Designing .NET Class Libraries
Session:
Packaging Assemblies & Namespaces
Speaker(s):
Michael Murray
Transcription

Murray:
As you can see from the slide, I'm Michael Murray. I'm a Program Manager on the Longhorn SDK Team and recently of the CLR Team. I'm going to talk to you about packaging assemblies and namespaces, which is kind of bread-and-butter stuff, I'd say, for the next 45 minutes.

The goals of this section are to talk a little bit about correct factoring functionality into assemblies, which is kind of a good segue from the talk on versioning that you just heard, and I’m going to kind of embellish on a lot of the things that Richard talked about and give you some concrete ways to utilize it.

I'm going to talk a little bit about best practices for assemblies, and if you're a Microsoft employee, what are the conventions that we require in order for you to ship assemblies from Microsoft. I'm going to talk a little bit, also, about where to install redist and developer bits. In other words, if you have a Design-time story or Visual Studio story for your assemblies, you need to place a copy of them in one place as well as the redistribution version of your assemblies in another place. And I’m also going to talk a little bit about namespaces and how to choose namespaces for your types because this is one of these--even though it seems like a simple thing, it's this religious issue for a lot of people, and we spend amazing amounts of time talking about it. I’m going to try and short-circuit that a little bit by giving you a little guidance.

Firstly, let me talk about assemblies and modules, just to give some definitions upfront.

Modules are physical files that's on IL, or Intermediate Language, plus Meta Data. Those are files on disk that have to be grouped into assemblies in order to be used.

Assemblies are the self-describing smallest unit of re-use security and versioning. When we're talking about perf, when we're talking about versioning, when we're talking about security, the assembly is a unit you're always going to be talking about.

Typically, assemblies and modules are one-to-one, although there are some cases where you could have multi-file or multi-module assemblies. You don't normally need them in library design, but they are good for some things. For example, if you have multiple programming languages in the same assembly-- if you have an assembly where some people are contributing code that's in C++ and some people are contributing code in C#, you can use multi-module assemblies for that, although I think in Whidbey we have techniques now for doing that without using multi-modules.

And then, also, there are some cases where multi-module assemblies are useful for streaming downloads. If you want to be able to factor things into more kind of digestible bits where you're downloading things over a potentially intermittent NET connection. But, typically, for most people in those cases, assemblies and modules are one to one, and you should think of them that way.

Starting with just kind of practical issues, for naming your assemblies, you should use meaningful assembly names, but you don't have to copy the namespace name. Assemblies and namespaces are definitely different things, and I’m going to talk in more detail about why they're different. The guideline here is to pick something that's meaningful so that somebody, for instance, who's referencing your assembly from a command line, doing a slash-R reference in order to load your assembly, to build against your assembly can find it easily.

A good example of that is system.data.dll. In this case, it corresponds directly to the types that are in the namespace, and it's very easy for me to find it as a developer and understand which dll corresponds to the set of types that I want to be able to reference. We're still kind of working out that convention for exactly how to name these, but in general, the goal is to help the developer who's going to be referencing your assembly to use it, rather than picking something cryptic, there's no 8.3 file name limitation anymore. You know, pick something meaningful and just make it easier for devs to find your types.

I should also point out that assemblies can contain multiple namespaces and that namespaces can span assemblies. For example, MS core lib, I think, has multiple namespaces, and there are multiple assemblies that contribute to system namespace. The two boundaries are different, and you have to optimize each one of them independently. I'm going to speak a fair amount about how to optimize assemblies and how you should load things, but the four different purposes is the important point.

Related again to what Richard was telling you guys, let's talk about factoring assemblies a little bit. There are usually three big kind of higher order bits with regard to factoring assemblies. The first one is performance, this is a little bit self-evident maybe, but there's overhead associated with loading an assembly, and all other things being equal, the fewer you load, the quicker the load time is going to be. That's not necessarily news.

In terms of versioning, it's important to point out that all code and assembly must version at the same rate. This is where the decisions become more interesting because sometimes these factors are at odds. Sometimes you may have an impact on the performance of your library because you have to factor them into platform versus assembly libraries, for instance. If one set of your types is going to version more frequently than another set of your types, you may have to make a factoring decision there, which is going to affect performance.

And then the last point I wanted to make here is security. All code and assembly has the same identity and is granted the same level of trust. You can stipulate trust levels for different APIs and types within your assembly, but the code in an assembly is--basically, that's the unit where identity is associated. These three things are kind of the three spokes that you have to think of when you're deciding what your assembly boundaries are going to be. Sebastian Lange, who's talking this afternoon on security, will talk more about identity and your assemblies.

Let me drill down a little bit on assemblies and performance.

In general, you should prefer single, large assemblies to multiple smaller assemblies. This is a little bit at odds with the guideline I gave you a couple of slides ago about "pick meaningful names." For example, you may have multiple namespaces in sets of type that you're defining that in an ideal world you'd just put in separate dlls--that's if somebody only wants to reference the Design-time set of your functionality or some specific narrow scenario set of your functionality, they would only load that assembly, and you may have three or four other scenarios that you need to support in your types, and they're just used in different-use cases.

In general, you get a performance benefit from putting everything into one large assembly. It helps reduce the working set of the application, which you may imagine would be true, and it's also easier for NGEN, or the Native Image Generation tool, to optimize, so we can do things around image layout. For example, on larger types, we can make better guesses about how something's going to be used when we're generating a native image if we have a larger assembly. The usual rule is if you have several assemblies that are usually loaded together, then try combining them into a single assembly.

I've made this point already to some degree, but there is a tension between versioning and deployment and performance. I've already talked about this a little bit. But you really have to think about your use cases. And Rico said yesterday, to you guys, "Measure, measure, measure, set perf goals," and then you need to do that upfront, and then you also need to think about your versioning and your servicing of your assemblies, and you have to consider these tradeoffs.

Another factor to consider when you're doing that is where is the code used? For example, is it only used in design time versus runtime? Design time is a perfect kind of use case for you only have types that are loaded when somebody's using a designer in Visual Studio in order to set properties or to set some visual element that you've defined, and Brian Pepin's going to talk more about how to do that in a subsequent session. Design-time types are a perfect example of something that you'd want to put in a separate assembly typically because they're not used at runtime. Very often, people will create another assembly for just their Design-time types, so those only get loaded when you actually need them.

Let me talk a little bit about NGEN. NGEN, as I mentioned, is the Native Image Generator tool. An NGEN assembly is the assembly that's basically compiled ahead of time to native code, and then it's saved to disk. The advantages of it are you have a single image load, so there's no separate Meta Data, and the class layout is already done, which means start-up time improves. The IL then is compiled to native, and so it doesn't need to happen again, doesn't need to happen on demand, for instance, and you can realize some performance benefits from doing it. In fact, for most of you building libraries most of the time, I would say NGEN is probably the right thing to do. You probably will realize perf benefits, of course. Use tools like CLR Profiler, and use the set perf goals, like Rico was talking about. Typically, NGEN will give you some performance advantage. It can be done at install time or it can be done on demand as well, and it will reduce start-up time in a lot of cases. For example, the framework contains a whole bunch of kind of NGEN--actually, the slide is slightly wrong. It says (inaudible) assemblies, but we provide NGEN images now for the framework for Windows forums and for drawing things ahead of time so that we realize this perf increase when you load the runtime.

There is a cost, like any optimization, to doing it, though, which is we always have to check against the IL on the machine. What will happen is you'll have a native image, an NGEN'd image of your types in IL, and we always have to make sure that it's current with the version that's represented in IL, so there's always going to be this check. Of course, if you make larger assemblies and you're NGENing larger things, we will optimize, and so your efficiency gets a bit better that way. But we always have to do this check. The NGEN tool is in the SDK, by the way, where you can read more about this.

The other thing I wanted to mention here is that the IL version has to be available on client systems. That's so that we can do this check. You can't just ship the NGEN version; you have to also ship the IL for the code, so it doesn't change that deliverable for you. You always have to have the IL version available so we can make sure we've got the most current one, NGEN.

This is a little bit of kind of saluting the flag, I think, this slide from the beginning. Trimming working set will give you better system performance. That's not terribly surprising either and will also start-up time. But I did want to talk about some subtle things in the .NET framework about loading the assemblies you need. I wasn't at Rico's talk yesterday, so I wasn't sure if you went on this rant or not. He loves to go on this rant, though, about how easy it is to kind of hang yourself in terms of performance. You know, you can load system.xml and because you want to read a config file, for instance, and you load up system.xml to read one file out of some xml--one line out of some XML file and now you've just had an incredible *perfit on your application because you did that.

The important point here is that there's a hidden cost associated with loading other assemblies, and so if you're just using a single method off of some type, it doesn't necessarily justify loading an entire assembly to do it. And you can use tools like CLR profiler or FxCop, the current version, which I'm going to talk about at lunchtime, to see what you're loading. I think the important point here is go and try this as you're building your libraries, as you're building your managed code, and examine what you're loading when you reference APIs from the framework. I think you may be surprised in a few cases what the cost is of certain APIs.

Being aware of assemblies that are loaded. That's basically just what I said.

Steady-state working set will be lower than start-up working set. That's basically saying there's a cost associated with loading things.

Let me talk a little bit about strong naming. Assemblies get their identities from the strong name, which is made up of the simple name, which is the name of your assembly, less the suffix, or the extension, version, which is a four-part version, which Richard already talked about. The culture info, which is used for resource assemblies, but I think you need to stipulate it in order to have a strong name for anything, and then the public key and the digital signature, which establishes a validity of it. All references to an assembly include all of this information. This is the important point of this slide. That's what strong binding is. You have to have all this information in order to do strong binding so we have an exact notion of exactly which assembly you're talking about.

I have some definitions here and some practices to talk about.

Certainly if you work at Microsoft and I think if you're a library developer anywhere, you should always sign your assembly using a strong name; otherwise, the origin can't be verified. For obvious reasons, I think it's important that you always need to be able to verify the origin of something. In fact, if you are shipping assemblies from Microsoft, you absolutely need to sign, and you absolutely need to use strong naming. There are FxCop rules, I think, that will fire if you don’t do that, and there are guidelines on that. Basically, if you don’t do that, we can't warn users if the content of the assembly has been altered because we can't say conclusively if the assembly's been altered unless you do that.

Also, if you do not strong name, you cannot load your assembly into the global application cache, global assembly cache, or the GAC, which for servicing reasons is probably what you want to do in most cases, and I’m going to talk more about that in a second, too.

It helps you avoid conflict between assemblies of the same name and version if a strong name is different. There are some cases, for example, where you could have the same assembly name and the same version, and you could have them both in the GAC if you have a different strong name. Typically, you should not need to do that, but there are cases where you might, and if you have a strong name, you can.

Then the last thing I want to say here is in order to service, in order to provide service updates to your assemblies, you're going to need a strong name for your assembly. The short answer is, really, you should just do this. This should be part of your build process.

Let me talk quickly about assemblies and servicing a little bit.

The first factor regarding servicing your assembly is organizational, which means you should have easy deliver of components from different organizations. The way your assemblies are structured, if you have multiple teams contributing to your code, you should factor your assemblies such that it makes it a little easier to do that. For example, there are people who contribute system.service process to the frameworks, and they have a separate assembly for service process that they contribute to our lab, and then we build it. By having separate assemblies, it just makes it a lot easier to do that.

Ease of use--having fewer DLLs is easier, also. Besides having the performance benefit of having fewer DLLs, it's easier to use than having a lot of them. That's just sort of self-evident. It's easier to manage and maintain a whole series of things than it is to have a lot of smaller ones.

The last factor is distribution, though, which has a tension, I think, with having a set of fewer, larger things, which is if you're creating skews for download and distribution, it may be occasionally advantageous to have a smaller set of assemblies, but again, you're going to have perf gains and maybe some easier servicing if you have fewer of them. If you do have a web download story, for instance, for your feature, you should consider making assembly boundaries that reflect the typical use case for that.

And then the last and kind of moral of this slide is all code in each assembly versions at the same rate, and this gets back again to what Richard was talking about with versioning. You have to think upfront about how you're going to version your types as much as you can and consider how you factor them and what the future cost of that is going to be. It is a breaking change, by the way, to move things between assemblies, and I’m going to talk more about that here in a second, too.

Very quickly, on the assembly version number, most of you probably already know this, but the version number has four parts--the major number, the minor number, the build, and the revision. You need all four parts of the key in order to put a version number on your assembly, so you can't just change the revision, for example, and having bindings still work. There are ways to do that. There's the notion of partial binding, for instance, where you can have a match with part of the key, but we really recommend that you don't use it. And, in fact, any of you who have looked at Susan Cook's blog on MSDN, she has very, very good advice and examples as to why you should not do that, but you should really always use the full version number.

I have a point here that old apps will need to be recompiled or have policy applied in order to be able to bind to different versions of an assembly. Many of you may have encountered this already, too, but you can use config files or policy in order to bind to something even if the version number is different. Typically, in the absence of a config file, in the absence of policy, you will have to recompile if you change the version number. It's part of the identity, and the assembly version attribute is where that information is stored in your assembly.

If you're building something as part of your build process, one question that comes up a lot is when do you change the assembly version numbers? The assembly version is not the equal to the file version, and I said "necessarily" here. I really should've said "usually." The file version is going to change with each build is the typical way it works. The assembly version usually doesn't change between non-shipping builds because typically if there are people inside your organization who depend upon your assembly, if you change the assembly version number for the reason I just outlined in the previous slide, you're going to break those people. Typically, the only time the assembly version number will change is when you throw your code over the wall to another organization, and that represents a big change.

Basically avoiding strong name to simply loading problems to your diversion mismatches is the scenario I just described. You can also use publisher policy to bind if the version number is different, and there are some cases where you'd want to do that, but I would use that with caution.

Let me talk a little bit about the CLS compliance attribute on your assembly. CLS compliance basically is an attribute that tells us whether or not you abide by the .NET contract and the types you expose by the .NET contract. What that means is there's a uniform representation for types and for parameters and things like that for any .NET language in the runtime, and some languages, some platforms, have constructs and notions, such as UN32, for instance, that do not have representation in all .NET languages. So, typically, those applications are not CLS compliant.

The important point on this slide is it's okay if you're defining things, for example, that are not CLS compliant, but you always have to be explicit on your assembly. You should put the CLS-compliant attribute on your assembly. Typically, it's in the assembly info.cs file. You have to be explicit about whether or not you are CLS compliant. You can also put it at the type level, as you can see in the code example that I gave here.

Some specific cases where you would stipulate CLS-compliant false--for example, if you're using generics in your type. Generics, like Brad may have mentioned yesterday, are not part of the CLS contract yet, although moving forward, we think they will be. And, also, if you have to expose methods, such as convert to UN32--as I mentioned, UN32 is something that is a type that is not represented in all .NET languages, so you'd have to use CLS-complaint false for that one.

Info attributes--you should basically always stipulate this set of information on your assembly. This information is used at design time, as well as by tools. For example, you should always specify the company, the product, the standard copyright message, the title or the friendly name for your assembly, and the description.

The last two things, I think, are used in Design-time and Visual Studio. This is the Microsoft pattern for doing it, but I think it's applicable to just about everybody. It's very easy to specify these attributes, and it's something you should do, and I think we'll have an FxCop rule actually for this if you don't do it moving forward.

Let me talk for a minute about signing Microsoft assemblies. If you work at Microsoft, you shouldn't ship Microsoft assemblies without having your bits signed by Product Release Services. And typically, we've even gone as far as to say samples should be signed, and that's just so that it's clear. That's if you're shipping compiled things for samples, not source. It's just so that there's a strong identity associated with the things that you're shipping. There's a straightforward set of steps that you have to do, those of you who don't have to do your build process for your team don't have to worry about this so much, but if you're building managed assemblies, start from *http *prslab and follow the steps there. There's also a site http codesign that explains how this all works.

You have to use the Microsoft reusable component key under strong name certificate and then follow the instructions. Now, there are a couple of keys here, which is why I mentioned this on this slide. You can generate a key yourself when you're building a project in Visual Studio, but you want to use the Microsoft key here; we have three of them. One is a reasonable component key. You can make an application-specific key for your application. And then there's also a test key you can use while you're building things internally. But really for library builders, for internal folks, you should use this Microsoft reusable component key. Typically, it takes about an hour to do it but usually four hours in order to generate a key for your assembly. You should not use the SN.exe to automatically generate it. You should use the Microsoft key. When you're using SN.exe to generate a key, that's not a Microsoft key; that's just a key that's been generated for you for your application.

I also ask that you would test your assembling the CLR signature verification and then try installing it to the GAC, make sure basically that it only works if it's signed.

Sebastian is going to talk more about this in the security section, but very quickly on public key and digital signature. It prevents the assembly from being tampered with after it's been signed and established as the identity of the publisher. Also, it allows trust decisions to be made by the administrator, and the usual way people think about this is it's just like the IE example. When you get the infamous IE dialogue, do you always want to trust code from this publisher, be it Microsoft or Macromedia or something? This is the identity that we're talking about.

It also allows you to do things like apply policies, so you can apply publisher policies, so you can say always trust things from a certain provider. If you don't use the key in the digital signature, none of that stuff works. So for big organizations, especially, this is a very important thing to set.

I talked a little bit about PRS already. There is a temp key you can use in the build lab so you don't have to go through this PRS stuff kind of as you're building your types. I already talked a little bit about three keys. We have one standards key that we use for anybody who's building something that's ECMA-- I think that's kind of historically, actually--a system key for libraries, which is just for the runtime, to identify it's something from the runtime, and then the shared library key for libraries, which is what most of you will be using.

Let me talk a little bit about intellectual property protection. There are some very, very good disassembly tools out there, such as Reflector, that some of you may have encountered, which give you a very, very accurate view of the IL that your assembly ships. So it's because there's so much information in Meta Data, in managed code, disassemblying in a source code is something that you can could a great job of with managed code. But you can also do this with X86 code. If you sign your assembly, if you have a strong name on your assembly, your assembly cannot be replaced.

But your intellectual property, the things that you use in order to build your algorithms, can sometimes still be viewed, and so you have to be aware of these issues. If you have intellectual property that you want to protect in your library, you should use tools like the obfuscator and maybe even consider writing part of your assembly or part of your library that you're shipping in native code. If you really want to hide the algorithms behind some of your methods, you should consider exposing a via web service because then it's completely opaque what's going on behind the method. But I should point out that X86 code is not a guaranteed protection.

There are X86'd assemblers out there that are very good as well. So using an obfuscator is probably the best practice here. It really is kind of a DRM issue, for people at Microsoft especially, if you want to protect your intellectual property, the usual procedure is always patent things before you ship anything and use tools like obfuscator where necessary.

Let me talk a little bit about when to use the GAC. For most libraries, you're going to always install to the GAC. The GAC is a global assembly cache. It's basically a version where--Win 32 directory--if you're installing an assembly that's going to be used by multiple applications, then installing to the GAC makes sense. You're making one copy of it on the machine where multiple applications can reference it.

The other advantage of putting something in the GAC is that you can easily patch it. You have one copy per version, and you can have multiple versions in the GAC. If you're deploying an application or types that need to be used by your own application, you can deploy just to the application directory. That's a totally fine thing to do, and that's the side-by-side story, and it's not impactful on the system that way. But I would say that for servicing reasons, you should consider using the GAC in most cases. If you install to the application directory, now you have to know or be able to find out where the application folder is in order to service something or where somebody installed it, whereas if it's in the GAC, servicing it just becomes that much easier.

Where to install your bits. This is an interesting slide because for most of us, you install your bits to multiple places when you install as part of the redist if you're part of WinFX. If it's a redistributable or it's part of the OS, then it's obviously going to go into the GAC because it's designed as a platform for multiple people to use.

For design time, you have to first put things into the GAC, which provides--in order to do kind of F5s and Design-time controls to use those, but you have to make a copy of it. You have to put the same bits and the XML documents associated with the bits to a version subdirectory, and then you have to add it to the registry. I have a registry key on here that describes how this worked for V 1.0 and for Everett, and we have the same mechanism for Whidbey. Basically, the compilers and the tools use these for header files, so when you use the add reference dialogue in Visual Studio or when somebody does with your library, it looks in this subdirectory that's specified in this registry key, in order to get it, they do not come out of the GAC.

The down side, of course, is now you've got between NGEN'd images and NGEN'd images and these Design-time versions in the GAC, now you've got three or four copies of your library on the machine, which is definitely less than optimal, but that is the way it works right now. So you do need to be aware of this if you have a Design-time story. Then these are basically used as a header file. For IntelliSense, that's what the XML document parts represent. If you have an IntelliSense experience for your types and somebody references them using add reference in the tools in Visual Studio, you have to make another copy of these. You have to make sure you install to this directory and are covered here.

Let me talk a little bit about the assembly display name, which is something in that set of attributes I showed you a couple of slides back. The display name is the identity of the assembly at assembly binding time. It includes the simple name of the version, the culture, and the public key token. You shouldn't build these things up yourself. There's a set of APIs in system.type. Assembly qualified name is the one I gave you an example of in here, which will basically build the string for you in canonicalized form. You should use that to retrieve it. Also, from a command line, you can use gacutil/l in order to get back that canonicalized stream. But if you use the add reference dialog in VS, for example, you will see that the managed assemblies are all listed using this canonicalized form.

Let me talk for a moment about namespaces. As I mentioned, namespaces and assemblies are different boundaries and they have different purposes. Namespaces you should think of as an index into functionality for developers. It's a way to find things. It's totally orthogonal to the assembly issues. As I mentioned earlier, namespaces can span assemblies and assemblies can include multiple namespaces. The identity of a type is based on the assembly name, so namespaces don't even have to be unique. And like I said, they can span assemblies.

For Microsoft people, the first choice you're going to face when you're picking an assembly is do you use a Microsoft.something assembly namespace or do you use a system.something namespace? The usual rule is use a Microsoft namespace if the shipped vehicle is a product or SKU outside of the frameworks or outside of the OS. So if you have an application, if it's Microsoft.office.some set of functionality, for example, Microsoft.office.something is the appropriate namespace. If it's part of the developer platform that we're defining for people for Whidbey or for WinFX, then system.whatever your type or your functionality is is the appropriate namespace. The usual rule is if you're part of the redist, part of Microsoft but not a part of Longhorn, the design guideline document described this in copious detail, I think, which namespace to use. In the WinFX review team, we can help you choose an appropriate namespace. But what I really wanted to mention to you guys here is namespaces are not a land grab. Namespaces don't mean you pick something pseudorandom and it shows up in the build and you call it whatever you want to your types or *foo or something like that or *app one. If you use the meteor tool internally to see WinFX, you'll see that there are some very interesting namespaces that people have defined. And to prevent you from having to clean all that stuff up before you ship your libraries, you should work with us and pick an appropriate one first. The Usual rule of thumb, the way the start is, if it's an application that you're shipping some APIs to support an app, use Microsoft. If it's part of the platform--if it's part of WinFX or Whidbey, use system.

Picking a top-level namespace for your functionality. The first thing I should mention is we have too many of them already. I think in Everett and in RTM, there were, I don't know, 16 or 18 top-level namespaces underneath system, and now there are--I think for WinFX, there's over 40 or 50 of them or something like that, and so if you think of this as an index in the functionality, which is how I described it before, we just diminished the value of the index, I think, by having too many things in there. What you should try to do is try to fit your functionality and your types within one of the existing buckets. If your types are used only within Avalon applications, for instance, then you can use system.windows.something for your types or your functionality. System.net maybe if it's only for networking scenarios. The Meteor website has the owners for all these namespaces, and they can help you pick something. And we on the WinFX team can help you pick something, too. But the important point here is not to artificially fit your types into some namespace where it doesn't belong but to first look at the namespaces that are already there and decide if your types or your functionality does fit within something that's already there.

Another point I'd like to make here is that namespaces do not reflect organizational boundaries. If you're part of the SQL team and you're contributing code to web data or XML or vice versa, outside people don't know that when they use your types. All they know is here's a set of functionality and here's an index that represents what that functionality is. Organizational boundaries don't count when you're figuring out what your namespace should be.

There's a link, a hyperlink, in the slide, and I can send it around to you on e-mail alias as well to the API owner's tool. The API owner's tool will basically let you stipulate or stake out what your namespace is going to be and register who the names--who the dev and the PM and the test contacts are. That's a good tool to use so that we know who owns, basically, a set of functionality.

We also have some standards for subname spaces. Once you decide what your feature namespace is, we have a convention for what you should use for subname spaces as well. Again, this is to help developers who are using your types. It's kind of a shorthand into what kinds of types are in there. Dot Interop for native Interop types, .advanced for kind of non-mainline or extensibility types, so people have dot extensions or dot plug-ins or things like that. We try to get people to coalesce around using a dot advance subname space. In other words, that's for kind of off-the-beaten-track, non-80-percent case extensibility or Einstein scenarios.

For APIs that will not be used in the 80-percent case, you'd use something like .advanced. Basically, it's a warning to the Mort-level developer to say, you know, "These are not types you're interested in, and they won't appear top-level in IntelliSense when somebody's using Visual Studio unless you type through that .advanced. Dot design is a pattern we use for a Design-time support type, so if you're factoring your types into design time versus runtime, you should use a .design subname space. And, lastly, .permission is what we recommend that you use for security permission. And, again, Sebastian's going to talk about that at the security section this afternoon.

We have about five minutes left, and I've got some exercises that I would like you to try to reinforce some of the things I spoke about. These are all kind of one assembly or more exercises, and if you've looked at the slide deck I’m on, you probably know what the answers are already. Let's talk about this first exercise first. You have a single library, but the classes that make it up are in two different namespaces, Microsoft.something and system.something. So should those be in separate assemblies and why or why not? Any guesses?

Q:
Question from the Audience.
A:
Separate? How come? Why should they be in separate?

Q:
Question from the Audience.
A:
That's right. The rationale there is if it's Microsoft.something and system.something, probably they have different versioning and servicing requirements, so they would probably go in separate assemblies although there's nothing stopping you, of course, from doing this, from putting these two sets of types and different namespaces in the same assembly. You could do that. But probably you chose a Microsoft namespace and system namespace for a good reason, and they'd probably go in separate assemblies.

Here's another exercise. Product Y has a single library, but some of the classes must adhere to some fast-moving industry standard, let's say, while the rest of the library revs much less frequently. Should those be in separate assemblies? Any guesses? No guesses? Oh, come on. Yes. Yes, they should be in separate assemblies. They version differently again. We're kind of hammering on this point, but when you get to your factoring decisions, you'll see why that's important.

So here's an interesting one. You have a product that's shipped in one large assembly in V.1, and then you'd find out after you ship it that many of the classes aren't used in the mainline scenario, and you think, well, I can just separate these out into a different assembly to reduce working set because that's a good goal; increases my performance. So should those be in separate assemblies? Can I do that? Why not? Exactly right. Yes, it would be a breaking change to do that. You'd have to basically rebuild your apps now because you've referenced a different assembly where those types live, so you basically--now you've got a breaking change at build time.

Q:
Question from the Audience.
A:
I'm sorry, what was the comment?

Q:
Question from the Audience.
A:
Oh, that's true, yes. If they're not used in the mainline scenario, you might not have affected working set much anyway. Good point.

I’m going to summarize here quickly. Assemblies and namespaces are completely independent things. They have different factoring decisions you have to make when you're deciding what to use for both. You should always give your assemblies a strong name, and you should always use version numbers and fully qualified assembly names in order to support side by side.
Designing .NET Class Libraries

Page 7 of 12
© 2004 Microsoft Corporation

