Web Forms – Demo 3 Transcript

In this demo we’re going to build a simple page that uses a dropdown list and allows users to make selections from that list.

Let’s begin by adding yet another page to the Web site that we began a few minutes ago. I’ll select Add New Item again. I’m going to call this page Auto Postback.ASPX. As usual, we will switch over to Design View. This time I’m going to grab a dropdown list control and drag it out to the surface of the designer.

Now, if I run this page right now, we would see the dropdown list control on the page, but it would be empty. There are no items in it. The next thing we’re going to do is add some items to it. I’m going to do a Select It and click the little right arrow that appears to its upper right. Then I’ll select Edit Items from the ensuing menu. I’ll see a dialogue box come up that allows me to add items to this control. Let me click Add. That adds one item to the control. Over on the right-hand side, I see the properties of that item. For example, if I want this item to be selected, I can set its selected property to True. The text that I want to appear for the dropdown list in that item comes from the text property of that item. Let’s have the item say Item 1.

Now, notice that each item in a dropdown list also has a property named Value. This is very useful, because if you put a dropdown list on a page and you want to associate an unseen value, perhaps a key you’re going to use in a database query, if that item is selected, in each item you can assign that value to the value property of the item. Only the text property is seen by the end user, but the value property of that item is something that you can retrieve programmatically.

Let’s just set the value property to 1. Now let’s add a second item. This one, I’ll set its text property to Item 2 and its value property to just plain 2. Let’s add one more item. I’ll set this one’s text property to Item 3 and its value property to 3. Now I’ll click Okay. Let’s also add a label control to the page. We’re going to use this label control to reflect what the user selected from the control. As usual, we will set the label control’s text property to an empty string, so the label control doesn’t even appear on the page when the page first appears. It’s ID should be Dropdown List. We’ll leave that set to the default.

Now let’s write a little bit of code here. It turns out that when a dropdown list control is displayed and the user selects an item from it, it fires an event named Selected Index Changed. I’m going to select the Dropdown List control and come over to the Properties window and click the Lightening Bolt icon. Now instead of single list of properties of that control, I’m seeing a list of the events that it fires. I’m going to double-click Selected Index Changed, and I now have a method that’s going to be called when the selected index in that dropdown list changes.

Now what we want to do is extract the text of the selected item from that list and make it appear on the page. We’ll use the label control to make it appear. I’m going to write Label 1.Text =. In fact, instead of just showing in the label control what the user selected from the dropdown list, let’s show the value of the item that the user selected as well. I’m going to write it this way. We’ll say that the text of the item that’s selected is this. Now, how are we going to find out what the text of that item is? The ID of the dropdown list, because I didn’t change it, is Dropdown List 1. I can use that selected-item property to get a reference to the item that’s selected, and I can read the text property of that selected item to find out what the text of that item is.

Now let’s also append some text that indicates what the value property of that dropdown list selected item is. I’ll put a semicolon in there, and I’ll say Value like this, and once more we’ll append some text. We’ll do Dropdown List 1.Selected Item.Value. Now let’s run this page and see what we get.

You’re going to find something interesting here. Notice that even though I designated a handler for the Selected Index Changed event of the dropdown list, when I select a different item, nothing happens. That’s because of the Auto Postback property which I want to point out to you here. Several controls in ASP.NET have properties named Auto Postback. Whenever you see that property on a control, it means that the control doesn’t fire its events in real time. In other words, it doesn’t force postbacks on its own; it only fires events when something else on a page causes a postback to occur. Sometimes that’s fine, but in cases like this one, we would like for that dropdown list control to fire a Selected Index Changed event the moment the selection inside it changes. We can accomplish that by setting the dropdown list control’s Auto Postback property to 1.

I’m going to go back to the ASPX file, and there are two ways I can set that Auto Postback property to True. One, I can use the Enable Auto Postback check box right here, or two, I can select that dropdown list control, go back to the Properties window, and set Auto Postback to True right here. Regardless of how I do it, watch what happens when I run that page again. Now when I select an item from the dropdown list, the page posts back, the dropdown list fires its Selected Index Changed event, and my server-side event handler gets fired. As you can see here, we’re clearly demonstrating that we can programmatically read not only the text of the item that was selected, but what the unseen value property of that item is as well.

That is the dropdown list control. You’ve seen how we declare items in it. You also now know about the Selected Index Changed event that control fires. We’ll come back and we’ll talk more about controls events and perhaps even about the Auto Postback property in subsequent demos.
Page 1 of 2

