Web Forms – Demo 4 Transcript

In this next demo we’re going to build a WebForm that uses validation controls, so you can see first-hand what these validation controls look like.

I’m going to begin by adding a new WebForm, that is, a new page, to this project. I’m going to ball this page Validate.ASPX. On that page in Design View, I’m going to build a simple form. To help align the visual elements that appear on this form, text boxes, text, etc., I’m going to use an HTML table. Let’s go to the Layout menu, do an Insert Table. I’ll fill out this little dialogue here so that it’s a three-row, three-column table. We’ll set the cell padding to 4, and I’ll click Okay. You see a representation of that table now on the WebForm.

Let’s do this. Let’s type some text into a couple of these table cells, name here, email here. Then let’s add a couple of text boxes to the table cells, something that the user can type into. I’m going to change the IDs of these text boxes. The top one we’re going to call Name, because that’s where we’re going to ask a user to type their name. The second one we’ll call E-Mail. That’s the one in which we’re going to ask users to type an e-mail address. Now let’s also put a button on this form. I’ll just put it right down here inside the middle column in the table. Let’s change the text of that button to Submit. Let’s also put a label control down here that we’re going to use to produce some output after the user fills in this form and clicks the Submit button. I’m going to put a hard break in front of it to put some space between the table and the control. Let’s change the label control’s ID to Output, since that’s a little bit more meaningful than Label 1.

Now let’s double-click the Submit button to write an event handler. Now we have a method that’s going to be called when that button is clicked and will just display a personalized greeting to this user when they click the Submit button. We will say Output.Text. Words we’re making an assignment to the label control = Name.Text, and for good measure, we’ll also personalize this greeting as we did in a previous demo.

Now let’s run the page, and let’s see what it looks like and how it behaves right now. If I type in a name and an e-mail address like this, then click the Submit button, I see a personalized greeting appear at the bottom, as you can see here.

Now, that’s fine and good so far, but there’s a problem in that if a user simply clicks that Submit button with the form fields blank, it works. In fact, in real life we probably wouldn’t want to allow this form to be submitted if either of the inputs is blank. We would also like to apply some validation to the text box in which the user types an e-mail address so that if they type something that could not possibly be a valid e-mail address, we can flag that.

I’m going to close this down, and I’m going to go back to the designer and add some validation controls to the page. I’m going to begin with a couple of Required Field validators which simply make sure that input fields are not blank when a button like this Submit button is clicked. Let’s scroll down until we find the validation controls. They’re in a category of their own. I’ll grab Required Field Validator, and I’ll drop it in the right-most table cell. Now, with it selected, let’s go to the Properties window and set some important properties on this control.

First, the error message property, what do we want to appear on the page if this validator finds invalid input? I’m going to change its error message property to an asterisk, simply to flag that field for the user, indicating something is wrong if the field is blank. I’m also going to set the display property of the validator to Dynamic. If you set it to Static, then the text of the error message of that control has space reserved for it in the Web page, even if the error message doesn’t appear. Since I’m going to put two different validators in this one table cell, I don’t want either holding space for the other, so I’ll set both of their display properties to Dynamic. Also with this Required Field validator, we need to tell it what control it’s to validate. We’ll find it’s Control to Validate property, and we’ll choose from this dropdown list the ID of the text box that we want this validator to correspond to. I’ll select the Name text box. Now let’s do a drag-copy to create an equivalent Required Field validator in the table cell below. We’ll change that validator’s control to Validate property so that it corresponds to the E-Mail text box rather the Name text box.

It should be impossible now for a user to submit this form with a blank input field. Let’s go a little bit further. Now I’m going to add a Regular Expression validator which validates input by ensuring that it conforms to a format that you specify through a regular expression to the second of the two text box controls. With that validator selected, let’s set its Error Message property also to- actually, let’s set it to something besides the master. We’ll set it to the word Invalid. It’s Control To Validate property is not set, so let’s set that to E-Mail. Then I need to set the Validation Expression property of the control so that it knows what I consider to be valid input in the text box. I find the Validation Expression Control property here, and I can either type in a regular expression or select a regular expression from the list you see here. Visual Studio already has a built-in regular expression I can use for Internet e-mail addresses, so I’ll select that, do an Okay, and now we’re ready to test this page again.

Let’s run it. Let’s first try to submit the form without providing any input. Notice the two asterisks that appear. The two Required Field validators prevented any postback from occurring. Let’s type in a name here. Now let’s go down to the E-Mail Address field and type in something that could not possibly be a valid e-mail address, like Jeff Pro. When I click Submit, now the Regular Expression validator sees that the input in the e-mail field is invalid, and it fires. Only if I fix that up so that the input in that field satisfies the Regular Expression validator will I be able to submit this form, that is, do a postback from this page.

That’s a quick look at the validation controls. We only used two of them there, the Regular Expression validator and the Required Field validator, but those are probably the two most commonly used validation controls, and you may find them useful in the project that you are about to undertake.

Page 1 of 2

