Web Forms – Presentation Transcript

Good morning. We're going to spend the next few hours together coming up to speed on ASP.NET Version 2.0. You are going to be doing some work with it, and you need to know a little bit about not only what's new in the platform, but also what's different about ASP.NET and ASP Classic. What we're going to do is go through six modules here. Each module consists of a lecture with some demos interlaced in. My goal in doing this is simply to get you up-to-speed so you can go out and begin building ASP.NET Version 2.0 Web sites. The first thing that we want to talk about is WebForms, which is the core programming model in ASP.NET. This model was introduced in Version 1.0. It's carried over to Version 2.0.

As you'll see, there are a number of enhancements that have been made to help you build cutting edge, high performance Web applications with as little time as absolutely required. This is what we're going to cover in this first module. We'll start by talking about the WebForms programming model itself. We'll move on to talk about Web controls, which are the components you build these WebForms from. Then, we're going to take a look behind the scenes to see what actually happens when you run a WebForms page in ASP.NET 2.0. As we do that, we'll get a better understanding of how ASP.NET works, and of what you need to do to make these WebForms just as efficient and performant as possible.

I'd like to begin with a simple HTML form. HTML forms have been around for a long time as you're well aware. When HTML was first created many years ago, it was primarily a tool for producing static content on the Worldwide Web. Today, static content is still interesting. What's even more interesting is the fact that we can build bona fide software applications that run on the Web. In the heart of every real application running on the Web is an HTML form.

An HTML form is defined as a set of elements encapsulated by a form element. Inside that form element, you typically find input tags. Those tags render out into a browser window such that persons using the page can type in input, select input from drop-down lists, etc. The WebForms you're looking at right here is a very simple one. It displays a UI for a Web-based calculator. If you type this HTML into a page, you save that page, and then you bring it up in your browser. What you'll see is a pair of input fields separated by a plus sign, with an equals sign on the right. If you type something into those two input fields and click the equals button, you'll see something interesting happen. The form fields will clear out, but you'll see a query string appear in the browser's address bar. Inside that query string are the values that you typed into the two input fields.

Although this is a bona fide HTML form, it doesn't qualify as a software application. Without some code running on the server side to process that input that you typed, the sum of the two inputs does not appear to the right of that equals sign as a user would expect it to. Enter ASP. ASP is one of several platforms, one of several technologies that we can use to build real Web applications. This page, calc.asp, is an ASP page. It presents the same UI as that HTML form pictured in the previous slide, but it's a real Web application, because, indeed, if you type two numbers into the input fields and you click the equals button, the sum of those two numbers appears on the right-hand side.

If you analyze this ASP page, you'll see that we have a mixture of static HTML and code that executes when that equals button is clicked. When the equals button is clicked and the input goes back up to the Web server, we take the two values that the user typed into the input fields, we convert them into integers, we added them together, and then we use ASP's response object to write the sum of the two integers back out to the page. Bottom line is we have a real Web application here, because not only do we have something that the client sees when he brings this page up on the browser, but we have code that executes on the server and provides a response to the user input.

Here's the ASP.NET version of that same ASP page. This is our first look at WebForms in ASP.NET. When you look at this page, there's several things that you should note. First, note that the form tag now has a run at = server attribute. That's what makes this form a WebForms. Whenever you see the run at = server attribute in ASP.NET, that tells ASP.NET that this is not an HTML tag that is to be simply returned to the browser. Instead, that tag is to be processed on the Server-side. In fact, all the tags that have run at = server attributes on them get instantiated on the server. They turn into objects. Those objects have full-blown programming models that we can program against. Notice the ASP: tags in this WebForms.

I have two tags that read ASP: text box. Those tags declare Web controls. Web controls are one of the fundamental aspects that you need to understand about ASP.NET. We build WebForms around Web controls. Text box is one of the simpler Web controls. Its job is to render out HTML that produces a text input field in a browser. Notice that I've given both of those text boxes programmatic IDs, with the attributes ID=op1 and ID=op2. That allows me to reference those text boxes programmatically. When this page posts back to the server, that is when the equals button is clicked, indicating that the user wants to see the sum of the two inputs that he or she typed in. You also see here that we have an ASP colon button tag declaring a button control, and an ASP colon label tag declaring a label control.

As you'll see later, a label control is simply a programmatic wrapper around text that appears on a Web page. I'm using this label control here simply as a placeholder. Because there is no text assigned to it initially, when this page first appears in the browser window nothing appears next to the equals button. But, when the equals button is clicked, the page posts back to the server and we make the sum of the two inputs appear by assigning a value to the text property of the label control. Look at the button tag closely. Notice that there is an On Click attribute in that tag.

In addition to rendering out HTML that produces user interfaces, the Web controls that you use to compose your WebForms also fire events. These events fire on the server. It just so happens that button controls, when clicked, cause this page to post back to the server and fire an event named Click. By adding on to an event name, as I've done here, On Click, I'm telling ASP.NET what method I want called on the server when the user clicks that button. If you look towards the bottom of the page, you'll see a script block marked Language=VB. Inside that script block, I've written a method in Visual Basic .NET. Its name is on add. It is the method that is called when that equals button is clicked. At runtime, this code is not interpreted. It is compiled. You're running real compiled code here when you code this up in ASP.NET. At runtime when that button is clicked, we read what the user typed into the two text box controls by reading those controls, text properties, we convert that string input into 32-bit integers by calling the Framework's convert.2N32 methods. Then we sum the two inputs, convert at the sum into a string by calling To String on it, and make that sum appear on the page by assigning it to the text property of the label control. Notice the line that says sum.text=. Also, observe that the label control has the programmatic ID sum.

Although this is a very simple WebForms, it's also one that demonstrates the key tenants of the WebForms programming model. We define WebForms with tags marked form run at = server. We build the user interfaces for these WebForms from the Web controls built into ASP.NET. The Web controls render out HTML that represent them in a browser. They also fire events that we can easily wire handlers to on the server side so that we can execute code when those controls fire events.

Now, I'd like to do a short demo for you. I'm going to bring up Visual Studio 2005. I'm running a build of it that is actually between beta 1.0 and beta 2.0. In this demo, I'm going to start a new ASP.NET application. I'm going to add a WebForms to it, and we're going to build that page that you saw in the previous slide. Once we get it built, we'll run it so that you can see it working. We'll also do a view source in the browser window so you can see that all the browser sees is ordinary HTML rendered out by the controls. It doesn't see ASP: tags. It wouldn't know what to do with them if it saw them. But, the fact that we have those tags on the server, the fact that ASP.NET processes them for us, it allows the result and controls to render out HTML, allows us to produce a UI that can be displayed by virtually any browser anywhere in the world.

If you're going to be an ASP.NET programmer, it's important that you know what tools you have at your disposal to build Web pages and WebForms. The fundamental building blocks for your WebForms are the Web controls that we declare with ASP: tags in your ASPX files. In ASP.NET Version 1.0, there were something slightly less than 30 different controls that you could use to build your WebForms. ASP.NET Version 2.0 enhances that control set with approximately 50 new control types. Indeed, some of the things that are more difficult to do in Web programming, displaying a tree view control on a Web page for example, is very easy to do in ASP.NET 2.0, because all the HTML, all the Client-side script required to make that tree view control work, including the expansion and collapsing of its branches in response to user input is all encapsulated in a control that you declare with an ASP: tree view tag. This Web control architecture is an open architecture. You're not limited to the controls that ASP.NET provides. You can build controls of your own to encapsulate complex rendering and behavioral logic in such a way that other developers on your team, or perhaps other developers in other parts of the world, can take advantage of the knowledge that you built into that control class. We're not going to go through all 80 some odd controls in this first session.

You will see many of the controls that are built into ASP.NET Version 2.0 as we go through these slides for the next few hours. But, I do want to begin by introducing some of the controls that you have to work with. We start with what I call the simple controls. Simple, because they're simple to use, and in general, they render out very simple HTML. You've seen two of these controls used already. The label control, which is a simple programmatic wrap-around text, and the text box control, which produces a text input field on a Web page and which provides a programmatic model that allows your code to read what the user typed into those text boxes.

But, there are other controls that fall into the simple controls category. The hyperlink control, for example, is the ASP.NET version of hyperlinks. The check-box control produces a check box on a page. The radio button and image controls, as their names imply, allow you to easily display and program against radio buttons and images in a WebForms. In addition, we have the controls that you see right here. You can tell from the names of these controls what they do. One that may not be obvious is the placeholder control. In addition to declaring controls on the Web page with ASP: tags, it's very possible to programmatically add controls to a page. When you do that, you often use placeholder controls as bookmarks, if you will, on the page so that when you programmatically add a control to that page, you can control the precise position and location of that control.

There's even a hidden field control, which is new in ASP.NET 2.0 that makes it easy to store data across postbacks and hidden fields, and a file upload control, which provides a rudimentary UI, allowing users to upload files to your Web server. Then, there are the button controls. There are three of them in all, three different types of buttons that you can put in an ASP.NET Web page. You've seen one of these used already in the previous demo. That is the button control, which renders out a simple push button. When that button is clicked, the page posts back to the server. The button fires a click event. If you have a handler wired up for that event, that gives your code a chance to execute. There are also link button controls and image button controls. All three of these controls behave in basically the same manner.

When clicked, they post back to the server. They fire an event named Click. That means that when you declare any of these three control types on a page, you can connect a handler that will be activated when that button is clicked simply by including an On Click = attribute in the control tag. The difference in these three button types is what they look like, how they render themselves out to a Web page. Whereas, a button control looks like an ordinary push button, a link button looks like a hyperlink, a piece of underlying text. The image button control renders itself using an image that you supply. In effect, when you use that control in a Web page, you are producing a clickable image.

I'd like to do a second demo for you. In this demo, we'll build another Web page, another ASPX file. In this one, we'll use a text box control, a label control, and a push button control. What we're going to build is very simple. The page will contain an input field that the user can type his or her name into. When the button is clicked, we'll write out to the page a personalized greeting for that user. Some other controls that you should be familiar with are the list controls. There are five of them in ASP.NET 2.0. These controls are called List Controls, because they're designed to display lists using various UIs. The list box control displays a list of items in an HTML list box. The drop-down list control displays a list of items in a drop-down list. In ASP.NET, all five of these control types derive from a common base class named List Control. From that base class, they inherit some common characteristics.

For example, all of these controls support something called data binding, which I'm going to talk about in the second lecture. Data binding, as you'll see, allows a control to get its content from a data source. For example, from the results of a database query, or from content in an XML file, and to populate itself using the content that you provide. In the first examples we look at involving these controls, we're going to manually populate the controls of content just so we can get a feel for how these controls work and how they look in Visual Studio. Now, I'd like to do a third demo for you.

In this demo, we're going to create yet another page. We'll put a drop-down list control on this page, and we'll add items to that control that users can select from. We're also going to look at a property common to many of the controls in ASP.NET named Auto Post Back. It's a very important property to know about, because in many cases to get the behavior that you want from a control, you'll need to set that property to true. Another very important family of controls in ASP.NET is the validation controls. There are six of these controls in all. You see them listed here.

The purpose of these controls is to make it very easy for you to validate user input into a Web page. Now, validating input isn't difficult per se. But, one of the wonderful things about these controls is that they do their checking, their validation, on both the Client-side and the Server-side. For years and years, Web developers had used Client-side script to perform an initial validation on user input to prevent a post back from even occurring if the input is invalid. That's a good thing from an end user's perspective, because it makes the page more responsive. It's also a good thing from a performance perspective, because it's wasteful to post back to the server just to send back a message to that user saying, I won't take the input that you've provided.

When you put a validation control on a page, you connect it to another control on that page. Depending on the type of validation control you connected, that control validates input using an algorithm that it supplies. For example, if I connect a required-field validator to a text box, then that page cannot post back to the server if that text box is empty. On the other hand, if I were to connect a regular expression validator to a text box, then the page won't post back unless the input in that text box matches the pattern that I specified in my regular expression validator control. Required field validators are extremely useful for filtering out blank input in your form fields.

Regular expression validators are extremely useful for checking fields in which the user enters e-mail addresses, phone numbers, zip codes, etc. Anything that you can specify a format for using a regular expression. Again, and this is very important, these controls do their checking both on the Client-side and the Server-side. When you put one or more of these controls on a page, the control or controls emit Java script to the page allowing the checking to be done on the Client. Among other things, that Java script will intercept and attempt to submit the form, will allow the validators to run, and will prevent that forms submission from even occurring if the validators on the form aren't satisfied with the input that they see. It's also very important that these controls re-check the input on the Server-side. That means that the checking that the controls do will work even if the page that hosts them is viewed in the browser that doesn't support Client-side scripting.

From a securities standpoint, it's very important also to have the checks redone on the Server-side so that if you have used validators on a page to prevent potentially malicious input from reaching your Web server so that a hacker can't work around the validation simply by disabling Client-side scripting in his or her browser. I'd like to do a demo for you. We're going to build a page that contains a simple form in which a user can provide input. In this demo, we'll use required field validators to make sure that the form can't be submitted if the input fields are blank. We'll also use a regular expression validator so that when a user enters an e-mail address, we won't accept the input if the format of that e-mail address is not one that could be a valid e-mail address. You've seen a bit now about what WebForms look like on the outside. It's also important to realize what goes on behind the scenes when you run these WebForms.

It's equally important to know about the two coding models that ASP.NET 2.0 supports. Basically, you have a choice. When you write a WebForms to a page, you can either put all the HTML and the code that goes with that page in the ASPX file, or you can choose to put them in separate files. You may have noticed in the demos that I've done so far, when I add a WebForms, a page to the site, Visual Studio asks me whether I want the code in the ASPX file or in a separate file. I've been choosing the option that says, Put the code in a separate file. In general, we consider it to be a good thing that we have code in one file mark-up in another. We're going to look at these two models, because you should be aware of both of them. Which one you use doesn't really matter. It's more of a lifestyle choice than anything else.

One thing you should know, however, is that there's no difference in performance between the two models. In other words, whether you choose to put the code that goes with your WebForms in the ASPX file or in a separate file has absolutely no implications for the performance of that page at other pages on the site at runtime. Here's the first of the two coding models. Sometimes we call this the code-in-line model. This is an example that you've already seen. This is the example of the simple Web-based calculator. This one uses the code-in-line model, because you can see that both the mark-up that defines the page's UI and the code that executes when the equals button is clicked are in the same ASPX file.

If I wanted to use the code-behind model instead, and, in fact, that is the model that I used in the very first demo that I did, the page would look very different. Here's that same page using the code-behind model. Notice that there's no longer any code in this page. We only have mark-up. The mark-up that you see is identical to the mark-up that we saw on the previous slide. Do note, however, that there's now an @ Page directive at the top of the page. That directive contains a couple of attributes that are very important to this page. The first attribute, compile with, identifies the file that goes with this ASPX file, the VB files that contains the code corresponding to the page. The class name attribute identifies the name of the class inside calc.aspx.vb that contains the code for this page. Although we can code this by hand if we want to, typically we don't do that where we add a new WebForms to a site with a Visual Studio, and we indicate that we want a code placed in a separate file, the ASPX file that Visual Studio generates will have an @ Page directive like this one in it already. Because this page does use the code-behind model, the code for the page will be in the code-behind file, calc.aspx.vb.

Here's what that code looks like. You can see that there is a class, at least a partial class, being defined in this file. Partial classes are something new in Version 2.0 of the .NET Framework, by the way. They allow one class to be defined, to be implemented in two or more source code files. As you'll see in just a moment, Visual Studio, actually ASP.NET, at runtime is generating a partial class containing a bunch of code that it has generated for this page, you write the other half of this class, the partial class that you see right here. This is the one that you see and that you edit in Visual Studio. The code that you see here is identical to the code that you saw in the code-in-line example. It doesn't really matter from ASP.NET's perspective that this code is now being placed in a separate file. What matters is that you have an @ Page directive in the ASPX file allowing ASP.NET's runtime engine to find this file and identify the class inside it.

Here's what happens under the hood. When that ASPX file, in this example calc.aspx, is requested for the very first time. The HTPP request comes into ASP.NET. Because the page has not been requested before, ASP.NET runs its parsing engine over that page. The parsing engine does something very important. It generates a VB file containing a partial class representing that page. Inside that class is a lot of code generated by ASP.NET itself, code that defines that page, and allows that page to execute at runtime. Once the parsing engine has run, once the VB file has been generated, ASP.NET takes the VB file generated by the parser and essentially merges it with the source code file in your project containing the partial class definition. It's actually the compiler that does the merging. What comes out the back end of the compiler is an assembly, a managed DLL, containing a class that represents your page. That class is instantiated, and it is executed. Essentially, a series of virtual methods are called on it. It's given a chance to create all the controls that you've declared inside it.

The controls are given the opportunity to render out HTML, and the DLL that was produced is cached away by ASP.NET. That makes subsequent requests for this file very fast. If this ASPX file was requested again, ASP.NET doesn't have to re-parse and re-compile it. Instead, it uses the DLL that it has already built. In general, you will see a slight delay the very first time an ASPX file is requested, while a page class is generated and instantiated for it. Subsequent to that in later requests, execution will be very fast because ASP.NET doesn't have to parse and re-compile that page. In fact, ASP.NET will not re-build that page unless something in the page changes. One of the new features in ASP.NET Version 2.0, something that came at the request of a lot of Microsoft customers, is the ability to pre-compile the pages in a Web site to avoid that delay that you incur the very first time the page is requested. In beta 1.0, to invoke the precompilation option, you just pop up your browser, ask for a special file named precompile.axd. There actually is no such file on your site. That file, however, is mapped to a special HTTP handler that will pre-compile all the content on the site. Once you do this, you won't even see delays the very first time the pages on the site are accessed.
Something else you should know about how ASP.NET works and about how pages work, is a class named page, which lives in the system.web.ui.page namespace in the .NET Framework class library. When ASP.NET generates source code to represent your ASPX files, it uses this class page as the base class. This class provides the essential behavior that derived classes need to function as pages in the ASP.NET environment. Among other things, the page class provides a set of properties and even a set of methods and events that are common to all pages. If you're an ASP developer, you've used the ASP request and response objects in ASP.NET many times. There are no requests and response objects per se in ASP.NET.
However, the page class does have properties named Request and Response. Those properties contain references to objects that are very much like the ASP request and response objects. You can still write response.write, for example, in ASP.NET. It works, and the behavior is very much the same as the behavior you get when you write that code in ASP. Here's a partial list of the properties that you inherit from the page class. These are properties that you can access intrinsically in your code-behind classes or your code-in-line classes, because remember, all of the code that you write in ASP.NET, at least into an ASPX file or a code-behind file, intrinsically executes in the context of a class derived from page. Some of these properties are used a lot more than others. Request and response are used quite a lot to write ASP-like code that pulls data out of the request and produces content in the response. The is-postback property is another very important one in ASP.NET.
As you'll see, when we add content to controls programmatically in ASP.NET, we typically only need to do that the first time that page is accessed. If the page posts back, we don't need to provide content to those controls again, because one of the many features of ASP.NET Web controls is that they retain their content across postbacks. Therefore, if we are programmatically providing content to controls, we'll put the code that does so inside an if-not-is-postback clause so that we don't repopulate those controls with redundant content if and when a postback occurs. Here's a simple example of how I can use the properties of the page class intrinsically in my code. In this example, we are checking the request for a query string parameter named Item ID. If we find a query string parameter with that name, then we write it out to the response.
Notice that I'm using request and response very much as I would in ASP here. The difference, however, is that this doesn't work because ASP.NET has intrinsic request and response objects. It works and it compiles because I inherit properties named request and response from the system.web.ui.page base class. Again, all of the code that I build into my pages executes in the context of a class derived from that base class. When pages execute in ASP.NET, they fire events. There are about a dozen events in all that a page fires each and every time that page is requested. You can write handlers for these events by building specially named methods into your code-behind class. The most important method by far that maps back to an event is one named Page_Load. Simply including a method of that name with the proper signature in a code-behind class is sufficient to have ASP.NET automatically call that method each and every time the page is requested. The method gets called very early in the page's lifetime.
When the method is called by the runtime, all the controls you've declared in the page have already been created, they have initialized themselves, and this method is the perfect place for you to provide code that further initializes those controls. When we address data binding in the next lecture, you'll see, for example, that if I'm going to query a database, provide the content in that query to a control, page-load is where I'll do it. If I want to programmatically add content to a control without data binding, page-load is where I do it. If there is anything that I want to do to that page programmatically to get it ready to run each and every time it's requested, page-load is the right place to do that. Here's a simple example.
This example is a WebForms, an ASPX file, which contains a drop-down list. Notice that I don't have any items declared in that drop-down list so if I don't do anything further, that list is going to be empty when it's displayed. But, I have built into the page a page-load method. By virtue of its name and signature, this method will automatically be called each time the page is requested.

In that method, I programmatically add items to the drop-down list. You can see that I've enclosed the code that adds the items in an if-not-is-postback clause. Again, ASP.NET controls retain their content and their state across postbacks. Therefore, if I'm programmatically adding content to them, I only need to do that when the page is fetched outside of a postback. I don't need to add those items again inside of a postback. In fact, if I do that, I'm simply executing unnecessary code.
In the examples that we've look at so far, in the demos that we built in Visual Studio, you may have noticed that at the top of every ASPX file is a directive that begins with @ Page. We also talked briefly about the @ Page directive when we looked at code-behind a few moments ago. @ Page is one of several directives that we refer to as page directives that can appear at the top of an ASPX file. These directives allow you to declaratively provide input to ASP.NET's parsing and compilation engine. Shown on this slide is a complete list of the directives that you can place in a file. You'll use some of these. You'll see some of these in subsequent lectures.

But, for now, I want you to realize that the @ Page directive is a very important one. With it, you can provide directions to ASP.NET that allows it to compile and run your page, and even exerts some control over the environment in which those pages compile and run. This is an example of an @ Page directive. In this directive, we use the @ Page or language attribute to set a default language for the page. ASP.NET uses that to determine what language compiler to pass any code it finds in this page two if the code isn't explicitly marked with a language. The trace=2 attribute enables a useful feature of ASP.NET called tracing, which enables you to see or to log trace output for the page. These are just 2 of about 30 different attributes that the @ Page directive supports. You won't need all 30 of those attributes, but it's useful to know what those other attributes are, and which ones will be the most important to you as an ASP.NET programmer.
Here's a partial list of the different attributes that you can include in an @ Page directive. You've already seen class name and compile-with used when you separate your mark-up and your code into different files. Those attributes in the ASPX file allow ASP.NET to determine at runtime which VB file contains the code for this page. As we go on through this class, you'll see other of these attributes used as well. For example, when we talked about master pages, a very useful feature of ASP.NET. You'll see that by including a master-page file attribute in an @ Page directive, I can specify that this page derives from a master page, and inherits all of the content defined in that master page.
Final topic I'd like to mention in this first module is that of user controls, something that you may find useful in building out the reference site for this study. A user control is a reusable chunk of HTML and code. It's a way to avoid redundancy in ASP.NET. Many Web sites have a lot of different pages. Oftentimes, those pages share common UI elements. Sometimes even within a given page, you find certain UI elements replicated many times. Rather than replicate those UI elements in the different pages, or within a given page, you have the option of encapsulating those UI elements in user controls. Then, you can easily replicate those UI elements simply by declaring the user controls on your pages. To demonstrate, I'd like to do a final demo for you. In this demo, we'll begin by building a simple page in ASPX file. We'll put an HTML table in that page, which we'll use for alignment purposes. Then, we will create a user control.

We'll replicate that user control in each of the table's cells. You'll see then that I can replicate that content, even customize that content, in each of the table's cells without having to replicate the code that produces that content for each of the cells. That's the end of this module. You've had a look at the WebForms programming model in ASP.NET. You've gotten your first taste of Web controls and seen how they've used. You also have a better idea of how ASP.NET works, and what happens each and every time one of your pages is requested. Hope this information is useful to you. I think you'll find it very useful in building the site that you'll be building for this study. Thank you.
Page 1 of 10

