REAL_Life_Part_M3.rtf
Filename: REAL_Life_Part_M3.rtf
13

Project REAL: Data Lifecycle - Partitioning

SQL Server Technical Article

Writers: Erin Welker

Technical Reviewer: Grant Dickinson, Dave Wickert, Len Wyatt and Stuart Ozer

Published: June 2005

Applies To: SQL Server 2005

Introduction

Successful business intelligence (BI) applications need solid tools to run on, and they are also facilitated by having an associated base of knowledge about how to carry out a successful implementation – in short, the best practices information. Through Project REAL, Microsoft® and several of its partners are discovering best practices for BI applications based on Microsoft SQL Server 2005 by creating reference implementations based on actual customer scenarios. This means that customer data is brought in-house and is used to work through the same issues that the customers face during deployment. These issues include:

· Design of schemas – both relational and for Analysis Services.

· Implementation of data extraction, transformation, and loading (ETL) processes.

· Design and deployment of client front-end systems, both for reporting and for interactive analysis.

· Sizing of systems for production.

· Management and maintenance of the systems on an ongoing basis, including incremental updates to the data.

By working with real deployment scenarios, we gain a complete understanding of how to work with the tools. Our goal is to address the full gamut of concerns that a large company would face during their own real-world deployment.

This paper provides a detailed discussion on how partitioning was implemented, both on the relational data warehouse and in the Analysis Services cubes. In addition to providing the general "how we did it" overview, we include specific code segments and lessons learned in the hopes that the reader will benefit from both our successes and failures. It is our hope that anyone planning or implementing a BI system based on SQL Server 2005 will find the reference implementation useful.

For an overview of Project REAL, see the Project REAL – Technical Overview white paper. Project REAL will result in a number of papers, tools and samples over its lifetime. To find the latest information, check back to the following site:

http://www.microsoft.com/sql/bi/ProjectREAL

Project REAL is a cooperative endeavor between Microsoft and a number of its partners in the BI area. These partners include: Apollo Data Technologies, EMC, Intellinet, Panorama, Proclarity, Scalability Experts and Unisys. The business scenario for Project REAL, and the source data set, were graciously provided by Barnes & Noble.

Note: This white paper is a draft. It contains recommended best practices based on our experiences working with early Community Technology Preview (CTP) builds of SQL Server 2005. This white paper is accurate at the date of publishing. Product functionality described in this document could change or better practices information may be developed later. SQL Server 2005 is still in beta and changes should be expected.

Data Lifecycle Overview

It is a critical task, in any data warehouse implementation, to develop a data lifecycle strategy that is appropriate for the project and that fits the requirements of the business. Data Lifecycle could cover various aspects of a project but we have defined it to include the database management processes that deal with the introduction of new data and facilitate the removal of old data. As such, we have broken the Data Lifecycle into three discreet areas: partitioning, moving aged data to inexpensive disk, and pruning dimensions. A brief explanation of what is covered in each of these areas is discussed below.

Partitioning

Partitioning is a method of splitting up a large data set into smaller, more manageable chunks. For this white paper, we are addressing the partitioning of SQL Server tables and Analysis Services measure groups. We will be focusing on horizontal partitioning, which segments rows of data based on values in a partitioning column. This is a common strategy in large data warehousing implementations, primarily as a means of managing data, cube loading, and maintenance. There are also benefits when querying the data, since both SQL Server and Analysis Services provide a means of discerning which partitions are relevant to a query, assuming the query uses the partitioning column to filter the data.

Moving aged data to inexpensive disk

A data warehouse, by its very nature, contains an extraordinarily large amount of data. Any technique possible can and should be used to manage the resource cost for maintaining such large data sets. When a date partitioning strategy is used, it is possible to look for a chronological division where the older data is no longer in high demand. At that point, the relevant data can be moved to less expensive disk where it is still available for queries, but is either less performant, less highly available, or both. This is a trade off that is established by the business to determine the balance between resource costs, query performance and data availability.

Pruning dimensions

A sometimes overlooked aspect of data management is dimension pruning. This is often more of a usability issue than that of disk or database management. With Barnes and Noble, the two largest dimensions are the Item (products) and Customer dimensions. As products are discontinued and customers have dropped off, business users do not want to see them especially when browsing dimensions with millions of members!

One requirement for pruning dimensions is that no fact data should reference them. Analysis Services 2005 actually provides the capability to store an "unknown" dimension key on fact records where one or more dimensions are not present in the source data, but this is still not desirable in most cases. If the fact record exists, it only makes sense to have matching dimension records.

The business needs to make the decision as to when dimensions can be safely removed from the data warehouse, for instance, "two years after no sales and inventory records exist with references to that product", but the policy for deleting old data from fact tables should also be consistent with this decision.

Our implementation of dimension pruning is detailed in a separate white paper.

Barnes and Noble Current Environment

In 2004, Barnes and Noble implemented a data warehouse that uses the Microsoft Data Warehouse Framework. The subject areas include customer sales, store inventory, and DC (distribution center) inventory. There are currently 3 years of sales, 1 year of store inventory, and ½ year of DC inventory. The data is loaded into weekly tables. A table naming standard has been implemented to identify the data contained within a table. SQL Server 2005 Integrated Services (SSIS) is currently used to load a SQL Server 2000 relational data warehouse and Analysis Services 2000 is used to host a handful of cubes. The total relational data warehouse database is in the neighborhood of 2 terabytes. Though the data is conceptually partitioned, there are potentially many benefits to implementing SQL Server 2005 table partitioning, as we will see later in this document.

There are several requirements that need to be gathered before determining a partitioning strategy. Some of those relate to how the data is loaded and the size of a partition based on a given partitioning interval. The business dictates how long data is to be kept available. The goal at Barnes and Noble is to eventually have 5 years of rolling sales history and 3 years of rolling inventory. They have not reached that amount of history, so we established our own requirements on the REAL project in order to demonstrate the rollout functionality of the "sliding window" implementation, which will be discussed later in this white paper. Our next step is to evaluate the pros and cons of partitioning at Barnes and Noble and, assuming that partitioning is a worthwhile pursuit, determine the best method of doing so.

Relational Partitioning

Relational partitioning refers to the partitioning of the underlying relational data store. In a traditional data warehouse, this data is stored in a dimensional format, commonly referred to as a star or snowflake schema. Such is the case with our data. As a result, the tables are either dimension tables or fact tables. Most dimension tables are relatively small, with several columns and only a few rows. Barnes and Noble has two very large dimension tables: the Item dimension (7 million rows, 5 GB) and Customer dimension (nearly 6 million rows, 1 GB) tables. The third largest dimension is the Store dimension, which has just over 4000 rows and utilizes less than 2 MB of disk space. The Customer and Item dimensions are small when compared to the fact tables.

	Fact table
	Row count
	Space used

(data and indexes)
	Number of loaded partitions

	Tbl_Fact_Store_Sales
	1,366,052,628
	306 GB
	157

	Tbl_Fact_Store_Inventory
	8,450,555,562
	1037 GB
	53

	Tbl_Fact_DC_Inventory
	51,387,065
	4 GB
	18

	Total
	
	1347 GB
	

In order to make these tables manageable in terms of loading, backup/restore and index maintenance, the best solution is to horizontally segment them into smaller tables, which is the "partitioning" method we have been referring to.

Benefits of Partitioning

The benefits of partitioning are alluded to above. To be more explicit, all management operations on very large tables can be performed at a more granular level when the table is partitioned. The table backups can be segmented on a partitioned table. This is further facilitated by some of the other new functionality in SQL Server 2005. Namely, when a filegroup is read-only, SQL Server will no longer require a transaction log backup in a filegroup-restore scenario. In this case, the most current partitions can reside on filegroups that are separate from older non-volatile partitions. The non-volatile partitions can be placed on their own read-only filegroups, which need only be maintained and backed up once. At this point, only the volatile partitions require maintenance. Other operations, such as index maintenance, are also made easier in a partitioned scenario. This can be the difference between actively managing a multi-terabyte database and managing data partitions that are less than 100 GB.

Another benefit, especially in a data warehouse environment, is query performance. This is true whether the queries are issued by Analysis Services during cube processing or when end-users query the relational data warehouse directly. In the case of cube processing, the performance improvement comes when the destination cube is partitioned using the same partitioning column as the relational source. When a partitioned cube is processed, Analysis Services will issue a query that limits the data to that contained within the partition. For instance, if the destination partition includes data for the week ending on 01/01/2005, it will issue a query to SQL Server that asks for data only in that week. This greatly limits the number of partitions scanned.

Queries that are issued directly by the user against the relational data warehouse will commonly have a date component to them. Common queries are sales comparisons between the current period versus the same period last year. In cases such as these, SQL Server can often limit the amount of data to be referenced and, therefore, improve query performance. The same is true for queries against Analysis Services.

Options in SQL Server 2000

SQL Server 2000 has a single partitioning option, "partitioned views". To create a partitioned view, you simply define a view that lists all of the tables that participate in the view and use the "UNION ALL" statement to concatenate them together. In order for the query optimizer to isolate partitions relevant to a given query, a trusted constraint must be in place to report which partitions contain which data. A "trusted" constraint refers to a constraint that was created with the "WITH CHECK" option. If this option is not used when the constraint is created, or if data has been Bulk Loaded / BCP’d into the table without the CHECK_CONSTRAINTS hint present during every load, data may exist in the table that violates the constraint. SQL Server does not trust these constraints and many of the optimization and functional benefits of these constraints will not be realized as a result.

Options in SQL Server 2005

SQL Server 2005 offers a new option for partitioning - partitioned tables and indexes. Partitioned tables provide a means of loading and managing horizontal data segments with minimal impact on other users of the table. Detailed discussions on partitioned tables are covered in other forums, so it will not be re-addressed here except to recap on some high-level concepts. References to other information can be found at the end of this document.

Table partitioning allows each logically distinct segment of a table or index to be treated as a separate entity. These segments, or partitions, can be loaded outside of the table, so that loading does not affect users of the partitioned table during the life of the load. When the partition load is complete, it is "switched in" to the partitioned table. There are several conditions that must be in place for a successful partition switch, the most common of which are:

· The schema of the partitioned table structure must be the same as the table to be switched in. This includes column names, datatypes, nullability attributes, collation, precision, and primary key constraints

· Any indexes on the partitioned table must be present on the table to be switched-in and all index attributes, except for name, must match (for example, columns indexed, clustered attribute, and unique attribute.)

· The destination partition must be empty.

· The source table and destination partition must be on the same filegroup.

· The source table must have a trusted check constraint defined that is compatible with the destination partition.

To reiterate, this is a partial list of requirements. Additional, more specific limitations can be found in SQL Server Books Online.

There are a number of terms that are specific to how SQL Server implements partitioned tables. These are briefly defined below but are covered in detail in other sources, such as SQL Server Books Online and Kimberly Tripp's white paper on Partitioned Tables (see references at the end of this paper):

· Partition Function

A Partition Function is a physical database object that defines upper or lower boundaries.

· Partition Scheme

A Partition Scheme is a physical database object that is based on a Partition Function. The Partition Scheme defines the location on disk for each partition that is defined by the Partition Function.

· Aligned

Partitioned tables and indexes are said to be aligned if they are based on the same partition function, whether implicitly or explicitly.

· Co-located

Partitioned tables and indexes are said to be co-located if they share both an equivalent partition function (they are aligned) and an equivalent partition scheme. As such, their partition boundaries are the same and the data that corresponds to these boundaries are located on the same filegroup.

· RANGE LEFT/RANGE RIGHT
This is probably one of the more confusing aspects of table partitioning. Partition functions are defined with either RANGE LEFT or RANGE RIGHT. One way to remember the difference is that a function with RANGE LEFT means the partition data relative to the boundary is to the left of the boundary; RANGE RIGHT means the partition data relative to the boundary is to the right of the boundary. So, if the boundary is "01/01/2005" and the partition function stipulates RANGE LEFT, the "01/01/2005" is an upper boundary and data less than the boundary is to the left of the boundary.

· MERGE
The merging of partitions makes one partition out of two. MERGE is used to remove a partition.

· SPLIT
The splitting of a partition makes two partitions out of one. SPLIT is used to add a partition.

Comparing Partitioned Tables to Partitioned Views

Partitioned views are still available in SQL Server 2005 and can still be a good option for partitioning in a data warehouse. For the most part, partitioned tables will be easier to manage. The following table gives a quick checklist of pros and cons for both methods:

Table 1 SQL Server 2005 Partitioned Tables versus Partitioned Views

	Functionality
	Partitioned Table
	Partitioned View

	Table maintenance
	The table as managed as a single entity.
	Each participating table is its own entity to which metadata changes must be made.

	Indexing
	Each partition must have the same indexes.
	Each table can have its own indexing strategy.

	Implementation
	Both are roughly the same in complexity of implementation. Partitioned Tables are more explicit in raising errors when a problem has occurred.
	There can be hidden issues that prevent a Partitioned View from operating as intended. One common issue is creating check constraints without checking current values. The Partitioned View will implement successfully but will not optimize correctly, for no evident reason.

	Compilation times
	Since all partitions are indexed in the same manner, the optimizer can use the same execution plan for each one and compile times are much shorter.
	Since partitions can have different indexes, the optimizer must evaluate the best execution plan for each table (partition). Compilation times suffer when there are many tables in the partitioned view.

	Loading
	A partition can be loaded externally, minimizing the impact on current users of the table.
	A table can be loaded externally, minimizing the impact on current users of the view.

	Switching in new data
	This is a metadata operation that is quick and queues naturally.
	This is a metadata operation, but an ALTER VIEW statement may wait indefinitely for a SCHEMA lock.

	Updatability
	There are no special rules above and beyond those required to create the partitioned table that must be in place in order for the table to be updatable. Partitioned tables can have identity columns, don't require Primary keys, and so forth.
	Several restrictions make it difficult to make a partitioned view updatable, such as no identities and the existence of a primary key on the participating tables. This usually means the underlying tables must be updated directly, complicating the coding of INSERTs and UPDATEs.

	Backups/Restores
	The partitions of a table can be backed up or restored together or separately, depending on the filegroup implementation.

Note Unless a filegroup is marked Read Only, restoring a filegroup requires re-applying transaction logs from the point of backup.

	Individual tables forming the partition view can be backed up or restored together or separately, depending on the filegroup implementation.

Partitioned view tables can also reside in separate databases which allows for separate database backups for separate partitions.

Note Unless a filegroup is marked Read Only, restoring a filegroup requires re-applying transaction logs from the point of backup.

	Database Implications
	All partitions of a partitioned table must reside in the same database.
	Tables joined in a partitioned view may reside in different databases. This can make Backup and Restore operations for historical segments very simple to implement.

	Query Parallelism
	Individual partitions are the unit of parallelism in a parallel query plan. Queries touching only a single partition will not access the table using parallelism.
	Each table in a partitioned view is considered separately for parallel query access. Queries touching only a single table may access that table using parallelism.

	Bulk Loading
	A partitioned table can be the target of a Bulk Insert / BCP operation directly.
	Partition views cannot be a target of Bulk Insert / BCP operations – individual tables within the view must be the target.

Implementation decision

Barnes and Noble did not implement partitioned views in SQL Server 2000 because of very large compile times, often in the 30 second range. There are currently three years of Sales data, which correlates to 156 table partitions. A query that spans the entire partitioned view would need to examine each of the underlying tables to evaluate an execution plan. This made partitioned views unusable. Aside from compile times, the most compelling reason for choosing partitioned tables over partitioned views is ease in table maintenance and the ease of performing INSERT, UPDATE and DELETE operations that span multiple partitions.

After choosing the method of partitioning, we next had to decide on the partitioning column and optimal date interval. Many of the benefits of partitioning in a data warehouse are realized when the partitioning column is a date column. In our case, the column is not literally a datetime data type, but the data contained in the column refers to a date which is stored as an integer (CCYYMMDD).

Partitioning Design Decisions

Our first design decision is the partitioning key. The sales fact table has a Transact_Date column that is of a SQL Server datetime datatype. This initially seemed to be the ideal partitioning column. However, this column is not defined on either of the inventory fact tables. The “date” column is, instead, implemented as a SQL Server int datatype (in the format CCYYMMDD) to minimize the space allocation. This column, named SK_Date_ID, is consistent across all three fact tables so it was the column chosen as the partitioning key. One issue with choosing this column is that it will be tempting to query the Sales fact table by the Transact_Date column, since it is a true datetime data type. Remember, that the query optimizer will only be able to limit partitions scanned to resolve a query if the query filters on the partitioning column.

Our next design decision is the partitioning interval. The Barnes and Noble data currently exists as weekly tables since Inventory loads are logically done on a weekly basis (a snapshot is created at the beginning of each week and updated daily). This also keeps the partition sizes at roughly 25 GB per partition, which is a manageable size. A monthly partitioning scheme would be roughly 100 GB, which would be more difficult to manage. We chose the same partitioning strategy for Sales in order to reap the benefits of partitioned table alignment, which will be discussed later.

Probably our biggest consideration had to do with how the partitions will lay out on disk. Do we map partitions to one or more filegroups, with one or more files? A detailed discussion on the pros and cons of two high-level strategies for partition mapping are discussed in the “Strategies for Partitioning Relational Data Warehouses in Microsoft SQL Server” white paper, referenced at the end of this paper. We decided it was better to map each partition to its own filegroup, each with a single underlying file. That way, we have control over how it is laid out on disk. There are differing points of view, regarding whether this is desirable or not. It could be said that the striping we enforce through the use of separate filegroups could be implemented through the disk subsystem. There are three primary reasons for the separate filegroup implementation:

1. The read-only attribute can be set at the filegroup level. As partitions age past 8 weeks, which is when fact table inserts no longer occur, we can turn on the read-only attribute to enable piecemeal backup/restore scenarios (this is a new feature in SQL Server 2005) and reduce locking.

2. The aging scenario could possibly be performed at the disk level. In order to enable this possibility, the partitions must be isolated in their own disk files. If the partitions are striped across several disks in a filegroup, this is not an option.

3. In order to implement aging of older partitions to inexpensive disks, we need to have at least two filegroups, one for the active disk array and one for the inactive disk array. This would prevent us from mapping everything to a single filegroup.

There were two aspects to implementing partitioned tables to the Barnes and Noble environment. First, we had to move all of the existing tables into the partitioned tables we created, and then we needed to modify the existing ETL processes to create new partitions each week and load the new data into those partitions. These are discussed separately below.

Partitioned Indexes?

There are a few decisions to make regarding index partitioning. The first is whether to partition indexes on the partitioned tables at all. If we do, do we need to decide whether the indexes should be aligned with the base table. Finally, we need to determine whether to co-locate them with the base tables. The decision to partition indexes was an easy one. The whole idea of partitioning to begin with is largely related to manageability and ease of administration. Since only a fraction of our data is volatile it makes no sense to manage a large index when much of it won't be changing. Most index maintenance is partition-aware and, therefore, we can perform needed maintenance on a subset of the index instead of the entire thing.

Indexes can actually be partitioned differently than the underlying base table, except in the case of a clustered index. This makes little sense in a scenario where we will regularly be swapping data in and out. If the indexes follow the same partition function, then data can be moved in and out more effectively since the data is segmented in the same way.

The final issue regards where the indexes will reside. The clustered indexes, by default, follow the partition scheme of the base table, which defines where partitions reside on disk. Non-clustered indexes could be created on a separate partition scheme, but operations can be more easily parallelized by SQL Server if related data is guaranteed to be on the same filegroup. For more information, see Kimberly Tripp's white paper on "Partitioning in SQL Server 2005".

Conversion of existing tables to partitioned table

The first step to converting the existing tables was to review the current Barnes and Noble environment. The dimensions and fact tables are currently stored on two databases, one for the inventory fact tables (store and distribution center inventory), and one for the sales fact tables and dimension tables. For Project REAL, these were consolidated into a single database, REAL_Warehouse, during the data masking process. For our partitioning exercise, we are dealing only with the fact tables so that is where we will focus.

The legacy Sales fact tables are represented as a physical SQL Server table per week. Each table follows the naming convention "Tbl_Fact_Store_Sales_WE_ccyy_mm_dd", where the date refers to the date on which the week ended (Saturday). An example table is "Tbl_Fact_Store_Sales_WE_2003_12_27" which comprises data from 12/21 2003 to 12/27/2003.

The relevant information about the Inventory fact tables is similar to that above. There are actually two variations of Inventory fact tables, one for DC (Distribution Center) inventory and one for store inventory. The naming conventions for these tables are "Tbl_Fact_DC_Inventory_WE_ccyy_mm_dd" and "Tbl_Fact_Store_Inventory_WE_ccyy_mm_dd", respectively. The metadata for these tables differs significantly, so they cannot be combined. Like the Sales tables, our partitioning column is SK_Date_ID, with the same datatype.

We were able to select a common partitioning column, SK_Date_ID, across our 3 fact tables since the datatypes were consistent. This allows us to align the tables for easy joining. The key is an integer representation of the date. For instance, "December 25, 2004" becomes 20041225. The fact that the existing physical source tables are based on weekly increments, our conversion to like partitions is greatly facilitated. One partition in our partitioned table equals one physical source table. The following is a high-level representation of the steps to load each logical fact table:

· Create all files and filegroups

· Create the partitioning function - this defines all of the boundaries for a given partition table. The following is a subset of the CREATE PARTITION FUNCTION statement:

CREATE PARTITION FUNCTION pf_Range_Fact(int)

AS
RANGE LEFT FOR VALUES (

 20020105,

 20020112,

 20020119,

 .

.

.

 20041231)

· Create the partitioning scheme - this defines how each partition lays out on disk. We decided to align the Inventory and Sales fact tables, but they are not storage aligned. This facilitates joins between discrete partitions but spreads the I/O across physical storage. When we say "align", we mean that the partitioned tables share an equal partitioning function. This does not mean the partitioning function has to be literally the same, but the boundary definitions, partitioning key datatype and number of partitions must match. Storage alignment would indicate that a given partition on both tables would reside on the same filegroup.

· Create the partitioned table - this looks like any other CREATE TABLE statement but indicates that the table be "placed" on the partitioning scheme indicated above.

· For each source table, such as dbo.Tbl_Store_Inventory_WE_2004_12_25:

· SELECT INTO a temporary table which will be switched into the partitioned table.

· Add a check constraint (WITH CHECK) that corresponds to the destination partition.

· Determine the destination partition by using the $partition function:

SELECT @PartitionNum = $partition.FactRangePFN(20041225)

· SWITCH the temporary table into the destination partition

· Create indexes

Note If the legacy Sales and/or Inventory were moving to a partitioned table within the same database and already resided on the desired filegroups, we could have skipped the SELECT INTO step and simply switched the tables into their appropriate partitions after creating the check constraint and changing the partitioning column to NOT NULL. This was not the case, so we needed to copy the source table to a separate table that resided on the desired filegroup prior to switching it in to the partitioned table.

The CREATE PARTITION FUNCTION and CREATE PARTITION SCHEME commands were generated automatically. Especially at the week level, these commands would be tedious and prone to errors had we manually typed them in. This also gave us some flexibility when defining the partition boundaries and made it easier to be sure the partition scheme matched the partition function boundaries. This code is included for reuse with the Project REAL artifacts.

The initial creation of the partitioned table can be an extremely lengthy process. In our case, we were literally copying 1.5 TB of data. Our challenge was to make the process as expedient as possible. INSERT INTO was quickly ruled out due to the logging and locking overhead. BCP would require that the data first be copied out to disk, then BULK INSERTed back into the temporary table. This gives us more control over how the file is copied than the SELECT INTO option but it was actually faster to perform SELECT INTO than it was to just BCP the data out. The SELECT INTO option proved to be over 9 times faster than the BCP out/BULK INSERT combination, even after confirming the BCP to be non-logged, minimal locking.

The main issue with SELECT INTO is that there is no way to indicate the filegroup of the table that is created in the process. This is critical, as the filegroup of this temporary table must match the filegroup of its destination partition. To guarantee the temporary table's filegroup is defined correctly, the default file group of the database was changed just prior to the SELECT INTO to make sure the table was created on the desired filegroup. This greatly limited our ability to process tables in parallel, since all concurrent SELECT INTOs would have to use the same filegroup (only one default database filegroup at a time!) This also would have introduced a disk hotspot, which could have a negative impact on parallelism. The serial nature of the SELECT INTO option was still more desirable than the BCP/BULK INSERT option, though, so we proceeded with the former option.

The source tables did not contain constraints on the date data contained within. A trusted check constraint must exist on the source partitioning column that is consistent with the target partition boundary in order for a successful switch to occur. This constraint was added during the load process, after the completion of the SELECT INTO.

Also, the partitioning column, SK_Date_ID, was defined to be nullable on all three tables. We could have included a boundary in our partition function that defined a partition where all rows with SK_Date_ID = NULL should go but this would not make sense when our partitioned strategy is based on dates. Also, a SK_Date_ID with NULL would violate our CHECK CONSTRAINT. We confirmed with Barnes and Noble that SK_Date_ID should never be null so we implemented this business rule through the schema.

The following is a breakdown of one of our larger inventory fact tables:

Table 2 Copy table partition breakdown

	Step
	Elapsed time (mm:ss)
	% of Total

	SELECT INTO
	7:33
	74%

	ALTER SK_Date_ID not null
	5:51
	

	ALTER ADD check constraint
	2:42
	26%

	SWITCH to partitioned table
	0:00
	0%

	Total
	10:15
	

Note that we did not use an ALTER TABLE statement to implement the NOT NULL constraint on the SK_Date_ID column in the target table. We were able to implement this, instead, during the SELECT INTO statement by using the ISNULL function. To illustrate this point, see the following statement.

SELECT <Column 1>,
<Column 2>,
isnull([SK_Date_ID], -1) as [SK_Date_ID],
.

.

.

<Column x>
INTO dbo.Tmp_NewPartition FROM Tbl_Fact_Store_Sales_WE_2005_01_01
Prior to implementing this trick, the ALTER TABLE statement to add the NOT NULL constraint took nearly 6 minutes per table, saving a tremendous amount of time when multiplying this per partition across the three partitioned tables. The estimated savings in using this "trick" was over 5 hours for the store inventory fact table alone!

Examining the Partitioned Table

The first inclination, after loading the new partitioned tables, is to take a look at the results. One thing that is quickly apparent is that nothing is immediately apparent. There is nothing, on initial inspection, that distinguishes the partitioned tables from the non partitioned tables. One positive aspect is that there are far fewer objects in the database. The source database housed 229 fact tables; the database with partitioned tables contains 3 fact tables. Any one of the 3 fact tables can be further scrutinized by viewing the properties in SQL Server Management Studio. The following reveals the properties for the Tbl_Fact_Store_Inventory table:

Insert thumbnail REAL_Life_Part_M3_Fig01_thumb.gif here.

Figure 1 Partitioned Table properties

It is obvious by the row count that our load was successful. Additional verification can be done to validate that the sum of the row counts of the source tables is equal to the row count indicated in this dialog box. The "Storage" section shows that the table is partitioned and indicates the Partition Scheme to which the partitions are mapped.

Dynamic Management Views (DMVs) can be queried to give a better indication of the distribution of rows across partitions. This is can be an expensive proposition, since an actual count is performed on each partition in the table, but the following query gives a nice overall view of the partitioned table and the distribution of rows.

SELECT $partition.pf_Range_Fact(o.SK_Date_ID) AS [Partition Number]

 , min(o.SK_Date_ID) AS [Min Date]
 , max(o.SK_Date_ID) AS [Max Date]
 , count(*) AS [Rows In Partition]
FROM dbo.Tbl_Fact_Store_Sales AS o
GROUP BY $partition.pf_Range_Fact(o.SK_Date_ID)
ORDER BY [Partition Number]
It produces the following information for our Sales fact table (only a subset of the result set is included for brevity).

	Partition #
	Min Date key
	Max Date key
	Rows in Partition

	…
	…
	…
	…

	140
	20040829
	20040904
	8061536

	141
	20040905
	20040911
	8308355

	142
	20040912
	20040918
	8044390

	143
	20040919
	20040925
	7824844

	144
	20040926
	20041002
	7864007

	145
	20041003
	20041009
	7853734

	146
	20041010
	20041016
	8056497

	147
	20041017
	20041023
	8017784

	148
	20041024
	20041030
	7684242

	149
	20041031
	20041106
	7924918

	150
	20041107
	20041113
	8845731

	151
	20041114
	20041120
	8963072

	152
	20041121
	20041127
	9361857

	153
	20041128
	20041204
	11201851

	154
	20041205
	20041211
	13974601

	155
	20041212
	20041218
	17549392

	156
	20041219
	20041225
	18736647

	157
	20041226
	20041231
	12016107

Incremental processing

Once the partitioned tables are in place, we need to maintain them on an ongoing basis. This involves creating a new partition for each of our partitioned tables at the beginning of each week. In addition to this, we chose to implement a "sliding window" and to migrate older data from more expensive disk to less expensive disk.

Sliding Window

A "sliding window" implementation modifies the range of data that is available in a partitioned table over time adding new partitions when new data is introduced, and removing older partitions as historical data is no longer needed. The amount of data to be available in a partitioned table depends solely on business requirements that will vary from implementation to implementation. These requirements may dictate that 3 rolling years of Sales always be available. In such a case, historical sales can be rolled off at the same time that new sales are added. To clarify the sliding window implementation and to give an example of how adding and removing partitions is accomplished with SQL Server 2005 partitioned tables, we've outlined a scenario below:

4. After loading some information into a new, external fact table for the week ending on 01/01/2005, we want to make the new information available in the partitioned table.

Insert thumbnail REAL_Life_Part_M3_Fig02_thumb.gif here.Figure 2

5. First we "split" the last partition in the partition function, which is technically everything after 12/25/2004, to include a new boundary that includes everything after 12/25/2004 up to 01/01/2005.

Insert thumbnail REAL_Life_Part_M3_Fig03_thumb.gif here.

Figure 3

6. Now we switch the newly created partition, which is empty, with the external table that was loaded prior to step 1. This results in an empty external table which we will delete.

Insert thumbnail REAL_Life_Part_M3_Fig04_thumb.gif here.

Figure 4

7. We now have a partitioned table that includes the new data.

Insert thumbnail REAL_Life_Part_M3_Fig05_thumb.gif here.

Figure 5

8. Next we want to remove the data in the oldest partition. We start by creating an empty external table with the same table schema as the partitioned table (including indexes).

Insert thumbnail REAL_Life_Part_M3_Fig06_thumb.gif here.

Figure 6

9. We switch the first partition of the partitioned table with the external table that we just created.

Insert thumbnail REAL_Life_Part_M3_Fig07_thumb.gif here.

Figure 7

10. Now we merge the first partition, which included all dates less than or equal to 01/05/2002, with the second partition. Now our first partition includes all dates less than or equal to 01/12/2002. Now that the data for the week ending in 01/05/2002 is outside of the partitioned table, we can archive it somewhere and then delete the table from SQL Server.

Insert thumbnail REAL_Life_Part_M3_Fig08_thumb.gif here.

Figure 8

A sliding window implementation usually represents adding and removing partitions at the same time through the split/switch and merge/switch actions. Adding and removing partitions are not directly dependant, however, and they can certainly occur separately. A variation of the sliding window may indicate that old data cannot be removed with the same frequency that new data is added. An example is a business requirement that 3 full fiscal years be available. In this scenario, a new fiscal year is gradually built, week by week or month by month, until it reaches a full fiscal year. Then, the oldest fiscal year is removed all at once. All of these scenarios can be accomplished through a variation of the sliding window implementation used for Project REAL. The difference will be in how and when the merge/switch operations are performed.

Barnes and Noble has not yet accumulated the amount of data for Sales or Inventory that would warrant data archival. Therefore, we decreased the deletion period in order to be able to test the sliding window implementation. The process is parameter driven and can be easily modified to adjust the timing.

Aging data

A concept that is often talked about, but rarely implemented, is one of maintaining the most active data on the fastest and most highly available disk subsystem, and hosting less active data on less expensive disk that is slower and/or less highly available. This particularly comes into play in a data warehouse where there is an extremely high disk storage requirement and often several years of data need to be kept online. It is recognized that there will be a hotspot of activity on the last year or two of data. This doesn't mean that older data does not need to be available for occasional queries or for legal requirements, however. To manage the expense of maintaining such an infrastructure, we implemented a mechanism in Project REAL to move partitions from a more to less expensive disk subsystem during our incremental processing. This was done during the same incremental process where partitions are added and deleted.

The movement to inexpensive disk is somewhat complex, in theory, but relatively simple in actuality. The main thing to remember is that we are actually moving data from one disk subsystem to another. This can be a very expensive operation, especially when moving the amount of data found in a data warehouse. We chose to move one partition with each week to minimize the amount of data movement at any given time.

And now for the theoretical complexity. A partition scheme defines how the partitions defined in the partition function are laid out on disk. Once a partition scheme is created, it cannot be renamed or modified in any way, except to indicate where new partitions will go. Splitting and merging of partitions in the partition function can add or remove partitions, but it does not affect where existing partitions resides. So, in order to "move" a partition, we must create a new partition scheme to indicate the new layout of partitions on disk.

Insert thumbnail REAL_Life_Part_M3_Fig09_thumb.gif here.

Figure 9 Moving aged data to inexpensive disk

The following gives a high-level overview of the steps we used to perform the movement of aged data. Initially, this process appears to be somewhat complex, particularly in a situation, as our in Project REAL, where the Sales partitioned table has over 150 partitions! Since all of the above steps are metadata steps, except for the data movement step, it actually runs very quickly.

11. Create a new partition scheme, based on the existing partition function that exactly duplicates the existing partition scheme except for the moving partition or partitions. The moving partition boundary in the partition scheme definition will indicate a filegroup on less expensive disk.

12. Create a new partitioned table on top of the new partition scheme.

13. Iterate through each partition and switch from the old partition to the same partition number in the new partition (both partitioned tables use the same partition function) until the moving partition is reached. The shaded boxes refer to populated partitions and the white boxes indicate an empty partition.

Insert thumbnail REAL_Life_Part_M3_Fig10_thumb.gif here.

Figure 10

14. The moving partition needs to be explicitly copied, since the data is moving. This can be done by copying the data directly from the old partition to the new one, using a INSERT INTO..SELECT or we can SELECT INTO an external table that resides on the same filegroup as the destination partition. As in the initial load, the SELECT INTO performed far better than the INSERT INTO so we chose the former method.

Insert thumbnail REAL_Life_Part_M3_Fig11_thumb.gif here.

Figure 11

15. When using the SELECT INTO method, we then need to switch the external table into its ultimate destination in the new partitioned table.

Insert thumbnail REAL_Life_Part_M3_Fig12_thumb.gif here.

Figure 12

16. Now we iterate through the remaining partitions in the current partition scheme and switch out the partitions to the new partitioned table as we did in step #3.

Insert thumbnail REAL_Life_Part_M3_Fig13_thumb.gif here.

Figure 13

17. We clean up by deleting the old partitioned table and partitioning scheme, and renaming the new partitioned table to the original partitioned table name.

Insert thumbnail REAL_Life_Part_M3_Fig14_thumb.gif here.

Figure 14

Code Samples

The following provides a more in-depth look at the process that is used to implement the management of aged data that was just outlined.

18. Create the new partitioning scheme

The new partition scheme is an exact copy of the existing partition, except that the date boundary that defines when to “age” a partition has changed. The name is suffixed with the date of our current week end so it will be unique. Partition scheme names cannot be changed so this name will be kept until our next aging process, when a new partition scheme will replace this one.

In the typical weekly process to create a new partition, only one partition will move from an “active” filegroup to an “aged” filegroup. A cursor is created on the metadata to walk through the boundaries and build the script for the new partition scheme. Though cursors are typically a bad idea in any ETL process due to their low performance, in this case they are used only to iterate through a small number of metadata objects. Note that all filegroups must remain the same between both partition schemes except for the partitions that are moving from “active” to “aged”. The code for this looks like this:

DECLARE CurrentSchemePartitions CURSOR FOR

SELECT FileGroupName, Boundary

FROM dbo.fn_Get_FileGroupsByPartitionBoundary(@psOld_Scheme_Name)

ORDER BY Boundary ASC

OPEN CurrentSchemePartitions

SET @psSQL_Text = 'CREATE PARTITION SCHEME ' + @psNew_Scheme_Name + '

AS PARTITION pf_Range_Fact

TO ('

 FETCH NEXT FROM CurrentSchemePartitions INTO @psFG_Name, @pnBoundary_Date

 WHILE @@FETCH_STATUS = 0

 BEGIN

 -- If the partition boundary is less than the beginning date, use the file

 -- group for the new partition to move into the Agedd area

 IF @pnBoundary_Date < CONVERT(int, CONVERT(char(10), @pdLogical_Date, 112))

 BEGIN

 SET @psSQL_Text = @psSQL_Text + @psFG_Name + ', '

 SET @psAged_FG_Name = @psFG_Name
 END

 -- If the partition boundary is less than or equal to the Aged date and was

 -- previously in one of the "Current" filegroups, script the partition to

 -- the Aged filegroup that will be relinquished when the old partition drops

 -- off.

 ELSE IF @pnBoundary_Date <= CONVERT(int,CONVERT(char(10),@pdAged_Date, 112))

 AND @psFG_Name LIKE @psActive_FG_Prefix + '%'
 BEGIN

 SET @psSQL_Text = @psSQL_Text + @psAged_FG_Name + ', '

 SET @psActive_FG_Name = @psFG_Name

 END

 ELSE

 SET @psSQL_Text = @psSQL_Text + @psFG_Name + ', '
 FETCH NEXT FROM CurrentSchemePartitions INTO @psFG_Name, @pnBoundary_Date

 END

 -- !!When we are done, we need to add a additional partition to the scheme.

 -- This is for the right-most partition, which was not represented in our

 -- cursor query because it is not in the partitioning function. Since we are

 -- left partitioning, data will ever be in this final partition.

 SET @psSQL_Text = @psSQL_Text + '[Primary])'

 EXEC (@psSQL_Text)

 CLOSE CurrentSchemePartitions

 DEALLOCATE CurrentSchemePartitions

19. Create the new partitioned table

The new partitioned table definition looks exactly the same as the old one. The only difference is that it will be defined on the new partition scheme that we just created. Indexes also need to be created so that partitions can switch directly from the old partitioned table to the new one.

20. A new cursor is created that is identical to the one used in step #1. When looping though this cursor, we will switch each partition directly into the equivalent partition in the new table. Since both the new and old partition schemes are based on the same partition function, the source and destination partition numbers are known to be the same.

SELECT @PartitionNum = $partition.pf_Range_Fact(@pnBoundary)

SET @psSQL_Text = 'ALTER TABLE ' + @psPartitioned_Table_Name +

' SWITCH PARTITION ' + CONVERT(varchar(3), @PartitionNum) + ' TO '

+ @psNew_Partitioned_Table_Name + ' PARTITION ' +

CONVERT(varchar(3), @PartitionNum)

EXEC (@psSQL_Text)

21. If the partition is moving, we need to copy the data to a new external table with the same structure. As previously mentioned, the most efficient way to do this is to perform a SELECT INTO operation, followed by the creation of the check constraint and indexes. Then we switch the external table (now a partitioned table, after creating the indexes) into the partitioned table we created in step #2. The code segment for these steps looks as follows:

SET @pnAged_Boundary_Date = @pnBoundary

-- Get the name of the Aged FG that the moving partition will reside on by

-- looking it up on the new partition scheme

SELECT @psNew_FG_Name = dbo.fn_Get_FileGroupForBoundary(@psNew_Scheme_Name,

@pnBoundary)

-- Change the default filegroup to the filegroup the moving partition will

-- reside on so the SELECT INTO will create the table on the correct filegroup.

EXEC etl.up_SetDefaultFG @pnBoundary, @psNew_Scheme_Name

IF (SELECT COUNT(*) FROM sys.tables WHERE name = 'MovingPartition') > 0

DROP TABLE MovingPartition

-- Copy the data from the moving partition on the old table to a temporary

-- partition on the new filegroup.

SELECT @PartitionNum = $partition.pf_Range_Fact(@pnBoundary)

SET @psSQL_Text = 'SELECT * INTO MovingPartition FROM ' +

@psPartitioned_Table_Name + 'WHERE $partition.pf_Range_Fact(SK_Date_ID) = '

+ CONVERT(varchar(4), @PartitionNum)
EXEC (@psSQL_Text)

-- Since constraints and indexes were lost during the SELECT INTO, create them -- to match those on the destination partitioned table.

SET @psBoundary = @pnBoundary

SET @pdWeek_Begin = SUBSTRING(@psBoundary, 5, 2) + '/' +

SUBSTRING(@psBoundary, 7, 2) + '/' +

SUBSTRING(@psBoundary, 1, 4)

SET @psSQL_Text = 'ALTER TABLE MovingPartition WITH CHECK

ADD CONSTRAINT MovingPartition_Date CHECK

(SK_Date_ID BETWEEN ' +

CONVERT(varchar(8), DATEADD(dd, -6, @pdWeek_Begin), 112) + ' AND ' +

CONVERT(varchar(8), @pnBoundary, 112) + ')'

EXEC (@psSQL_Text)

EXEC etl.up_CreateIndexes 'MovingPartition', @psNew_FG_Name

-- Get the partition number for the moving partition and switch it in to the

-- new partitioned table

SET @psSQL_Text = 'ALTER TABLE MovingPartition SWITCH TO ' +

@psNew_Partitioned_Table_Name + ' PARTITION ' +

CONVERT(varchar(3), @PartitionNum)

EXEC (@psSQL_Text)

DROP TABLE MovingPartition
22. Delete or rename old partitioned table

23. Rename new partitioned table

Observations and Recommendations

There were several observations made based on experimentation with a full set of data. These are primarily related to performance comparisons. These observations are documented below.

Sharing the Partition Function

There is logically a single partition function across the three fact tables. We resolved to partition them in the same way to facilitate joins between them. For instance, suppose we issue a relational query that asks for the sales of an item compared to inventory for each month in the current year. SQL Server can identify that these two partitioned tables are aligned, meaning they share the same partition function. When joining two aligned partitioned tables, the optimizer has the option to join within the partitions, first, and then bring the subset joined results together. When we say the tables share the same partition function, this does not mean they have to share, literally the same Partition Function. Their respective partition functions must have the same number of partitions and the partitioning key must be of the same datatype. The easiest way to keep within these rules was to literally share the same partition function.

Sharing the same partition function comes with some issues. When splitting the last partition to add a new boundary, all partition schemes that reference the partition function must have identified where the next partition will be located. When removing partitions with the merge function, all dependent partitioning schemes should have emptied the partition. If the first partition is not empty for all table that reference the partition function, the merge action results in physically moving the rows from the removed partition to the location of the partition to which it is merging. This is not a critical issue but would be a performance hit while the rows move and, more importantly, will not actually remove the rows we wish to archive.

To demonstrate below, we've laid out the partition function on the left and the three partition schemes in the right-most columns. When we split the last partition in preparation for switching in new data, the appropriate NEXT FG must be set for all three partition schemes so that new data goes to the correct location. When we merge the first partition in preparation for removing the week ending on 01/05/2002, the first partition data for all partitioned tables using the three schemes must have been switched out and must be empty. If, for instance, the Tbl_Fact_Store_Inventory table still has data for this week, the merge action will result in this data moving to Aged FG 3.

	Partition Function
	Partition Schemes

	Pf_Range_Fact
	ps_FactStoreSales
	ps_FactStoreInventory
	ps_FactDCInventory

	01/05/2002
	Aged FG 1
	Aged FG 2
	Aged FG 3

	01/12/2002
	Aged FG 2
	Aged FG 3
	Aged FG 4

	…
	
	
	

	12/18/2004
	Active FG 1
	Active FG 2
	Active FG 3

	12/25/2004
	Active FG 2
	Active FG 3
	Active FG 4

	01/01/2005
	Next FG
	Next FG
	Next FG

This could all have been resolved by creating separate partition functions but the same actions would have to be performed either way - the only benefit would be that they wouldn't have to be done altogether. Separating the partition functions could also have resulted in a disparity in the number of partitions the fact tables have at any given time. This would remove the benefits of having aligned tables to begin with.

Index Creation

During the initial population of the partitioned tables, the question came up as to whether to create the indexes on the partitioned table, upfront, or after it had been loaded. Initially, this decision would seem to have minimal impact on performance. The options are outlined below:

Option 1 - Create indexes on the partitioned table prior to loading

24. Create partitioned table

25. Create indexes on partitioned table

26. For each source table

a. Create external table

b. SELECT INTO external table

c. Create CHECK constraint

d. Create indexes to match those on the partitioned table

e. Switch the external table into the appropriate partition in the partitioned table

Option 2 - Create indexes on the partitioned table after loading

27. Create partitioned table

28. For each source table

· Create external table

f. SELECT INTO external table

g. Create CHECK constraint

h. Switch the external table into the appropriate partition in the partitioned table

29. Create indexes on partitioned table

The underlined steps indicate the differences between the two options. Since, in either case, the indexes are created after the data is loaded, there should not be a substantial difference between the two options, but there was. Option 2 proved to be 70% faster so that was the option we chose for the initial load. We don't have a choice between the two options for incremental loading because we are ultimately switching into a partitioned table that already has the indexes created. As such, we must create matching indexes on the external table prior to the switch.

When using Option 1, either for the initial load or for incremental loads, be sure to create the index on the partitioning scheme used by the destination partitioned table. This, in essence, makes the external table a partitioned table with a single loaded partition. As such, you must indicate the partition number for both the external source table AND the destination table during the SWITCH.

User-defined functions for metadata queries

There are several new data management views (DMVs) that represent the metadata for the partition functions and schemes. We relied on these for various portions of our implementation but abstracted the complexity by creating two user-defined functions that are documented here. Since these DMVs were not documented at the time of our development, the correct means of using them was determined by tracing the queries that were produced by SQL Server Management Studio when scripting CREATES on the partition function and partition scheme objects.

The first function returns a table resultset of all filegroups and their associated partition boundaries (upper boundaries, in our case, since we used the LEFT partition function) for a partitioning scheme.

CREATE FUNCTION dbo.fn_Get_FileGroupsByPartitionBoundary(@SchemeName varchar(50))

RETURNS TABLE

AS RETURN

(

SELECT sf.name AS FileGroupName,

CONVERT(int, sprv.value) AS Boundary

FROM sys.partition_schemes AS sps

INNER JOIN sys.partition_functions AS spf

ON sps.function_id = spf.function_id

INNER JOIN sys.destination_data_spaces AS sdd

ON sdd.partition_scheme_id = sps.data_space_id

AND sdd.destination_id <= spf.fanout

INNER JOIN sys.partition_range_values sprv

ON sprv.function_id = spf.function_id

AND sprv.boundary_id = sdd.destination_id

INNER JOIN sys.filegroups AS sf

ON sf.data_space_id = sdd.data_space_id

WHERE sps.name= @SchemeName

)

The second user-defined function returns the last filegroup prior to or equal to a specified boundary.

CREATE FUNCTION dbo.fn_Get_FileGroupForBoundary (@SchemeName varchar(50), @Boundary int)

RETURNS varchar(50)

WITH EXECUTE AS CALLER

AS

-- Find last filegroup prior to or equal to specified boundary

BEGIN

DECLARE @FileGroupName
varchar(50)

SELECT TOP 1 @FileGroupName = sf.name

FROM sys.partition_schemes AS sps

INNER JOIN sys.partition_functions AS spf

ON sps.function_id = spf.function_id

INNER JOIN sys.destination_data_spaces AS sdd

ON sdd.partition_scheme_id = sps.data_space_id

AND sdd.destination_id <= spf.fanout

INNER JOIN sys.partition_range_values sprv

ON sprv.function_id = spf.function_id

AND sprv.boundary_id = sdd.destination_id

INNER JOIN sys.filegroups AS sf

ON sf.data_space_id = sdd.data_space_id

WHERE sps.name = @SchemeName AND sprv.value <= @Boundary

ORDER BY sprv.value DESC

RETURN(@FileGroupName)

END
Cube Partitioning

Benefits of cube partitioning

In addition to partitioning the relational data warehouse, we chose to partition the Analysis Services cubes. More accurately in Analysis Services 2005, we partitioned the measure groups, though we will generically refer to the whole process as "cube partitioning". There are many benefits to partitioning a larger cube, similar to those found in partitioning the relational data warehouse. One of the most obvious benefits is with cube maintenance. Cubes are processed, fully or incrementally, at the partition level. A cube with several partitions can be processed selectively. This is particularly relevant when only one or a couple of the partitions would be affected by changes to the source tables. This greatly decreases the batch window for incremental processing. Partitions also have their own aggregations and storage mode. When partitioning by date, older partitions could be reprocessed at a lower aggregation level or with a different storage mode (ROLAP/HOLAP/MOLAP) to decrease the amount of disk space required and the processing time required. Proactive cache settings are also defined at the partition level. Partitions can even be stored on a remote server, as remote partitions. Manageability is easier because older partitions can simply be deleted, as opposed to having to reprocess the entire measure group to recognize the archival of data in the underlying relational data source. Query performance is also a consideration - when cube queries are written in such a way as to limit data based on the partitioning key.

Changes in Analysis Services 2005

Most of the principles about partitioning that were applicable in Analysis Services 2000, are also relevant in Analysis Services 2005. There are a handful of changes, most of which are improvements over the previous version.

First of all, a partition is defined at the measure group level instead of the cube level. A cube contains one or more measure groups that relate to a logical fact table in the measure group's source tables. A wonderful performance enhancement is the fact that the processing of a cube or measure group automatically results in the parallel processing of the underlying partitions. In Analysis Services 2000, the partitions were processed serially unless a custom DSO program explicitly forced parallel processing, such as the Parallel Process utility (available as a free download on the Microsoft Web site).

In Analysis Services 2000, query performance benefits from partitioning could only be realized if data slices were defined on cube partitions to let the OLAP engine know what data is contained in which partition. This was similar to the definition check constraints on partitioned views to enable the SQL Server optimizer to minimize the number of tables that were queried based on the partitioning column. In Analysis Services 2005, MOLAP cubes no longer require data slices for this purpose. That is because MOLAP cubes include heuristics to map the data contained in the various partitions. Note that any cubes that revert to ROLAP, such as during the rebuild of the proactive cache, will not have these heuristics available and performance could suffer unless data slices are defined. Thus, if the cube will ever revert to ROLAP, it is a good practice to define data slices.

Source data in Analysis Services 2000 cubes were defined directly from a table or view in the source relational database. A filter could be defined to specify a subset of the table or view. For instance, if a partitioned view was used, the name of the partitioned view could be used as the source of an Analysis Services 2000 partition and a separate filter served to limit the data in the AS partition to the data in an underlying table in the partitioned view. In Analysis Service 2005, the source is specified to be either a table/view, or a query. If a subset of the underlying table or view will populate the partition, then the partition definition specifies a query, which is called "query-binding".

Finally, there are more automation options for partition creation in Analysis Services 2005. Previously, DSO (Decision Support Objects) was used to "clone" an existing partition, change the relevant attributes, and then save the new partition. DSO has been replaced with AMO (Analysis Management Objects). All requests from AMO are ultimately translated into XMLA (XML for Analysis) scripts. Since SSIS has the capability to execute native XMLA, this is another option. Which is preferred? That is what we hoped to determine.

Discussions on Analysis Services partitioning strategy

The first step in implementing partitioning in Analysis Services is to determine the partitioning strategy, namely, on what boundary the partitions should be divided. As in the relational data warehouse, a common strategy is to partition based on date. This simplifies processing since data is usually incrementally loaded based on date. It also simplifies archival since, as mentioned above, old partitions can simply be deleted after a backup is taken. It is useful to partition Analysis Services cubes with the same criteria as the underlying relational data warehouse. As such, data archival can be performed in a single process that deletes the appropriate partitions from both the data warehouse and the cubes. This is the strategy that was chosen at Barnes and Noble, and for Project REAL.

The Barnes and Noble implementation includes a view on top of each fact table to add some additional information from associated dimension members. This served as the source "table" for the Analysis Services 2000 cube partitions. With the introduction of partitioned tables, the number of views collapses down from one view per week per fact table (229 views), to one view per fact table (3 views). The Analysis Services 2005 partitions specify a query against the relevant view with a WHERE statement to limit the data to a single partition, such as:

SELECT [SK_Store_ID], [SK_Parent_Store_ID], ...

FROM [dbo].[vTbl_Fact_Store_Inventory]

WHERE [SK_Date_ID] BETWEEN 20041212 AND 20041218
There are two methods of automating the creation and processing of cubes in Analysis Services 2005. Details around both of these methods, including pros and cons, are documented in the following sections.

XML/A Overview

The first method is XMLA or, more specifically, ASSL. XMLA is an XML specification for querying OLAP data that was first released in April 2001 (more on the XMLA specification can be found at www.xmla.org). ASSL is specific to Analysis Services and is an XML DDL specification for OLAP. XMLA is the native data exchange protocol for Analysis Services 2005. All communication with Analysis Services is performed, ultimately, through XMLA. This makes it the fastest means of communicating with Analysis Services 2005 since no translation needs to occur. This is probably not a significant factor in most metadata operations, however, since there will not be a significant number of queries submitted to Analysis Services and this translation cost will be small.

XMLA scripts can appear to be somewhat complex at first. Like any other XML scripting language, the elements in XMLA are represented in a hierarchical structure and are self-describing. The language is verbose and not something that could easily be developed from scratch. Fortunately, Analysis Services 2005 gives us a good head start.

XML/A Implementation

In Analysis Services 2005, there are vast improvements in the ability to script objects, such as cubes, dimensions and partitions. In comparison, there was no scripting capability for Analysis Services 2000 out of the box. This scripting capability makes using XMLA a reasonable alternative, since an intimate knowledge of the XMLA specification is not required. XMLA can be executed in SQL Server Management Studio by opening a new "Analysis Services XMLA Query" window. It can also be executed in SQL Server Integration Services (SSIS) through the "Analysis Services Execute DDL" task. This allows us to easily automate partition creation and processing through XMLA.

The first step is to produce an XMLA script for each one of our cube measure groups. This is done through SQL Server Management Studio by navigating to a partition in a measure group, right-clicking, and selecting "Script Partition as". Next, we view the XMLA to understand what needs to be changed for each partition. This can be done by pasting the script in a SQL Server Management Studio XMLA Query window. This script is then pasted into a SSIS Script task and all of the text that is variable from partition to partition is replaced with variables that are modified based on partition. This XML string is saved as an SSIS variable that is executed in the "Analysis Services Execute DDL" task. The following script was taken from the SSIS Script task that scripts a partition for the Store Inventory measure group in the REAL Warehouse cube. Variables were created for the partition name, the partition ID, and the query against the relational source.

sXMLA = sXMLA & "<Create

xmlns=""http://schemas.microsoft.com/analysisservices/2003/engine"">"

sXMLA = sXMLA & " <ParentObject>"

sXMLA = sXMLA & " <DatabaseID>REAL Warehouse Partitioned</DatabaseID>"

sXMLA = sXMLA & " <CubeID>REAL Warehouse</CubeID>"

sXMLA = sXMLA & " <MeasureGroupID>Store Inventory</MeasureGroupID>"

sXMLA = sXMLA & " </ParentObject>"

sXMLA = sXMLA & " <ObjectDefinition>"

sXMLA = sXMLA & " <Partition xmlns:xsd=""http://www.w3.org/2001/XMLSchema""

xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance"">"

sXMLA = sXMLA & " <ID> & sPartitionName & </ID>"

sXMLA = sXMLA & " <Name> & sPartitionName & </Name>"

sXMLA = sXMLA & " <Annotations>"

sXMLA = sXMLA & " <Annotation>"

sXMLA = sXMLA & " <Name>AggregationPercent</Name>"

sXMLA = sXMLA & " <Value>13</Value>"

sXMLA = sXMLA & " </Annotation>"

sXMLA = sXMLA & " </Annotations>"

sXMLA = sXMLA & " <Source xsi:type=""QueryBinding"">"

sXMLA = sXMLA & " <DataSourceID>REAL Warehouse</DataSourceID>"

sXMLA = sXMLA & " <QueryDefinition> & sQuery & "</QueryDefinition>"

sXMLA = sXMLA & " </Source>"

sXMLA = sXMLA & " <StorageMode>Molap</StorageMode>"

sXMLA = sXMLA & " <ProcessingMode>Regular</ProcessingMode>"

sXMLA = sXMLA & " <ProactiveCaching>"

sXMLA = sXMLA & " <SilenceInterval>PT10M</SilenceInterval>"

sXMLA = sXMLA & " <Latency>-PT1S</Latency>"

sXMLA = sXMLA & " <SilenceOverrideInterval>-PT1S</SilenceOverrideInterval>"

sXMLA = sXMLA & " <ForceRebuildInterval>-PT1S</ForceRebuildInterval>"

sXMLA = sXMLA & " <Source xsi:type=""ProactiveCachingInheritedBinding"" />"

sXMLA = sXMLA & " </ProactiveCaching>"

sXMLA = sXMLA & " <EstimatedRows>2000000</EstimatedRows>"

sXMLA = sXMLA & " <AggregationDesignID>AggregationDesign 2</AggregationDesignID>"

sXMLA = sXMLA & " </Partition>"

sXMLA = sXMLA & " </ObjectDefinition>"

sXMLA = sXMLA & "</Create>"

Cube processing can be scripted in XMLA by navigating to a measure group partition in SQL Server Management Studio, right-clicking, selecting Process, then pressing the Script button at the top of the resulting dialog box. A sample XMLA script to process a cube looks like the following.

<Batch xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">

 <Parallel>

 <Process xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Object>

 <DatabaseID>REAL Warehouse Partitioned</DatabaseID>

 <CubeID>REAL Warehouse</CubeID>

 <MeasureGroupID>Store Inventory</MeasureGroupID>

 <PartitionID>Store Inventory WE 2004 12 11</PartitionID>

 </Object>

 <Type>ProcessFull</Type>

 <WriteBackTableCreation>UseExisting</WriteBackTableCreation>

 </Process>

 </Parallel>

</Batch>
AMO Overview

Analysis Management Objects (AMO) is a complete set of .NET objects for managing Analysis Services. AMO replaces the DSO object model that was used in Analysis Services 2000 and OLAP Services in SQL Server 7.0. Just as all Analysis Manager actions were implemented through DSO in Analysis Services 2000, all mechanisms for administering Analysis Services instances and databases are implemented by using AMO in Analysis Services 2005. AMO is a layer on top of XMLA and ultimately generates XMLA to perform all communication with an Analysis Services instance. This makes it slightly less performant than XMLA. Unless there are many AMO method calls, however, this performance difference will likely be undetectable.

Other enhancements with SQL Server 2005 make working with AMO much easier than using its predecessor, DSO. Since automation tasks were frequently implemented in DTS, we were relegated to the VBScript development environment. This environment did not have the rich set of coding (Intellisense, color-coding) functionality that is found in the Script task in SSIS, which uses a VSA (Visual Studio for Applications) interface. This functionality was heavily relied upon in the development of AMO code in Project REAL since the AMO documentation in Books Online was still sparse.

Perhaps the most obtuse aspect of DSO was the implementation of the MDStores interface to navigate down to the partition object. This is gone in AMO and database navigation is much more intuitive. This demonstrated in a code sample to follow.

One thing to note is that the current implementation of Analysis Services 2000 at Barnes and Noble does not create cube partitions through DSO and DTS. Partitions are created manually, a year at a time, and processing is implemented through the Parallel Process Utility since Analysis Services 2000 cannot process partitions in parallel natively. The enhancements in Analysis Services 2005 allow us to easily automate these processes and lower administrative overhead.

AMO Implementation

Our goal was to perform the same functionality with AMO as we did, above, with XMLA. We were actually able to improve the functionality based on the looping mechanisms that are inherent in the AMO object model. We looped through each measure group and checked if the measure group referenced the given fact table. If it did, we used the given process date to determine if the associated partition already exists. If the partition does not exist, we needed to create it.

With the XMLA implementation, the partition was created by running a previously generated script and changing the elements in the XML that designated the partition name, the partition ID, and the query definition. AMO provides the ability to copy an existing partition in the measure group with the Clone method. Instead of creating the partition by explicitly setting the partition properties in the code, we used the Clone method to copy everything from the last partition in the Partitions collection and change the same properties that were modified in our XMLA script.

The VSA environment that is implemented with the Script task also allowed us to tap into richer error handling capabilities. VBScript code in DTS required that each action be followed by a check for an error since there was no way to globally handle errors. This made for more complicated, less-readable code. Using Visual Basic .NET in a SQL Server Integration Services (SSIS) Script task, we could use the Try..Catch statement to handle errors consistently in a single set of statements. We also used the ability to declare and initialize variable for code readability.

Another technique that was used was to gather the connection information from a SSIS connection manager that was already in existence. This means we only need to modify the Server and Database information in one place when deploying this package to QA and Production environments. This could also be implemented with Configurations in SSIS.

The following is the core piece of code used to accomplish the partition creation functionality.

Try

 Dim oDB As Database = oServer.Databases(sDatabase)

 Dim oCube As Cube = oDB.Cubes("REAL Warehouse")

 Dim dLogicalDate As Date = CDate(Dts.Variables("vdtLogical_Date").Value)

 Dim sTableName As String = CStr(Dts.Variables("vsPartitioned_Table_Name").Value)

 Dim sWeekEnd As String = GetIntegerDateFormat(dLogicalDate)

 ' Find all measure groups that reference the table being processed

 For Each oMeasureGroup In oCube.MeasureGroups

 oPartition = oMeasureGroup.Partitions(0)

 oQueryBinding = oPartition.Source

 If oQueryBinding.QueryDefinition Like "*" & sTableName & "*" Then
 ' Get the relevant boundary partition name and check to see if it
 ' already exists
 sPartitionNew = GetNewPartitionName(sWeekEnd, oPartition.Name)

 oPartition = oMeasureGroup.Partitions.FindByName(sPartitionNew)

 If oPartition Is Nothing Then

 ' Get the last partition

 oPartition = oMeasureGroup.Partitions(oMeasureGroup.Partitions.Count - 1)

 ' Clone the properties from the last partition to the new partition.

 oPartitionNew = oPartition.Clone

 oPartitionNew.ID = sPartitionNew

 oPartitionNew.Name = sPartitionNew

 oQueryBinding = oPartitionNew.Source

 oQueryBinding.QueryDefinition = GetNewQuery(oPartition.Source, sWeekEnd)

 oMeasureGroup.Partitions.Add(oPartitionNew)

 oPartitionNew.Update()

 End If

 End If

 Next

 Dts.TaskResult = Dts.Results.Success

Catch ex As Exception

 Dts.Events.FireError(0, "Create Partition", ex.Message, "", 0)

 Dts.TaskResult = Dts.Results.Failure

End Try

If oServer.Connected Then

 oServer.Disconnect()

End If

An issue exists in VSA that requires that all referenced assemblies be located in the appropriate version subdirectory of the <windows path>\ Microsoft.NET\Framework path. The AMO and SMO assemblies must be manually copied from <SQL Server>\90\SDK\Assemblies directory to the aforementioned directory. With the installation of subsequent builds of SQL Server, a new VSA version directory will likely be created and changes to the assemblies could have occurred that will require these files be recopied. For the AMO coding referenced in this paper, only the AMO assembly was required (Microsoft.AnalysisServices.DLL).

After making sure the appropriate files have been copied to where VSA will recognize them, you must add a reference to them in the Script task. To do this, simply right-click on "References" in the Project Explorer and select "Add Reference…" Locate the "Analysis Management Objects" reference and add it. Then add a line at the beginning of the script that "Imports Microsoft.AnalysisServices" as shown in the following figure.

Insert thumbnail REAL_Life_Part_M3_Fig15_thumb.gif here.
Figure 15 Adding Script task references

Observations and recommendations

Both the XMLA scripting and AMO options can be easily implemented, especially when utilizing SSIS. Some observations for each method are mentioned below. Specific implementations may make one option more desirable than another. Overall, we found that AMO provided some benefits over XMLA, as documented below.

AMO observations

Pros:

· More elegant and straightforward - this is subjective but probably true for the majority.

· Can be used to include future objects - in reviewing the AMO code, you will notice that the first partition in each measure group is checked for a query reference to the fact table that passed. With well designed cubes, it is unlikely that additional cubes will be added to reference the same fact table but this situation is handled. It also handles the possibility of a measure group rename - measure group names are hard-coded in the XMLA implementation.

· Dynamically incorporates partition property changes - since the last partition is copied, any changes to aggregation design, storage mode, proactive caching, etc., is copied to the new partition. In most cases, this is desirable.

· All code is in one easy-to-read Script task - the XMLA implementation requires a Script task and a separate Execute Analysis Services DDL task.

· Can combine with additional work, like processing, in a single task - whether implementing processing through the Execute Analysis Services DDL task or through the Analysis Services Processing task, a separate task would be required. In comparison, processing can be performed by adding a single additional line to the AMO script.

Cons:

· Must manually copy assemblies to the Microsoft .NET with each new SQL Server build

XMLA observations

Pros:

· Everything is exposed - all relevant properties of the underlying object are exposed, making it easy to determine what should be changed and what should not.

· Lowest level - since XMLA is the native communications protocol for Analysis Services, it is the fastest.

Cons:

· Must manually script - actually this is not a strict requirement. A generalized script could be developed that would use variables to replace all properties that could change from measure group to measure group. These properties would either have to be hard-coded for each measure group or extracted from each measure group using AMO. Additional measure groups would still need to be manually added to the script.

· Still requires AMO to check for partition existence - in our scenario, we wanted the ETL process to be restartable, so we check for the pre-existence of the desired partition before proceeding on to create it. This can only be accomplished through AMO. This code is naturally incorporated in the partition creation code in the AMO implementation scenario.

· Changing anything not originally scripted will require re-scripting or a manual change to the script - this is probably the biggest problem with using XMLA scripting for automating partition creation. In some rare cases it may be desirable to always keep the original, scripted properties. This case could be implemented easily with either AMO or XMLA.

Overall observations

Both methods benefit from many of the enhancements in SSIS, namely:

· Partition creation is easily implemented in SSIS - though DTS provided the VBScript task for DSO coding, the development environment included few of the benefits available in the VSA environment used by the SSIS Script task. The Execute Analysis Services DDL task provides a very easy means of executing XMLA.

· Better error handling and debugging capabilities result in easier to read code and faster code development.

· When using AMO at all, you must use a workaround so VSA will be able to reference the AMO assembly (see the last bullet item under AMO observations).

ETL Changes

Now that the all components have been defined to implement incremental partition maintenance, we need to integrate this back into the existing ETL process. Remember that the existing implementation uses an explicit SQL Server 2000 table for each partition. Since there is not enough historical data to require implementation of partition archival, this process does not exist in the current ETL. Likewise, there is no process to implement data aging.

This is an overview of the existing ETL process for the Barnes and Noble Store Inventory and DC Inventory fact tables, as it applies to the management of relational partitions.

30. Pre-execute processing
31. Copy “current” table contents into a new “named” table to reflect the previous week (ex: Tbl_Fact_Store_Inventory_WE_2004_12_11)
32. Create indexes on the “named” table (since a SELECT INTO was used)
33. Re-initialize the “current” table to reflect the upcoming week (SK_Date_ID, Days_In_Stock, ETL_Load_ID)
34. Post-execute processing
Insert thumbnail REAL_Life_Part_M3_Fig16_thumb.gif here.

Figure 16 Barnes and Noble partition creation - before

There is no equivalent process for the Sales fact partitions because they are created in bulk ahead of time. This was done to eliminate the need to create a process to do this incrementally. The Sales fact partition maintenance is included in the Project REAL incremental processing and, therefore, eliminates the manual process. Incremental partition maintenance has been modified to the following overview:

35. Pre-execute processing - this did not change
36. Copy data from last partition into a new external table on the next file group (we can re-initialize columns such as SK_Date_ID during this step)
37. Create indexes on the new external table (since a SELECT INTO was used)
38. Split the last partition and switch the new external table in
39. Remove oldest partition and move archive partition to inexpensive disk - NEW FUNCTIONALITY
40. Post-execute processing
Maintenance for the Analysis Services 2000 cube partitions at Barnes and Noble is currently performed outside of the ETL process. The sales and inventory cube partitions are created a year out into the future and are not processed until data is rolled into them for the current week. This is no longer necessary, since we were easily able to incorporate the cube partition maintenance into the ETL process.

Additional Requirements

We added two additional requirements to the partition maintenance piece of data lifecycle management.

41. Restartability

We wanted to be sure that this process is restartable, from a partition maintenance point of view. That means that any code to create a new partition, remove an old one, or age a partition performs a check to see if this has already occurred.

42. Separation of day of week (for SSIS package run) and the invocation of the partition management process

The partition maintenance SSIS package can be called any day of the week. The stored procedures will check if it is time to perform any of the partition maintenance functions by querying the metadata. So, if the processing date is a Monday, a check will still be performed to see if the relevant partition exists. These queries run very quickly and add no significant overhead to the daily process. This removes the requirement of having separate daily and weekly ETL processes.

Pulling together table partitioning components

When approaching the automation of this functionality, it was tempting to try to consolidate the activities of data movement with the "sliding window" implementation. This quickly grew to be fairly complicated, especially from a future maintenance standpoint. This approach entails creating the new partition scheme to include the new partition and remove the old partition. The addition or deletion of partitions is actually at the partition function level, which is shared by all partition schemes. This quickly complicated the code as we tried to determine if this was a partition that existed in the old scheme but not in the new, and conversely. Ultimately, separating the two made the code much more simplistic and provides the opportunity to physically separate the processes if a business need dictates this. In fact, the sliding window implementation was also separated into two stored procedures. This facilitates the potential future change in business requirements. If, for instance, it is later decided that new partitions will be added weekly, but old partitions will be removed one year at a time, this change can be implemented more easily. The following stored procedures were created to encapsulate the logic for incremental partition maintenance:

· up_CreateNewPartition – based on the logical date (the date for to which the data applies), check to see that a partition exists for this data and, if not, create it. If this is an inventory partition, initialize the partition with data from the preceding partition, changing relevant columns such as SK_Date_ID. If this is a sales partition, no additional steps are necessary.

· up_RemoveOldPartitions – based on the logical date, check to see if any partitions are due to be archived. For Project REAL, we simply deleted the old partitions, but there may be a tape archiving strategy to be implemented.

· up_MoveAgedPartitions – based on the logical date, check to see if any partitions are due to be moved to inexpensive disk.

These three stored procedures are called by a parent stored procedure, up_MaintainPartitionedTable. The entire partition maintenance processing is encapsulated in a separate SSIS package that is called during the overall ETL process.

Insert thumbnail REAL_Life_Part_M3_Fig17_thumb.gif here.

Figure 17 Barnes and Noble partition creation - after

References

· Strategies for Partitioning Relational Data Warehouses in Microsoft SQL Server - http://www.microsoft.com/technet/prodtechnol/sql/2000/plan/spdw.mspx
· SQL Server 2005 Partitioned Tables and Indexes by Kimberly L. Tripp - http://www.sqlskills.com/resources/Whitepapers/Partitioning%20in%20SQL%20Server%202005%20Beta%20II.htm.

· TechNet Webcast: SQL Server 2005 Series (Part 6 of 10): Managing Large Databases using Partitioning - http://msevents.microsoft.com/cui/WebCastEventDetails.aspx?eventID=1032270016&Culture=en-US
Conclusion

Barnes and Noble can reap many benefits from using partitioned tables in SQL Server 2005. Partitioned views were not implemented at Barnes and Noble due to the large compile times that resulted, sometimes up to 30 seconds. The data was partitioned into separate tables, but these tables were managed separately. The ETL process required coding to determine the appropriate table to update while loading data. Partitioned tables remove this requirement and result in much lower administrative overhead.

For more information:

http://www.microsoft.com/sql/!href(http://www.microsoft.com/sql/)
Did this paper help you? Please give us your feedback. On a scale of 1 (poor) to 5 (excellent), how would you rate this paper?!href(mailto: sqlfback@microsoft.com?subject=Feedback: Data Lifecycle - Partitioning)
34

