanation of these results can be found in the SDK documentation about QueryService Config.

Querying Service Status

The sc query command obtains and displays information about a specified service or driver. It also enumerates the status for types of services and drivers. The sc query command displays the contents of the SERVICE_STATUS structure.

The following sample output shows information displayed by the sc query service name command, followed by the corresponding field from the SERVICE_STATUS structure.

TYPE dwServiceType

STATE dwCurrentState, dwControlsAccepted

WIN32_EXIT_CODE dwWin32ExitCode

SERVICE_EXIT_CODE dwServiceSpecificExitCode

CHECKPOINT dwCheckPoint

WAIT_HINT dwWaitHint

Using the sc query command after starting the computer will tell you whether an attempt was made to start this service. If the service was started successfully, the WIN32_EXIT_CODE field will contain a zero (0). If the service failed to start when an attempt was made, this field will contain an exit code provided by the service when it was unable to start.

To query the status of the BITS service, type the following at the command line:

sc query bits

This command displays the following information:

SERVICE_NAME: bits

 TYPE : 20 WIN32_SHARE_PROCESS

 STATE : 4 RUNNING

 (STOPPABLE,NOT_PAUSABLE,ACCEPTS_SHUTDOWN)

 WIN32_EXIT_CODE : 0 (0x0)

 SERVICE_EXIT_CODE : 0 (0x0)

 CHECKPOINT : 0x0

 WAIT_HINT : 0x0

To query a service that has not started — for example, the Computer Browser service — type the following at the command line:

sc query browser

This command displays the following information:

SERVICE_NAME: browser

 TYPE : 20 WIN32_SHARE_PROCESS

 STATE : 1 STOPPED

 (NOT_STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)

 WIN32_EXIT_CODE : 1077 (0x435)

 SERVICE_EXIT_CODE : 0 (0x0)

 CHECKPOINT : 0x0

 WAIT_HINT : 0x0

Notice that there is an exit code for this service, even though it has not yet been run. Typing net helpmsg 1077 at the command line returns the following information for error 1077:

No attempts to start the service have been made since the last boot.

The net helpmsg command can be used to display the text for most Windows Server 2003 error messages. This particular exit code indicates that this service has not started. Although obvious in this case, this particular exit code is a useful one to look for if you are expecting your service to be auto-started or perhaps when another auto-start service has a dependency on your service.
Using the Sc Queryex Command

If you need to query extended information, use the sc queryex command. This will provide all the information from the sc query command, in addition to PID and FLAG info.

[image: image51.wmf]
Note

The only flag that is currently used is SERVICE_RUNS_IN_SYSTEM_PROCESS, which is displayed as RUNS_IN_SYSTEM_PROCESS. This means the service runs in a system-critical executable that cannot be terminated — specifically Services.exe or Lsass.exe, which are the only two executables in this category that host services. This flag is intended mainly for monitoring applications that detect an unresponsive service and recycle it by killing its process and restarting it. This would be inappropriate for services with this flag set, because it would force the operating system to restart.
The sc queryex command displays the contents of the SERVICE_STATUS structure.

The following sample output shows information displayed by the sc queryex service name command, followed by the corresponding field from the SERVICE_STATUS structure:

TYPE dwServiceType

STATE dwCurrentState, dwControlsAccepted

WIN32_EXIT_CODE dwWin32ExitCode

SERVICE_EXIT_CODE dwServiceSpecificExitCode

CHECKPOINT dwCheckPoint

WAIT_HINT dwWaitHint

PID dwProcessID

FLAGS dwServiceFlags

For example, to display PID and FLAGS information, type the following at the command line:

sc queryex bits
This command displays the following information:

SERVICE_NAME: bits

 TYPE : 20 WIN32_SHARE_PROCESS

 STATE : 4 RUNNING

 (STOPPABLE,NOT_PAUSABLE,ACCEPTS_SHUTDOWN)

 WIN32_EXIT_CODE : 0 (0x0)

 SERVICE_EXIT_CODE : 0 (0x0)

 CHECKPOINT : 0x0

 WAIT_HINT : 0x0

 PID : 636

 FLAGS :

Finding Service Dependencies

If you receive either ERROR_SERVICE_DEPENDENCY_FAIL or ERROR_CIRCULAR_DEPENDENCY Win32 errors, you can investigate further by using Sc.exe.

The commands you use are sc qc service (to list the services on which your service depends) and sc enumdepend service (to list all the services that depend on your service). For example, to list the services on which the DHCP Client service depends, type the following at the command line:

sc qc dhcp

This command displays the following information:

 [SC] QueryServiceConfig SUCCESS

SERVICE_NAME: dhcp

 TYPE : 20 WIN32_SHARE_PROCESS

 START_TYPE : 2 AUTO_START

 ERROR_CONTROL : 1 NORMAL

 BINARY_PATH_NAME : C:\WINDOWS\system32\svchost.exe -k NetworkService

 LOAD_ORDER_GROUP : TDI

 TAG : 0

 DISPLAY_NAME : DHCP Client

 DEPENDENCIES : Tcpip

 : Afd

 SERVICE_START_NAME : NT AUTHORITY\NetworkService

From the above example, the TCP/IP Protocol Driver and AFD Networking Support Environment drivers are antecedent to the DHCP Client service. These drivers must be running before the DHCP Client service can be started.

To list all the services that depend on the DHCP Client service, type the following at the command line:

sc enumdepend dhcp

This command displays the following information:

 [SC] EnumDependentServices: entriesread = 1

SERVICE_NAME: WinHttpAutoProxySvc

DISPLAY_NAME: WinHTTP Web Proxy Auto-Discovery Service

 TYPE : 20 WIN32_SHARE_PROCESS

 STATE : 1 STOPPED

 (NOT_STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN))

 WIN32_EXIT_CODE : 0 (0x0)

 SERVICE_EXIT_CODE : 0 (0x0)

 CHECKPOINT : 0x0

 WAIT_HINT : 0x0

From the above example, you can deduce that the WinHTTP Web Proxy Auto-Discovery Service is dependent on the DHCP Client service running before it can start.

Identifying Services in Svchost Processes

Identifying a service within a Svchost process is usually a preliminary step in locating a particular service that might be suspect for high CPU usage, a nonpaged pool memory leak, or excessive thread consumption. You can use the Tasklist.exe tool to identify the PID.

[image: image52.wmf]
Note

Identifying the specific thread might be quite cumbersome. However, if you use the NT Symbolic Debugging tool (NTSD), the task is less daunting. For more information about troubleshooting this problem, see “Advanced Troubleshooting Methods” later in this chapter. For more information about NTSD, see the Software Development Kit (SDK) information in the MSDN Library link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

Svchost.exe, located in the systemroot\System32 folder, is a generic process that contains multiple services. Multiple instances of Svchost can run at the same time, and you can view them by using Tasklist.

Tasklist allows you to obtain a list of active processes that are running on a local or remote computer. For each process, Tasklist displays the process name and PID.

To map a service process to the services contained in that process, use the following command:

Tasklist /svc
With the /svc option specified, Tasklist.exe displays a list of the services — if any — that are running within processes, as shown in the following example output.
Image Name PID Services

========================= ====== ===

System Idle Process 0 N/A

System 4 N/A

smss.exe 332 N/A

csrss.exe 388 N/A

winlogon.exe 412 N/A

services.exe 456 Eventlog, PlugPlay

lsass.exe 468 kdc, Netlogon, PolicyAgent,

 ProtectedStorage, SamSs, W3SSL

svchost.exe 624 RpcSs

svchost.exe 696 TermService

svchost.exe 728 AudioSrv, Browser, CryptSvc, Dhcp, dmserver,

 ERSvc, EventSystem, helpsvc, lanmanserver,

 lanmanworkstation, Messenger, Netman, Nla,

 RasMan, Schedule, seclogon, SENS,

 ShellHWDetection, Themes, TrkSvr, TrkWks,

 uploadmgr, W32Time, winmgmt, WmdmPmSp,

 wuauserv, WZCSVC

svchost.exe 924 Dnscache

svchost.exe 948 Alerter, LmHosts, SSDPSRV, WebClient

spoolsv.exe 1196 Spooler

netdde.exe 1236 NetDDE, NetDDEdsdm

msdtc.exe 1292 MSDTC

clipsrv.exe 1360 ClipSrv

dfssvc.exe 1380 Dfs

dns.exe 1400 DNS

inetinfo.exe 1492 IISADMIN, SMTPSVC

ismserv.exe 1508 IsmServ

llssrv.exe 1524 LicenseService

ntfrs.exe 1588 NtFrs

svchost.exe 1720 RemoteRegistry

locator.exe 1736 RpcLocator

tcpsvcs.exe 1768 SimpTcp

svchost.exe 1940 W3SVC

dllhost.exe 1796 COMSysApp

explorer.exe 3204 N/A

svchost.exe 3512 TapiSrv

mmc.exe 444 N/A

mmc.exe 2568 N/A

msmsgs.exe 3756 N/A

IEXPLORE.EXE 3148 N/A

HelpCtr.exe 3964 N/A

HelpSvc.exe 1684 N/A

HelpHost.exe 2452 N/A

regedit.exe 3644 N/A

mmc.exe 3340 N/A

HelpCtr.exe 4016 N/A

mmc.exe 652 N/A

cmd.exe 3280 N/A

winver.exe 2832 N/A

HelpCtr.exe 1848 N/A

tsadmin.exe 2892 N/A

winver.exe 3472 N/A

HelpCtr.exe 2856 N/A

remote.exe 3228 N/A

cmd.exe 2976 N/A

tasklist.exe 4088 N/A

wmiprvse.exe 2824 N/A

[image: image53.wmf]
Note

Tasklist.exe does not always perform a one-to-one mapping between service processes and running services. Some services share a process with other services. At the command line, type sc qc service to determine whether the service runs in its own process or shares a process with other services in the image.

Determining Service Ports

Determining the service ports being used can be an arduous task because the ports used by a service are potentially subject to change. However, you can use a combination of tools — such as Netstat.exe and Tasklist.exe, in addition to Network Monitor — to help you to identify which services are using specific operating system ports. This is useful for identifying which services within an instance of Svchost.exe opened a particular port.
Netstat.exe is a useful tool for identifying network services and the ports they listen on, on a server running Windows Server 2003. Listing the ports a computer listens on is useful for verifying that a network service is using the expected port. It is common practice to change the port numbers services listen on, and Netstat.exe can quickly identify nonstandard listening ports

For example, to determine which service is listening on port 135, use Netstat.exe. Type the following at the command line:

netstat -a -o -n
where -a displays a listing of all connections and listening ports, -o displays the owning PID associated with each connection, and -n displays address and port numbers in numerical form.

This command displays the following information:

Active Connections

 Proto Local Address Foreign Address State PID

 TCP 0.0.0.0:53 0.0.0.0:0 LISTENING 1388

 TCP 0.0.0.0:80 0.0.0.0:0 LISTENING 1000

 TCP 0.0.0.0:88 0.0.0.0:0 LISTENING 448

 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 628

 TCP 0.0.0.0:389 0.0.0.0:0 LISTENING 448

 TCP 0.0.0.0:443 0.0.0.0:0 LISTENING 1000

 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING 4

 TCP 0.0.0.0:464 0.0.0.0:0 LISTENING 448

 TCP 0.0.0.0:593 0.0.0.0:0 LISTENING 628

 TCP 0.0.0.0:636 0.0.0.0:0 LISTENING 448

 TCP 0.0.0.0:1025 0.0.0.0:0 LISTENING 448

 TCP 0.0.0.0:1027 0.0.0.0:0 LISTENING 448

 TCP 0.0.0.0:1028 0.0.0.0:0 LISTENING 888

 TCP 0.0.0.0:1073 0.0.0.0:0 LISTENING 1388

 TCP 0.0.0.0:1107 0.0.0.0:0 LISTENING 1852

 TCP 0.0.0.0:1117 0.0.0.0:0 LISTENING 372

 TCP 0.0.0.0:1801 0.0.0.0:0 LISTENING 372

 TCP 0.0.0.0:2103 0.0.0.0:0 LISTENING 372

 TCP 0.0.0.0:2105 0.0.0.0:0 LISTENING 372

 TCP 0.0.0.0:2107 0.0.0.0:0 LISTENING 372

 TCP 0.0.0.0:3268 0.0.0.0:0 LISTENING 448

 TCP 0.0.0.0:3269 0.0.0.0:0 LISTENING 448

 TCP 0.0.0.0:3389 0.0.0.0:0 LISTENING 664

 TCP 0.0.0.0:4889 0.0.0.0:0 LISTENING 1000

 TCP 0.0.0.0:4974 0.0.0.0:0 LISTENING 1680

 TCP 0.0.0.0:4994 0.0.0.0:0 LISTENING 1572

 TCP 0.0.0.0:5202 0.0.0.0:0 LISTENING 1000

 TCP 127.0.0.1:389 127.0.0.1:1042 ESTABLISHED 448

 TCP 127.0.0.1:389 127.0.0.1:1043 ESTABLISHED 448

 TCP 127.0.0.1:389 127.0.0.1:1072 ESTABLISHED 448

 TCP 127.0.0.1:389 127.0.0.1:2324 ESTABLISHED 448

 TCP 127.0.0.1:1042 127.0.0.1:389 ESTABLISHED 1544

 TCP 127.0.0.1:1043 127.0.0.1:389 ESTABLISHED 1544

 TCP 127.0.0.1:1072 127.0.0.1:389 ESTABLISHED 1544

 TCP 127.0.0.1:1433 0.0.0.0:0 LISTENING 1788

 TCP 127.0.0.1:2324 127.0.0.1:389 ESTABLISHED 1388

 TCP 172.30.168.15:139 0.0.0.0:0 LISTENING 4

 TCP 172.30.168.15:389 172.30.168.15:2323 ESTABLISHED 448

 TCP 172.30.168.15:1025 172.30.168.15:1111 ESTABLISHED 448

 TCP 172.30.168.15:1025 172.30.168.15:1205 ESTABLISHED 448

 TCP 172.30.168.15:1111 172.30.168.15:1025 ESTABLISHED 1852

 TCP 172.30.168.15:1205 172.30.168.15:1025 ESTABLISHED 448

 TCP 172.30.168.15:1433 0.0.0.0:0 LISTENING 1788

 TCP 172.30.168.15:2323 172.30.168.15:389 ESTABLISHED 1852

 TCP 172.30.168.15:3389 172.30.169.100:2551 ESTABLISHED 664

By running the command tasklist /svc, you can find the service by identifying the PID of the service. In the example above, the service with the PID 628 is using ports 135 and 593.

[image: image54.wmf]
Note

The PID for a service that runs in an instance of Svchost.exe is the PID of the Svchost.exe instance.

For more information about service ports defined by Internet Assigned Numbers Authority (IANA), see the Services document located in the systemroot\System32\Drivers\Etc folder on the computer on which you installed Windows Server 2003.

Advanced Troubleshooting Methods

If the above methods do not solve your problem, you need to try other methods to isolate and troubleshoot your service issue, such as the following:

· Debug the service while it is running.
· Obtain the PID of the service process. This information is available by using Sc.exe or Tasklist.exe.

· Using the PID, attach the debugger to the running process.
For syntax information, see the documentation included with your debugger. For more information about Sc.exe, in Help and Support Center for Windows Server 2003, click Tools, and then click Command-line reference A-Z.

[image: image55.wmf]
Caution

Do not edit the registry unless you have no alternative. The registry editor bypasses standard safeguards, allowing settings that can damage your system, or even require you to reinstall Windows. If you must edit the registry, back it up first and see the Registry Reference (http://go.microsoft.com/fwlink/?linkid=4543) on the Microsoft Windows Server 2003 Resource Kit companion CD or at http://www.microsoft.com/reskit.
· Specify a debugger to use when starting a program. To do so, use the registry editor to navigate to the following subkey: HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options.

In this subkey, create a subkey with the same name as your service executable, including the file name extension (for example, Yourservice.exe). In this subkey, add an entry named Debugger of data type REG_SZ. Use the full path to the debugger as the string value. In the Services snap-in, select your service, click Start, and then select the Allow service to interact with desktop check box. This setting is available if LocalSystem account is selected.
This subkey works only for a service that is a single-process service. For a shared-process service hosted in Svchost.exe, you need to find the right Svchost process and attach a debugger to the PID.
[image: image56.wmf]
Caution

If you use Svchost.exe in the following subkey: HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options, all Svchost instances will have the debugger automatically attached if you restart the computer. This could impede your ability to debug your service.
Typically, when you want to debug a service you are developing by using the ImageFileExecOptions, you can make the debugging process easier by temporarily configuring the service to run in a separate process with its own image name (in case the service is designed to share a process with other services in the final configuration). After you complete the development of the service, you can do the final testing in the final configuration.
· To debug the initialization code of an auto-start service, you must temporarily install and run the service as a demand-start service.

· To debug services and service startup issues, navigate to the following subkey: HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options. Create a key defined as your image name. Under the Debugger Value name, create a string value named “Debugger” and type NTSD -d for Value data and click OK and restart the computer. This option directs the NTSD output to the kernel debugger and does not require the interactive flag. It also allows the kernel debugger to have control over a specific user-mode debugging session that is taking place on the target computer.
· If you are troubleshooting a CPU utilization problem where you have determined that one of the services hosted in Svchost.exe is causing the %Processor Time counter to run at an average of 99 percent, you need to find the thread that is consuming CPU. To find the thread, first run the command NTSD -p PID. In the debugger, type !runaway to list the thread consuming most of the CPU.
For more information about ways to debug your service, see the Software Development Kit (SDK) information in the MSDN Library link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.
Service Error Messages
Windows Server 2003 generates SCM logon-related events when a service issue occurs, regardless of whether you are logged on at the time. These events are generated in the System log in Event Viewer on the computer where you attempted to log on. The SCM events range from Event ID 7000 to Event ID 7038. Each event contains a description of the error and the course of action to take to resolve the problem, if applicable.

[image: image57.wmf]
Note

The %1, %2, %3 and %4 strings are placeholders for names of specific services, and %n is a placeholder for a specific error number. When you get an actual error, these placeholders are replaced by the actual service names and error numbers.

Event ID=7000

The %1 service failed to start.

Cause
The %n%2 error prevented the %1 service from starting.

Course of action

Contact your service vendor.

Event ID=7001

The %1 service failed to start.
Cause

The %1 service depends on the %2 service, which failed to start because of the %n%3 error.

Course of action

Contact your service vendor.
Event ID=7002

The %1 service failed to start.

Cause

The %1 service depends on the %2 group, and no member of the %2 group started.

Course of action
Contact your service vendor. Other errors from the SCM should be listed in the Event Viewer System log stating which specific service(s) failed to start and for what reason. Look for the %2 group.
Event ID=7003

The %1 service failed to start.
Cause

The %1 service depends on the nonexistent %2 service. Either the configuration for the %1 service was modified incorrectly, or the %2 service was removed and the dependency for %1 was not updated.

Course of action
To investigate, run the command sc qc %1 to receive a list of services that the service depends on, and then run the command sc qc on each service in the list to see if it exists. To repair and update the list, use the command sc config depend = Dependencies to correctly spell or remove the problematic service name.

Event ID=7005

The SCM API call to the %1 service failed.
Cause

The %n%2 error caused the %1 call to fail. The SCM made an API call that failed for some reason, which probably caused another error that will be in the System log in addition to this error.

Course of action
Contact Microsoft Product Support Services.
Event ID=7006
The %1 call failed for %2: %2 is a clarification string that provides the argument to the function named in %1. Currently, the SCM only uses %2 if it fails to set up a registry entry. In that case, the %2 is the name of the registry entry.
Cause

The %n%3 error caused the %1 call to fail. The SCM made an API call that failed for some reason, which probably caused another error that will be in the System log also.

Course of action

Contact Microsoft Product Support Services.

Event ID=7007
The operating system reverted to its Last Known Good configuration and it is restarting.

Cause

The most likely cause is that the service was configured with a value of 3 (SERVICE_ERROR_CRITICAL) for its ErrorControl registry entry, which caused the SCM to revert to the Last Known Good configuration.

Course of action

Look for other events in the Event Viewer System log that indicate why this error is occurring.
Event ID=7008
There is no backslash in the service account name.

Cause

The service is configured with an inappropriate account name (ObjectName).

Course of action
To resolve the problem, use the command sc config obj AccountName | ObjectName.

Event ID=7009
Time-out (%1 milliseconds) waiting for the %2 service to connect.
Cause

The service is experiencing an internal error. The SCM waited %1 milliseconds for the service process to call StartServiceCtrlDispatcher after it was started, and the service process did not call the StartServiceCtrlDispatcher API within %1 milliseconds of starting up.

Course of action

Contact the service vendor.

Event ID=7010

The SCM timed out after waiting %1 milliseconds for ReadFile.

Cause

The SCM logs this error only when it times out while waiting for the initial response from the service right after it connects by means of StartServiceCtrlDispatcher. If it times out, most likely the service process failed at that point or the computer is under an intense load that slowed the communication between the SCM and caused the service process to lag behind.

Course of action

Contact Microsoft Product Support Services.
Event ID=7011

The SCM timed out after waiting %1 milliseconds for a transaction response from the %2 service.

Cause

The service is experiencing an internal error or a problem with the service process hosting the service. The SCM waited %1 milliseconds for the %2 service to reply to a control that was sent and the SCM received no response back from the service. This could be any of the SERVICE_CONTROL_* controls such as stop, pause, interrogate, or a user-defined control. Typically, it means the service’s control handler is taking too long when it deals with that control.

Course of action

Contact the service vendor.

Event ID=7012
Message returned in transaction has incorrect size.

Cause

The cause is an internal error. Either something went wrong with the named pipes communication between the service process and the SCM, or the service process bypassed the StartServiceCtrlDispatcher API and wrote directly to the named pipe on its own.

Course of action

Contact Microsoft Product Support Services.

Event ID=7013
The service’s logon attempt with current password failed with the following error: %n%1

Cause

A service is configured to run under a user account and that account’s password has recently been changed.

Course of action

Use the command sc config password =password to set the new password for the service.

Event ID=7014

Second logon attempt with old password also failed with the following error: %n%1

Cause

A service is configured to run under a user account and that account’s password has recently been changed.

Course of action

Use the command sc config password =password to set the new password for the service.

Event ID=7015

A driver that depends on a user-mode service was misconfigured.
Cause

The driver is not configured properly. The driver was added with an invalid dependency or was reconfigured to be a boot-start or system-start when it already had a dependency on a user-mode service. A boot-start or system-start driver (%1) must not depend on a service. If the driver was designated as auto-start or demand start, the driver would have been configured properly.

Course of action

To investigate, run the command sc qc %1 to receive a list of services on which the driver depends, and then run the command sc qc on each service in the list to see if it exists. To repair and update the list, use the command sc config depend = Dependencies to correctly spell or remove the problematic service name.

Event ID=7016

The %1 service has reported an invalid current state %2.
Cause

The service has a problem. The service called SetServiceStatus has a defective value for the dwCurrentState value.

Course of action

Contact the service vendor.
Event ID=7017

The SCM detected circular dependencies when the %1 service was demand-started.
Cause

The SCM discovered that the %1 service was configured with a circular dependency when it tried to start the service and returned an error to the caller of StartService. Circular dependency happens when the dependency chain for the %1 service ultimately loops back around to the %1 service. This is a configuration problem. Either the configuration for the %1 service was modified incorrectly or there was a %2 service that was removed without updating the dependency for the %1 service.

Course of action

To investigate, run the command sc qc %1 to receive a list of services that the service depends on, and then run the command sc qc on all services in the chain to see if they exist. To repair and update the list, use the command sc config to correctly spell or remove the problematic service name.

Event ID=7018

Circular dependencies were detected in auto-starting services.
Cause

Two or more services are configured with circular dependencies. For example, if Service A depends on Service B, Service B depends on Service C, and Service C depends on Service A, you will receive this event if you try to start any one of these services. This is a configuration problem.

Course of action

First, examine the dependencies of Service A, the service that you tried to start, to identify where the dependency loop occurs. To investigate further, run the command, sc qc Service A to receive a list of services that the service depends on, and then run the command sc qc Service B on all services in the chain to see if they exist.
[image: image58.wmf]
Note

If one of the services depends on multiple services, you will have to trace through one or more dependency chains starting at that service.

To repair and update the list, use the sc config command to correctly spell or remove the problematic service name. Event IDs 7019 or 7020 will also be logged in the Event Viewer System log; check them for more specific information.
Event ID=7019

Circular dependency: The %1 service depends on a service in a group that starts later and has a dependency on the %1 service given its group membership.

Cause

The dependency chain for the %1 service ultimately loops back around to the %1 service. This is a configuration problem. Either the configuration for the %1 service was modified incorrectly or there was a %2 service that was removed without updating the dependency for the %1 service.

Course of action

To investigate, run the command sc qc %1 to receive a list of services that the service depends on, and then run the command sc qc on all services in the chain to see if they exist. To repair and update the list, use the command sc config to correctly spell or remove the problematic service name

Event ID=7020

Circular dependency: The %1 service depends on a group that starts later and has a dependency on the %1 service given its group membership.

Cause

The dependency chain for the %1 service ultimately loops back around to the %1 service. This is a configuration problem. Either the configuration for the %1 service was modified incorrectly or there was a %2 service that was removed without updating the dependency for the %1 service.

Course of action
To investigate further, run the command sc qc %1 to receive a list of services that the service depends on, and then run the command sc qc on all services in the chain to see if they exist. To repair and update the list, use the command sc config to correctly spell or remove the problematic service name.
Event ID=7021

The SCM is about to revert to the Last Known Good configuration because the %1 service failed to start.
Cause

The most likely cause is that a service failed that was configured with a value of 2 (SERVICE_ERROR_SEVERE) or 3 (SERVICE_ERROR_CRITICAL) for its ErrorControl registry entry, which caused the SCM to revert to Last Known Good configuration. The SCM logs this event and sets a flag that tells the system that the next time the computer is restarted; it will restart selecting the Last Known Good configuration.

Course of action

Look for other events in the Event Viewer System log that indicate why this is error is occurring.
Event ID=7022
The %1 service hung on starting.

Cause

The service is experiencing an internal error. The error means that the service took more than 80 seconds plus its dwWaitHint (specified in SetServiceStatus calls) either to change its state or update its dwCheckPoint (also specified in SetServiceStatus calls).

Course of action

Contact the service vendor.
Event ID=7023

The %1 service terminated with the following error: %n%2.
Cause

The service stopped with the Win32 error field set.
Course of action
Contact the service vendor. The service set its status to SERVICE_STOPPED and indicated a non-zero Win32 error. Run the command net helpmsg error number to decipher the Win32 error message.

Event ID=7024

The %1 service terminated with service-specific error %2.

Cause

Unknown. The cause will vary based on the service and the meaning of the service-specific error.

Course of action
Contact the service vendor. The service set its status to SERVICE_STOPPED and indicated an error specific to the service.

Event ID=7025

At least one service or driver failed during system startup.
Cause

Unknown. There should be at least one other SCM event logged in the Event Viewer that singles out the failed service or driver and provides a reason why the service or driver failed to start.

Course of action
Use Event Viewer to examine the event log for details and check the Event Viewer System log for other SCM-related errors. There will be a more specific event that will pinpoint which service failed and with what error.

Event ID=7026

The %1boot-start or system-start driver(s) failed to load.
Cause

The driver is experiencing an internal error.

Course of action
Contact the driver vendor.

Event ID=7027

Windows could not be started as configured. The SCM chose to load the Last Known Good configuration at startup.

Cause

The computer restarted by using the Last Known Good configuration because the service failed to start.

Course of action
To investigate further, check the Event Viewer System log for other errors that might indicate why the SCM resorted to the Last Known Good configuration.

Event ID=7028

The %1 registry key denied access to SYSTEM account programs so the SCM took ownership of the registry key.

Cause

The registry was not properly configured under the HKLM\System\CurrentControlSet\Services subkey. The SCM was not able to access a registry subkey, nor was it able to recover by taking ownership.

Course of action
To investigate, you need to discover why the registry configuration changed — for example, if you recently ran program installations, scripts, or any tasks on your computer.

Event ID=7030

The %1 service, which is marked as an interactive service, might not function properly.

Cause

The computer is configured to not allow interactive services to run.

Course of action
Contact the service vendor or an administrator to determine why the computer is configured to not allow interactive services to run. It might be more feasible to configure the computer to allow interactive services to run.
Event ID=7031

The %1 service terminated unexpectedly %2 time(s). The following corrective action will be taken in %3 (the delay between when the service fails and when the SCM takes action) milliseconds: %5 (the action in text form).

Cause

The service is experiencing an internal error.

Course of action
Contact the service vendor. The process hosting the %1 service stopped running so the SCM will take action %5, as specified in the service’s recovery options. You can view the service’s recovery options by using the sc qfailure command. You can set the recovery options by using the sc failure command.

Event ID=7032

The SCM tried to take the %2 corrective action after the unexpected termination of the %3 service, but this action failed with the following error: %n%4

Cause

Possibly, the corrective action specified for the SCM to take was to run a script, which failed for some reason (for example, the path to the script was incorrect). One common cause of this event is if the administrator starts a service while a recovery action restart is pending.

Course of action
To investigate further, run the sc qfailure command and resolve the problem.
Event ID=7033

The operating system is shutting down. The security configuration server (Scesrv.dll) failed to initialize with error %1.

Cause

The SCM is not initialized successfully.

Course of action
Contact Microsoft Product Support Services.

Event ID=7034

The %1 service terminated unexpectedly %2 time(s).

Cause

The most likely cause is either an errant ExitProcess/TerminateProcess call in the service or that the service took a fault and crashed.

Course of action
Contact the service vendor. To investigate further, run the sc queryex command because it will show the last error for the service. The last error is almost always ERROR_PROCESS_ABORTED because the process went away unexpectedly. This problem indicates either an errant ExitProcess/TerminateProcess call in the service or that the service took a fault and crashed.

Event ID=7037

The %1 service’s %2 is currently in an unpredictable state because of a bad configuration. If you do not correct this configuration, you might not be able to restart the %1 service or you might encounter other errors.

Cause

The SCM encountered an error undoing a configuration change to the %1 service.

Course of action
Verify the service configuration by using the sc qc command. If needed, run the sc config command to correct the configuration problem or use the Services snap-in.

Event ID=7038

The %1 service was unable to log on as %2 with the currently configured password due to the following error: %n%3%n%n

Cause

The probable cause is a service configured with an incorrect password for the account in which it is running.

Course of action
Verify the service configuration by using the sc qc command, and fix the ObjectName/password by using the sc config command or the Services snap-in.
Event ID=11006

Unable to start the DNS Client service.

Cause

Could not update status with the SCM.
Course of action
Restart the RPC and DNS Client services.

To restart the RPC service, type the following command at the command prompt:

net start rpcss
To restart the DNS Client service, type the following command at the command prompt:

net start dnscache

For specific error code information, see the record data displayed in the Event Viewer message.

General Win32 Service Error Messages

Most Win32 service error messages are self-explanatory. However, the errors listed in Table 13.9 are more cryptic and require further explanation.

Table 13.9 Win32 Service Error Messages

	Win32 Error Message
	Explanation

	ERROR_SERVICE_REQUEST_TIMEOUT
(1053)
	The service did not respond to the start or control request in a timely fashion.

The SCM normally waits 30 seconds for the service process to receive and finish processing controls that it sends. If that time-out is exceeded, the SCM returns this error.

	ERROR_SERVICE_NO_THREAD

(1054)
	A thread could not be created for the service.

The SCM tried to create a thread to run the service’s ServiceMain routine but that failed, almost certainly due to low memory. Try restarting the service.

	ERROR_SERVICE_DATABASE_LOCKED

(1055)
	The service database is locked.

The SCM database was locked when the client made an API call that required it. You can use the QueryServiceLockStatus command (sc querylock) to find out which user is currently holding the lock. When the client calls UnlockServiceDatabase or exits the process, the lock will be released.

This error happens if multiple clients try to lock the database at the same time. The caller should retry a few times after a short wait.

	ERROR_INVALID_SERVICE_ACCOUNT

(1057)
	The account name is invalid or does not exist, or the password is invalid for the account name specified.

	ERROR_CIRCULAR_DEPENDENCY

(1059)
	Circular service dependency was specified. Circular dependency is when two (or more) services are misconfigured such that a service ultimately depends on itself.

The service is not configured properly. This might happen because of invalid group or service dependencies, or a combination of the two.

	ERROR_SERVICE_DOES_NOT_EXIST

(1060)
	The specified service does not exist as an installed service.

A service name was specified for a service that was not installed on the target computer when OpenService was called. The service name was most likely a misspelled parameter (for example, when using Sc.exe).

	ERROR_SERVICE_CANNOT_ACCEPT_CTRL

(1061)
	The service cannot accept control messages at this time.

The client tried to send the service a control, but the service was in a state where it could not receive that control. This normally happens when you try to send a control to a service in the SERVICE_STOP_PENDING state, but can also happen for certain controls when the service is in the SERVICE_START_PENDING state.

	ERROR_FAILED_SERVICE_CONTROLLER_CONNECT

(1063)
	The service process could not connect to the SCM.

The service process was unable to connect to the client side of the named pipe that the SCM created to communicate with it. This is typically caused by low memory.

	ERROR_EXCEPTION_IN_SERVICE

(1064)
	An exception occurred in the service when handling the control request.

This is typically caused by a bug in the service itself. The service took an exception (typically an access violation) while handling a control request sent over by the SCM.

	ERROR_PROCESS_ABORTED

(1067)
	The process terminated unexpectedly.

The service process exited while containing one or more services that had not yet gone into the SERVICE_STOPPED state. This almost always means the service process crashed because of a bug in one of the services, but it can also happen if one of the services calls ExitProcess (which is probably also a bug).

	ERROR_SERVICE_DEPENDENCY_FAIL

(1068)
	The dependency service or group failed to start.

Service X failed to start because it depends on Service Y, and Service Y failed to start for some other reason. Check the System log for an error logged by the SCM stating that Service Y failed to start and giving the error code.

	ERROR_SERVICE_LOGON_FAILED

(1069)
	The service did not start because of a logon failure.

Log on to the (non-SYSTEM) service by using the specified account and password failed. Either the service account or the password is probably incorrect, or the password for the account was recently changed and the service’s configuration was not refreshed.

	ERROR_SERVICE_START_HANG
(1070)
	After starting, the service hung in a start-pending state.

The service remained in the SERVICE_START_PENDING state longer than 80 seconds plus its last dwWaitHint value specified by SetServiceStatus. In that time period, the service did not call SetServiceStatus again to change its state or update its dwCheckPoint. This is caused by a bug in the service’s initialization code: it either needs to give more accurate wait hints or call SetServiceStatus at selected points to keep the SCM appraised of its progress.

	ERROR_INVALID_SERVICE_LOCK

(1071)
	The specified service database lock is invalid.

UnlockServiceDatabase was called with an invalid argument (that is, an invalid lock structure was returned from a previous LockServiceDatabase call).

	ERROR_SERVICE_MARKED_FOR_DELETE1
(1072)
	The specified service has been marked for deletion.

An administrator just attempted an operation (for example, send a control or start) on a service that has been marked for deletion. A service marked for deletion means that DeleteService was called for the service, but the service has not been deleted because some service handles are still open. A program called OpenService/CreateService for that service and has not called CloseServiceHandle on the returned SC_HANDLE. After the last handle to the service is closed, the delete will finish and the service will terminate.

	ERROR_SERVICE_NOT_IN_EXE

(1083)
	The program that this service is configured to run in does not implement the service.

1 It is important to realize that a running service effectively has an open handle to itself that is closed when the service stops. This is done to prevent a service from being deleted while the service is actually running, because the service will remain marked for deletion until all handles to the service are closed. Therefore a service must be stopped before it can be deleted.

Service deletion is asynchronous. As a result, calling CreateService right after calling DeleteService will sometimes return this error (for example, some applications do this to re-create the service). In that case, the calling application should wait a few seconds (typically, between two and five seconds) between the DeleteService and CreateService calls.

The errors listed in Table 13.10 are returned if you encounter a Svchost configuration problem.
Table 13.10 Win32 Error Messages Returned by Svchost Configuration Problems
	Win32 Error Message
	Explanation

	ERROR_MOD_NOT_FOUND

(126)
	The specified module could not be found.

	ERROR_PROC_NOT_FOUND

(127)
	The specified procedure could not be found.

For more information about Win32 service error messages, see the Software Development Kit (SDK) information in the MSDN Library link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

Additional Resources

These resources contain additional information and tools related to this chapter.

Related Information

· Distributed Services Guide of the Microsoft Windows Server 2003 Resource Kit for more information about authentication (or see Distributed Services Guide on the Web at http://www.microsoft.com/reskit).

· The Remote Procedure Call link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

· The Software Development Kit (SDK) information in the MSDN Library link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

· The Driver Development Kits link on the Web Resources page (http://go.microsoft.com/fwlink/?linkid=291) at http://www.microsoft.com/windows/reskits/webresources.

· Inside Windows 2000 Third Edition by David A. Solomon and Mark E. Russinovich, 2000, Redmond: Microsoft Press.
· Programming Server-Side Applications for Windows 2000 by Jeffrey Richter and Jason D. Clark, 2000, Redmond: Microsoft Press.

Related Tools

· Sc.exe

This command-line tool communicates with the SCM and installed services. Sc.exe retrieves and sets control information about services.

· Net.exe

This command-line tool is useful for changing network configuration settings, starting and stopping services, and viewing shared resources.
