
[image: image1.png]Microsoft*

SQL Server 2005

Reporting Services: Using XML and Web Service Data Sources
SQL Server Technical Article

Writers: Jonathan Heide

Published: August 2006
Updated: May 2007
Applies To: Microsoft® SQL Server™ 2005 Reporting Services

Summary: This paper consolidates general information, best practices, and tips for designing Microsoft SQL Server Reporting Services (SSRS) reports. It is intended to provide a starting point for design questions and an overview of some of the capabilities of Reporting Services.

Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

2006 Microsoft Corporation. All rights reserved.

Microsoft, Excel, Office, SQL Server, Visual Basic, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents
1About This Document

Other Sources of Information
1
Product Versions
1
Introduction
2
XML Data Provider
2
XML Data Sources
2
XML Data Provider Query Language
3
Auto Detection of XML Structure
4
Examples
6
Querying a Web Service
6
Specifying XML Data using Report Parameters
8
Querying XML Data from SQL Server
9
Limitations and Common Pitfalls
11
Conclusion
12

About This Document

New to Microsoft® SQL Server™ 2005 Reporting Services (SSRS) is integrating Report Services directly with XML data sources and Web services. This paper provides general information and tips for designing reports using these sources. It is intended to provide a starting point and overview of the available features, in addition to outlining many common scenarios. The intended audience is more experienced report authors who want to extend and integrate reporting with more services oriented environments.
Other Sources of Information

This white paper is not intended to be an exhaustive source of information about Reporting Services. For detailed information, see the Reporting Services Web site.
Product Versions

This paper is written for SQL Server 2005 Reporting Services, many features addressed are not relevant to earlier versions of Reporting Services.

Introduction

Reporting Services is a comprehensive reporting tool which integrates with a diverse set of data sources. New to Reporting Services, is the ability to query directly from XML data sources and Web services. This is obtained by using the XML data provider. The XML data provider flattens the XML structure into a data set that can be accessed by the reporting engine. The flattening and integration with diverse Web services, Web pages, and arbitrary XML documents is powerful, but sometimes confusing.
This document outlines common problems and solutions encountered by report authors. It starts with a description of the XML data provider and supported data sources. Next, the document describes the features and syntax of query language, followed by an explanation of the auto-detection algorithm. It concludes with examples about how to create reports using the XML data provider.
XML Data Provider

Reporting Services supports an extensible set of data providers including Microsoft .Net Framework, ODBC, and OLE DB. The XML data provider is a .Net data provider provided with Reporting Services. This section describes behavior and query syntax unique to the provider.
XML Data Sources
There are several ways that you can use the XML data provider to access XML content. These include the following:
XML Embedded Within the Query
The XML content can be embedded directly within the query. This lets you use the expression capabilities within the processing engine to build queries and data dynamically within the report. This can be used for retrieving XML data directly from an external data source, passing it using parameters, and embedding it within the query.
XML using URL
XML content can also be accessed directly from a URL. Notice that only the HTTP protocol is supported and the request uses the GET method. However, if parameters are specified, the POST method will be used.
XML using Web Service
To support service oriented architectures, the XML data provider can query Web services directly by parsing the XML structure of the SOAP response directly. This requires knowledge of the Web service structure that includes the namespace, method, SOAP Action, parameters, and schema of the response body.
When you access these data sources, you must specify what data is needed for retrieval. You can use the XML Data Provider Query language outlined in the next section to do this.
XML Data Provider Query Language
The query language supported through the XML data provider resembles the XML Path language (XPATH). However, there are both syntactical and behavioral differences between the two languages. Perhaps the most notable difference will be the lack of querying and filtering support. For a complete description of the query syntax see SQL Server Books Online.
Example 1
<Customers xmlns:ord="http://customer_order_schema" xmlns:ret= "http://customer_return_schema">

 <Customer ID="1">

 <Name>Bob</Name>

 <ord:Orders>

 <ord:Order ID="1" Qty="6" Date="2001-01-01T01:01">Chair</ ord:Order>

 <ord:Order ID="2" Qty="1" Date="2001-01-02T01:01">Table</ ord:Order>

 </ ord:Orders>

 <ret:Returns>

 <ret:Return ID="1" Qty="2" Date="2001-03-01T01:01">Chair</ ret:Return>

 </Returns>

 </Customer>

</Customers>

Element Path

The element path defines a structure by which the XML Data Provider will flatten the data. Auto derivation will use the first repeating pattern in the document. For more information, see "Auto Detection of XML Structure" later in this white paper. If you require a different structure you can specify the path of the repeating pattern, starting from the root node. This will define the rows returned from the query. For example, if you use the XML schema provided in Example 1:
Customers/Customer/Returns
Specific values can be specified at each node by enclosing them in braces. This will define the columns returned from the query. Notice that XML attributes can be accessed by specifying the “@” symbol plus the name. For example:

Customers/Customer{@ID}/Returns/Return{@ID}
Similarly, to reference the value of the node directly, specify the “@” symbol without a name.

Namespaces
If the query requires use of specific XML namespaces, they can be specified within the element path. The following example shows how a specific XML namespace can be specified.
<Query xmlns:ord="http://customer_order_schema" xmlns:ret= "http://customer_return_schema">

 <ElementPath>

 Customers/Customer/ret:Returns

 </ElementPath>

</Query>

The name of the namespace should be included on the query element and then prefixed on the particular node within the Element Path. If your data and query are not namespace sensitive, you can use the IgnoreNamespaces attribute on the query element. You can then create queries that do not require the namespace to be specified. The default for IgnoreNamespaces is false.
Type Casting

By default, as items are returned as Strings, you can select to specifically cast fields within the query. You can do this by specifying the type in parentheses after the element. For example:
Customers/Customer{@ID(Integer)}/Returns/Return{@Date(Date)}

The following types are supported:

String, Integer, Boolean, Float, Decimal, Date, XML
Date format uses ISO 8601: YYYY-MM-DD[THH:MM:SS[.S][Z|SHH[:MM]]]

Encoding

To support embedded documents and varied Web services, the ability to decode HTML and Base64 encoding is supported in the XML data provider. Decoding can be specified at any node in the element path by specifying (Base64Encoded) or (HTMLEncoded). When a section of XML is decoded, it is treated as a nested set of elements and can be queried as usual. For example, assuming everything that is contained within the Customers node is Base64 Encoded:
Customers(Base64Encoded)/Customer/Returns/Return{@Date(Date)}
Fields that contain complete encoded XML documents are also supported. When decoded, they will be treated as a set of nested elements.

Auto Detection of XML Structure

Report authors who do not have knowledge of the source XML schema can use the auto detection feature of the XML data provider. This can be specified in the query using the “*” syntax in the Element Path. If the Element Path is omitted, or an empty string is specified, the data provider will detect the XML schema automatically.
Auto detection functions by parsing the source XML for the first repeating pattern. This forms the schema defining how the XML will be flattened.

For example, the following XML structure yields a flattened data set.
<Customers>

 <Customer ID="1">

 <Name>Bob</Name>

 <Orders>

 <Order ID="1" Qty="6">Chair</Order>

 <Order ID="2" Qty="1">Table</Order>

 </Orders>

 <Returns>

 <Return ID="1" Qty="2">Chair</Return>

 </Returns>

 </Customer>

</Customers>

The flattened data set contains the following.
	Order
	Qty
	ID
	Name
	Customer.ID

	Chair
	6
	1
	Bob
	1

	Table
	1
	2
	Bob
	1

Note Queries that contain name collisions will have the names prefixed with the name of the nodes that contain them. Here ID is prefixed with Customer, differentiating “Customer.ID” from “Order ID”.
You can combine partial paths with auto detection for nodes at the same level. However, auto detection will not parse nested structures under that level. For example,

Customers/Customer/Returns

Would auto-detect values from <Returns> because it is a detail node. If the following is specified

Customers/Customer

Then <Returns> would not be included in auto-detection because they do not occur at the same level as Customer.

The query will also return any values included along the element path. This includes values from the Customer and Customers nodes. If you do not want values included from these nodes, you can add empty {} column definitions at each node:

Customers{}/Customer{}/Returns

Multiple Parent-Child hierarchies are not supported. In this example, Customer has both Orders and Returns. The provider may only return one set. Because the Orders hierarchy is specified first, auto derivation will resolve it as the skeleton.
Note Detail nodes not directly within the hierarchy will be ignored by auto derivation if they appear after the first instance of the continuation of the hierarchy. In our example the <Name> detail element appears before the hierarchy <Orders>. The auto derivation will parse the structure in order and add the detail element. If the <Name> detail element were to appear after the <Orders> element, it would not be included.
Examples

This section will step through three examples using the XML data provider. The first example will demonstrate how to create a report which queries a Web service. The second example will demonstrate how to supply XML data to a report by using report parameters. The third example will expand upon the second to query XML directly from a data source such as SQL Server.
Querying a Web Service
As described earlier, you can query Web services through the XML data provider. This section describes how to create a report that queries the Report Server Web service to gather a list of items that are contained in the root folder. For more information, see the Report Server Web service library in SQL Server Books Online.

Assumptions: This example assumes that you have SQL Server 2005 Report Services installed, which includes Report Designer. For more information about how to install Reporting Services and use Report Designer, see SQL Server Books Online.
To query a Web service
1. In Report Designer, create a new Report Server Project.

2. In the new project, create a new blank report.

3. In the Data tab, on the Dataset menu, select New Dataset. This will bring up the Data Source window, to create a new data source.
4. Name your data source, and select XML in the Type drop-down list.
5. Enter the following string in the Connection String box:

http://<Server Name>/ReportServer/ReportService2005.asmx
6. In the Credentials tab, select Use Windows Authentication (Integrated Security).
7. Determine the Web service namespace and method name.
As we are using the Report Server Management Web service, method name is “ListChildren” and the namespace is as follows:
http://schemas.microsoft.com/sqlserver/2005/06/30/reporting/reportingservices
Because the SOAP Action is auto derived by appending the method name to the namespace, you do not have to specify it. However, if the Web service does not use this structure, you must specify the SOAP Action directly in the query.
If using auto derivation, be aware that namespaces with a trailing slash will append Namespace/ with /MethodName creating a double slash. You can specify both the MethodName and SoapAction explicitly in this case.
Conversely, if you specify SoapAction, only the MethodName and Namespace will be parsed from the SoapAction. Slashes will be removed in this case.
8. Determine Web service method parameters.
Look in the Web service documentation or the Web Services Description Language (WSDL) file directly for parameters expected by the method. Notice that parameters are case sensitive. For our example one parameter is needed, the item name. In this example, we specify the root of the Report Server catalog “/” for the value.
9. Construct the query.
Enter the following query into the query designer and execute the query by selecting the exclamation (!) button on the toolbar.
<Query>

 <Method Name="ListChildren" Namespace= "http://schemas.microsoft.com/sqlserver/2005/06/30/reporting/reportingservices">

 <Parameters>

 <Parameter Name="Item">

 <DefaultValue>/</DefaultValue>

 </Parameter>

 </Parameters>

 </Method>

 <ElementPath IgnoreNamespaces="true">*</ElementPath>

</Query>

10. Construct Element Path.
Notice that the auto derived element path may not contain the data we want. We must construct the element path accordingly. To do this we need an understanding of the XML schema. You can do this one of the following ways.
· Look in the Web service documentation.
· Review the WSDL file directly for the structure.
· Run the following query against the WSDL file. This will use the XML data provider to parse the WSDL file and return information directly through the data set and expose it in the designer.
<Query>

 <ElementPath IgnoreNamespaces="True">

 definitions{}/types{}/schema{}/element{@name}/complexType{}/sequence/element{@name, @type, complexType{sequence}}

 </ElementPath>

</Query>

When you run this directly against the Reporting Service WSDL, you get the following result.
http://<Server Name>/reportserver/reportservice2005.asmx
Your report server will be substituted for the server name and the returned data will indicate the structure.
When you have the structure, you can then construct the following element path. This path provides the name of each catalog item and casts it to a string.
<ElementPath IgnoreNamespaces="true">

 ListChildrenResponse/CatalogItems/CatalogItem{Name(string)}

</ElementPath>

Note We used IgnoreNamespaces=true, if you require an explicit namespace you must specify it directly in the query For more information, see the "XML Data Provider Query Language" section earlier in this white paper.
11. Construct your report.
Now that you have your data source created, build your report as usual. By executing the query in the Data tab, the designer will auto-generate the fields for use in report layout.
Specifying XML Data using Report Parameters
If you want to pass parameters into the XML Web service, you can pass them in as a report parameter and then pass the value to a dataset parameter. You can use the following steps to add a report parameter and a dataset parameter. For the rest to work, you will need to have already created a data source that queries a Web service that takes parameters. This example is based on the query sample from the preceding example in this article. The query that was used is included here.
<Query>

 <Method Name="ListChildren"

Namespace="http://schemas.microsoft.com/sqlserver/2005/06/30/reporting/reportingservices">

 <Parameters>

 <Parameter Name="Item">

 <DefaultValue>/</DefaultValue>

 </Parameter>

 </Parameters>

 </Method>

 <ElementPath IgnoreNamespaces="true">*</ElementPath>

</Query>
Add a report parameter with the name of the parameter(s) in the Web service call.

To add a report parameter
12. Make sure the Layout tab is selected in Report Designer.

13. On the Report menu, click Report Parameters.

14. Click Add.

15. Enter a name for the parameter.

16. Select the Data Type, Prompt, and Report properties.

17. For this example, leave Non-queried selected.

18. Select Non-queried for Default Values.

19. In the Non-Queried field, enter /Data Sources for the value.

Note /Data Sources can be replaced with a valid, existing folder name in Report Manager, if the Data Sources folder does not exist for you.
20. Click OK.

Add a parameter to your dataset that will pull in the value from the report parameter.
To add a dataset parameter

1. On the Data tab of your report, select the dataset to which you want to add the parameter.

2. Click the ellipsis (...) icon next to the drop-down list.

3. Click the Parameters tab.

4. In the Name column, enter the name of the parameter that the Web service accepts. In this case, it will be Item.

5. In the Value column, enter "=Parameters!ReportParm1.Value" (replace ReportParm1 with the name you specified in step 4 of the previous procedure).

6. Click OK.

7. Execute the dataset by clicking the exclamation (!) button, or preview your report passing in the value for your report parameter.

Querying XML Data from SQL Server
Building upon our previous example, report authors can query XML data directly from a data source such as SQL Server. Because the XML data provider does not support direct querying from a data source, you can use a report dataset to query the XML data and pass it on to a sub report using report parameters.
Assumptions This example assumes that you have Report Services installed, which includes Report Designer, and have completed the previous example. It also assumes that you have the Adventure Works sample database installed. For more information about how to install and use Reporting Services, see Reporting Services in SQL Server Books Online.
To query XML data from SQL Server
21. In the same project you created in the previous example, create a new blank report.

22. In the Data tab, from the Dataset menu, select New Dataset.
23. In the Data Source dialog box, create a new SQL data source and set the connection to the local instance of SQL Server. Under Query String, enter the following query string substituting your local server name for <Server Name>:
Data Source=<Server Name>; Initial Catalog="Adventure Works"
24. Click OK.
25. Enter the following query in the Data tab.
DECLARE @x xml
SET @x = (select top 10 [Name] as Product from Production.Product for
xml auto, root)
SELECT @x as Product

26. To add a subreport, on the Layout tab, drag the subreport item from the toolbox to the Layout pane. Right-click the subreport and select Properties.
27. In the Subreport dialog box, on the Subreport menu, select the report you created in the previous example.

28. To add Parameter to Sub Report, select the parameters tab and then set the subreport XMLData parameter equal to =First(Fields!Product.Value). Notice that we must wrap the field reference in an aggregation expression because it does not occur within the repeating pattern of a data region.
This connects the value that contains your XML contents from your parent report to the parameter in your sub report.
When you have completed this, XML data will be pulled by the parent report and exposed to the subreport using a parameter. This will then be added to the query which the XML data provider will reference directly.
Limitations and Common Pitfalls

Provided the previous information and examples, new report authors might still have difficulties when querying XML data sources. Some of the most common misunderstandings include the following:

· Query Syntax The XML data provider query syntax is incompatible with XPATH. For more information, see the "XML Data Provider Query Language" section earlier in this white paper.

· Multiple Parent-Child or Master-Detail relationships at the same level XML supports this construct. However, when flattening to a 2 dimensional data set the provider cannot support this in one query. For example, a customer has multiple returns and multiple orders, the provider can return only one set, orders or returns. However, this can be combined in one report by using two data sets. Multiple datasets let you display the data within the same report, but in separate data regions.
· XML Schema of Web Service Response The structure of Web service responses are typically not well documented, it can be unclear on how to construct the query against a Web service. For examples about how to determine the structure, see the "Querying a Web Service" example earlier in this white paper.

· Web Service Encoding Frequently Web services will use HTML or Base64 encoding in their responses. The XML Data Provider supports both decoding mechanisms through the query syntax. For more information, see the "XML Data Provider Query Language" section earlier in this white paper.

· SOAP Action Auto Derivation The XML Data Provider will auto generate SOAP Action by appending Method Name and Namespace. For non-.NET Framework Web services the SOAP action may differ and will have to be set explicitly in the query.

· XML Namespaces Frequently consumers of Web services will have to address namespaces in the source XML. Setting IgnoreNamespaces=true eases the problem. However, if there are specific requirements that require the use of namespaces, see the "XML Data Provider Query Language" section earlier in this white paper.

· Type Casting Unless specified in the query, data types will be returned as Strings. The data provider will not auto detect the type information. This problem usually occurs when authors try to use data in aggregation expressions. However, if the types of the fields can be explicitly specified, see the "XML Data Provider Query Language" section earlier in this white paper.

Conclusion

Microsoft SQL Server 2005 Reporting Services offers integration with heterogeneous environments through XML and Web services. This paper has provided general guidance and useful tips for using these sources. For more information and specifics about how to use XML data sources in addition to other Reporting Services features, see SQL Server Books Online.
Did this paper help you? Please give us your feedback. Tell us on a scale of 1 (poor) to 5 (excellent), how would you rate this paper and why have you given it this rating? For example:

· Are you rating it high due to having good examples, excellent screenshots, clear writing, or another reason?

· Are you rating it low due to poor examples, fuzzy screenshots, unclear writing?

This feedback will help us improve the quality of white papers we release. Send feedback.
For more information:

Microsoft SQL Server Developer Center
