Web Forms – Demo 5 Transcript


As a final demo in this module, we’re going to take a look at user controls, something that you may find useful in the site that you’re going to be building soon.

Going to begin by adding a new page to this site, and we’ll call this page User Controls.ASPX, since we’re going to use it to demonstrate user controls.  Let’s take the time to spell it right.  There we go.  Switch over to Design View, and I’m going to add an HTML table to this page.  The table will have two rows and two columns.  In just a few moments, we’re going to use the cells of these tables as holders for content.  In fact, what I want to do is have the date and time appear in each of the four cells in this table.  Rather than replicate the HTML encode required to make that happen, I’m going to define a user control, then we’ll simply declare instances of that user control in each of the four table cells on this page.

Let’s go back to the Web site, select Add New Item, but this time instead of selecting WebForm, we’ll select Web User Control.  We’ll name this Web User control Date and Time.ASCX.  Notice the filename extension ASCX.  Whereas pages live in ASPX files, user controls live in ASCX files.  I’ll click Add.  I’ll now see this user control in the designer.  So that I can design it visually, I’ll switch over to Design View.  Let’s go over to the tool box and grab a couple of label controls.  Let’s drag one label control out to the page, set its text property to an empty string, and then drag-copy it and put a hard break between them here so that they’ll appear on different lines.

Next I’m going to add a page-load method to this user control, and yes, page-load methods do the same thing in an ASCX that they do in an ASPX.  They allow you to programmatically initialize that control each time it’s loaded.  Let’s go over to the ASCX.VB file.  Let’s add that page-load method.  I’ll do a sub page load like this.  Actually, we don’t want to type Object in.  We want to call this Cinder as Object.  The second argument to page load is this, E as EventArgs.  Hopefully, Visual Studio will add the end sub in for me.  Now I just have to write some code.  We do Label 1.Text.  Label 1, of course, is the ID of the first of the two label controls = Date Time.Now.

You should know that any time you want to display or any time you want to retrieve the current date and/or time in a .NET application, you simply write Date Time.Now.  Date Time is a struct.  Now is a static property of that struct.  Returns have Date Time Object representing the current date and time.  You can call methods like 2 Long Time Screen on it to product a textual representation of that object that, in this case, shows the time in long format.

Now let’s take the label control that we just initialized.  Let’s copy that code to set the text of the second of the two label controls equal to the current date.  Now let’s go back to the ASPX file.  I’m going to take the ASCX, the user control, drag it out, and drop an instance of it into each of the four table cells.  Now let’s take a quick look at the markup that was generated by the designer.  Notice these UC1 Date and Time tags that were added to the page.  Those are the tags that declare instances of the user control.  Of course, ASP.NET has to have some way of making sense out of a tag like that.  To make sense out of it, ASP.NET uses the At Register directive you see at the top of the page.  This directive was added to the page by Visual Studio when I dragged the first control out and dropped it into a table cell.  It defines the tag prefix and the tag name that you see in these tags down here.  It also tells ASP.NET what ASCX file it can go to, to get the implementation of that control.

Now let’s run the page and let’s see what happens.  We’re going to see something interesting here.  In fact, the page is going to be blank.  The reason the page is blank is that the page-load method isn’t being called in our user controls.  The reason why is not very obvious, but it’s something that you should know about.  Go back to Date and Time ASCX and look at it in Source View.  Notice that Visual Studio added an Auto Event Wire-Up = False attribute to the Add Control directive.  Interestingly enough, that prevents the page-load method that we built into the ASCX.VB file from being called.  We want to get rid of that.  Now let me save that.

Let’s go back out and try running User Controls.ASPX again.  This time we see the content that the user controls have produced.  We need to pretty it up a bit, but at least we’re seeing content.  Let’s do this.  Let’s start by going back to the ASPX file in the designer, and let’s center up the content in each of those table cells.  What I’m going to do is, one by one, select a table cell.  In fact, I’ll begin with the one in the upper-left corner, and I’ll set its V Align property to Middle.  That will center the output in that table cell vertically.  Let’s do that for the other table cells, then we’ll go back to each table cell and set its Align property to Center, which will horizontally center the output contained in each of those cells.  Let’s find the Align property right here, set it to Center, and then do that for the other table cells as well.

Now let’s run the page again and see what it looks like.  It’s looking just a little bit better there.  One thing we could do here is colorize it just a little bit so that the text produced in each cell is different.  That gives us an opportunity to talk about an interesting customization that you can perform with these controls, and that has to do with implementing properties in your user controls that make them programmable in the hands of persons using them.

Here’s what I’m going to do.  Let’s go back to Date and Time.ASCX.VB.  We’re going to add a property definition to the CodeBehind class.  We’re going to name that property Color, and we’re going to use it as a mechanism for allowing the color of the text output by the control to be modified on a control-by-control basis.  I’m going to pop out here and grab a little bit of code here that we’re going to paste into the .VB file.  Then we’ll take a moment to examine the code.

Look what I’ve done here.  I’ve defined a field in the CodeBehind class named _Color, and I’m letting it default to Black.  By the way, we will need in here, most likely, an imports statement that imports the System.Drawing name space where the color class is defined in the .NET Framework.  Now notice the squiggly lines go away underneath the type Color.  We have a field that is going to tell this user control what color to render its text into.  We have it defaulting to black.  We also have a public property implemented right here that simply wraps the field declared up here.  That allows the property to be read and written.  In our page-load method, we’re not only assigning text to the two labels, but we’re also taking the value of this field named _Color and assigning it to the four-color property of the label control so that they render their output in that color.

Now, an interesting thing happens once I define a public property in a user control that way.  I can henceforth use that property as an attribute in a tag that declares an instance of that control to assign that property a default value.  To demonstrate, let’s go back to User Controls.ASPX.  In Design View, if I select one of those user controls, notice the color now appears in the properties window.  In fact, I can select colors from a list here, but I’ll just type in a color.  Let’s use Red for the first one.  Let’s have the output from the user control at upper right show up in blue, let’s set the color property of this user control to Green, and for the final user control, let’s set its color to Purple.

Now, before we run the page, let’s pop back over into Source View, and you’ll see that there are now color attributes in the tags that declare the user controls.  Again, this works, because we defined a property, a public property, named Color in the ASCX file.  Now if I rerun the page, we see the user control show up in four different colors.

You’ve seen how user controls are added to a Web site.  You’ve seen how user controls are declared in Web pages by dragging and dropping them into a form.  You’ve seen how, by adding public properties to these user controls, you can make the user controls programmable to a developer who is using them.  You may find these controls useful in the project that you’re about to embark on.  Their use certainly isn’t required, but if you do find yourself in a situation where you are replicating HTML and perhaps code time after time using cut-and-paste, you may find that a user control gives you a more direct solution to that problem.
Page 1 of 3

