Designing .NET Class Libraries
Session:
Enabling Development Tools
Speaker(s):
Brian Pepin

Transcription

Pepin:
My name is Brian Pepin. I’m a developer on the .NET Client team, and I want to talk to you for a little bit about how to take these fantastic class libraries that you’ve been writing under .NET and make them really work well in a development tool like Visual Studio. So most of you have probably used Visual Studio at some time in the past. Anyone who’s used it knows and has kind of grown accustomed to really a RAD kind of experience. You get lots of help when you’re writing your code and you’re using IntelliSense dropdowns. You have really rich documentation available to you. There are lots of fancy designers and other kinds of little graphical widgets that are built right into the tool to make your life a lot easier. Let’s face it, there’s like 3,000 classes now in the .NET Framework. It’s really not going to get any easier unless we really kind of make the development tools work along with you as a developer. So, you know, we have the dropdowns for statement completion. In Visual Studio, the help system is actually really deeply integrated in with the rest of the editor and the tools. So, for example, if I’m in a VB project and I have my cursor sitting on the WriteLine method of Console, if I hit F1 there, I don’t have to worry about ending up with compact framework documentation for Visual C++’s write line method for some random thing because there’s context built into the tool that knows that I’m in a VB project. I have my carat sitting on a class that’s in the design-time or desktop version of the .NET Framework.

Some new things that we have in Visual Studio that I’m going to show you here in a minute, in a little quick demo, is we’ve recognized that in a lot of cases when you’re debugging code, it’s great to show all the internal, private details of your own code that you’re writing, but it’s always, you know, maybe not the best experience to show all those private implementation details of stuff in the framework or stuff that you didn’t write. So there are some ways that you can sort of expose what really needs to be exposed to developers using your classes without having to let them wallow around in the bowels of your internal data structures.

And finally, Visual Studio has always had a really fantastic support for designers and building graphical things and graphical web pages and things like that. That gets better in Visual Studio Whidbey, and I’m going to show you a few of kind of the slick features that we have there that if you are writing GUI controls, you can take advantage of to make your controls just that much better.

So now I’m going to give you a little quick demo of one of the latest and greatest bits of Visual Studio Whidbey right off the build machine, so hopefully it’s going to work. So how is that possible? What are the things I need to do if I’m a class developer writing a class library to make some of this stuff actually work in Visual Studio really well? Well, the answer is, is we kind of have sort of three buckets of technology that you can put to use. The first bucket is metadata either through custom attributes or through XML documentation comments. I’m going to show a big variety of those in a second. Also, we have some guidelines or some restrictions or guidance that we’d like you to follow when you’re designing your class library that will make it work inside of Visual Studio better. Most of these guidelines are also not just sort of things you want to do to make Visual Studio happy, but they’re also really good guidelines for end users as well because they provide a usability benefit to your classes. And the third bucket is probably the largest, but it’s also the most powerful, and that’s that we can only take metadata so far. We can only take sort of design rules and inference so far. At some point, we have to run code and Visual Studio will load in and execute code that’s specific to design-time support so that you can get a much better experience, and I’ll show how some of that works. In fact, I already demoed it a little bit with the little debugging infrastructure there that showed you just the values that were exposed. Well, I had to write a small bit of code to make that work.

So quickly, with metadata attributes, and thankfully I’m not going to go into each one of these in grave detail with samples, but we have a lot of them. I looked around in the component model directory of the framework tree and we’ve just got reams and reams of these custom attributes. They’ve turned out to be pretty handy and we’ve explored that handiness with definite vigor, but here are some of the more common ones and some of the sort of the categories of the things that they control and they tweak. So if you’re writing something that plugs into a GUI or a graphical designer, the description attribute, I’m actually going to demo. In fact, I already sort of demoed it with the little documentation that shows in the bottom of the property window, and it just provides a description of a class or a property or a member, whichever you’d like. The browseable attribute allows you to hide a property from the property window. You might have a property that’s redundant with another property. For example, the rectangle class has XY width and height, but it also has top/left/right/bottom for convenience. Those are convenient methods, but they’d be really redundant if we showed them in a property window. So we mark them so that they don’t show up there because they’re just--they’re silly to have.

There’s also a couple of attributes related to data binding. So in .NET, you can bind any piece of data to any property or any field that you’d like. The problem with that is, is inside of a development tool, you need some way to scope that to announce that, “Hey, you know, this thing over here is actually interesting to data bind to or this thing over here really does like to talk to data.” If you didn’t have that, we would have to show the user every possible permutation and the UI would be completely unfathomable. So the bindable attribute is actually used to just mark a particular property as an interesting property to bind to. This doesn’t restrict the user. The user can still bind to other properties, but this marks that property as an interesting one that will show up by default in the user interface. Similarly, list bindable is used to announce that a particular collection object is interesting to offer as a source of data. There are lots of collections in the framework that run inside of a designer that you probably never want to source data to. The controls collection inside of--that hangs off of every control is a great example of something you probably don’t want to data bind to, but if we didn’t have an attribute like list bindable to guide us of which collections are interesting, we’d end up having to show all these random things in the tool, which wouldn’t make much sense. And the last attribute I have under designers is called default value attribute. Now this attribute is used to mark the default value of a particular property. Now you still have to code what value is the default within that property, but this attribute is used as a marker so that the code generator or if you’re writing out to XML, an XML generator, knows that it doesn’t have to write out statements for all 300 properties on your component. Use the default value attribute to mark off what the default values are, and it’s only going to write out the values that differ. So those are the really interesting things for designers.

Now the majority of the classes in the world aren’t designer classes, so there are also quite a few attributes that are useful for things outside the designer. For IntelliSense, there are a couple of attributes that are useful. One is the editor browseable attribute. I’m going to get into great detail in a minute with this attribute, but what this does is it allows you to control which members actually show up in the IntelliSense dropdowns, and similarly, XML documentation is extremely important in IntelliSense so that parameter tips show up and the little tool tip I showed that had help information about particular methods and properties. That stuff is really valuable to users when they’re trying to sort of explore and learn how an object model works, and it’s going to be probably a decade or more before the .NET Framework is as well known as something like Win32, where the majority of people can just get away with using it from scratch without actually using some of these documentation tips to kind of help them along.

For Whidbey, we’ve added a couple of new attributes for debugging, particularly the debugger display attribute, which controls sort of what the parameter tip is on a watch. So when you hover over a particular field or a particular method, normally there’s some default heuristics that show up on--that display what that value should be represented as. Normally those default heuristics are pretty wrong, so this allows you to kind of correct that and provide something useful. And debugger browseable is a way for you to take implementation details that are part of your class and hide them from the debugger. A great example of this is, you know, I have all this underlying fields and structures and data that’s inside of my object, but it’s just not useful for a debugging experience. It might be information that keeps track of state only within my object. It’s real useful for me if I’m trying to debug that object, but for everyone that’s just using that class, it’s superfluous and it just kind of masks what they might really want to get at.

So let’s look at a couple of examples of sort of bad versus good experience in a development tool. So I have my favorite class circle here. It’s really complicated. It does a lot. It’s got two properties called center and radius, but if I expand and select the center property in the property window, all I have at the bottom of the window is the little word “center.” Well, I knew that. I selected that property, but what is it the center of? Is it in pixels? Is it in inches? I have really no idea how to set that property. I can take a stab here or there and I’ll probably get it right, but it sure would be nice if there was some information that told me a little bit more about that property. And here’s how you provide that information. So I put a custom attribute on my center property called description and I type in whichever description I’d like, and after I do this, the property will show up in the property window with a nice little text string that I’ve provided. Now a common question that a lot of people in Microsoft ask is, “Well, you know what? We localize our products and this doesn’t look very localizable to me. How do I localize this?” Well, the answer is we’ve built in some localizability into these types of attributes that provide text back to the user, but it takes a little bit of work on your part because we don’t know where to get your localized resource from. We don’t really know what scheme of localization you’re using. So because we have all these unknowns, we can’t do localization by default, but what we can do is allow you to derive from description attribute. If you derive from description attribute, there’s a protected property there called description value and within description value, you can do the necessary resource transformations to provide a localized value. And to put that to use, what you would use is you would actually use the resource key in the constructor of whatever derived description attribute you have and use that throughout your code base, and then internally what will happen is whenever anyone asks for a description, your overridden description value property will simply fetch that key out of the resource and return the string.

Also along these lines, XML documentation is absolutely critical or some kind of documentation is absolutely critical for these classes, and using XML documentation is a really fantastic, easy way to get at least entry level documentation for your classes. So here I’ve written a class called File Info. It has a public property called Path, and as I start using IntelliSense and I type out Path on File Info, I know that it’s a string now because the little tool tip has told me that, but is it the fully qualified path? Is it relative? Does it include the file name on the end? These are things I have no idea and I have to go consult the documentation or write some code and debug through it and see what it actually produces. Neither of these is a terribly rad way for me to kind of go about my business. I have to stop what I’m doing, interrupt it, and go figure it out. Well, I can fix this really easily simply by adding some XML doc comments to the top of my property. So if you’re using Visual Studio Whidbey, all you have to do is type three slashes or if you’re using Visual Basic, three apostrophes, and the injection for the default doc comment template will be injected for you, and if you’re using a method or a constructor that actually has arguments, all the necessary parameters for those arguments will be injected as part of that template also. So all I’ve done here is I’ve added some text that says, “Okay, this is the fully qualified path,” and the next--the result of this is that now, as I start typing path, I actually get a nice help string to tell me how that works. If you’ve never used XML documentation, the way that that this actually works is the compiler sees these tags and admits a series of XML files into your output directory that represents all of this data that’s just basically been sucked off of all the class code and injected in the directory.

So there’s a tool in Visual Studio that will take those XML files and run a transform on them and build sort of an introductory website that is the documentation for your component. If you’re a small shop that doesn’t have a large documentation team to document everything, that’s a fantastic way to get help for reasonably cheap, provided your developers can spell, which most of ours can’t. So the alternative, of course, is to have a documentation team, and there’s a couple of ways you can do this. On the Windows Forms team when we were working on 1.0, we chose poorly and the way that we chose to do this was we had a separate tree for documentation, and that team checked in documentation into the summary tags and all these other things directly into the source tree and then we tried to merge it. Well, you can imagine, path may not have very much, but a fairly complicated property or a fairly complicated control may have paragraph after paragraph of documentation stored in it. So the first thing that does is it causes our source code base to get absolutely huge, and the second problem we had was, “Well, what do you think is happening on the development side of the tree while all of this is going on?” We’re slamming in code like crazy. We’re reordering functions and reordering classes and moving stuff around, and the net result was every time we tried to merge the source code, we ended up on the floor for about a week while we tried to resolve merge conflicts. And even worse, some of those conflicts weren’t resolvable. We had to just sort of pick and choose by hand, and we actually broke a lot of features by accident because we’d accidentally erase entire methods without knowing what we were doing because when there’s that many changes in the file, you just really don’t have enough experts that can actually pick through it. So luckily, there’s a fix to this and it’s through the use of another tag on the XML doc comments called Include, and I haven’t shown it here because it’s really simple. You just type in [include], and if you’re in Visual Studio Whidbey, you’ll get the prototype template for you, and remember I said that these comments end up ejected from the compiler into XML files. All the include tag says is, “Well, you know what? Here’s my XML file,” and then you put the same summary, remarks, whatever, XML inside of this external file. Let your documentation team party on that all they like. In fact, you can even write really simple tools that will show you if any members have changed and things like that through the source depot system, and then the net result of that is you can development and documentation mostly in synch.

Another really powerful feature in Visual Studio Whidbey is this notion of filtering out properties or methods. So we’ve always talked about this sort of 80/20 rule where you want to kind of target the 80 percent of the developers really, really easily, and then for the last 20 percent or the really hard stuff, you want to make that possible, but it just doesn’t have to be like one click ease. When you’re writing a class library, that all applies, but what do you do with the last 20 percent of those methods? You put them as public methods on your class? Well, that’s a great place to put them because otherwise, you’d have to come up with some other abstraction, but the problem is, is for the 80 percent of the population that’s not looking for those 20 percent, a lot of times, those are really advanced or obscure methods and people are going to guide themselves as they develop software by looking at those IntelliSense tips and they’re going to see all these obscure things in there and they’re going to get confused and they’re going to brand, “Oh, my God. This class library is too hard to use. I’m not going to use it.” Well, a solution to that is this idea of editor browseable filtering, and basically what this allows you to do is filter out methods that only fall into the 20 percent bucket. Now we have this in Visual Studio .NET 2002 and 2003, and we learned a few things from the implementation. The implementation we had then was a project level property that said, “Hey, do you want to show the advanced stuff?” And the problem with that was it was a little bit buried, and we, of course, defaulted in languages like C++ and C#. We defaulted that to say, “Yes, I always want to see the advanced stuff,” and in VB, we defaulted it to say, “No, I don’t want to see the advanced stuff.” But it turns out that the language that you use has nothing to do with what you want to see inside of IntelliSense, so we came up with this other model that’s quite a bit simpler and quite a bit easier, and the model is simply we just chucked a couple of tabs on the bottom of the IntelliSense dropdowns. By default, you see the common tab and as you type, if you actually spill over into a method or a member or property that’s part of the 20 percent world and has a match, the IntelliSense dropdown will automatically switch over to this all tab that shows all the members. So it’s a really nice way, even for an advanced developer who’s unsure about an object model, it’s a great way to look through the common tab and say, “What’s the likely stuff I’m going to need to use?” And if it’s not there, then I can click on the all tab and fiddle around there and see if there’s something I like. And we decided that this was such a powerful concept that we invented two ways of actually specifying it on your members. The old school way is the way that we shipped in 2002 and 2003, is to put an attribute on your member, and that’s what I have here with editor browseable. So here I’ve marked the path property with editor browseable state advanced, which means it’s only going to show up in the all category. Now another way I can do this is with XML annotation, with an XML tag called filter priority. Now filter priority isn’t quite as user friendly, but it has the advantage of not putting custom attributes in your binaries, which does increase the size of your binary a little bit. So there’s an advantage to using it. And along those lines of not increasing the size of things, the filter priority is also numeric instead of text, so even your XML is a little bit smaller. So here, two, is the magic number that also indicates advanced and does the exact same thing. So I’ve kind of done a redundant thing here just to show you both ways to do it.

Now the interesting thing about both filter priority and editor browseable is they actually have three values. So we have Advanced, which we covered, and there’s also Always, which is pretty obvious it should be in the common--it will always show things in this common bucket. But yet, we have a third value called Never, and you might think to yourself, “Well, why would I introduce an API if I never want to show it in the IntelliSense dropdowns?”

Unknown:
So we can be sued.

Pepin:
Yeah, so we can be sued. No, there’s actually a better reason that has nothing to do with lawyers. It’s actually obsolescence. If you develop an API and in the next version of your product you determine that you actually would like to obsolete part of that API and introduce new functionality to replace it, you can always use the obsolete attribute, and the obsolete attribute allows you to put a little bit of text in there which will emit a compiler warning so the user can be guided what API they should be using. But it’s kind of a little bit of a slight of hand there to show an obsolete API in a dropdown and entice people to actually choose that if they’re just going to get a compiler warning. So you can combine the obsolete attribute with editor browseable Never so the thing will never show up in IntelliSense and you’ll also get a compiler warning if you do use that code. Now, of course, if you do type it out, just like with anything else, it’s not actually affecting what can and can’t be compiled. So all you’re really doing is guiding the user. You’re not preventing them from doing anything.

So those were a couple of the most interesting attributes. I could go on forever with them, but they’re just not that interesting. Next I want to kind of talk about some guidelines or rules that would be really valuable for you to apply when you’re designing your class libraries, and a lot of this stuff just is kind of upfront knowledge--as you’re designing a library, how you want it to work. The first decision point you’ve got to make is, “What do I ultimately derive from? Do I derive from object or do I either derive from component or implement an interface called IComponent?” The answer to this is kind of hard to explain because it’s actually kind of philosophical. From an object standpoint, objects are kind of I create it and it’s done. I create it and use it for something and it’s done. So object oftentimes are sort of transient. Components, on the other hand, have a model where you typically create an instance of the component, set some properties on it, wire some events to it, and then that thing kind of stays around for a while and lurks in your application and does something useful. So there’s code of a different philosophical difference. Now there’s a technical difference as well because components are the one thing that can actually be used in visual designers, both in ASP .NET and in Windows Forms and also eventually in Avalon. So you have to derive or implement IComponent if you want to be on a designer, sort of in a first class kind of way. Now, of course, any class you write can be used in designers if that class is a property of something that ultimately is a component, but that’s kind of just some details. The second thing you really want to pay attention to is some things you want to keep track of when you’re designing properties. One of the main ones is keeping away from interdependencies between properties. So say I’m writing sort of an authentication component and I have two properties--username and password--and I’ve designed my component so that it automatically authenticates when I set the password field. Well, what have I done there? Well, I’ve done a few things that are kind of interesting. One is I’ve done some really complicated logic in the setting of a property, which you’d probably want to stay away from because people assume properties are cheap and lightweight. But another thing that I’ve done is I’ve forced the user to have to understand that username has to be set first. If I’m a user and I’m just playing with this thing, I might decide to set password first and then username, but if there’s no username set and password tries to authenticate, it’s obviously going to get an error and my app won’t work.

Now there’s another really strong reason why you want to stay away from this is Visual Studio likes to generate code, and in ASP .NET, it likes to generate html. It’s good at it. It doesn’t really have a way to determine which order things should be emitted in either the code or the XML. So if you write properties that have these complicated interdependencies, there’s a good chance that when you try to use that object in ASP .NET or Win Forms Designers, it’s not going to work when they hit Run. It’s not going to work because these dependencies weren’t established and the wrong code was generated, and it just makes your component look broken or it makes Visual Studio look broken.

Another thing you want to keep track of is the use of exceptions in properties. So, by all means, if someone tries to set an invalid value into a property, throw an exception. Throw a meaningful one. Write a paragraph of text describing why they did something wrong. But if someone is reading a value out of a property, you probably don’t want to throw an exception there because an exception indicates that an error happened and if I’m a property, and a property is a fairly--basically lightweight abstraction on top of a piece of state, well, that’s really telling me, as a user of your object, that somehow when I created your object, your object was created in an invalid state. That’s something you want to stay away from. And, of course, there’s a technical reason behind this, too, and that’s that one of Visual Studio’s favorite things to do is create instances of objects and reflect all over them to find out what they can do. So, of course, when it does that, if you have properties that throw whenever Visual Studio’s reading values, Visual Studio is going to have to trap that and catch and catch and catch, and there’s going to be lots of little kinds of exceptions going on inside of the tool, which you technically really don’t want to have to have. So stay away from throwing exceptions in property getters. And finally, if you are using IComponent or Component as your base class, remember that this object model or the model of components has a sort of I create it, I configure it, and I use it pattern. Well, to make that pattern really work well, your component should have an empty constructor. Now that doesn’t mean that it only has an empty constructor. It simply means that it should have at least an empty constructor in there. You can overload it with as many interesting constructors that make sense for your model, but you should have an empty constructor. And again, there’s a technical reason for that, too. Windows Forms, because it works off code generation, actually does have the ability to emit arbitrarily complex constructors, but ASP .NET doesn’t and the upcoming Avalon designer, because it will be based on XML as well, also doesn’t. So you’d be kind of shooting yourself in the foot if you wrote components that only took special case constructors.

So the last category of sort of tools we have to make development tools work well is this category of custom tool code, and it’s a whopper. We’ve got lots and lots of custom code in the .NET Framework to support development tools like VS. And you notice ever time I say this, I keep saying, “Development tools like VS,” and that’s because everything that we put in the framework for design-time works in any development tool. It’s reusable. It can be used by Borland. It can be used by Eclipse. It can be used by anyone who wants to write a development tool that works with our stuff. So that’s a good thing, but what are we--let’s look at how we kind of evolved into this--sort of this big range of design-time classes. In the COM world, back in the VB 6.0/VB 5.0 days, there was also this notion of instantiating objects inside of the tool to do useful work. The VB Forms Designer was the most obvious example of this. And in that day, all objects that satisfied that requirement were ActiveX Controls. An ActiveX Control is essentially akin to a component in the .NET world. ActiveX Controls had one way of telling if they were in a tool. There was a bit that was set that you could query and if it was set, you could do all kinds of amazing things because you knew that you were inside of a development tool. That’s good and it’s bad. It’s good because it’s really, really simple, but it’s kind of bad because if you had to do a lot of amazing things, sometimes your amazing things were larger bodies of code than your control was and you had to publish all those amazing things along with your control and sort of organize that.

The other thing that COM kind of had going for it in terms of simplicity was that custom data types weren’t really that broadly used in COM. So I used to work on the Visual Basic property window a long time ago, and the property window knew how to handle just a few data types. It knew about pictures, it knew about fonts, it knew about colors, and it knew about variance. Those are the four things it knew how to handle. If it wasn’t one of those things, it didn’t get shown in the property window. But in the .NET world, we’ve got thousands of types. We love to create types and we love to create nice, specific types for particular kinds of tasks, and because of that, a property window that only knows about a few stocked types isn’t going to cut it anymore. We’ve got gradients and triangles and vectors and all kinds of stuff that we just would never be able to keep up. So in .NET, we’ve introduced this notion of design-time classes. So the main mantra behind these classes is either change the behavior of a running runtime object or add new behavior that enhances its functionality, but one of the key models behind this is you can put all this stuff in a separate class and you can even put that class in a separate assembly, and you never have to really bloat your runtime stuff, especially if you’re concerned about redistributable size. You can put all that sophisticated design-time stuff in an SDK assembly and not ship it with part of your runtime redist. So there are a lot of examples of these and I’m actually going to just pick on three, but there’s quite a few others out there.

So we’re coming back with the bad/good methodology, and I already showed you a demo of debugger type proxies when I showed you my circle class that had this nice experience when I was running inside of debugger. And anecdotally, there’s a good story on how we got here. In Visual Studio .NET 2002, the first version we shipped, we didn’t have a very--all we could do was sort of show the--sort of the default internals of a class, and some classes are very hand. Hash tables are probably one of the handier classes we have in the framework. Everyone loves to abuse hash tables. I’ve done some performance work on some of our internal stuff and surprised to find us allocating hundreds and sometimes thousands of hash tables because we love them so much. The hash table class is great because it’s not that big, it’s pretty fast, and it encapsulates a really usable data structure concept. Well, unfortunately, in order to make hash table not that big and really, really fast, it’s not written like a CS 101 hash table. It’s a fairly complicated chunk of code inside there. Lots of algorithms around prime numbers and what to do if there are hash collisions and bucket transformations and all kinds of stuff that ends up showing itself in hash tables, sort of debug level API, as a bunch of really complicated fields. So as an example of this, I wrote a simple program and I put two values inside of a hash table and then I tried to time myself and figure out how long it took me to find one of those values, and luckily, with only two values, I didn’t have very many buckets to look in, but you can see here that hash table actually defaulted to 11 buckets and I actually had to trawl through the first three of them and finally stop at the fourth bucket before I even found the first value I was looking for. Now if you’ve got 100 things in your hash table or 1,000, this is a pretty slow way to go. Unfortunately, that’s a pretty common way of using a hash table. So we made it a little bit better in Visual Studio 2003 with some special casing, and then in Whidbey, we finally kind of saw the light and we wrote an extensible mechanism so that anyone writing a class can actually change the way that the hash table looks at design-time--well, any class you have.

So as an example of how to use this, I will add an attribute to my hash table class called debugger type proxy, and essentially, this class stands in for hash table at debug time and the object model that’s exposed on this class is what’s actually exposed to the user in the watch windows. So all I’ve done here is I’ve created a class called HT Debug View, and notice that it doesn’t have to be public. It can be private, and if you want to, you can even nest it inside of your hash table class; it’s no big deal. The only requirement is that this class takes in its constructor an instance of the hash table, and I haven’t shown the details here, but this class would expose perhaps an array of name value pairs or something a little more obvious to the way a hash table typically works. The result of this is a much better experience in watched windows. I actually see just a drop--kind of a nice, linear list of all the name value pairs in my hash table, and this is a lot easier. It took me a lot less time to find hello in this world than it did in the last example. Now if you are an advanced developer or what you’re finding in this debug view just doesn’t cut it for you, any time that there’s a custom debug viewer installed, there’s always a value called raw view at the bottom of the watch. So you can always open that up and see all the gritty details if you really want to. But this is a fantastic way to really help people when they’re debugging code and working with code because they don’t really have to know about all the nuances of how the CLR decided to approach the implementation of hash table.

So I’m coming back to Circle again. Circle was designed to be used inside of a graphical designer like Windows Forms, but when I first wrote Circle, it looked roughly like this, and I put it on a property on my control and I ran it in Visual Studio. I was a little depressed with what I got in the property window. What I got was this gray class name that represented my circle class. It didn’t have any other data about Circle whatsoever, and it turns out that I didn’t supply any. All the property window did was call two-string on my circle object and called it a day. I can’t edit the value of my circle. It doesn’t display anything useful to me at all, and Circle itself doesn’t actually save itself in either the Windows Forms Code Generator, or if I were to use this an ASP .NET, it wouldn’t be able to save in XML or in html. And if I were to use this in Avalon, it wouldn’t be able to save in XAML. So obviously, Circle has limited use right now. I can improve this substantially by introducing yet another attribute called a type converter. Now a type converter obviously converts from one type to another, and in this case, I’ve written a class called circle converter, and I did a few conversions. I supported a few things in circle converter. Now the first thing I did is I wrote a bidirectional conversion from string to value and value back to string, and all of a sudden: poof. Instantly, when I did this, I could now edit what was inside of Circle and when I made changes to it, it updated the Circle value and sent it back out to my control. It was just fantastic.

The other neat thing that I did when I was writing my type converter is I set a bit on my type converter saying, “Oh, by the way, my circle class exposes properties that are interesting for the user to see at design-time.” So all I had to do was set this bit and, wow, instantly I got a little plus/minus sign next to Circle that would allow it to expand. Now the neat thing about this was I didn’t have to do anything on the center property because center is already of type point, and what do you know? Point already supplies its own type converter that does all this stuff for me. So I got all the benefits of points sort of designability for free. Now another place that I use this or abuse it, depending on your point of view, is when I was writing my text to value conversions for Circle, I didn’t do any work to do the old A to I type of implementation of where I would convert from a string to a number. I didn’t use N32.parse. I didn’t use anything to determine whether or not I should be using a comma or a period depending on culture. I didn’t use any of that stuff, and the reason why is I used the one off point. So Circle consists of a point and an integer. All I did to make my text to value conversions to work is I parsed out what was before the colon and what was after the colon, and what was after the colon I passed to the integer type converter and what was before the colon I passed to the point type converter. So I really didn’t have to do any conversions at all. The entire type converter took me about five minutes. So after I did this, a lot of things started to work. The property window works. Yeah? If you code an exception, just throw it. Just throw it. The property window will catch it and display that error to the user. Just make sure you provide some decent text in it. Yeah. So after I did this, lots of stuff worked. The property window was pretty happy. I liked the way that it worked. If I was using Circle in ASP .NET or in Avalon, the XML would work just fine, too, because what do you know? XML is a text format and uses type converters to do text conversions. Unfortunately, my Circle class still can’t generate code inside the Windows Forms Designer because code isn’t--well, code is text, but internally, code is really not text. There’s a whole object model behind code. So the last thing I have to do to make my Circle class really work well is provide support for code generation, and this really isn’t that hard. There’s an object called an instance descriptor and the role of this object is simply to describe how to create an instance. It’s really a factory, and this is yet another kind of data type that I can convert to inside of my type converter class. So this is just a little snippet of code I stole out of my type converter. And what I’m doing here is I’m getting a hold of the Circle type and I’m using reflection to find the constructor of Circle that takes a point and an integer as arguments. And once I get that constructor, I simply pass it to a new instance descriptor and then I pass in an array representing the objects that are the parameters to that constructor. And when I do this, I get a nice bit of code inside of the Windows Forms Designer that generates a new circle and even generates the new point for me inside of that constructor, and once again, it did that because instance descriptors are recursive. When it saw the value of point, it said, “Well, let me get the type converter for point and see if it can create an instance descriptor.” So everything was all recursive that way and all I really had to do was sort of do a little bit of work on Circle to make kind of everything pull together nicely.

One of the challenges I’ve heard with type converters is the API is not terribly complicated, but it’s really open-ended. It basically has a convert to and a convert from method that takes a source and destination type. So everyone always asks the same question: “Well, what type should I support?” String to value is pretty obvious. Almost nothing works if you don’t do string to value conversions, but I could actually try to, you know, convert any kind of data type there that I want. And really, there’s a few things that are valuable and, of course, probably, as time goes on, that list of few things will probably grow, but for now, we have a few things sort of prioritized that you should try to support if you’re writing a type converter. So the first priority, like I said, was a good string to value/value to string conversion, and these kinds of conversions should also be sort of culture aware. The method for conversion takes a culture invoke. So for example, if it’s invariant culture, you know that you’re writing to something that probably is--that’s independent of language, but if you’re receiving another culture, then you want to be able to make sure that you’re aware of, you know, comma versus period type of methodologies and things like that. Now a large part of the time, you don’t have to be aware of that if you use my model of using smaller type converters to build up larger type converters. And then the other thing I showed you that’s also first priority is providing some sort of instance descriptor support so that your class can actually emit code nicely in a code generator.

The next priority is a little bit of help in the property window to make the experience better. I showed you expandable properties. You just set a bit on the type converter and all of a sudden, the property window will expand and contract on the properties, and you can also choose which properties are exposed in this fashion. So for example, the font object that we expose actually filters and chooses, I think, name and size and a couple of other attributes and actually moves those to the top of the list and then lists all the others afterwards. That way we sort of cover ourselves in case someone adds a new property default, but the first three or whatever really interesting properties are right up toward the top.

And the other thing that you can do with a type converter is you can provide a list of standard values. So that’s interesting if you’re writing a class that has some stock characteristics to it. Like, for example, we have a class called Color that represents a color, but it also offers a lot of static properties. It has named static properties for all the web standard colors. So you can choose blue or red or salmon or any kind of property you want. So what we did is we also wrote a type converter for color and we provided a list of standard colors that someone can use, and when we did this, the property window will automatically show a dropdown that has all those colors represented there so I can just pick one.

And finally, on a lower priority but it’s kind of important if you’re doing a specific kind of class and that’s a conversion to and from a byte array. So there are a lot of classes out there that don’t have any real code or text based representation: a class that exposes a bitmap or a class that exposes a sound or an mp3 clip. These types of classes are essentially resources, but they’re treated programmatically as classes. So one thing I could do is I could mark that class as serializeable and then save it as a resource somewhere using binary serialization. That would work, but I’ve now wrapped what is essentially raw data that is independent of that class in a format that’s now sort of tied to that class. So there’s no way that I could ever take a bitmap from system drawing and load it into an Avalon image because I wrapped it in some stuff that isn’t really convertible to an Avalon image unless I first convert it to a bitmap. So this byte erectional binary conversion allows you to provide a way to dictate to code generators. And resource serializers and XML serializers, but what I have here is something that really represents a resource, and just return back the array of bytes representing that resource and it will optimally save that in whichever format it can.

The last section I want to talk about is--can be very large, but I actually haven’t devoted a huge amount of time to it here because you get a lot of benefits of this model for free, so it’s kind of a pay for play situation. Back in the VB 5.0/VB 6.0 days, the tool itself, Visual Basic .EXE, whichever you wanted--whichever version you were running--actually had all the code inside that tool to run the Forms Designer. The ActiveX Controls that you put on that Forms Designer had no idea about what design-time was, except for this little bit that Visual Basic would pass to it. That’s great as long as all of your UI consists of little rectangular boxes with four little grab handles on them that you can drag around, but one of the things that we found out early on in the .NET Framework is the number and kinds of classes that people are using today to design graphical interfaces is very diverse, and what’s more, some of those classes have really, really complicated configuration requirements that make it very, very hard to have a really generic model. Those classes need to provide code into a tool like Visual Studio in order to make themselves really designable with anything better than sort of this default implementation. So what we did is we took the idea of a designer and instead of making one designer for the form you’re working on, we made it a designer for each and every control or component that’s on that form and another designer for the form itself. And the way that this works is each of these designers kind of all agree under the cover to communicate with each other and provide a nice, seamless experience to the end user. But the advantage of it is individual control authors can replace these designers with their own versions that derive from whatever their base class designer is and they can change the behavior. They can add more grab handles. If I want to write a control that allows me to rotate things around and spin a chart, I can now do that. I can write custom grab handle code. The snap lines that I showed you earlier: I’m sure that there are going to be other kinds of interesting points to snap to besides the rectangular boundaries. In fact, there already is. We found that there was a need to snap to baselines. So that’s another extensibility point that a custom designer allows you to do. So the designers have grown into this fairly complicated array of classes that allow you to do this really rich behavior, and you can derive from one of these classes and change the behavior to your liking.

Now if you all had to write a designer for every control, it would be an absolutely daunting task because the amount of work that they do is fairly rich, but luckily, we provide default designers for default levels of base classes. So anything that derives or that implements the IComponent Interface automatically gets a default designer for free. The designer doesn’t do much because IComponent doesn’t do much, but, hey, they get it. Anything that derives from Control, both ASP .NET Control and Windows Forms Control, they get the equivalent base class designer for free. Now what that designer does for ASP .NET versus Windows Forms is very different. ASP .NET is all about rendering html. So the focus of designers in ASP .NET is to allow you to change and mutate the html that’s generated from a control. If you’ve ever used ASP .NET and you’ve used templated controls to kind of open up and allow you to drag other things into them? Well, that’s the designer that’s doing all that work for you. And similarly, on Windows Forms Control, all the grab handles, the fact that controls don’t actually become interactive when you click on them, snap lines, the little smart task thing that I showed popping up. There’s a million little--tiny little features that all work together to create a great design experience for Windows Forms. And while this is still in progress, we’re working on developing the Avalon Designer right now, but Avalon has a base class called Framework Element, and what do you know? It also has a framework element designer that does Avaloni specific things. Very similar to what Windows Forms can do, but it’s actually--it’s a different model because Avalon has a different model of rendering UI. So that’s a great advantage because not only do the designers stay out of the way enough to allow all these very, very different kinds of UI technologies to use them, but it also means that if you were kind of sifting around and trying out different technologies or shifting focus from one technology to the next, you don’t have to throw out all your knowledge and completely relearn what you’ve known because each of these designers has--each of these models has the same fundamental architecture.

So the last thing I wanted to talk about today is this notion of tool-based extensibility. So we have this model today where I can write a control and I can write a designer for it that does all kinds of rich user interface interactivity and everything’s all great. Well, what happens when a tool like Visual Studio comes along and says, “Woo, yeah, you guys really didn’t do very much work on that at all, did you? It really isn’t very useable.” In the good old days of VS .NET 2002 and 2003--I guess for most people that aren’t in the Visual Studio team, the good old days are still here--the solution to this was, well, Visual Studio would implement the design experience for you, but the only way to make this happen was the class itself, your runtime class, had to have one of these little metadata attributes that pointed back to the Visual Studio assemblies. Well, that’s a bad thing to do. You get this great tool experience in Visual Studio, but you sure can’t get a very good tool experience in Delphi and you sure can’t get a good one in Eclipse, and you really kind of short circuit the whole third party development tool market because all of a sudden, all these runtime classes have attributes that point back to Visual Studio. Not a good thing. So one of the things that we did for Whidbey is we came up with this model of tool-based extensibility. So if you think of writing code as a series of hierarchy or layers, now at the bottom layer is the runtime object model, the set of classes that’s kind of the first priority for you to deliver writing as an author of these classes. Of course, this includes, you know, all the documentation and all the samples and all the other stuff associated with writing a decent runtime object model. But then I’ve just shown you all of these different sort of development tool centric chunks of code that you may want to write, too, to make sure that the experience of your controls in a dev tool is decent, is pretty first rate. And the expectation here is that these two combined together are sort of what you ship as your SDK. Now your design-time code may be entirely internal. It may not have any public surface area or documentation whatsoever, and that’s fine as long as the runtime code makes use of those design-time classes appropriately and everything works out okay. No one’s going to really hate you for it. But there’s going to come a time when, you know, maybe you don’t have time to write a really amazing design experience for a particular bit of code, and there’s also going to come a time when a tool like Visual Studio invents some new, whacky user interface model and all of a sudden, what you’ve written doesn’t work for them. Well, that’s where the next layer comes in and we now have the ability in Whidbey to selectively replace metadata and make changes to services as they come in, a lot of little technical hoo-ha that essentially allows a development tool like Visual Studio to custom tailor the experience and replace chunks of your design-time logic with its own design-time logic. And the idea behind this is, you know, we can incrementally make things better as time goes on and also, we don’t have to bake as much stuff into the core runtime to make a decent experience. Now as an example of this, the core of Windows Forms Designer, if you select an image to be on the background of a control, like a button, by default, that image gets written into a resource file that’s associated with the form and the reason for that is, well, that’s all that Windows Forms Designer knows about. It’s only aware of the form and a couple of resource files associated with it because that’s all that’s part of the architecture. Well, any one who’s used--written a lot of UI with toolbars knows that the best way to do this is to actually have a global resource for all the images in your toolbar and then link to it from, you know, 500 forms or several pieces of UI. We wanted to introduce that model inside of Visual Studio Whidbey, but we didn’t really want to introduce a bunch of architecture and junk down in the framework to make it happen. So what we did is we used one of these little tool enhancements and we replaced image handling for every image in a Windows Forms Control. And all image handling in Windows Forms Control now actually routes to a project level, a resource repository where you can choose resources and reuse things. So this was a great sort of demonstration that, yeah, you know what? Tools can actually add value on top of what we ship in the box. Of course, what we ship in the box is pretty complete. The Windows Forms Designer actually in Whidbey is so easy to reuse that it takes about four lines of code to show the entire thing, including snap lines and the popup panels. So you can see by doing this that we build up a nice little environment where we have this public API and SDK where people can go and write to your code, but then if there’s a tool vendor that comes along that wants to really make your classes unique to what they’re doing inside their tool, they can do that too.

So just to quickly summarize: everyone who’s ever used VS and everyone who’s ever used Eclipse or pretty much anything but VI has kind of grown accustomed to a really good experience in the tool. There’s just too much surface area in these class libraries today to expect people to really know how to program without some sort of nice little helpy dropdown things to guide them along. So everyone expects that today. Unfortunately, because of the richness of these development tools, in order to provide that kind of an experience, a lot of times, people writing classes are going to have to contribute a little bit of code or a little bit of metadata or at least some good help documentation to sort of make all of it possible. The other thing that I hear a lot of is, “Well, that’s an undocumented API. We’re not going to cover that.” Or, you know, “We need to share that internally, but, you know, we’re not actually going to make that part of our API.” I can tell you, coming from the owner of--I don’t know--probably 2,000 classes in the framework for Windows Forms and the designers that if it is public, people are going to use it regardless of whether you want them to, regardless of how much of a big exclamation point you put into the documentation and say, “Hey, don’t use this.” Someone’s going to use it, so you kind of bite the bullet and either make things internal or keep things public.

And so that’s all I’ve got. If anybody has any questions, we have about 15 minutes at the end here. Yeah? Custom templates. Oh, in Visual Studio? I don’t know. It’s changed every product cycle. I can find out for you, though. If you give me your email alias afterwards, I’ll put you in touch with our people for that. Any other questions I don’t know how to answer? Okay. Thanks.

Designing .NET Class Libraries

Page 15 of 15
© 2004 Microsoft Corporation

