Enterprise Integration

Vision Paper

Published: September 2003

Steven B. Martin

stevemar@micorosoft.com

Lead Product Manager

[image: image1.png]

Contents

1Introduction

Business Process Centric Computing
3
The role of XML Web Services
6
Microsoft’s Products for Enterprise Integration and BPM
7
Business Activity Monitoring
8
Tying in the Information Worker
9
Human Based Workflow with Microsoft InfoPath
11
Conclusion
14

Introduction

Over the last ten years the business sector made unprecedented investments in information technology that were driven by two distinct developments. The first of which was the introduction of enterprise framework applications, such as Supply Chain Management (SCM), Enterprise Resource Planning (ERP), and Customer Relationship Management (CRM) which are designed to re-engineer core business operations. These enterprise framework applications are highly sophisticated systems that require a substantial commitment of capital, specialized technical resources, and operational restructuring to implement. Companies that successfully deployed these enterprise frameworks derived significant efficiencies in their core operations that translated into a competitive advantage. The second development was the emergence of the Internet applications, email and the World Wide Web. These applications are based on open standards, use a message-oriented paradigm, and are relatively easy to implement. Their deployment engendered new capabilities and efficiencies for communicating information among people that in turn resulted in a heightened sensibility for workplace responsiveness and performance. In companies everywhere, the proliferation of enterprise applications was accompanied by a simultaneous build out of the computing and networking infrastructure whose purpose was to facilitate the exchange and communication of information.

The complications that have emerged from this proliferation of diverse technologies are not due to the multiplicity of the systems themselves. This is certainly difficult to manage, but it is negotiable given the benefits that are derived from these systems. What has become a continual hardship is the strain on programming resources and IT budgets due to the mounting and competing demands to make the hermetic information residing in these enterprise platforms accessible and usable to other platforms (application integration), to people in the organization (workflow automation) and to external partners and customers (business to business data inter-exchange). The demand for information increases proportionately to the number of people and applications that have the capabilities to use it. With the ubiquitous information processing and communication capabilities found in any organization today, the demand for information has become overwhelming. Every knowledge worker with an Internet-enabled computer regularly experiences the empowerment that comes from being able to effortlessly access boundless information or useful computing functionality, but not necessarily the information or computing functionality that is most relevant and useful to the optimal performance of their day-to-day business tasks. The growing disparity between what information technology is perceived to be capable of providing, and what it has yet to deliver is a primary reason why integration and process automation projects are perennially the number one IT priority in most organizations.

The problem is that enterprise framework applications are comprised of thousands of program modules, databases and data files whose operational procedures, controls and access mechanisms are extensive, rigid and unforgiving. Developing extended programmatic capabilities or attempting to make information accessible in ways that are not defined in these systems is enormously resource, time and capital intensive because the work involved in integration development is comprised of numerous sequential, low-level programming tasks. Writing direct interfaces, that is, point-to-point integration is the prevalent methodology for information exchange. Programmers knowledgeable in the respective APIs of the interfacing applications specify, design, code, and debug custom programs to access the source application’s data (usually in binary format), map and convert the respective data structures, manipulate the data as required, and bring it into the target application. This produces a tightly coupled, highly specific set of functions that exist and execute in the form of procedural code, just like the applications themselves. This type of development effort is typically measured in man-years. The process is highly linear; each step is dependent upon the completion of a previous step and cannot be broken out easily, or at all, into independent tasks executed by distributed resources. Consequently scaling up to meet a growing workload of integration projects only means adding more and more programming resources. The extent to which integration projects consume resources can be expressed by the N-Square equation: N* (N-1)/2, where N is the number of interface endpoints. If an organization has a fully meshed distribution matrix of just 20 inter-exchange endpoints (a very low number), 190 programmatic inter-exchanges need to be developed. Because each integration instance is specialized, and manifested in a monolithic encoded construct that is not modularly re-usable, overall programming efficiency is not leveraged by the proliferation of programming resources. As more and more integration contingencies evolve, they continually overwhelm the resources and budgets of IT departments. Not surprisingly, in any given organization, functions that obviously beg for an automated solution continue to be executed on a manual basis.

An alternative integration methodology is to deploy a middle-ware integration hub or queuing platform. The concept of these products is to capture the proprietary data formats of the enterprise framework applications, in many cases using a provided adaptor, and then use the mapping, conversion and transport facilities of the middle-ware platform to facilitate the exchange of data between the application endpoints, which are now de-coupled. Middle-ware platforms also provide additional support mechanisms for transactional exchanges, event monitoring, error capture, and security. Platforms of this type do eliminate a substantial amount of procedural coding and minimize the working knowledge of end-point behavior, but they are not always a viable solution. They are costly (software and implementation costs typically run into millions of dollars), complex in their own right, and proprietary. As with point-to-point integration, highly specialized resources are required to actualize the potential efficiencies of these platforms, and the integration interfaces created remain tightly coupled. They represent another manifestation of the closed system architecture that binds information to their internal workings in order to propagate an on-going dependency.

It is well understood by both the software development community and end-users alike that a major impediment to using their information technology more effectively throughout the enterprise today is the linear and costly process of making information available and usable to multiple applications and processes. This is preventing businesses from being able to create agile, process-centric business environments that can organize, monitor and modulate themselves to achieve operational equilibrium in response to both subtle and gross changes in the business environment.

Fortunately, a new computing paradigm has emerged that is demonstrating the ability to significantly alleviate the inefficiencies of application integration and process automation development, and the software standards bodies have worked quickly to codify its protocol methodologies. The defining concept of this paradigm is the elevation of the integration process from the program layer to the information (document) and transport layer (messaging). By separating information from the applications that operate upon it, exposing it as clear text, and using self-describing XML metadata to give it meaning and structure, the information can then be processed by any application capable of parsing and interpreting the XML metadata. Even the operational functions and invocation methods of applications themselves can be described and exposed using XML, allowing them to be executed without regard for where they reside, how they were originally developed, or what platform they run on. This is the underlying premise of the Web Services protocols, Simple Object Application Protocol (SOAP) and Web Services Definition Language (WSDL).

Business Process Centric Computing

One of the most important realizations that emerges from an analysis of this messaging paradigm is that it provides a viable and accessible solution for any process-centric requirement. A managed workflow, application integration interface, or trading partner interaction can all be described, composed and implemented by an orchestrated flow of structured XML documents and messages that are routed, transformed and processed according to message content, formatting requirements and business logic contingencies. With integration development platforms based on this model there is no longer a requirement to write code to access, map and convert data formats, nor is there a need to understand the API’s of dozens if not hundreds of applications. The tightly coupled, coded interfaces between applications, which require specialized programming to create, no longer exist in this paradigm. The information is now un-coupled from its sources, and available for any-to-any inter-exchanges.

XML and Web Services will profoundly affect the way in which businesses create and integrate the applications and processes that govern the operating efficiencies of their business. In the same way that email and the World Wide Web made it possible for people to easily communicate and access information anywhere in the world irrespective of the applications or platforms that originated the information, XML and Web Services will enable the fluid and automated exchange of information among applications and business processes. However, XML and Web Services have limited functional relevance as stand-alone technologies. On their own, they cannot be simply inserted into an organization’s existing infrastructure, provide functional efficiencies, or conform to the operational performance standards that IT organizations are accustomed to. Their value is actualized by being implemented within a framework of complementary and supporting technologies that together facilitates their utilization within an embedded infrastructure.

For XML and Web Services to be truly useful in creating agile, process-centric business environments their capabilities must be broadly embedded within host applications that end-users and developers can use readily and easily. In addition to integration platforms that use XML to connect disparate systems together, software development tools must generate Web Services directly, databases must store XML metadata natively, personal productivity tools must be able to parse, process and generate XML documents transparently, and SOAP must be the underlying messaging mechanism that allows all of these components to communicate with each other. This is how a process-centric infrastructure will come about that will allow businesses to become agile. Business agility is the systemic ability to fluidly marshal and reconfigure an Enterprise’s resources and processes in response to business contingencies, and augment or decompose them in an orderly, non-disruptive manner. The following attributes define the characteristics of an agile, process-centric infrastructure:

· Visibility of end-to-end process activities

· Process components and functionality that are exposed and self-describing

· Any information source and application functionality, no matter where it resides, can be integrated into a process

· Information flow and event notification can be automated throughout a process

· Human resource workflow activities leverage the desktop technology already in use

· Service level agreements can be specified, monitored and enforced for activities in a process

· Any activity in a process can be added, removed or re-configured without disrupting any other activity in the process

· Activities can be monitored in real-time or near real time

· Process designs can accommodate any exception handling requirement

· Any process can be easily replicated, extended and scaled

· All of the above attributes can be deployed in a highly efficient and cost effective manner

The role of XML Web Services

Microsoft has been and continues to be at the forefront of the XML and Web Services development movement. It was an originating sponsor of the Web Services protocols submitted to the World Wide Web Consortium and it introduced one of the very first integration and process automation development platforms based on the XML messaging paradigm, its award-winning product, BizTalk Server over two years ago. More than any other software developer, Microsoft is committed to the adoption of these enabling technologies, and nowhere are the potential enabling capabilities of XML and Web Services more evident and leveraged than within Microsoft’s integration, development and productivity technologies.

The complimentary XML and Web Services capabilities found in the new releases of BizTalk Server, Visual Studio.Net and Microsoft Office 2003 demonstrate a coherent vision for the way in which development and deployment activities for application integration and process automation are distributed along functional lines and among stakeholders. We will examine how XML and Web Services are implemented within these applications and describe how these three platforms, representing Microsoft’s foundation for Enterprise Integration activities, interact with each other to facilitate the creation of a process-centric computing infrastructure. We will also examine additional Microsoft technologies that provide connectivity, monitoring, performance management, scalability and fault-tolerance support to BizTalk Server, allowing this XML based integration and process management architecture to conform to the design and operational performance standards that IT organizations are accustomed to.

Microsoft’s Products for Enterprise Integration and BPM

BizTalk Server and Visual Studio.Net have been tightly integrated to provide Microsoft’s Enterprise Integration (EI), Business Process Management (BPM), and Trading Partner Interaction development and run-time platform and they embody the integration and process automation capabilities facilitated by XML and Web Services technologies. Visual Studio.Net has been imbued with an extensive and robust set of application integration and workflow development tools, while BizTalk Server functions as the process execution and activity monitoring engine for the BizTalk applications created in Visual Studio.Net. The following are the core modules found within the combined Visual Studio.Net and BizTalk 2004 IDE:

BizTalk development components found in Visual Studio.Net

· An XML editing tool to define the semantics (XML schemas) of documents

· An XSLT based mapping tool to dynamically transform documents into different formats

· A Publish and Subscribe messaging infrastructure that provides the logical processing facilities where document inter-exchanges can be validated, authenticated, encrypted, transformed and routed. Correlation and persistence of messages and transactions are also supported.

· A graphic orchestration template for creating sophisticated processes using a drag and drop assembly methodology
Components found in the BizTalk Server environment:

· A process execution engine utilizing the XML based XLANG and Business Process Execution Language (BPEL) specifications
· A Business Rules Composer based on a forward chaining inference engine for creating complex business rule sets that can be applied and modified in a highly modular fashion
· Health and Activity (HAT) management tools for monitoring and viewing real-time information about the status of active messages and process activities as well as historical information

Business Activity Monitoring

A Business Activity Management (BAM) module for generating and analyzing business intelligence from the activity information inventoried by BizTalk’s Health and Activity monitoring module

One of the most important and highly leveraged features of the new version of BizTalk Server is the adoption of the XML Schema standard for defining internal BizTalk document definitions. XML Schema is a set of specifications for defining the structure, content and semantics of XML documents. BizTalk Server uses XML Schema to create an internal structural and semantic model (a document definition) of the proprietary information formats that it will receive from or send to external applications or process steps. These internal document definitions are stored and published in a shared repository. A mapping tool is used to map the conversion of one application’s information format (based on its internal BizTalk document definition) to any other format (also based on an internal document definition). The transformation maps are also stored and published in a repository. An inter-exchange takes place when BizTalk Server receives information from one application or process step that it identifies as being the input to another application or process step. BizTalk Server executes the format conversion through its mapping facility and furnishes the information to the receiving application or process step in the format required. The flexibility and efficiency of this information hub model becomes apparent when applied to a one-to-many or many-to-many inter-exchange requirement. For example, an application could generate a document containing information that is used selectively and differently by numerous other applications. This document can be automatically distributed through a “publish and subscribe” function of BizTalk Server to multiple transformation pipelines where the required information for each specific document instance is extracted and transformed according to the transformation map at each channel and subsequently passed off to a different application or process.

The technologies supporting the execution of these transformations are also based on XML protocol standards –XML Schema, SOAP, XSLT and XPATH. It is also important to note that the implementation of these transformations requires no procedural programming. The BizTalk Server application components abstract the underlying complexities of XSLT, XPATH and Schema, which effectively re-orients the integration development process from being a highly specialized and opaque procedural programming function to an easily accessible and transparent assembly activity.

Tying in the Information Worker

These XML technologies also figure prominently in the workflow management capabilities of Microsoft Office 2003, the second cornerstone of Microsoft’s strategy for providing organizations with the tools that will help them build process-centric infrastructures. Workflow management is the discipline of optimizing the execution of business tasks that depend on the flow of information among people and between people and systems. Because human resources represent the single largest cost to any organization, any and all improvements in worker productivity can have a significant impact on an organization’s economics and its competitive standing. Workflow inefficiencies are generally attributable to:

· The generation, handling and processing of paper documentation

· Delays in obtaining prerequisite information to complete a task

· Delays due to bottlenecks and prioritization conflicts

· Incomplete or incorrect information that stalls a process

· Unwarranted sequential dependencies in process steps

The web, more than any other technology, substantially reduced the costs and improved the efficiencies of innumerable workflow tasks by giving participants direct access to functions and information that previously required intermediary resources. However web based access to business functions and information is most useful and applicable to activities characterized by discrete, transient (short-lived) transactions where all or most of the steps in the process are completed all at once under the control of the originating participant. Making a purchase or checking the status of an order are examples of these types of activities. However, there are many workflow scenarios where web-based interactions do not adequately address the documentation requirements and dynamics of a complex process. The documentation dynamics of complex workflows typically have the following characteristics:

· The documentation is part of a multiple step, long running process where information is generated by multiple participants, moves from one participant to another or iteratively goes back and forth among participants and is modified or extended at various times

· Documents may need to be referenced in their original context at any step in the process

· The routing and processing requirements of documents are contingent upon information found in the documents

· Information that is derived or computed from other information is documented within the documentation itself (self-documenting)

· There is a requirement to authenticate the documentation and the identities of the participants at any point in the process

Examples of these types of complex workflows are expense report processing, insurance policy applications, financial reporting, merchant banking letters of credit, tax returns, loan applications and claims form processing. In these workflows there can be multiple documents and addenda that must be preserved throughout the lifecycle of the process, which takes place over an extended period of time and involves multiple participants and applications.

Paper based documentation, while highly inefficient to process, still satisfies the fundamental documentation requirements of multi-step, multi-party, long-running workflows in these specific ways:

· The preservation of information in its original form and context

· The ability to combine and aggregate documentation or specific information contained in the documentation without affecting the integrity of the original documentation

· The ability to authenticate the documentation and the parties creating or modifying the documentation

· The information is readily comprehensible and capable of being easily processed and routed through the association of metadata (definitions, instructions, references) within the documentation

· Its application independence

To facilitate workflow processes that are entirely digital, these documentation characteristics and workflow dynamics will have to be emulated in ways that are acceptable and accessible to various participants. Furthermore, the real benefits and efficiencies of digital information are obtained when the information is capable of being exchanged and processed between applications automatically and transparently. A form created in a word processing or spreadsheet program can be filled out easily enough, but the information that is entered is not comprehensible or capable of being processed by the same application or other applications without programmatic or human intervention. Essentially this is just another manifestation of the general computing problem of how to make digital information universally understood and functionally usable independent of any host application. This problem, as well as the emulation of the characteristics of paper based documentation in a complex workflow, is well within the scope of an XML solution.

More specifically, it is addressed by the capabilities of XML Schema and XSLT in the same way that BizTalk Server deploys them to translate and process the structure and content of one document format to another for application inter-exchanges. If however the applications themselves could generate and decode XML documents with their respective schema definitions and processing instructions, they would be capable of engaging in event level interactions (e.g. upon receipt of the document inspect root node and process according to scripted instructions for the identified node) based on the information and metadata found within the documents, that is, automated information processing functions negotiated and enacted directly between applications, and between applications and participants. Once again, this is the fundamental concept behind Web Services. Because the event level interactions are based on embedded processing instructions within the documents themselves, which can be executed by the applications exchanging them, the characteristics of paper based documentation can be maintained, but without the overhead of doing “paperwork”, which is typically the analysis and reconstitution of existing information into a higher level format. With built-in application support for XML processing, much of the analysis (i.e. event level interactions) and all of the reconstitution of the information can be offloaded to the application while the effort demanded of the participant is limited to executing the determinant actions they are responsible for in the workflow.

Once applications become fully XML capable their leverage in facilitating process efficiencies increases dramatically. It is of significant consequence then, that in the upcoming release of Microsoft Office 2003, Word and Excel’s native document format will be XML using a schema definition file. This redefines the functional concept and capabilities of these applications. They can now behave like a network client, in the manner of a web browser or email client, but they are capable of far more sophisticated and automated interactions with any source of XML information, including Word and Excel themselves. It is not difficult to perceive how the quality and usability of information generated anywhere in an organization can be improved immediately as a result of the native deployment of XML within these applications.

Human Based Workflow with Microsoft InfoPath

In Office 2003 Microsoft also introduces InfoPath, an XML based form application designed to address complex workflow documentation requirements. An InfoPath form template is comprised of one or more underlying schemas and XSLT styles sheets, as well as business logic and control scripts. The template controls the behavior of the form created from it in the following ways:

· Assigning data types and constraining and validating the values that can be entered in a form

· Controlling the contingencies and dependencies for entering information and activating form sections

· Generating automatic, derived and computed values

· Invoking events, prompts, and instructions

· Providing access to remote information sources

· Enabling the incorporation of digital signatures

When an InfoPath form is populated it generates an XML document that contains the entered and derived information, optional digital signatures, and the relevant information generated by the form template regarding invocation events, prompts and instructions. The document also includes a reference to the schemas that allows any application (including BizTalk Server) to validate the document against the respective schemas. The XML documents created by InfoPath emulate the characteristics of paper in a conventional workflow in the following ways:

· An original digitally signed document always resides with its originator

· The document can be distributed to any number of parties anywhere, with its signature, and be protected from unauthorized modification

· The contents of the document are self-describing and can be processed and routed based on information found within the document itself

· It can be combined with other XML documents while maintaining its original integrity

In reflecting upon the causes of workflow inefficiencies that were itemized earlier it becomes apparent that InfoPath addresses many of the prevalent issues. Furthermore, when InfoPath generated XML documents are combined with the orchestrated messaging and activity facilities of BizTalk Server it is possible to create coordinated workflows that can accommodate any operational contingencies and performance requirements. Through their mutual operative functions that are predicated on XML schema, InfoPath and BizTalk Server leverage each other to make unprecedented workflow efficiencies possible.

In BizTalk 2004 the Orchestration Designer module found in the previous versions of BizTalk Server is now an overlay template embedded in Visual Studio.Net and its functionality has been greatly expanded. This overlay template provides an application integration or process assembly workspace that graphically represents the interface or process design logic that is bound to implementation objects such as messaging pipelines, ports and schemas. While Visual Studio.Net is a programming environment, and it is assumed that the process implementation will be executed by individuals with programming skills, the methodology of implementing the integration requirement or process design has nominal resemblance to conventional procedural programming techniques. Instead, the template visualizes the logic flow dynamics and implementation assembly components of the messaging paradigm, which is based on sending, receiving, inspecting and transforming exposed XML messages and documents. Furthermore, the implementation mechanisms for highly complex functions, such as short and long running transactions with the required support for features like two phase commit, correlations, and compensation actions are built in functions of the overlay tool set, eliminating the need to write complicated procedural code to implement these necessary capabilities.

Integration interfaces and business processes created in this way are also isolated and loosely coupled. Each messaging event and its respective implementation binding are functionally independent from any other messaging event and implementation binding. A change made to any particular coupling does not affect the overall process logic or integrity of any other binding. Consequently, it is relatively painless to modify or completely re-use any integration interface or process developed in the BizTalk Server development environment. In conventional process development a complex integration or process scenario is embodied in opaque programming code that incorporates the structure of the endpoint objects, the process flow logic, the conversion of data formats business rules, and the bindings to transport infrastructure. If a modification is required to any one facet of the code, then the integrity of the entire code module can be, and frequently is, compromised. The risk of introducing unexpected behavior when modifying code has always been a pitfall of software development and it accounts for the hesitancy to make on-going process changes in response to business contingencies and requirements. This is no longer the case when both the development environment and the applications created in the environment are transparent and loosely coupled.

The capabilities and benefits of this exposed and modular development environment are further enhanced by the introduction of another new and significant functional component of BizTalk Server 2004, the Business Rules Composer module. The Business Rules Composer is comprised of an editor for creating and an engine for processing sophisticated business rule sets using a forward chaining inference model. A rule set (or “Policy”) that drives a specific activity or function is created with the Business Rules Composer and becomes a resource object that is referenced in a BizTalk orchestration. Transparency and loose-coupling governs the creation and implementation of business rules as well. A rule set incorporated within a BizTalk Orchestration can be viewed, modified or completely replaced both at design and run-time, without affecting any other operational aspect of a process or interrupting running instances of the affected process. The flexibility that an exposed and componentized rule engine provides for modifying business processes is of fundamental significance. In conventional application development business rule logic is embedded in procedural code and is not accessible for modification without changing the code itself which is time and resource consuming and can result in unpredictable program behavior. Since most business process lifecycle modifications pertain to changes in business rules (as opposed to technology related modifications), the ability to isolate business rules entirely from procedural code or any process implementation mechanisms will dramatically improve the efficiencies of managing and adapting business processes throughout their lifecycle.

Once an integration interface or business process has been created, a run-time version of the integration application or process is generated by Visual Studio.Net and is instantiated and managed by the BizTalk Server execution engine. Within the BizTalk Server run-time environment thousands of short and long running transactions, document inter-exchanges, and process instances can be taking place at any given time. Persisting, tracking and monitoring this activity are essential functions of a process execution engine and the implementation of these capabilities within BizTalk Server 2003 are distinguishing features that set BizTalk Server apart. Health and Activity Tracking (HAT) and Business Activity Monitoring (BAM) are two new modules that provide auditing and analytical facilities respectively. Health and Activity Tracking provides views into historical and real-time activity through a robust query facility. Once a query returns the specific activity being sought HAT presents a visualization of the process or message inter-exchange activity steps. Each activity step can be clicked on and detailed tracking information is presented. Ad hoc and defined queries can be created to generate reports based on any criteria and values. The Business Activity Management module is an OLAP analytic tool for defining and generating historic and real time qualitative and quantitative performance metrics on any aspect of a BizTalk activity. Together, these two modules provide an unlimited range of tracking and analysis configuration capabilities that can be applied to any BizTalk objects and their attributes for managing operational performance and generating valuable business intelligence.

Conclusion

Microsoft, more than any other information technology provider, has recognized and embraced the enormous possibilities of XML to engender the creation of highly integrated and workflow efficient organizations. And more than any other information technology company it has re-engineered its entire product line around XML technologies in order to actualize this vision of an agile enterprise. In an agile enterprise, distributed resources and assets (people, information, technology, and partners) can be marshaled and coordinated to respond and adapt to any business opportunity or contingency in a timely and optimal manner. By empowering knowledge workers throughout an enterprise with accessible and easy to use tools for building and deploying XML based workflow and integration applications the agile enterprise is well within the reach of any organization.
This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein. The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft BizTalk Server, Microsoft Office InfoPath, Microsoft Host Integration Server, Microsoft SQL Server and Microsoft Content Management Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

1

