Web Forms – Demo 1 Transcript

I’ve started Visual Studio 2005. We’re going to create a new ASP.NET project now that we can use to host this first WebForm that we build. I’ll do a new Web site.

Visual Studio will ask me a couple of questions, what my preferred language is, is for example. I’ll choose Visual Basic there. I’m going to choose Empty Web Site as the project type. We’re going to call this session WebForms, call this site WebForms, I should say. I’ll click Okay, and we’ll give Visual Studio just a moment to create that new site for us. We see the site represented over here. My next step will be to add a new WebForm to the project. I’ll right-click the site name, select Add New Item, make sure WebForm is selected right here, and we’re going to call this one Calc.

When I click Add, we should see the new page, the new ASPX file, show up in the Solution Explorer window, and indeed we do. We’re now looking at a source view of that page. If we click the Design button, we’ll go to a design view of the page where we can add controls to it by dragging and dropping. I’ll begin by dragging a text box control out to the page. Notice that when I have that control selected, if I go to the Properties window on the lower right, I see the properties of that control. I’m going to change its ID property which drives how I will refer to that text box programmatically to Op 1.

Now let’s put the curser out to the right of the text box. I’ll type a + sign, then I’m going to use the Control key to do a drag copy and create another text box to its right. Now let’s set that text box’s programmatic ID to Op 2. Then let’s take a button control, drag it out to the page, position it to the right. To set the text of that button to an = sign, I’ll come over to the Properties window, find the text property of the button, click =, and make the change. Now, so that this button will be a little bigger, I’ll stretch it out and resize it.

Finally, I want to put a label control on the page and position it to the right of the push button. Now, we don’t want the label to render out the text label when the page first appears, so with it selected on the design surface, I’ll go to the Properties window, find the label’s text property, and change that to an empty string. Let’s also change that label control’s ID to Some so that we can reference it from server-side code using that ID.

Well, the next thing I want to do is write a handler that will be called when the = button is clicked. Easy way to do that is to double-click the button. Visual Studio now drops me into a separate file named Calc.ASPX.VB, whereas in the slides I showed you an ASPX file that had HTML in code in one file. Here we’re allowing Visual Studio to separate the markup and the code into two different files. This is a programming model called CodeBehind, and it’s a model that I’ll talk more about a little bit later in the session. We now have a method that’s going to be called when the = button on the form is clicked. Our job is to read what the user typed into the two text boxes, add the two numbers together, and make them appear to the right side of the = sign.

I’ll begin by declaring an integer that I’ll call A, like this. Let’s type that correctly. Where are we going to get the value of that integer from? Well, we’re going to call a framework method named 2.Int 32. It’s a static method in the convert class. It’s perfect for converting numeric strings into integers. I will write Op 1.Text as the destination for the input. In other words, I’m reading the text property of the control named Op 1. What that means is that I’m reading what the user typed into the first of the two text boxes. Now let’s copy that line to declare another integer named B. We’ll get it from the second of the two text boxes. Now, finally, let’s add the two values together and make them appear on the page.

Sum Recall is the ID of the label control I’m using as a placeholder for output. Text is the property that allows me to read and write the text of that label control. To initialize its text, I’m going to add A and B together like this, then call 2 String on the result to covert the integer into a string. 2 String is a method that is implemented in all types in .NET. You can call 2 String on anything, an object, an integer, or what have you, and get a string representation of it.

Now we’re ready to test the page. Let me go to the Debug menu, select Start Without Debugging. With a little luck, we’ll see that page come up in IE. We’ll see if ASP.NET is smart enough to add 2 and 2 together, and indeed, it seems that it is.

We have a functioning WebForm here. Something that you should note is that if I do a View Source on this page, what the browser sees is just ordinary HTML, HTML that has been rendered out by the controls on the page. Notice that you don’t see any ASP: tags here. It’s a good thing too, because no browser in existence today would know what to do with that. Yet if you back to Calc.ASPX itself, and you switch into Source View. You’ll see the ASP: tags that were generated by my drag-and-drop actions. You can clearly see, for example, the two text box tags, the button tag, and the label tag.

This to first order is what WebForms programming is all about, using the designer in Visual Studio to build Web-based user interfaces, letting the designer generate the markup that you see right here. At runtime that markup gets executed. These text box controls that we’ve declared, for example, are programmatically instantiated by ASP.NET. They become real, living, breathing objects. They render out HTML that causes text boxes to appear in the Web page.

That concludes this demo. We’ll get back to the lecture, then we’ll come back into Visual Studio in just a few moments.
Page 1 of 2

