Guide to Migrating from Sybase ASE to SQL Server 2005
<Title of white paper goes here>	6
Guide to Migrating from Sybase ASE to SQL Server 2005	91
[image: SQL_2005]
Guide to Migrating from Sybase ASE to SQL Server 2005
SQL Server Technical Article

Writers: Yuri Rusakov, Alexander Pavlov, Alexey Kovaliov
Technical Reviewers: Darmadi Komo, Irena Balin, Dmitry Balin
Project Editor: Scott Plamondon

Published: November 2007
Applies To: SQL Server 2005

Summary: This white paper covers known issues for migrating Sybase Adaptive Server Enterprise database to SQL Server 2005. Instructions for handling the differences between the two platforms are included. The paper describes how SQL Server Migration Assistant, the best tool for this type of migration, can help resolve various migration issues.

[bookmark: _Toc115167741]
Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

 2007 Microsoft Corporation. All rights reserved.

Microsoft is a registered trademark of Microsoft Corporation in the United States and other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Guide to Migrating from Sybase to SQL Server 2005

[bookmark: _Toc115167742]Table of Contents
Introduction	1
Migration Plan	1
SSMA Functionality	2
Sybase System Function Migration	3
Equivalent Functions	4
Nonsupported Functions	6
Emulated Functions	7
CHAR_LENGTH	7
CURRENT_DATE	8
DATELENGTH	8
INTTOHEX	9
HEXTOINT	9
NEWID	9
NEXT_IDENTITY	10
STR_REPLACE	11
CHARINDEX	11
REPLICATE	12
RTRIM	13
LEN	13
SUBSTRING	13
TO_UNICHAR	14
CONVERT	14
PAGESIZE	14
UHIGHSURR	15
ULOWSURR	15
USCALAR	15
PATINDEX	15
DATEDIFF	15
INDEX_COLORDER	16
COL_NAME	17
OBJECT_NAME	17
DATEPART	18
INDEX_COL	18
CURRENT_TIME	19
Data Migration Architecture of SSMA for Sybase	19
General	19
Solution Layers	20
Client Application	20
Stored Procedures Interface	20
Database Layer	21
Migration Executable	21
Message Handling	21
Validation of the Results	22
Migrating Applications from CT-Library to ODBC	22
Module Mapping	22
Command Mapping	22
Type and Structure Mapping	29
Migration Example	32
Source Programming Using CT-Library	32
ODBC Equivalent	39
Sybase Migration Issues	43
Data Types	43
Separate Date and Time Types	43
Date Range	43
Length of String Types	44
Expressions	45
Conversion of Time to String	45
Unicode Literals	46
Double-Quoted String Literals	47
Empty String	47
‘||’ as Concatenation Operator	48
Concatenation with NULL	48
Comparisons with NULL	48
CASE Nesting Limit	49
Implicit Conversion of Binary Types	49
Implicit Conversion of Datetime as Function Argument	50
SQL Commands	51
COMMIT	51
Different COMMIT Syntax	51
Quoted Data Type at CONVERT and CAST Functions	51
DEALLOCATE CURSOR	52
LOCK TABLE <T> IN SHARE | EXCLUSIVE MODE	52
PRINT Command	53
RAISERROR	55
ROLLBACK	60
SELECT / INSERT / DELETE / UPDATE	61
AT ISOLATION Clause	61
DISTINCT with ORDER BY	61
FOR readonly | update Clause	62
Different Use of the GROUP BY Clause	62
HAVING Clause	65
HOLDLOCK Hint	67
INDEX <index-name> Hint	67
Non-Standard Outer JOIN	67
NOHOLDLOCK Hint	70
READPAST Keyword	70
SHARED Keyword	71
Different Behavior of the LIKE Operator in Sybase and SQL Server 2005	71
SET ANSINULL	73
SET CHAINED	73
SET TRANSACTION ISOLATION LEVEL	73
UPDATE Aliases	73
Different ROLLBACK Syntax	75
Sybase Allows Aggregate Functions in UPDATE	75
Several Table Hints Are Used at Once	77
ORDER BY with Table Name and Column Alias	78
CHAR Column Allowing NULLs	78
Insertion of Default Values	78
Nested Aggregates in SELECT List	79
DELETE Aliases	79
Named Constraint on Temporary Table	80
Global Variables	80
@@ERROR	80
@@PAGESIZE	81
@@SQLSTATUS	81
@@TRANCHAINED	81
@@TRANSTATE	82
@@UNICHARSIZE	82
Data Migration	82
Timestamps	82
Numeric with Scale > 26	83
Constraints and Bound Rules	83
Defaults Vs. NULLs	83
Keeping Identities	84
Triggers	84
Other Migration Issues	84
Cursor Scope	84
Case Sensitivity	85
Reserved Keywords	85
Syb_identity Pseudocolumn	86
Different Syntax of IDENTITY() Function	86
Login Triggers	86
Cross-Database Foreign Key	86
Deprecated Equivalents	88
Different Scope of Constraint Names	89
Dynamic SQL	89
Proxy Tables	89
Variables in Cursor Declaration	90
Different Behavior of the MIN and MAX Functions with Character Columns in Sybase and SQL Server	90
Potential Challenges	90
Resources	91

4

[bookmark: _Toc95395435][bookmark: _Toc181521546]Introduction
It's true that Sybase Adaptive Server Enterprise (ASE) and Microsoft® SQL Server™ 2005 share common roots. But ever since Sybase and Microsoft began developing their own versions of SQL Server, many differences between the two products have appeared. As a result, some cases of migrating from Sybase ASE to SQL Server 2005 may require certain efforts unless effective migration tools are used.
That's where the Microsoft SQL Server Migration Assistant (SSMA) for Sybase can help. SSMA can migrate tables, views, indexes, triggers, and stored procedures. It frequently converts approximately 99–99.5% of source objects and Transact-SQL code. In most cases you need to perform just a few manual patches to produce the final converted result.
This migration guide outlines procedures, problems, and solutions when using SSMA to migrate a Sybase ASE 11.9.2, 12.0 or 12.5 database to SQL Server 2005. It has five main sections:
Migration plan. Steps to migrate a Sybase ASE database to SQL Server 2005 by using SSMA 1.2. You will also find hints about manually converting the ASE features that SSMA cannot process automatically.
Sybase system function migration. Examines Sybase system function references, grouped by equivalent functions, nonsupported functions, and emulated functions.
Data migration architecture of SSMA for Sybase. Explains how SSMA components interact when you migrate data from Sybase to SQL Server 2005.
Migrating applications from CT-Library to ODBC. Outlines the migration of a client application when it calls the Sybase CT-Library to provide database layer access.
Sybase migration issues. Explores challenges when migrating from Sybase 12.5 to SQL Server 2005 and offers possible solutions.
[bookmark: _Migration_Plan][bookmark: _Toc181521547]Migration Plan
Migrating a Sybase ASE database to SQL Server 2005 with SSMA follows a straightforward sequence with the following steps.
Step 1. Begin by assessing the source Sybase ASE database by using the SSMA Create Report command. The resulting assessment report includes statistics about migration issues and estimates of the working time necessary to manually resolve them. The report also shows the changes SSMA will make during the migration, including a synchronized view of source and target Transact-SQL code showing how SSMA will transform each statement.
Step 2. Read the source (ASE) and target (SQL Server 2005) metabases by using the Connect to Sybase and Connect to SQL Server commands. During this step, SSMA loads the database objects into its workspace, making possible their analysis and processing.
Step 3. Decide how to map the source ASE database and schemas to the target SQL Server 2005 database and schemas. By default, SSMA assumes natural schema mapping that preserves the source database and schema names. But SSMA does not create security items by itself; you must manually create all necessary schemas in the target database prior to migration.
Step 4. Start the migration by using the Convert Schema command. You can find the target objects displayed in the SSMA workspace. To save the results, either:
Save the target objects as scripts.
Load the objects into the SQL Server database.
You can make manual changes in the target SQL window before saving the result code. You can quickly find conversion errors or warnings by looking for special comments that SSMA inserts before the problematic statements.
Note that SSMA does not convert Sybase defaults and rules as separate objects. Instead, they become part of the table definition these defaults and rules are bound to. SSMA replaces Sybase user-defined types by the underlying types, and they also become part of the table definitions.
Step 5. After the target tables have been loaded into the target database, you can start data migration.
Note Data migration is a remote application on the SQL Server host launched by the SQL Server Agent as a job. That mechanism improves performance by transferring the data directly between two database servers, while not moving information to and from the client workstation where SSMA is executed. For this mechanism to work, Sybase client tools must be installed on both computers, not only on the SSMA workstation. In addition, to use data migration functionality you must install the Microsoft SSMA Extension Pack locally on the target server running SQL Server.
[bookmark: _Toc181521548]SSMA Functionality
During Sybase schema conversion, SSMA replaces source objects and Transact-SQL statements, taking into account the differences between the two platforms. The most important changes are:
PRINT and RAISERROR statements are modified according to SQL Server syntax.
Nonstandard outer joins are transformed into ANSI format, which is supported by SQL Server.
Statements with nonstandard usage of the Sybase GROUP BY and HAVING clauses are replaced with SQL Server emulation.
Double quotes delimiting string literals are changed to single quotes.
Sybase-specific usage of NULLs and empty string in concatenation and comparison can be optionally emulated.
SSMA is able to emulate Sybase-style table locking.
SSMA can change aliases and aggregate functions in the UPDATE statement so that the resulting statement is compatible with SQL Server.
Incompatible cursor commands, cursor scope, and status are modified to conform to SQL Server standards.
SSMA provides predefined mapping of Sybase data types to SQL Server data types. For example, large objects types (text and image) are converted to the more advanced SQL Server types varchar(max) and varbinary(max). You can customize SSMA type mapping and even specify unique type mapping for each source object independently of others.
SSMA features dozens of useful GUI components, such as:
View the entire source-object and target-object trees in all databases and schemas.
Monitor the progress of any operation in the Output window.
After the assessment report has been generated, view the report result for any object in the source tree.
As for tables, SSMA shows their structures either in column format or as SQL text. You can also view data stored in the tables. In the SQL view, you can see formatted Transact-SQL text both in the source and in the target. The SQL view, moreover, lets you modify the code and save the modifications in the SSMA workspace. In the target SQL view, you can even load the changes to the database, which lets you perform automatic conversions and manual changes simultaneously—without leaving SSMA.
SSMA cannot automatically handle some Sybase features, including:
Dynamic SQL
Incompatible system tables and/or procedures
Proxy tables
User messages stored in sysusermessages table
Dates before 1/1/1753 AD
Dynamic SQL is a problem because SSMA cannot see the text of a dynamic statement during the conversion. The statement gets its final form only when the generated code is executed. Still, you can use the Statement window to convert ad hoc SQL statements, including dynamic SQL. Try the same approach to convert SQL strings embedded in the user's application code:
1. Pick out the statement from the application (or reconstruct it if the statement is built according to an algorithm).
Put the statement in the Statement window.
Execute Convert Schema.
Put the result back into the proper place in the application code.
Note that temporary tables in stored procedures may create problems when their definitions are absent in the module you are converting. Also be alert to duplicated identifiers that can result when you move a case-sensitive Sybase source to a case-insensitive SQL Server. We recommend that the target server collation be case-insensitive.
[bookmark: _Sybase_System_Function][bookmark: _Toc181521549]Sybase System Function Migration
This section examines what happens to Sybase system function references during migration to SQL Server 2005. Generally speaking, you must pay attention to system function reference migration because:
Some Sybase system functions cannot be matched to SQL Server system functions.
Sybase system functions, in many cases, return different results from corresponding SQL Server functions.
This section divides all existing Sybase ASE system functions into three groups:
Equivalent functions that do not require conversion and are usable as is in Transact-SQL code.
Nonsupported functions that cannot be emulated because of physical differences between Sybase ASE and SQL Server 2005.
Emulated functions that require emulation by using SQL Server user-defined functions (UDFs) or that need transformation of their calls to provide full compatibility with the Sybase version.
Note The SSMA Extension Pack creates function emulations. They are implemented as user-defined functions in the sysdb database.
[bookmark: _Toc181521550]Equivalent Functions
The following table lists Sybase system functions that are usable as is in SQL Server 2005 code. SSMA currently treats these functions as functional equivalents to their corresponding SQL Server system functions. Be aware that some equivalent functions produce different results when applied to Unicode character data. Such differences matter in some applications, so take this into account.

	Function Name
	Comments

	abs
	

	acos
	

	ascii
	The results may differ from Sybase if the argument is Unicode data.

	asin
	

	atan
	

	atn2
	

	avg
	

	ceiling
	

	char
	

	coalesce
	

	col_length
	

	convert
	

	cos
	

	cot
	

	count
	

	dateadd
	

	datediff
	

	datename
	

	day
	

	db_id
	

	db_name
	

	degrees
	

	difference
	

	exp
	

	floor
	

	getdate
	

	host_name
	

	isnull
	

	ltrim
	

	log
	

	log10
	

	lower
	

	max
	

	min
	

	month
	

	nullif
	

	object_id
	

	pi
	

	power
	

	radians
	

	rand
	

	round
	

	sign
	

	sin
	

	soundex
	

	space
	

	square
	

	sqrt
	

	str
	

	sum
	

	suser_id
	

	suser_name
	

	tan
	

	textptr
	

	textvalid
	

	user
	

	user_id
	

	user_name
	

	year
	

	stuff
	The result may differ from Sybase if the argument contains Unicode surrogate pairs.

	upper
	The result may differ from Sybase if the argument contains Unicode surrogate pairs.

	right
	The result may differ from Sybase if the argument contains Unicode surrogate pairs.

	reverse
	The result may differ from Sybase if the argument contains Unicode surrogate pairs.

	left
	The result may differ from Sybase if the argument contains Unicode surrogate pairs.

[bookmark: _Toc181521551]Nonsupported Functions
Following is a list of functions that cannot be easy emulated in SQL Server 2005 because of physical organization and security model differences.
* Denotes that application context feature can be implemented by using temporary tables, but this is not recommended due to security issues.

	Name
	Comments

	curunreservedpgs
	

	data_pgs
	

	derived_stat
	

	get_appcontext
	*

	host_id
	

	is_sec_service_on
	

	lct_admin
	

	license_enabled
	

	list_appcontext
	*

	lockscheme
	

	mut_excl_roles
	

	proc_role
	

	ptn_data_pgs
	

	reserved_pgs
	

	rm_appcontext
	*

	role_contain
	

	role_id
	

	role_name
	

	set_appcontext
	*

	show_role
	

	show_sec_services
	

	syb_quit
	

	syb_sendmsg
	

	tempdb_id
	

	used_pgs
	

	valid_name
	

	valid_user
	

	rowcnt
	

	tsequal
	

[bookmark: _Toc181521552]Emulated Functions
This section examines how SSMA 3.0 emulates Sybase functions to produce the same result in SQL Server 2005.
[bookmark: _Toc181521553]CHAR_LENGTH
Sybase syntax:
char_length(char_expr | uchar_expr)

The CHAR_LENGTH function does not have a full functional equivalent in SQL Server 2005. It is emulated by a UDF, chosen according to the parameter expression type.
If the expression is of the NCHAR or NVARCHAR data type:

 SYSDB.SSMA_SYB.CHAR_LENGTH_NVARCHAR(char_expr | uchar_expr)

Otherwise:

 SYSDB.SSMA_SYB.CHAR_LENGTH_VARCHAR(char_expr | uchar_expr)
[bookmark: _Toc181521554]CURRENT_DATE
The CURRENT_DATE function returns the current date. It resembles the SQL Server GETDATE() function but it does not return time information. To emulate it, truncate the result of the GETDATE() function:

convert(datetime, floor(convert(float,getdate())))
[bookmark: _Toc181521555]DATELENGTH
The DATELENGTH function is functionally equivalent to the SQL Server DATELENGTH function, except when it is applied to an empty character string. In most cases, the function call can be migrated as is (the default conversion mode). To provide full compatibility, SSMA includes a DATALENGTH function option (see Figure 1). If it is set to Replace function, the call to DATALENGTH is replaced with a call to the sysdb function. Otherwise, it is wrapped in a CASE expression as in the following code:

Case datalength(expression)
 when 0
 then 1
 else datalength(expression)
end

[image: Fig1]
Figure 1
[bookmark: _Toc181521556]INTTOHEX
The INTTOHEX function does not have an equivalent in SQL Server. Use UDF emulation instead:

 Sysdb.ssma_syb.inttohex (integer_expression)
[bookmark: _Toc181521557] HEXTOINT
The HEXTOINT function does not have an equivalent in SQL Server. Use UDF emulation instead:

Sysdb.ssma_syb.hextoint (hexadecimal_string)
[bookmark: _Toc181521558]NEWID
Sybase syntax:

newid([optionflag])

The NEWID function generates a unique identifier and can be emulated by the SQL NEWID() function with similar functionality. But to provide full compatibility, SSMA converts the function call according to the following rules:
If optionflag is not specified, convert to:
Replace(Convert(varchar(36), newid()), ‘-‘,’’)
If optionflag is a constant of integer data type:
If it is 0, convert to:
Replace(Convert(varchar(36), newid()), ‘-‘,’’)
If it is 1, convert to:
Convert(varchar(36), newid())
If optionflag is of integer data type and is not a constant, convert to:
CASE optionflag
	WHEN 0
		THEN Replace(Convert(varchar(36), newid()), ‘-‘,’’))
	WHEN 1
THEN convert(varchar(36), newid())
			ELSE NULL
 	 	 END
If optionflag is of varbinary data type:
CONVERT(varbinary, Replace(Convert(varchar(36), newid()), ‘-‘,’’))
[bookmark: _Toc181521559]NEXT_IDENTITY
Sybase syntax:
next_identity(table_name)

[image: Fig2]
Figure 2
The NEXT_IDENTITY function does not have a functional equivalent in SQL Server. It can be emulated by using two functions—IDENT_CURRENT and IDENT_INCR—as in the following expression:

ident_current(table_name)+ident_incr(table_name)

By default, SSMA marks this function with an error because the result can be wrong in multi-user environments. To convert the function as described, check the appropriate conversion option as shown in Figure 2.
[bookmark: _Toc181521560]STR_REPLACE
Sybase syntax:
Str_replace("string_expression1", "string_expression2", "string_expression3")

The STR_REPLACE function resembles the SQL Server REPLACE function with one exception: Sybase deletes string_expression2 from string_expression1 if string_expression3 is NULL. To emulate this behavior, replace string_expression3 with an empty string if string_expression 3 is NULL.

REPLACE ('string_expression1' , 'string_expression2' , 'string_expression3')

If string_expression3 is a NULL literal, replace it with an empty string (' ').
For full compatibility, you can replace the non-literal string_expression3 with ISNULL(string_expression3, ' ').
[bookmark: _Toc181521561]CHARINDEX
Sybase syntax:
charindex(expression1, expression2)

The CHARINDEX function resembles the same SQL Server function except in the treatment of null values. In most cases it can be migrated as-is:

charindex(expression1, expression2)

To provide full compatibility, SSMA can emulate the function by using a UDF if the appropriate conversion option (Figure 3) is checked. The function choice is based on the parameters data type.
If expression1 is of NVARCHAR or NCHAR data type, convert to:

SYSDB.SSMA_SYB.CHARINDEX_NVARCHAR(expression1, expression2)

Otherwise, convert to:

SYSDB.SSMA_SYB.CHARINDEX_VARCHAR(expression1, expression2)

[image: Fig3]
Figure 3
[bookmark: _Toc181521562]REPLICATE
Sybase syntax:
replicate (char_expr | uchar_expr, integer_expr)

In most cases, the REPLICATE function can be migrated as is:

replicate (char_expr | uchar_expr, integer_expr)

To provide full compatibility, SSMA can emulate the function by using a UDF to return a NULL value if an empty string is produced. Check the appropriate SSMA conversion option as shown in Figure 4.
If the expression is of NCHAR or NVARCHAR data type:

SYSDB.SSMA_SYB.REPLICATE_NVARCHAR(char_expr | uchar_expr, integer_expr)

Otherwise:

SYSDB.SSMA_SYB.REPLICATE_VARCHAR(char_expr | uchar_expr, integer_expr)

[image: Fig4]
Figure 4
[bookmark: _Toc181521563]RTRIM
Sybase syntax:
rtrim(char_expr | uchar_expr)

The RTRIM function resembles the SQL Server RTRIM function. SSMA can emulate RTRIM by UDF depending on the project setting.
If the expression is of NCHAR or NVARCHAR data type:

SYSDB.SSMA_SYB.RTRIM_NVARCHAR(char_expr | uchar_expr)

Otherwise:

SYSDB.SSMA_SYB.RTRIM_VARCHAR(char_expr | uchar_expr)

[bookmark: _Toc181521564]LEN
See CHAR_LENGTH.
[bookmark: _Toc181521565]SUBSTRING
Sybase syntax:
substring(expression, start, length)

In most cases you can migrate the SUBSTRING function as is. The result of SQL Server SUBSTRING functions is different if start < 0, or if the function produces an empty string. To provide compatibility, SSMA can emulate it by using a UDF, which is chosen depending on the parameter data type. SSMA has an appropriate conversion option.
If expression is of NCHAR or NVARCHAR data type, convert to:

SYSDB.SSMA_SYB.SUBSTRING_NVARCHAR(expression, start, length)

Otherwise convert to:

SYSDB.SSMA_SYB.SUBSTRING_VARCHAR(expression, start, length)

Note The SQL Server SUBSTRING function does not support Unicode surrogate pairs.
[bookmark: _Toc181521566]TO_UNICHAR
Sybase syntax:
to_unichar (integer_expr)

You can replace the TO_UNICHAR function with the SQL Server NCHAR() if integer_expr < 65536. Otherwise, emulate it by UDF:

SYSDB.SSMA_SYB.TO_UNICHAR(integer_expr)

Note SSMA always replaces TO_UNICHAR by emulation UDF to provide full compatibility.
[bookmark: _Toc181521567]CONVERT
Sybase syntax:
convert (datatype [(length) | (precision[, scale])]
[null | not null], expression [, style])

The CONVERT function resembles the corresponding SQL Server function. You can migrate it as is, except when [null | not null] is specified. Since SQL Server does not support result nullability, SSMA marks this with an error. Otherwise, the function is converted as is by using the following code:

CONVERT (data_type [(length | (precision[, scale])] , expression [, style])
[bookmark: _Toc181521568]PAGESIZE
Sybase syntax:
pagesize(object_name [, index_name])
| pagesize(object_id [,db_id [, index_id]])

In SQL Server, the page size is fixed at 8192. Therefore, convert the PAGESIZE function call to constant 8192.
[bookmark: _Toc181521569]UHIGHSURR
Sybase syntax:
uhighsurr(uchar_expr, start)

The UHIGHSURR function cannot be matched to any SQL Server system function. Emulate it by scalar UDF:

SYSDB.SSMA_SYB.UHIGHSURR(uchar_expr, start)
[bookmark: _Toc181521570]ULOWSURR
Sybase syntax:
ulowsurr(uchar_expr, start)

The ULOWSURR function cannot be matched to any Transact-SQL system function. Emulate it by scalar UDF:

SYSDB.SSMA_SYB.ULOWSURR(uchar_expr, start)
[bookmark: _Toc181521571]USCALAR
Sybase syntax:
uscalar(uchar_expr)

The USCALAR function is functionally equivalent to the SQL Server UNICODE() function:

UNICODE (ncharacter_expression)
[bookmark: _Toc181521572]PATINDEX
Sybase syntax:
patindex("%pattern%", char_expr|uchar_expr [, using {bytes | characters | chars}])

You can migrate the PATINDEX function to the SQL Server PATINDEX function except when using bytes is specified:

PATINDEX ('%pattern%' , char_expr|uchar_expr)
	
If using bytes is specified, convert to:

DATALENGTH(SUBSTRING(char_expr|uchar_expr, 1, PATINDEX('%pattern%', char_expr|uchar_expr) – 1)) + 1
[bookmark: _Toc181521573]DATEDIFF
Sybase syntax:
datediff(datepart, date expression1, date expression2)

The DATEDIFF function resembles the SQL Server DATEDIFF function, except for the following dateparts:
WEEKDAY
HOUR
MINUTE
SECOND
CALWEEKOFYEAR
CALDAYOFWEEK
CALYEAROFWEEK
For all other dateparts, you can use it as is. To provide full compatibility, SSMA always emulates the function by Transact-SQL UDF:

SYSDB.SSMA_SYB.SSMA_DATEDIFF(‘datepart’, date expression1, date expression2)
[bookmark: _Toc181521574]INDEX_COLORDER
Sybase syntax
index_colorder (object_name, index_id, key_#
[, user_id])

The INDEX_COLORDER function doesn’t match any SQL Server system function. You can emulate it by UDF SYSDB.SSMA_SYB.INDEX_COLORDER.
By default, SSMA marks the function call with an error because there is a risk that the INDEX_ID or USER_ID parameters differ in Sybase and SQL Server. If the appropriate option is checked (see Figure 5), the function call is converted according to the following rules:
If user_id is specified, convert to:

SYSDB.SSMA_SYB.INDEX_COLORDER(object_name, index_id, key_#, user_id)

Otherwise, convert to:

SYSDB.SSMA_SYB.INDEX_COLORDER(object_name, index_id, key_#, DEFAULT)

[image: Fig7]
Figure 5
[bookmark: _Toc181521575]COL_NAME
Sybase syntax:
col_name(object_id, column_id[, database_id])

The COL_NAME function resembles the SQL Server COL_NAME function. If database_id is not specified, you can migrate it as is:
	
COL_NAME (table_id , column_id)

Otherwise, emulate the function by using SQL Server data dictionary system views. SSMA does not currently support the function's database_id parameter.
Note The object_id parameter can be system-specific and have other values in SQL Server databases.
[bookmark: _Toc181521576]OBJECT_NAME
Sybase syntax:
object_name(object_id[, database_id])

The OBJECT_NAME function resembles the corresponding SQL Server function. If database_id is not specified, convert it to:

OBJECT_NAME (object_id)

Otherwise, emulate the function by using SQL Server data dictionary system views. SSMA does not currently support the function's database_id parameter.
Note The object_id parameter can be system-specific and have other values in SQL Server databases.
[bookmark: _Toc181521577]DATEPART
Sybase syntax:
datepart(date_part, date expression)

The DATEPART function resembles the SQL Server DATEPART function, except for the following dateparts:
CALDAYOFWEEK
CALYEAROFWEEK
CALWEEKOFYEAR
For all other dateparts you can migrate it as is. To support CALDAYOFWEEK, CALYEAROFWEEK and CALWEEKOFYEAR dateparts, use the following emulation UDF:

SYSDB.SSMA_SYB.SSMA_DATEPART(‘date_part’, date expression)
[bookmark: _Toc181521578]INDEX_COL
Sybase syntax:
index_col (object_name, index_id, key_# [, user_id])

The INDEX_COL function resembles the SQL Server INDEX_COL function, except when using the user_id parameter. If the parameter is not specified, you can migrate INDEX_COL by using the following code:

INDEX_COL ('[database_name . [schema_name] .| schema_name] table_or_view_name', index_id , key_id)

Otherwise, emulate the function using data-dictionary system views. (SSMA does not support the User_id parameter.)
Note The index_id parameter can have a different value in SQL Server and Sybase. Because of this, SSMA has a conversion option (Figure 6). If the option is not selected, the INDEX_COL function reference is marked with an error.
[image: Fig8]
Figure 6
[bookmark: _Toc181521579]CURRENT_TIME
Sybase syntax:
current_time()

The CURRENT_TIME function has no equivalent in SQL Server. You can emulate it by using the following UDF:

SYSDB.SSMA_SYB.SSMA_CURRENT_TIME()
[bookmark: _Data_Migration_Architecture][bookmark: _Toc181521580]Data Migration Architecture of SSMA for Sybase
This section describes SSMA components and their interaction during data migration. The components execute on different computers and use SQL Server database objects for communication. This architecture produces the best migration performance and the most flexibility. Understanding this mechanism helps you to set up the proper environment for SSMA data migration, and to control, monitor, and optimize the process.
[bookmark: _Toc181521581]General
We based our implementation on the SqlBulkCopy class, defined in the .NET Framework 2.0. The functionality of SqlBulkCopy is similar to the bcp utility, which enables transferring large amounts of data quickly and efficiently. The source database is accessed by either Sybase ADO.NET provider or Sybase OLE DB provider 12.5.x or later.
The implementation satisfies the following four requirements:
The data transfer process must run on SQL Server. This limits the number of Sybase clients that are installed and reduces network traffic.
The client application controls the process by using SQL Server stored procedures. Therefore, we do not need any additional communication channels with the server and can reuse the existing server connection for this purpose.
All tables selected for the migration are transferred by a single execution command from the SSMA user.
The user monitors the data flow progress and can terminate it at any time.
[bookmark: _Toc181521582]Solution Layers
Four layers participate in the data migration process:
The client application, an SSMA executable
Stored procedures that serve as interfaces to all server actions
The database layer, which is comprised of two tables:
Package information table
Status table
The server executable, which is started as part of a SQL Server job, executes the data transfer, and reflects its status.
[bookmark: _Toc181521583]Client Application
SSMA lets the user choose an arbitrary set of source tables for migration. The batch size for bulk copy operations is a user-defined setting.
When the process starts, the program displays the progress bar and Stop button. If any errors are found, the SSMA shows the corresponding error message and terminates the transfer. The user can press the Stop button to terminate the process. If the transfer is completed normally, SSMA compares the number of rows in each source with the corresponding target table. If they are equal, the transfer is considered to be successful.
As the client application does not directly control the data migration process, SSMA uses a Messages table to receive feedback on the status of the migration.
[bookmark: _Toc181521584]Stored Procedures Interface
The following SQL Server stored procedures control the migration process:
bcp_save_migration_package: Writes package ID and xml parameters into the bcp_migration_packages table.
bcp_start_migration_process: Creates the SQL Server job that starts the migration executable and returns the ID of the job created.
bcp_read_new_migration_messages: Returns rows added by the migration executable, filtered by known job ID.
stop_agent_process: Stops the migration job, including closing the original connections and killing the migration executable. The data will be migrated partially.
bcp_clean_migration_data: Performs cleanup for a migration job.
bcp_post_process: Runs all post-processing tasks for one migrated table.
[bookmark: _Toc181521585]Database Layer
SSMA uses a Packages table, named [ssma_syb].[bcp_migration_packages], to store the information about the current package. Each row corresponds to one migration run. It contains a package GUID and xml that represents RSA-encrypted connection strings and the tables that should be migrated.
A Messages table, named [ssma_syb].[ssmafs_bcp_migration_messages], accumulates messages coming from migration executables during its work.
[bookmark: _Toc181521586]Migration Executable
The migration application, SSMA for Sybase Data Migration Assistant.exe, is executed on a SQL Server host. The executable's directory is determined during the Extension Pack installation. When bcp_start_migration_package starts the application, it uses hard-coded file names and retrieves the directory name from a server environment variable.
When started, the migration application gets the package ID from a command string and reads all other package-related information from the Packages table. This information includes the source and destination connection strings and a list of the tables to be migrated. Then the tables are processed one at a time. SSMA gets source rows via the IDataReader interface and moves them to the target table by using the WriteToServer method.
The BatchSize setting defines the number of rows in a buffer. When the buffer is full, all rows in it are committed to the target.
Three types of transformation are applied to the processed rows:
The data of all nullable CHAR, NCHAR, and UNICHAR columns are right-trimmed.
National characters are converted to Unicode before the transfer.
Dates that precede 01/01/1753 are converted according to the setting in the project options.
To notify the user about the progress of a bulk copy operation, the data migration executable uses the SqlRowsCopied event and NotifyAfter property. When the SqlRowsCopied event is generated, the application inserts new rows and updates the progress information in the Messages table. The NotifyAfter property defines the number of rows that are processed before a SqlRowsCopied event is generated. This value equals 25 percent of the row count of the source table.
Another type of output record, the termination message, is written to the Messages table when the application terminates successfully or when an exception occurs. In the latter case, the error text is included. If BatchSize = 1, SSMA extracts additional information about the columns of the row where the problem occurred, so that the user can locate the problematic row.
[bookmark: _Toc181521587]Message Handling
The client application receives feedback from the migration executable by means of the Messages table. During migration, the client is in the loop polling this table and verifying that new rows with the proper package ID appear there. If no new rows are added for a significant period of time, there might be problems with the server executable and the process should terminate with a timeout message.
When the table migration completes, the server executable writes a successful completion message. If the table is large enough, you may see many intermediate messages—these show that the next batch was successfully committed. If there is an error, the client displays the error message that it received from the server process.
[bookmark: _Toc181521588]Validation of the Results
Before the migration starts, the client application calculates the numbers of rows in each table that will be migrated. With this data, SSMA can evaluate the correct progress position.
After the migration is complete, the client must calculate the row counts of the target table. If they are equal, the overall migration result is considered to be successful. Otherwise, the user should be aware of the discrepancy and see the source and destination counts.
[bookmark: _Migrating_Applications_from][bookmark: _Toc181521589]Migrating Applications from CT-Library to ODBC
This section outlines the migration of a client application when it calls the Sybase CT-Library to provide database layer access. We suggest that the converted application use ODBC calls to SQL Server 2005. SSMA, however, does not support this transformation. This section has hints on how to map from one library to the other. It includes a simple demo CT-library application, both in the original and the converted form.
[bookmark: _Toc181521590]Module Mapping
Following are the necessary headers for the CT-Library and the ODBC API.

	CT-Library
	ODBC

	#include <ctpublic.h>
	#include <sql.h>
#include <sqlext.h>

[bookmark: _Toc181521591]Command Mapping
The following table lists the function calls that a typical CT-Library application performs, and shows the ODBC functions that have similar meaning.

	CT-Library
	ODBC
	CT-Library

	STEP 1: Setting up the client-library programming environment
	STEP 1: Connecting to the data source
	STEP 1: Setting up the client-library programming environment

	cs_ctx_alloc
Allocates a context structure.
	

	cs_ctx_alloc
Allocates a context structure.

	cs_config
Sets any CS-Library properties for the context.

	
	cs_config
Sets any CS-Library properties for the context.

	ct_init
Initializes the Client-Library.

	SQLAllocHandle(ENV)
Loads the Driver Manager and allocates the environment handle. The Driver Manager allocates a structure in which to store information about the environment, and returns the environment handle.
	ct_init
Initializes the Client-Library.

	ct_config
Sets the Client-Library properties for the context.
	SQLSetEnvAttr
Sets attributes that govern aspects of environments.
	ct_config
Sets the Client-Library properties for the context.

	STEP 2: Define Error Handling
	
	STEP 2: Define Error Handling

	cs_config(CS_MESSAGE_CB)
Installs a CS-Library error callback.

	Replaces with the functions SQLGetDiagField and SQLGetDiagRec in the return code handling procedures.
SQLGetDiagField returns the current value of a field of a record of the diagnostic data structure (associated with a specified handle) that contains error, warning, and status information.
SQLGetDiagRec returns the current values of multiple fields of a diagnostic record that contains error, warning, and status information. Unlike SQLGetDiagField, which returns one diagnostic field per call, SQLGetDiagRec returns several commonly used fields of a diagnostic record, including the SQLSTATE, the native error code, and the diagnostic message text.
	cs_config(CS_MESSAGE_CB)
Installs a CS-Library error callback.

	ct_callback
Installs a client message callback
Installs a server message callback
ct_callback installs Client-Library callback routines, which are application
routines that Client-Library calls automatically when a triggering event of the appropriate type occurs.
	
	ct_callback
Installs a client message callback
Installs a server message callback
ct_callback installs Client-Library callback routines, which are application
routines that Client-Library calls automatically when a triggering event of the appropriate type occurs.

	STEP 3: Connect to a server
	
	STEP 3: Connect to a server

	ct_con_alloc
Allocates a connection structure.

	SQLAllocHandle(DBC)
Allocates a connection handle. Driver Manager allocates a structure in which to store information about the connection and returns the connection handle.
	ct_con_alloc
Allocates a connection structure.

	ct_con_props
Sets any properties in the connection structure.

	SQLSetConnectAttr
Sets attributes that govern aspects of connections. Some connection attributes must be set before the application attempts to connect; others can be set after the connection is established.
	ct_con_props
Sets any properties in the connection structure.

	ct_connect
Opens a connection to a server.

	SQLConnect or SQLDriverConnect or SQLBrowseConnect
SQLConnect establish connections to a driver and a data source.
	ct_connect
Opens a connection to a server.

	ct_options
Sets any server options for this connection.
	
	ct_options
Sets any server options for this connection.

	STEP 4: Send a language command to the server
	STEP 2: Initialize the application
	STEP 4: Send a language command to the server

	ct_cmd_alloc
Allocates a command structure.

	SQLAllocHandle(STMT)
Driver Manager allocates a structure in which to store information about the statement and calls SQLAllocHandle in the driver with the SQL_HANDLE_STMT option. The driver allocates its own structure in which to store information about the statement and returns the driver statement handle to the Driver Manager. The Driver Manager returns the Driver Manager statement handle.
	ct_cmd_alloc
Allocates a command structure.

	ct_cmd_props
Sets, retrieves, or clears command structure properties.
	SQLSetStmtAttr
Sets attributes related to a statement.
	ct_cmd_props
Sets, retrieves, or clears command structure properties.

	
	STEP 3: Build and execute an SQL statement
	

	ct_command
Defines a command.

	SQLPrepare
Prepares an SQL string for execution.
	ct_command
Defines a command.

	ct_param or ct_setparam
Defines a command parameter.
	SQLBindParameter
Binds a buffer to a parameter marker in an SQL statement.
	ct_param or ct_setparam
Defines a command parameter.

	ct_send
Sends the command text to the server, which parses, compiles, and executes it.
	SQLExecute
Executes a prepared statement by using the current values of the parameter marker variables.
	ct_send
Sends the command text to the server, which parses, compiles, and executes it.

	STEP 5: Process the results of the command
	STEP 4: Fetch the results; fetch the row count
	STEP 5: Process the results of the command

	ct_results
Sets up result data to be processed. Defines the types of a command’s execution result:
Values that indicate command status
Values that indicate fetchable results
Values that indicate that information is available
	
	ct_results
Sets up result data to be processed. Defines the types of a command’s execution result:
Values that indicate command status
Values that indicate fetchable results
Values that indicate that information is available

	ct_res_info
Retrieves the current result set or command information.
Possible information returned:
The number of the command that generated the current result set
The number of compute clauses in the current command
The number of items in the current result set
The number of columns specified in the current command's ORDER BY clause
The number of rows affected by the current command
…and so on.
	SQLNumResultCols
Returns the number of columns in a result set. If 0, the statement did not create a result set; if any other number, the statement did create a result set.

SQLRowCount
Returns the number of rows affected by an UPDATE, INSERT, or DELETE statement. If a batch of SQL statements is executed, the count of the affected rows might be a total count for all statements in the batch or individual counts for each statement in the batch.

	ct_res_info
Retrieves the current result set or command information.
Possible information returned:
The number of the command that generated the current result set
The number of compute clauses in the current command
The number of items in the current result set
The number of columns specified in the current command's ORDER BY clause
The number of rows affected by the current command
…and so on.

	ct_describe
Returns a description of the result data. An application can use ct_describe to retrieve a description of a regular result column, a return parameter, a stored procedure return status number, or a compute column.
An application can call ct_res_info to find out how many result items are present in the current result set.
An application generally calls ct_describe to describe a result data item before it binds the result item to a program variable by using ct_bind.
	SQLDescribeCol
Returns the result descriptor—column name, type, column size, decimal digits, and nullability—for one column in the result set.

	ct_describe
Returns a description of the result data. An application can use ct_describe to retrieve a description of a regular result column, a return parameter, a stored procedure return status number, or a compute column.
An application can call ct_res_info to find out how many result items are present in the current result set.
An application generally calls ct_describe to describe a result data item before it binds the result item to a program variable by using ct_bind.

	ct_bind
Binds server results to program variables. When the application calls ct_fetch to fetch the result data, it is copied into these variables.
	SQLBindCol
Binds application data buffers to columns in the result set.

	ct_bind
Binds server results to program variables. When the application calls ct_fetch to fetch the result data, it is copied into these variables.

	ct_fetch
Fetches result data.

	SQLFetch
Fetches the next rowset of data from the result set and returns data for all bound columns.
SQLGetData
Retrieves data for a single column in the result set. It can be called multiple times to retrieve variable-length data in parts.
The application now calls SQLFetch to retrieve the first row of data and place the data from that row in the variables bound with SQLBindCol. If there is any long data in the row, it calls SQLGetData to retrieve that data. The application continues to call SQLFetch and SQLGetData to retrieve additional data. After it has finished fetching data, it calls SQLCloseCursor to close the cursor.
	ct_fetch
Fetches result data.

	
	SQLCloseCursor
Closes a cursor that has been opened on a statement and discards pending results.
	

	
	STEP 5: Commit the transaction
The application performs Step 5 only if it set the transaction commit mode to manual commit; if the transaction commit mode is auto commit, which is the default, the transaction is automatically committed when the statement is executed.
	

	
	SQLEndTran
Requests a commit or rollback operation for all active operations on all statements associated with a connection.
	

	STEP 6: Finish
	STEP 6: Disconnect from the data source
	STEP 6: Finish

	ct_cmd_drop
Deallocates a command structure.

	SQLFreeHandle(STMT)
Frees the statement. The driver releases the structure used to store information about the statement.
	ct_cmd_drop
Deallocates a command structure.

	ct_close
Closes a connection.

	SQLDisconnect
Frees any statements allocated on the connection and disconnects the driver from the data source.
	ct_close
Closes a connection.

	ct_exit
Exits Client-Library for a specific context. Closes and deallocates any open connections and cleans up internal Client-Library data space.

	SQLFreeHandle(DBC)
Frees the connection. The driver releases the structure used to store information about the connection.

	ct_exit
Exits Client-Library for a specific context. Closes and deallocates any open connections and cleans up internal Client-Library data space.

	cs_ctx_drop
Deallocates a context structure.

	SQLFreeHandle(ENV)
Frees the environment handle. The driver releases the structure used to store information about the environment.
	cs_ctx_drop
Deallocates a context structure.

[bookmark: _Toc181521592]Type and Structure Mapping
Some definitions of CT-Library and ODBC have similar meanings. The following table shows the correspondence between them.
	CT-Library
	ODBC

	Structures
	

	CS_CONTEXT
Context structure
	HENV
Environment handle

	CS_CONNECTION
Connection structure
	HDBC
Connection handle

	CS_COMMAND
Command structure
	HSTMT
Statement handle

	Types
	

	CS_TINYINT
tinyint
	SQLSCHAR (SQL_C_STINYINT)

	CS_SMALLINT
smallint
	SQLSMALLINT (SQL_C_SSHORT)

	CS_USMALLINT
usmallint
	SQLUSMALLINT (SQL_C_USHORT)

	CS_INT
int
	SQLINTEGER (SQL_C_SLONG)

	CS_UINT
uint
	SQLUINTEGER (SQL_C_ULONG)

	CS_BIGINT
bigint
	SQLBIGINT (SQL_C_SBIGINT)

	CS_UBIGINT
ubigint
	SQLUBIGINT (SQL_C_UBIGINT)

	CS_DECIMAL
decimal
	SQL_NUMERIC_STRUCT structure

	CS_NUMERIC
numeric
	SQL_NUMERIC_STRUCT structure

	CS_MONEY
money
	SQL_NUMERIC_STRUCT structure

	CS_MONEY4
smallmoney
	SQL_NUMERIC_STRUCT structure

	CS_FLOAT
float
	SQLDOUBLE, SQLFLOAT (SQL_C_DOUBLE)

	CS_REAL
real
	SQLREAL (SQL_C_FLOAT)

	CS_CHAR
char varchar
	SQLCHAR (SQL_C_CHAR)

	CS_UNICHAR
unichar univarchar
	SQLWCHAR (SQL_C_WCHAR)

	CS_DATE
date
	SQL_DATE_STRUCT structure

	CS_TIME
time
	SQL_TIME_STRUCT structure

	CS_DATETIME
datetime
	SQL_TIMESTAMP_STRUCT structure

	CS_DATETIME4
smalldatetime
	SQL_TIMESTAMP_STRUCT structure

	CS_BIT
bit
	SQLCHAR (SQL_C_BIT)

	CS_BINARY
binary varbinary
	SQLCHAR (SQL_C_BINARY)

	CS_TEXT
text
	SQLCHAR (SQL_C_CHAR)

	CS_IMAGE
image
	SQLCHAR (SQL_C_BINARY)

	CS_UNITEXT
unitext
	SQLWCHAR (SQL_C_WCHAR)

	Structures
	

	CS_CONTEXT
Context structure

	HENV
Environment handle

	CS_CONNECTION
Connection structure

	HDBC
Connection handle

	CS_COMMAND
Command structure
	HSTMT
Statement handle

	Types
	

	CS_TINYINT
tinyint
	SQLSCHAR (SQL_C_STINYINT)

	CS_SMALLINT
smallint
	SQLSMALLINT (SQL_C_SSHORT)

	CS_USMALLINT
usmallint
	SQLUSMALLINT (SQL_C_USHORT)

	CS_INT
int
	SQLINTEGER (SQL_C_SLONG)

	CS_UINT
uint
	SQLUINTEGER (SQL_C_ULONG)

	CS_BIGINT
bigint
	SQLBIGINT (SQL_C_SBIGINT)

	CS_UBIGINT
ubigint
	SQLUBIGINT (SQL_C_UBIGINT)

	CS_DECIMAL
decimal
	SQL_NUMERIC_STRUCT structure

	CS_NUMERIC
numeric
	SQL_NUMERIC_STRUCT structure

	CS_MONEY
money
	SQL_NUMERIC_STRUCT structure

	CS_MONEY4
smallmoney
	SQL_NUMERIC_STRUCT structure

	CS_FLOAT
float
	SQLDOUBLE, SQLFLOAT (SQL_C_DOUBLE)

	CS_REAL
real
	SQLREAL (SQL_C_FLOAT)

	CS_CHAR
char varchar
	SQLCHAR (SQL_C_CHAR)

	CS_UNICHAR
unichar univarchar
	SQLWCHAR (SQL_C_WCHAR)

	CS_DATE
date
	SQL_DATE_STRUCT structure

	CS_TIME
time
	SQL_TIME_STRUCT structure

	CS_DATETIME
datetime
	SQL_TIMESTAMP_STRUCT structure

	CS_DATETIME4
smalldatetime
	SQL_TIMESTAMP_STRUCT structure

	CS_BIT
bit
	SQLCHAR (SQL_C_BIT)

	CS_BINARY
binary varbinary
	SQLCHAR (SQL_C_BINARY)

	CS_TEXT
text
	SQLCHAR (SQL_C_CHAR)

	CS_IMAGE
image
	SQLCHAR (SQL_C_BINARY)

	CS_UNITEXT
unitext
	SQLWCHAR (SQL_C_WCHAR)

[bookmark: _Toc181521593]Migration Example
The sample program in this section demonstrates how a CT-Library-based program can be converted to work on ODBC API. The program executes basic function calls for typical tasks such as establishing connections to a database server, executing SELECT queries, and retrieving the result set. The program also includes error processing.
The first code listing is the sample program in Chapter 1 of the Sybase Client-library Programmer's Guide. The sample program connects to a Sybase server, sends a select query, prints the rows, disconnects, and exits.
The second code example is the same program rewritten to work with ODBC API and to connect to Microsoft SQL Server.
[bookmark: _Toc181521594]Source Programming Using CT-Library
#include <stdio.h>
#include <ctpublic.h>

#define MAXCOLUMNS 2
#define MAXSTRING 40
#define ERR_CH stderr
#define OUT_CH stdout
#define	EX_MAXSTRINGLEN		255
#define	EX_BUFSIZE		1024
#define	EX_CTLIB_VERSION	CS_VERSION_125
#define	EX_BLK_VERSION		BLK_VERSION_125
#define	EX_ERROR_OUT		stderr
#define EX_EXIT_SUCCEED		0
#define EX_EXIT_FAIL		1

//place user name here
CS_CHAR *Ex_username = "";
//place user password here
CS_CHAR *Ex_password = "";
//place ODBC DSN here
CS_CHAR *Ex_server = "";

/** Define a macro that exits if a function return code indicates failure.*/
#define EXIT_ON_FAIL(context, ret, str) \
 if (ret != CS_SUCCEED) \
 { \
 fprintf(ERR_CH, "Fatal error: %s\n", str); \
 if (context != (CS_CONTEXT *) NULL) \
 { \
 (CS_VOID) ct_exit(context, CS_FORCE_EXIT); \
 (CS_VOID) cs_ctx_drop(context); \
 } \
 exit(EX_EXIT_FAIL); \
 }

/*
** Callback routines for library errors and server messages.
*/
CS_RETCODE CS_PUBLIC csmsg_callback PROTOTYPE((CS_CONTEXT *context,CS_CLIENTMSG *clientmsg));
CS_RETCODE CS_PUBLIC clientmsg_callback PROTOTYPE((CS_CONTEXT *context,CS_CONNECTION *connection,CS_CLIENTMSG *clientmsg));
CS_RETCODE CS_PUBLIC servermsg_callback PROTOTYPE((CS_CONTEXT *context,CS_CONNECTION *connection,CS_SERVERMSG *servermsg));

/* Main entry point for the program.*/
int main(int argc,char **argv)
{
	CS_CONTEXT *context;	/* Context structure */
	CS_CONNECTION *connection;	/* Connection structure. */
	CS_COMMAND *cmd;/* Command structure. */

	/* Data format structures for column descriptions: */
	CS_DATAFMT columns[MAXCOLUMNS];
	CS_INT datalength[MAXCOLUMNS];
	CS_SMALLINT indicator[MAXCOLUMNS];
	CS_INT count;
	CS_RETCODE ret;
	CS_RETCODE results_ret;
	CS_INT result_type;
	CS_CHAR name[MAXSTRING];
	CS_CHAR city[MAXSTRING];

	/*environment initialization*/
	context = (CS_CONTEXT *)NULL;
	EXIT_ON_FAIL(context,cs_ctx_alloc(EX_CTLIB_VERSION, &context), "cs_ctx_alloc failed");
	EXIT_ON_FAIL(context,ct_init(context, EX_CTLIB_VERSION), "ct_init failed");

	/*set up error handling: install callback handlers*/
	EXIT_ON_FAIL(context,cs_config(context, CS_SET, CS_MESSAGE_CB,(CS_VOID *)csmsg_callback,CS_UNUSED, NULL),"cs_config(CS_MESSAGE_CB) failed");
	EXIT_ON_FAIL(context,ct_callback(context, NULL, CS_SET, CS_CLIENTMSG_CB,(CS_VOID *)clientmsg_callback),"ct_callback for client messages failed");
	EXIT_ON_FAIL(context,ct_callback(context, NULL, CS_SET, CS_SERVERMSG_CB,(CS_VOID *)servermsg_callback),"ct_callback for server messages failed");

	/*connectint to server using server name, user name, and password*/
	EXIT_ON_FAIL(context, ct_con_alloc(context, &connection), "ct_con_alloc() failed");
	EXIT_ON_FAIL(context, ct_con_props(connection, CS_SET, CS_USERNAME,Ex_username, CS_NULLTERM, NULL), "Could not set user name");
	EXIT_ON_FAIL(context, ct_con_props(connection, CS_SET, CS_PASSWORD,Ex_password, CS_NULLTERM, NULL), "Could not set password");
	EXIT_ON_FAIL(context, ct_connect(connection, Ex_server, strlen(Ex_server)), "Could not connect!");

	/*execute command*/
	EXIT_ON_FAIL(context,ct_cmd_alloc(connection, &cmd), "ct_cmd_alloc() failed");
	EXIT_ON_FAIL(context,ct_command(cmd, CS_LANG_CMD,"select au_lname, city from pubs2..authors where state = 'CA'", CS_NULLTERM, CS_UNUSED), "ct_command() failed");
	EXIT_ON_FAIL(context,ct_send(cmd), "ct_send() failed");

	/*main process loop*/
	while ((results_ret = ct_results(cmd, &result_type)) == CS_SUCCEED)
	{
		switch ((int)result_type)
		{
			/*resultset trapped, process it*/
		case CS_ROW_RESULT:
			/*binding columns*/
			columns[0].datatype = CS_CHAR_TYPE;
			columns[0].format = CS_FMT_NULLTERM;
			columns[0].maxlength = MAXSTRING;
			columns[0].count = 1;
			columns[0].locale = NULL;
			EXIT_ON_FAIL(context,ct_bind(cmd, 1, &columns[0],name, &datalength[0],&indicator[0]),"ct_bind() for au_lname failed");

			columns[1].datatype = CS_CHAR_TYPE;
			columns[1].format = CS_FMT_NULLTERM;
			columns[1].maxlength = MAXSTRING;
			columns[1].count = 1;
			columns[1].locale = NULL;

			EXIT_ON_FAIL(context,ct_bind(cmd, 2, &columns[1], city,&datalength[1],&indicator[1]),"ct_bind() for city failed");
			
			/*fetching data*/
			while (((ret = ct_fetch(cmd, CS_UNUSED, CS_UNUSED,CS_UNUSED, &count))== CS_SUCCEED)|| (ret == CS_ROW_FAIL))
			{
				if (ret == CS_ROW_FAIL)	fprintf(ERR_CH,"Error on row %ld.\n",(long)(count + 1));
				fprintf(OUT_CH, "%s: %s\n", name, city);
			}

			if (ret == CS_END_DATA)
			{fprintf(OUT_CH,"\nAll done processing rows.\n");}
			else
			{EXIT_ON_FAIL(context, CS_FAIL, "ct_fetch failed");}

			break;

		case CS_CMD_SUCCEED: fprintf(OUT_CH, "No rows returned.\n"); break;
		case CS_CMD_FAIL : break;
		case CS_CMD_DONE : break;
		default : EXIT_ON_FAIL(context, CS_FAIL,"ct_results returned unexpected result type"); break;
		}
	}

	switch ((int)results_ret)
	{
		case CS_END_RESULTS: break;
		case CS_FAIL:EXIT_ON_FAIL(context, CS_FAIL,"ct_results() returned CS_FAIL."); break;
		default: EXIT_ON_FAIL(context, CS_FAIL,"ct_results returned unexpected return code"); break;
	}

	/*cleanup*/
	EXIT_ON_FAIL(context,ct_cmd_drop(cmd), "ct_cmd_drop failed");
	EXIT_ON_FAIL(context,ct_close(connection, CS_UNUSED), "ct_close failed");
	EXIT_ON_FAIL(context,ct_con_drop(connection), "ct_con_drop failed");
	EXIT_ON_FAIL(context,ct_exit(context, CS_UNUSED), "ct_exit failed");
	EXIT_ON_FAIL(context,cs_ctx_drop(context), "cs_ctx_drop failed");

	exit(EX_EXIT_SUCCEED);
}

CS_RETCODE CS_PUBLIC
servermsg_callback(cp, chp, msgp)
CS_CONTEXT *cp;
CS_CONNECTION *chp;
CS_SERVERMSG *msgp;
{
	fprintf(ERR_CH,"Server message:\n\t");
	fprintf(ERR_CH,"number(%ld) severity(%ld) state(%ld) line(%ld)\n",(long)msgp->msgnumber, (long)msgp->severity,
		(long)msgp->state, (long)msgp->line);
	if (msgp->svrnlen > 0) fprintf(ERR_CH, "\tServer name: %s\n", msgp->svrname);
	if (msgp->proclen > 0) fprintf(ERR_CH, "\tProcedure name: %s\n", msgp->proc);
	fprintf(ERR_CH, "\t%s\n", msgp->text);
	return (CS_SUCCEED);
}

CS_RETCODE CS_PUBLIC
clientmsg_callback(context, conn, emsgp)
CS_CONTEXT *context;
CS_CONNECTION *conn;
CS_CLIENTMSG *emsgp;
{
	fprintf(ERR_CH,"Client Library error:\n\t");
	fprintf(ERR_CH,"severity(%ld) number(%ld) origin(%ld) layer(%ld)\n",(long)CS_SEVERITY(emsgp->severity),
		(long)CS_NUMBER(emsgp->msgnumber),(long)CS_ORIGIN(emsgp->msgnumber),
		(long)CS_LAYER(emsgp->msgnumber));
	fprintf(ERR_CH, "\t%s\n", emsgp->msgstring);
	if (emsgp->osstringlen > 0)
	{
		fprintf(ERR_CH,
			"Operating system error number(%ld):\n",
			(long)emsgp->osnumber);
		fprintf(ERR_CH, "\t%s\n", emsgp->osstring);
	}
	return (CS_SUCCEED);
}

CS_RETCODE CS_PUBLIC
csmsg_callback(context, emsgp)
CS_CONTEXT *context;
CS_CLIENTMSG *emsgp;
{
	fprintf(ERR_CH, "CS-Library error:\n");
	fprintf(ERR_CH,"\tseverity(%ld) layer(%ld) origin(%ld) number(%ld)",
		(long)CS_SEVERITY(emsgp->msgnumber),(long)CS_LAYER(emsgp->msgnumber),
		(long)CS_ORIGIN(emsgp->msgnumber), (long)CS_NUMBER(emsgp->msgnumber));

	fprintf(ERR_CH, "\t%s\n", emsgp->msgstring);
	if (emsgp->osstringlen > 0) fprintf(ERR_CH, "Operating System Error: %s\n",emsgp->osstring);
	return (CS_SUCCEED);
}
[bookmark: _Toc181521595]ODBC Equivalent
#include <windows.h>
#include <stdio.h>
#include <sql.h>
#include <sqlext.h>

//place user name here
CHAR *Ex_username = "";
//place user password here
CHAR *Ex_password = "";
//place ODBC DSN here
CHAR *Ex_server = "";

	SQLHENV		ENV = NULL;
	SQLHDBC		DBC = NULL ;
 SQLHSTMT	STMT = NULL;

void cleanup()
{
	SQLFreeHandle(SQL_HANDLE_STMT,STMT);
	SQLFreeHandle(SQL_HANDLE_DBC,DBC);
	SQLFreeHandle(SQL_HANDLE_ENV,ENV);
}
void EXIT_ON_FAIL(int ret,char *str)
{
 if (SQL_ERROR== ret)
 {
 fprintf(stderr, "Fatal error: %s\n", str);
	cleanup();
 exit(SQL_ERROR);
 }
}
int processerrors(int rc)
{
	if (SQL_SUCCESS == rc) return rc;
	SQLRETURN plm_retcode = SQL_SUCCESS;
	SQLCHAR sqlstate[1024], error[1024];
	SQLINTEGER nativerror;
	SQLSMALLINT len = 0;
	while (plm_retcode != SQL_NO_DATA_FOUND)
	{
		plm_retcode = SQLError(ENV,DBC,STMT,(SQLCHAR *)&sqlstate,&nativerror,(SQLCHAR *)&error,1024,&len);
		if(SQL_NO_DATA_FOUND == plm_retcode) return rc;
		printf("SqlState: %s, Error: %s\n",sqlstate,error);
	}
	return rc;
}

int main()
{
	SQLCHAR buf[1024];
	char cstr[1024];
	SQLSMALLINT b;
	int rc;

	/*environment initialization*/
	EXIT_ON_FAIL(processerrors(SQLAllocHandle(SQL_HANDLE_ENV,0,&ENV)),"SQLAllocHandle(ENV)");
	EXIT_ON_FAIL(processerrors(SQLSetEnvAttr(ENV,SQL_ATTR_ODBC_VERSION,(SQLPOINTER)SQL_OV_ODBC3,SQL_IS_INTEGER)),"SQLSetEnvAttr()");

	/*connection initialization*/
	EXIT_ON_FAIL(processerrors(SQLAllocHandle(SQL_HANDLE_DBC,ENV,&DBC)),"SQLAllocHandle(DBC)");

	/*set up error handling: install callback handlers*/
	/*ommited: we should use processerrors when proc returns SQL_SUCCESS_WITH_INFO or SQL_ERROR*/

	/*connectint to server using server name, user name, and password*/
	sprintf(cstr,"DSN=%s;UID=%s;PWD=%s;",Ex_server,Ex_username,Ex_password);
	EXIT_ON_FAIL(processerrors(SQLDriverConnect(DBC,NULL,(SQLCHAR *)&cstr,SQL_NTS,(SQLCHAR *)&buf,1024,&b,SQL_DRIVER_NOPROMPT)),"SQLDriverConnect()");

	/*execute command*/
	EXIT_ON_FAIL(processerrors(SQLAllocHandle(SQL_HANDLE_STMT,DBC,&STMT)),"SQLAllocHandle(STMT)");
 EXIT_ON_FAIL(processerrors(SQLSetStmtAttr(STMT, SQL_ATTR_ROW_ARRAY_SIZE, (SQLPOINTER)1, 0)),"");
	rc = processerrors(SQLExecDirect(STMT,(SQLCHAR *)"select au_lname, city from pubs2..authors where state = 'CA'",SQL_NTS));
	char city[2000],name[2000];
	SQLINTEGER cityl,namel;

	/*main process loop*/
 do
	{
		switch (rc)
		{
			case SQL_SUCCESS			:
			case SQL_SUCCESS_WITH_INFO	: if(SQL_SUCCESS_WITH_INFO==rc) processerrors(rc);
											SQLSMALLINT cc;
											EXIT_ON_FAIL(processerrors(SQLNumResultCols(STMT,&cc)),"SQLNumResultCols()");
											/*resultset trapped, process it*/
											/*if cc (column count) isn't equal to zero - recordset is returned*/
											if (0!=cc)
											{
												/*binding columns*/
												EXIT_ON_FAIL(processerrors(SQLBindCol(STMT,1,SQL_C_CHAR,name,2000,&namel)),"SQLBindCol(name)");
												EXIT_ON_FAIL(processerrors(SQLBindCol(STMT,2,SQL_C_CHAR,city,2000,&cityl)),"SQLBindCol(city)");
												/*fetching data*/
												while(SQL_SUCCESS==SQLFetch(STMT))
												{
													fprintf(stdout, "%s: %s\n", name, city);
												}
											}
										break;
			case SQL_ERROR				: processerrors(rc); break;
			default						: EXIT_ON_FAIL(SQL_ERROR,"Unexpected rc");
		}
		/*move to next recordset*/
		rc = SQLMoreResults(STMT);
	}
	while (SQL_NO_DATA!=rc);
	/*cleaup*/
	cleanup();
	return SQL_SUCCESS;
}
[bookmark: _Sybase_Migration_Issues][bookmark: _Toc181521596]Sybase Migration Issues
This section examines potential problems when migrating from Sybase to SQL Server 2005 and their possible solutions. This section covers Sybase 12.5.2 features that work differently, or do not exist, in SQL Server 2005.
Note All references to SSMA mean SSMA for Sybase version 1.2.
Each entry in this section includes three parts:
Issue
SSMA support
Solution
The "SSMA support" section gives the implementation status. When SSMA support is Yes, the solution is the exact description of the SSMA conversion algorithm. If SSMA support is Partial, some manual intervention may be necessary, as explained in the Solution entry.
Be aware that many SSMA Sybase solutions exist in two modes:
Optimistic. For less clumsy target code that resembles the original format; this type of code is likely to have only minimal incompatibilities. If you use this mode, you try to preserve the original Sybase text as much as possible and ignore the probability that this code may work differently from Sybase.
Full. Simulate Sybase behavior as exactly as possible In this mode, you try to create the best possible emulation, but this is done for code clarity and readability.
[bookmark: _Toc181521597]Data Types
This section covers specific migration problems that can arise during data type migration.
[bookmark: _Toc181521598]Separate Date and Time Types
Issue
Sybase date and especially time data types have no direct equivalents in SQL Server 2005 because Sybase allows working with the time part of a datetime separately from the date.

SSMA support
Partial

Solution
Map the Sybase date data type to Transact-SQL datetime or smalldatetime data types.
Map the Sybase time data type to Transact-SQL datetime, smalldatetime or character types such as varchar or nvarchar.
[bookmark: _Toc181521599]Date Range
Issue
Sybase date supports dates starting from January 1, 0001 but SQL Server 2005 does not support dates before the year 1753.

SSMA support
None

Solution
To support dates before the year 1753:
Replace the standard datetime data type with either the int or char(8) data type.
Store the date in ISO 112 style—yyyymmdd—as an integer (for example, integer number 20070408 is equal to April 8, 2007) or as a literal (for example, 20070401 is equal to April 1, 2007).
This date representation is far more human readable than any other packed or binary date representation. You can also index this type of column for faster data search and retrieval.
Warning While the standard datetime data type can store only valid dates (you cannot store, for example, February 31, 2007 as datetime), stored values in int and char(8) columns are not checked against a valid date during conversion. Manually create check constraints on these columns to check the data's validity.
You will need a special version of the date manipulation functions datediff, dateadd, and datepart. All the necessary functions (check function, datediff, dateadd, and so on) can be written in SQL CLR (common language runtime) by using the DateTime class.
[bookmark: _Toc181521600]Length of String Types
Issue
The maximum length of character data columns and variables can be up to 16 KB, depending on page size. You must distinguish cases when the best conversion is to char and when to varchar(max), and decide what to do with char(16384).

SSMA support
Partial

Solution
By default, SSMA maps the char(n) data type to varchar(max) in the case of n > 8000. You can select the following optional type mappings for the char data type in SSMA (Figure 7):
char
varchar
nchar
nvarchar
varchar(max)
nvarchar(max)
[image: Fig10]
Figure 7
[bookmark: _Toc181521601]Expressions
This section covers specific migration problems that can arise when expressions are migrated.
[bookmark: _Toc181521602]Conversion of Time to String
Issue
By default, SSMA maps the Sybase time data type to the SQL Server datetime data type. But if you convert time, either explicitly or implicitly, to character types you must remove the date part containing the year, month, and day, possibly with a sysdb function.

SSMA support
None

Solution
In all cases when you convert the time variable to character, replace the value with a call to the SSMA.TIME_FROM_DATETIME function. This function extracts the time part from datetime. See the following code example.
Note This replacement is not needed when:
One time variable or column is assigned to the value of another time variable or column (SET, SELECT, and UPDATE statements).
The value of the time variable is inserted into a time column (INSERT).
TIME is the second argument in the DATEPART function.
Here is the code:

create function SSMA.TIME_FROM_DATETIME (@dt datetime)
returns varchar(40)
as
begin
 declare @str varchar(40),
		 @dt_len int,
		 @last_space_pos int

set @str = convert(varchar(40), @dt)
set @dt_len = len(@str)
set @last_space_pos = @dt_len - charindex(' ', reverse(@str)) + 2

if @last_space_pos = @dt_len return NULL

 return
 substring(@str, @last_space_pos, @dt_len - @last_space_pos + 1)
end
[bookmark: _Toc181521603]Unicode Literals
Issue
Sybase allows Unicode literals in U&’\xxxx’ format.
The exact syntax is:
U&<string_literal>
or
u&<string_ literal>
where <string_literal> is any string literal that is valid in Sybase, enclosed in single or double quotes. U& indicates that this string contains Unicode escape sequences in \xxxx or \+yyyyyy format. Normal single-byte characters are also allowed.
Valid Unicode literals examples include:
U&’\0041’
u&”\0041KLM\0042XYZ”
U&”ABC\+000041”

SSMA support
None

Solution
Use binary literals for this purpose.
[bookmark: _Toc181521604]Double-Quoted String Literals
Issue
Sybase can use double-quoted strings, which by default SQL Server 2005 does not support. You must convert them, accounting for the possibility of single and double quotes inside the string.

SSMA support
Yes

Solution
Change all double quotes (") that surround string literals to single quotes. If you find a single quote (') inside the string literal, replace it by two single quotes (‘’).
[bookmark: _Toc181521605]Empty String
Issue
Empty string ("" or '') evaluates to ' ' (single space) in expressions, and is stored as a single blank in variables and table columns.

SSMA support
Yes

Solution
SSMA uses the following algorithm: Change all empty string literal occurrences in character expressions to ' ' (single space). In Full mode, replace every string variable or string column <s> to:

(CASE <s> WHEN '' THEN ' ' ELSE <s> END)

Do not make this replacement in comparisons when the string variable or column are checked against a string literal that is not an empty string, is not a single space, or whose length exceeds 1.
Do not make this replacement for IS [NOT] NULL evaluations.
Do not apply this replacement to the string variables that receive a value during statement execution, including:
Output parameters of a procedure call.
Variables at the left side of an assignment (SET or SELECT).
Variables from the INTO clause of the FETCH command.
Example expressions you should not replace by CASE include:
@var = 'X'
a_col = 'SOME_LONG_STRING'
a_col IS NOT NULL
'U' = @arg1
[bookmark: _Toc181521606]‘||’ as Concatenation Operator
Issue
Sybase can use '||' along with '+' as a string concatenation operator.

SSMA support
Yes

Solution
Replace all '||' in string expressions with '+'.
[bookmark: _Toc181521607]Concatenation with NULL
Issue
A Sybase string that is concatenated with NULL always yields the original string, which is not the default in SQL Server 2005. In SQL Server 2005 the result is the same only if the option CONCAT_NULL_YIELDS_NULL is set to OFF.

SSMA support
Yes

Solution
In Full mode, SSMA replaces any variable string expression that participates in concatenation with ISNULL(<expression>, ‘’). In Optimistic mode, SSMA ignores the problem and issues a general warning with a proposal to use the SET CONCAT_NULL_YIELDS_NULL OFF command.
Note If CONCAT_NULL_YIELDS_NULL is OFF, it may be impossible to use indexes on computed columns and indexed views in SQL Server 2005.
[bookmark: _Toc181521608]Comparisons with NULL
Issue
If <e> is an expression and @<v> is a local variable or procedure parameter, the comparisons in the following table in Sybase will give results that are different from SQL Server 2005 in default ANSI_NULLS mode.

	Boolean expression
	Result

	<e> = null
	TRUE if <e> is NULL, and FALSE otherwise

	<e> = @<v>
	TRUE if both <e> and @<v> are NULLs, and FALSE if NULL is only one

	<e> != null
	TRUE if <e> is not NULL, and FALSE otherwise

	<e> != @<v>
	TRUE if one of <e> and @<v> is not NULL, and FALSE if they are both NULLs

SSMA support
Yes

Solution
SSMA can account for the possibility of NULL values if you set the Equality check conversion option to Consider NULL values. This requires Full conversion mode.
[bookmark: _Toc181521609]CASE Nesting Limit
Issue
CASE expressions in SQL Server 2005 can be nested only to level 10.

SSMA support
None

Solution
Generally, split long case expressions into several smaller parts.
[bookmark: _Toc181521610]Implicit Conversion of Binary Types
Issue
Sybase can concatenate binary and varbinary variables and columns with string expressions. In this case, they are implicitly converted to varchar. Conversely, string expressions are implicitly converted when they are assigned to a binary / varbinary variable.

SSMA support
Yes

Solution
If any expression of binary or varbinary type is connected with a concatenation operator with any char, varchar, nchar, nvarchar, unichar, or univarchar expression, add an explicit conversion to varchar(max).
Here is an example. Convert the following:

DECLARE @bin varbinary(100),
		 @str varchar(20)
		
SET @str = 'ABC'
SET @bin = 0x41
SET @str = @str + @bin

Into the following:
DECLARE @bin varbinary(100),
@str varchar(20)
		
SET @str = 'ABC'
SET @bin = 0x41
SET @str = @str + CONVERT(varchar(max),@bin)

If a character expression is assigned to a binary or varbinary variable or appears in an INSERT or UPDATE command that assigns the value to a binary or varbinary column, add explicit conversion to varbinary(max).
For example, convert the following:

DECLARE @bin binary(10)
SET @bin = 'X'

Into the following:
DECLARE @bin binary(10)
SET @bin = CONVERT(varbinary(max),'X')
[bookmark: _Toc181521611]Implicit Conversion of Datetime as Function Argument
Issue
If a system function has a string parameter, Sybase can accept datetime expressions as an actual value by implicitly converting them to varchar.

SSMA support
Yes

Solution
Cast the datetime value <dt> to the parameter type used in the function definition. The default is CAST (<dt> as nvarchar(4000)).

Example
Sybase
DECLARE @dt datetime
SET @dt = getdate()
select substring(@dt, 1, 10)
select len(@dt)
select rtrim(dateadd(month, 2, @dt))

SQL Server 2005
DECLARE @dt datetime
SET @dt = getdate()
SELECT substring(CAST(@dt AS nvarchar(max)), 1, 10)
SELECT sysdb.ssma_syb.char_length_nvarchar(CAST(@dt AS nvarchar(4000)))
SELECT rtrim(CAST(dateadd(month, 2, @dt) AS nvarchar(max)))
[bookmark: _Toc181521612]SQL Commands
This section covers specific migration problems that can arise when Sybase commands are converted to SQL commands.
[bookmark: _Toc181521613]COMMIT
Issue
The COMMIT command can be executed without a prior BEGIN TRANSACTION statement.

SSMA support
Yes

Solution
Replace COMMIT … with IF (@@TRANCOUNT > 0) COMMIT …
[bookmark: _Toc181521614]Different COMMIT Syntax
Issue
Sybase can use COMMIT transaction_name and COMMIT WORK transaction_name syntax that does not exist in SQL Server 2005.

SSMA support
Yes

Solution
Change all occurrences of COMMIT <word> or COMMIT WORK <word> to COMMIT TRANSACTION <word>, where <word> is a single word that is not equal to TRAN[SACTION].
[bookmark: _Toc181521615]Quoted Data Type at CONVERT and CAST Functions
Issue
Sybase allows writing the target data type in CONVERT and CAST functions in quotes and double quotes, as in this example:

 select convert('datetime',getdate())
 select cast(7.89/3.45 as 'float')

SSMA support
None

Solution
Ignore these quotes (or double quotes) during conversion.
[bookmark: _Toc181521616]DEALLOCATE CURSOR
Issue
SQL Server 2005 does not support the DEALLOCATE CURSOR command.

SSMA support
Yes

Solution
Change DEALLOCATE CURSOR to DEALLOCATE.
[bookmark: _Toc181521617]LOCK TABLE <T> IN SHARE | EXCLUSIVE MODE
Issue
SQL Server 2005 does not support the LOCK TABLE <T> IN SHARE | EXCLUSIVE MODE command.

SSMA support
Yes

Solution
The statement's full syntax is:

LOCK TABLE <T> IN {SHARE | EXCLUSIVE} MODE
 [WAIT [NumSecs] | NOWAIT]

If the source statement contains NumSecs or a NOWAIT parameter, it generates an error. Otherwise, implement table locking by using the DELETE statement.
If the mode is SHARE:

/* Lock table <T> */
DELETE TOP (0) FROM <T> WITH (TABLOCK) WHERE 0=1

If the mode is EXCLUSIVE:

/* Lock table <T> */
DELETE TOP (0) FROM <T> WITH (TABLOCKX) WHERE 0=1

Example 1
Sybase
LOCK TABLE TableA IN SHARE MODE

Emulation in SQL Server 2005 is:
DELETE TOP (0) FROM TableA WITH (TABLOCK) WHERE 0=1

Example 2
Sybase
LOCK TABLE TableA IN EXCLUSIVE MODE

Emulation in SQL Server 2005 is:
DELETE TOP (0) FROM TableA WITH (TABLOCKX) WHERE 0=1
[bookmark: _Toc181521618]PRINT Command
Issue
SQL Server 2005 cannot use the PRINT command with a format string and arguments. In addition, Sybase interprets double percent (%%) in a format string as a single percent.

SSMA support
Yes

Solution
You have two options for converting a PRINT statement. The Optimistic option offers the simplest solution for converting commonly used statements. The more complicated Full option offers the most accuracy.

Case 1. PRINT without arguments
PRINT <format>

Assume that the <format> string is already converted according to the SSMA string conversion algorithm. In literal strings, replace all double percents (%%) with single percent (%).
In Full mode, if <format> is a variable, SSMA makes the replacement by using the REPLACE() function:

PRINT REPLACE (<format>, '%%', '%')

In Optimistic mode, SSMA does not include REPLACE even for the variable <format>, so the result remains unchanged: PRINT <format>. There is a risk that the variable contains unsupported format characters.

Case 2. PRINT with argument list

PRINT <format>, <arg1>, <arg2>, . . . <argN>

When <format> is a string literal
Convert the statement to:

PRINT <new_str>

To generate <new_str>, locate all placeholders, that is, occurrences of %n! substrings in <format>, where n is an integer number from 1 to 20.
Break the format string at each placeholder and insert the argument there. If the argument is not char and not varchar, add cast to varchar(max) as in the following:

<left_part_of format> + <argn> + <right part of format>

or

<left_part_of format> + CAST(<argn> AS varchar(max)),'') + <right part of format>

<argn> is the converted nth argument from the argument list, where n is the number used in the placeholder.
Replace the double percent (%%) in the <format> literal with a single percent (%).

When <format> is a variable
To convert the statement, create an intermediate format variable, @print_format_<X>, of varchar(max) type. <X> is the sequential number of PRINT in the subprogram. Adjust the percent signs by assignment:

SET @print_format_<X> = REPLACE (<format>, '%%', '%')

Insert the value of each argument into a format variable by using the REPLACE() function. If the argument type is not varchar and not char, add a conversion to varchar(max).

When <format> is a string literal or a variable
In Optimistic mode, SSMA assumes that the SQL Server option CONCAT_NULL_YIELDS_NULL is OFF, and therefore does not check for NULL arguments.
In Full mode, SSMA wraps the argument with the ISNULL(…, '') function. Do not apply this if the argument is a non-NULL literal.

Example 1: Format is a string literal
Sybase
PRINT “Yours are %1! %%”, @my_percent

SQL Server 2005
Optimistic mode:
PRINT 'Yours are '+ CAST(@my_percent AS varchar(max)) + ' % '

Full mode:
PRINT 'Yours are '+ ISNULL(CAST(@my_percent AS varchar(max)), '') + ' % '

Example 2: Format is a variable (Full mode)
Sybase
PRINT @fmt, @arg1, @arg2, @arg3

SQL Server 2005
DECLARE @print_format_1 varchar(max)
SET @print_format_1 = REPLACE (@fmt, '%% ', '% ')
SET @print_format_1 = REPLACE (@print_format_1, '%1! ', ISNULL(CAST (@arg1 AS varchar(max)), ''))
SET @print_format_1 = REPLACE (@print_format_1, '%2! ', ISNULL(CAST (@arg2 AS varchar(max)), ''))
SET @print_format_1 = REPLACE (@print_format_1, '%3! ', ISNULL(CAST (@arg3 AS varchar(max)), ''))
PRINT @print_format_1
[bookmark: _Toc181521619]RAISERROR
Issue
RAISERROR has different syntax and error code numbering.

SSMA support
Partial

Solution
There can be several possible RAISERROR formats in the source code. Following are the cases covered for RAISERROR in this section.
Case 1: RAISERROR <num>
Case 2: RAISERROR <num> <format> [, <arg_list>]
Case 3: RAISERROR <num>, <arg1>, <arg2>, . . . <arg3>
Case 4: RAISERROR WITH ERRORDATA <list>

[bookmark: Case1]Case 1: RAISERROR <num>
In this format, <num> is a numeric constant or a variable that represents an error number. Error numbers in the range 17000..19999 are stored in sysmessages, while numbers 20000 and greater are stored in a sysusermessages system table.
SQL Server 2005 uses numbers starting from 50001 to encode custom error messages. In our emulation, you can store such messages in sys.messages by running the stored procedure sp_addmessage.
Whereas Sybase stores the sysusermessage table separately for each database, SQL Server 2005 uses a single sys.messages view for the entire server. So you need to differentiate the messages from different database. For this purpose SSMA provides parameter Base Messages Number in SSMA with default and minimal value equal to 30001 (Figure 8).

[image: Fig11]
Figure 8
This parameter finds appropriate user messages as described below.
Use the following approach to migrate Sybase user messages:
1. Use a Transact-SQL-linked server to retrieve Sybase user messages into a Transact-SQL temporary table.
Use a Transact-SQL cursor to select from the temporary table to execute an sp_addmessage system procedure using specific base-message numbers for each database.
SSMA makes the conversion in the following way:
If <num> is in the range 17000..19999, SSMA generates an error message because it does not convert system messages. The main problem is that SQL Server 2005 does not support raising system exceptions by using RAISERROR.
If <num> is a constant, SSMA changes the number to <num> + Base Number. <num> should be kept with the statement as a comment for history maintenance.
If <num> is a variable or expression, SSMA creates an intermediate local variable.

DECLARE @raiserror_<seq_n> int
SET @raiserror_<seq_n> = <num> + Base Messages Number
RAISERROR (@raiserror_<seq_n>, 16, 1)

<seq_n> is a generated number, unique within the converted subprogram.

[bookmark: Case2]Case 2: RAISERROR <num> <format> [, <arg_list>]
<format> is a literal string or a string variable. If trimmed, <format> is an empty string literal, and RAISERROR logic becomes identical to Case 3, which follows this case.
<arg_list> is comma-separated list of variable length, containing <arg1>, <arg2>, … <argN> arguments.
Like the PRINT statement, this kind of RAISERROR statement is converted differently in Full and Optimistic mode.
Constant format
If <arg_list> is empty, SSMA converts the statement to:

RAISERROR (<new_str>, 16, 1)

Where <new_str> is a converted <format> string.
Otherwise, an intermediate variable is created:

DECLARE @error_format_<X> varchar(max)
SET @error_format_<X> = <new_str>
RAISERROR (@error_format_<X>, 16, 1)

To generate <new_str>, locate all placeholders (that is, occurrences of '%n!' substrings in <format>), where n is an integer number from 1 to 20.
SSMA then breaks the <format> string at each placeholder and inserts the argument there. If the argument is not of string type, casting to varchar(max) is added:

<left_part_of format> + <argn> + <right part of format>

or

<left_part_of format> + CAST(<argn> AS varchar(max)),'') + <right part of format>

<argn> is a converted nth argument from the argument list, where n is the number used in the placeholder.

Variable format
If <arg_list> is empty, the conversion result is:

RAISERROR (<format>, 16, 1)

Otherwise, create an intermediate variable:

DECLARE @error_format_<X> varchar(max)
SET @error_format_<X> = <ms_format>

Here <X> is a sequential number of RAISERROR in the module, and <ms_format> is the original <format>, already converted according to the SSMA string conversion algorithm.
For each argument, replacement commands are added:

SET @error_format_<X> = REPLACE (@error_format_<X>, '%1! ', ISNULL(CAST (<arg1> AS varchar(max)), '')
SET @error_format_<X> = REPLACE (@error_format_<X>, '%2! ', ISNULL(CAST (<arg2> AS varchar(max)), '')
. . .
SET @error_format_<X> = REPLACE (@error_format_<X>, '%,<N>! ', ISNULL(CAST (<argN> AS varchar(max)), '')

If the argument is non-NULL literal, it is never wrapped into the ISNULL(…,’’) function. If the argument has a varchar or char type, casting to varchar(max) is not applied.
Finally, the MS RAISERROR statement is added:

RAISERROR (@error_format_<X>, 16, 1)

As this solution does not set @@ERROR = <num>, SSMA generates a warning in the comments.
For both constant and variable format
In Optimistic mode, assume that the SQL Server option CONCAT_NULL_YIELDS_NULL is OFF; therefore, no checks for NULL argument are made. Otherwise, the result of all string expressions will be NULL if any NULL argument is used.
In Full mode, SSMA generates ISNULL checks for arguments.

Case 2 Examples
Example 1: Constant format, optimistic mode
Sybase
DECLARE @a1 char(10)
SET @a1 = "your SSN "
RAISERROR 315000 " %2! is not found in %1!", @a1, 666

SQL Server 2005
DECLARE @a1 char(10)
SET @a1 = 'your SSN '
DECLARE @error_format_1 varchar(max)
SET @error_format_1 = CAST(666 AS varchar(max)) + 'is not found in ' + @a1
RAISERROR (@error_format_1, 16, 1)

Example 2: Variable format, full mode
Sybase
DECLARE @a1 char(10), @fmt varchar(100)
SET @a1 = "your SSN "
SET @fmt = " %2! is not found in %1!"
RAISERROR 315000 @fmt, @a1, 666

SQL Server 2005
DECLARE @a1 char(10), @fmt varchar(100)
SET @a1 = 'your SSN'
SET @fmt = " %2! is not found in %1!"

DECLARE @error_format_1 varchar(max)
SET @error_format_1 = @fmt
SET @error_format_1 = REPLACE (@error_format_1, '%1!', ISNULL(CAST(@a1 AS varchar(max)),''))
SET @error_format_1 = REPLACE (@error_format_1, '%2!', CAST(666 AS varchar(max)))

RAISERROR (@error_format_1,16,1)

[bookmark: Case3]Case 3: RAISERROR <num>, <arg1>, <arg2>, . . . <arg3>
Optimistic Mode
If <num> is in the range 17000..19999, SSMA generates an error message. System messages are not supported.
If <num> is a constant, SSMA changes the number to <num> + Base Message Number. SSMA keeps the number <num> with the statement as a comment for history maintenance.
If <num> is a variable or expression, create an intermediate local variable:
DECLARE @raiserror_<seq_n> int
SET @raiserror_<seq_n> = <num> + Base Messages Number
RAISERROR (@raiserror_<seq_n>, 16, 1, <arg1>, <arg2>,…<argN>)

<seq_n> is a generated number, unique within the converted subprogram.

Full mode
SSMA creates intermediate variables for message text and severity, and retrieves them from the sys.messages system view by using the Base Message Number parameter.

DECLARE @error_format_<X> varchar(max),
		 @severity_<X> int
SELECT TOP 1 @error_format_<X> = sm.text, @severity_<X> = sm.severity
 FROM sys.messages sm, sys.syslanguages sl
	 WHERE (sl.langid = @@langid or sl.langid = 0)
 AND sl.msglangid = sm.language_id
	 AND sm.message_id = <num> + Base Messages Number
 ORDER BY sl.langid DESC

Here <X> is a sequential number of RAISERROR in the module.
For each argument, replacement commands are added:

SET @error_format_<X> = REPLACE (@error_format_<X>, '%1! ', ISNULL(CAST (<arg1> AS varchar(max)), '')
SET @error_format_<X> = REPLACE (@error_format_<X>, '%2! ', ISNULL(CAST (<arg2> AS varchar(max)), '')
. . .
SET @error_format_<X> = REPLACE (@error_format_<X>, '%<N>! ', ISNULL(CAST (<argN> AS varchar(max)), '')

If the argument is a non-NULL literal, it is not wrapped into the ISNULL(…,'') function. If the argument has a varchar or char type, casting to varchar(max) is not applied.
Finally, a SQL Server RAISERROR statement is added:

RAISERROR (@error_format_<X>, @severity_<X>, 1)

As this solution does not set @@ERROR = <num>, SSMA generates a warning in the comments.

[bookmark: Case4]Case 4: RAISERROR WITH ERRORDATA <list>
RAISERROR WITH ERRORDATA <list> is a Sybase-specific feature (additional information for CT client), which SSMA cannot convert. To emulate this feature, you can use a SELECT result set to pass the information to the client.
[bookmark: _Toc181521620]ROLLBACK
Issue
The ROLLBACK command can be executed without a prior BEGIN TRANSACTION statement.

SSMA support
Yes

Solution
Replace ROLLBACK … with IF (@@TRANCOUNT > 0) ROLLBACK …
[bookmark: _Toc181521621]SELECT / INSERT / DELETE / UPDATE
[bookmark: _Toc181521622]AT ISOLATION Clause
Issue
SQL Server 2005 does not support the SELECT / INSERT / DELETE / UPDATE
AT ISOLATION clause.

SSMA support
Yes

Solution
Add isolation hints to all tables that participate in the query by using the scheme in the following table.

	at isolation parameter (Sybase)
	SQL Server 2005 table hint

	0 | read uncommitted
	WITH (READUNCOMMITTED)

	1 | read committed
	WITH (READCOMMITTED)

	2 | repeatable read
	WITH (REPEATABLEREAD)

	3 | serializable
	WITH (SERIALIZABLE)

Priority
Normal
[bookmark: _Toc181521623]DISTINCT with ORDER BY
Issue
SQL Server 2005 requires that all ORDER BY items appear in a SELECT list if ORDER BY is specified in a query with the DISTINCT keyword.

SSMA support
Yes

Solution
The fields missing in the SELECT list are added to the original SELECT statement. This statement is inserted as a subquery into a FROM clause of the SELECT with the original SELECT list and no DISTINCT. All WHERE and HAVING clauses of the original SELECT statement are copied to the subquery without changes.
If an item in the original SELECT list does not have an alias, generate the alias as a string that is unique within the statement. Also, create this type of alias for all ORDER BY items.
Move all SELECT items that have existing or generated aliases to the subquery. For each item, leave only the alias in the outer SELECT list. Replace ORDER BY items with this alias if an ORDER BY expression is identical to the one in the original SELECT list.
If the source ORDER BY list contains an expression or column that is not present in the SELECT list, add this item by using a generated unique alias to the subquery. Replace the item in ORDER BY with this alias.
Note that:
Original item names are not preserved in the ORDER BY list.
All items in the SELECT list lose their original names unless they already had aliases before conversion.

Example
This Sybase statement:
 select distinct name from table_a order by id
Is converted to:
 select name
 from (select distinct name, id from table_a) as subquery
 order by id
[bookmark: _Toc181521624]FOR readonly | update Clause
Issue
The FOR clause is not part of SELECT query syntax in SQL Server 2005.

SSMA support
Partial

Solution
SQL Server 2005 can recognize the FOR readonly | update clause when the SELECT statement is used in the DECLARE CURSOR command. In that case, the statement is not changed. In all other cases, ignore the clause.
[bookmark: _Different_Use_of][bookmark: _Toc181521625]Different Use of the GROUP BY Clause
Issue
In a SELECT list, Sybase can use non-aggregated columns not included in the GROUP BY clause.
Sybase Transact-SQL extensions to standard SQL make displaying data more flexible because they allow references to columns and expressions that are not used for creating groups or summary calculations:
A SELECT list that includes aggregates can include additional columns that are not arguments of aggregate functions and are not included in the GROUP BY clause. An additional column affects the display of final results, since the result may contain more rows.
The HAVING clause can include columns or expressions that are not in the SELECT list and not in the GROUP BY clause. When the Sybase Transact-SQL extensions add rows and columns to the result, or if GROUP BY is omitted, the query results can be difficult to interpret.

SSMA support
Partial. Queries with outer joins and unresolved identifiers, and queries with aggregates and without a GROUP BY clause are not supported.

Solution
Create two subqueries, one to calculate aggregates and the other to retrieve non-aggregated columns. Join the derived tables by the columns contained in the GROUP BY clause. If there are expressions in the SELECT list, calculate them in super-SELECT because subqueries should return only regular columns and calculated aggregate functions.
To do this, follow these steps:
1. Create a subquery:
Include a SELECT list that contains all non-aggregated columns and expressions that do not contain aggregates from the SELECT list of the original query. All GROUP BY expressions are added here.
Use the same FROM as in the original query.
Do not include WHERE, DISTINCT, GROUP BY, HAVING, or ORDER BY clauses.
Create another subquery:
Include a SELECT list containing aggregate functions from the original query's SELECT list and all expressions from its GROUP BY clause.
Use the same FROM as in the original query.
Use the same WHERE as in the original query.
Use the same GROUP BY as in the original query.
Do not include DISTINCT, HAVING, or ORDER BY clauses.
Build a result query:
Include a SELECT list that is the same as the original query's SELECT list.
Use the FROM of the two subqueries that you created, joined by expressions from a GROUP BY clause.
Do not use a WHERE clause, except if there is a HAVING clause (see the handling of this case in the next section).
Use the same DISTINCT and ORDER BY clauses as in the original query.
Assign aliases to the aggregates that are calculated by the subquery you created in step 2. Rename these generated aliases back to the original column names in the embracing query.
If multiple tables are joined in the original query, use the following rules:
If a table does not take part in a GROUP BY, SELECT list, HAVING, or ORDER BY, do not use it in the FROM clause of the subquery you created in step 1. The same rule applies if the table columns appear in the SELECT list, HAVING, or ORDER BY, but their use is limited to aggregate functions.
Otherwise, include the table in the FROM clauses in both subqueries.
For joined tables, move the join condition only to the subquery you created in step 2.
In Full mode:
The join between the two subqueries should be different from a standard query, because it allows linking by NULL columns. Therefore, check for NULLs in join expressions.
For example, if the condition is:

ON Q_A.x = Q_B.y

Extend it to:

ON (Q_A.x = Q_B.y OR (Q_A.x IS NULL AND Q_B.y IS NULL))

Example 1 (Optimistic mode)
Sybase
 select id, subid, value, sum(value)
 from table_c
 where value>10.00
 group by id order by id, subid

SQL Server 2005
 select sq1.id, subid, value, sum_value
 from
 (select id, subid, value
 from table_c) as sq1
 inner join
 (select id, sum(value) as sum_value
 from table_c
 where value > 10.00
 group by id) as sq2
 on sq1.id = sq2.id or (sq1.id is null and sq2.id is null)
 order by sq1.id, subid

Example 2
Sybase
 select a.name, min(a.value)
 from table_gh a, table_gj b
 where a.id = b.id and a.subid > 3
 group by a.subid
 having a.id>=1 and a.subid = avg(a.subid)

SQL Server 2005
 select aname, min_a_value
 from
 (select a.name as aname, a.id as aid, a.subid as asubid
 from table_gh a
) as non_group_query
 inner join
 (
 select a.subid as asubid, min(a.value) as min_a_value,
 avg(a.subid) as avg_a_subid
 from table_gh a, table_gj b
 where a.id = b.id and a.subid>3
 group by a.subid
) as group_query
 on non_group_query.asubid = group_query.asubid
 where (non_group_query.aid >= 1
 and non_group_query.asubid = avg_a_subid)
[bookmark: _Toc181521626]HAVING Clause
Issue
Sybase can use the HAVING clause without a GROUP BY, or a HAVING clause with non-aggregate columns missing in GROUP BY.

SSMA support
Partial. Queries with outer joins and unresolved identifiers are not converted.

Solution
The solution resembles the solution from the previous section (Different Use of GROUP BY Clause). First, add regular columns from the HAVING clause to the SELECT list of the subquery. Next, calculate aggregate functions in the subquery as described in the previous section and move the HAVING clause to the outer WHERE predicate.
If HAVING is used without GROUP BY, replace INNER JOIN with CROSS JOIN and remove the joining condition, as you do not have any columns to make the join with.

Example 1
Sybase
 select id, min(subid)
 from table_gh
 having name='NameBC'

SQL 2005
 select id, min_subid
 from
 (select id, name
 from table_gh) as non_group_query
 cross join
 (select min(subid) as min_subid
 from table_gh) as group_query
 where name = 'NameBC'

Example 2
Sybase
 select a.name, min(a.value)
 from table_gh as a join table_gj as b on a.id=b.id
 where a.subid>3
 group by a.subid, b.id
 having a.id>=1 and a.subid=avg(a.subid)
 order by b.value

SQL Server 2005
 select aname, min_a_value
 from
 (select a.name as aname, a.id as aid, a.subid as asubid,
 b.id as bid, b.value as bvalue
 from table_gh as a, table_gj as b
) as non_group_query
 inner join
 (
 select a.subid as asubid, min(a.value) as min_a_value,
 avg(a.subid) as avg_a_subid, b.id as bid
 from table_gh as a join table_gj as b on a.id=b.id
 where a.subid>3
 group by a.subid, b.id
) as group_query
 on non_group_query.asubid = group_query.asubid
 and non_group_query.bid = group_query.bid
 where (non_group_query.aid >= 1
 and non_group_query.asubid = avg_a_subid)
 order by bvalue
[bookmark: _Toc181521627]HOLDLOCK Hint
Issue
SQL Server 2005 does not use the HOLDLOCK hint syntax.

SSMA support
Yes

Solution
Change HOLDLOCK to WITH (HOLDLOCK).
[bookmark: _Toc181521628]INDEX <index-name> Hint
Issue
SQL Server 2005 uses the INDEX hint differently from Sybase.

SSMA support
Yes

Solution
If <index_name> is an integer number, SSMA ignores this hint. A possible source format is:

(INDEX <integer>)

The following format is not processed by SSMA:

(<integer>)

In other cases, <index_name> can be a character name. SSMA can convert it to the SQL Server 2005 equivalent as follows:

WITH (INDEX (<index_name>))
[bookmark: _Toc181521629]Non-Standard Outer JOIN
Issue
Sybase queries can use non-ANSI outer join syntax (*= or =*).

SSMA support
Partial. Complex expressions in join conditions or join conditions that are connected with the OR operator are not supported.

Solution
To rewrite these joins to ANSI format, SSMA converts all non-ANSI joins to LEFT OUTER JOIN. Therefore, if you have an (=*) condition, change the order of the tables to the opposite. The order of columns in the target ON expression does not matter.
Follow these steps of the conversion algorithm:
1. Find tables that have only left joins (all outer join conditions have an asterisk on the side of such tables). We call these starting tables.
1. Combine all starting tables with the CROSS JOIN operator. A CROSS JOIN is not needed if there is only one table.
For each starting table <A>:
Find table that is directly left-joined to starting table <A>. Add LEFT OUTER JOIN ON <condition>, where <condition> includes <A> to outer links.
Find table <C> that is left-joined to <A> and/or . Add LEFT OUTER JOIN <C> ON <condition>, where <condition> includes <A> – <C> and – <C> links.
Continue searching until another joined table is not found. At each step, add joins that connect the new table with the tables already in the list.
Additional remarks:
There may be several outer join conditions between two tables at once (for example, A.id1 *= B.id2 and A.id3 *= B.id4 and …). Move them all to the ON clause. If the join condition includes expressions, convert the expressions and use the result under ON.
Inner join conditions are not moved.
All filtering conditions for starting tables remain in WHERE. If any filtering condition is found for , <C>, … tables, add the condition to the ON clause where the corresponding table is introduced. Link this type of condition by using the AND operator.
Any join condition added to the ON clause is removed from WHERE. If all expressions in WHERE are removed, delete the WHERE clause.
Non-ANSI outer joins can be used in UPDATE or DELETE statements. The conversion algorithm is the same as for SELECT. The only exception is when the UPDATE statement does not contain the updated table in the FROM list. In this case, add it to the FROM list.
If a column is used in a join condition without a table qualifier, locate the table by column name.
When searching for tables that you add at each step, exclude tables that have right outer joins with the last table.
Generate an error if two tables are both right joined and left joined. (Sybase does not allow this).
Parallel usage of ANSI and non-ANSI constructions for a single table is not converted and leads to an error.
The word table as it is used in this section may be applied to views and subqueries as well.

Example 1
Sybase
SELECT * FROM A, B WHERE A.id *= B.id

SQL Server 2005
SELECT * FROM A LEFT OUTER JOIN B ON A.id = B.id

Example 2
Sybase
SELECT * FROM A, B WHERE A.id =* B.id

SQL Server 2005
SELECT * FROM B LEFT OUTER JOIN A ON A.id = B.id

Example 3
Sybase
SELECT * FROM A, B, C
WHERE A.id *= B.id
AND A.id *= C.id
AND B.id2 *= C.id2

SQL Server 2005
SELECT * FROM A
		LEFT OUTER JOIN B ON A.id = B.id
		LEFT OUTER JOIN C ON A.id = C.id AND B.id2 = C.id2

Example 4
Sybase
SELECT * FROM A, B, C, D
 WHERE A.id =* B.id
AND B.id *= C.id
AND C.id2/10 *= D.id2

SQL Server 2005
SELECT * FROM B
		LEFT OUTER JOIN A ON A.id = B.id
		LEFT OUTER JOIN C ON B.id = C.id
 		LEFT OUTER JOIN D ON C.id2/10 = D.id2

Example 5
Sybase
SELECT * FROM A, B, C, D
 WHERE B.id *= C.id
AND A.id2/5 *= D.id2
AND C.id = 3

SQL Server 2005
SELECT * FROM A CROSS JOIN B
		LEFT OUTER JOIN D ON (A.id2/5 = D.id2)
		LEFT OUTER JOIN C ON B.id = C.id AND C.id = 3

Example 6
Sybase
SELECT * FROM A, B, C
 WHERE A.id + B.id *= C.id

SQL Server 2005
SELECT * FROM A CROSS JOIN B
		LEFT OUTER JOIN C ON A.id + B.id = C.id

Example 7
Sybase
UPDATE A SET x.id2 = isnull(B.id2,0) + isnull(C.id2,0)
 FROM A x, B, C
WHERE x.id *= B.id AND x.id *= C.id AND B.id2 *= C.id2

SQL Server 2005
UPDATE x SET x.id2 = isnull(B.id2,0)+isnull(C.id2,0)
 FROM A x
 	LEFT OUTER JOIN B ON x.id = B.id
 	LEFT OUTER JOIN C ON x.id = C.id AND B.id2 = C.id2
[bookmark: _Toc181521630]NOHOLDLOCK Hint
Issue
SQL Server 2005 does not use NOHOLDLOCK hint syntax.

SSMA support
Yes

Solution
Change NOHOLDLOCK to WITH (NOLOCK).
[bookmark: _Toc181521631]READPAST Keyword
Issue
SQL Server 2005 does not support READPAST.

SSMA support
Yes

Solution
Change to WITH (READPAST).

[bookmark: _Toc181521632]SHARED Keyword
Issue
SQL Server 2005 does not support SHARED.

SSMA support
Yes

Solution
Change to WITH (TABLOCK).
[bookmark: _Toc181521633]Different Behavior of the LIKE Operator in Sybase and SQL Server 2005
Issue
The LIKE operator in Sybase and SQL Server treats the trailing blanks differently:
Example syntax: left_exp LIKE right_exp:
left_exp: Sybase always treats left_exp the same is does CHAR (that is, Sybase always right-pads it with enough spaces). In contrast, SQL Server 2005 uses left_exp without changes.
right_exp: Sybase replaces all trailing blanks (if any) with a single blank, while SQL Server does not modify right_exp.
During comparison, both Sybase and SQL Server 2005 ignore trailing blanks in left_exp if they do not match the right_exp value.

Sample code 1
declare @a char(50), @b char(50)
-- Sybase returns single row, while SQL Server doesn’t
SET @a = ' acd'
SET @b = ' a%'
select 1 where @a like @b
-- returns single row in both Sybase and SQL Server
SET @a = ' ac '
SET @b = ' a%'
select 1 where @a like @b

Sample code 2
declare @a varchar(50), @b char(50)
-- Sybase returns single row, while SQL Server doesn’t
SET @a = 'a'
SET @b = 'a'
select 1 where @a like @b

Sample code 3
declare @a varchar(50), @b varchar(50)
-- Sybase returns single row, while SQL Server does not
SET @a = ' a '
SET @b = ' a% '
select 1 where @a like @b

Sample code 4
declare @a char(2),@b char(5)
-- Sybase returns single row, while SQL Server does not
set @a = ' a'
set @b = ' a%'
select 1 where @a like @b

SSMA support
Partial

Solution
Optimistic mode
Source code:
left_exp LIKE right_exp

Target code:
left_exp LIKE rtrim(right_exp)

Full mode
Source code:
left_exp LIKE right_exp

Target code:
cast(left_exp as char(8000)) LIKE rtrim(right_exp)

If right_exp is a string literal, you do not need to use the RTRIM function in the target code. Instead, during conversion replace right_exp with the right-trimmed version of right_exp.
[bookmark: _Toc181521634]SET ANSINULL
Issue
SQL Server 2005 does not support the SET ANSINULL command.

SSMA support
Yes

Solution
Replace SET ANSINULL with one of the following two commands:
· SET ANSI_NULLS
· SET ANSI_WARNINGS
[bookmark: _Toc181521635] SET CHAINED
Issue
SQL Server 2005 does not support SET CHAINED.

SSMA support
Yes

Solution
Change SET CHAINED to SET IMPLICIT_TRANSACTIONS.
[bookmark: _Toc181521636]SET TRANSACTION ISOLATION LEVEL
Issue
Sybase uses transaction-level identifiers that are different from those used in SQL Server 2005.

SSMA support
Yes

Solution
Replace Sybase level numbers with Transact-SQL keywords, as in the following table.

	Sybase
	SQL Server 2005

	0
	READ UNCOMMITTED

	1
	READ COMMITTED

	2
	REPEATABLE READ

	3
	SERIALIZABLE

[bookmark: _UPDATE_Aliases][bookmark: _Toc181521637]UPDATE Aliases
Issue
In an UPDATE statement, SQL Server 2005 does not allow using a table name if that name is duplicated in a FROM clause with an alias.

SSMA support
Yes

Solution
Case 1
If a FROM clause contains different tables, replace all references to the original table name in UPDATE, SET, and WHERE with the alias of the table name.

Example
Convert source query:
UPDATE TableA
SET a.val=b.dval
FROM TableA a, TableB b
WHERE a.id=b.id

To:
UPDATE a
SET a.val = b.dval
FROM TableA a, TableB b
WHERE a.id = b.id
	
Case 2
A FROM clause contains duplicates of the table name. If the first occurrence of the table has an alias, change the table name in UPDATE and SET to the name of this first alias.

Example
Convert the Sybase statement:
UPDATE TableA
SET val = ’X ’
FROM TableA a, TableA b
WHERE a.id >= 1 AND a.id <= 3 and b.id > 5

To:
UPDATE a
SET val = ‘X’
FROM TableA a, TableA b
WHERE a.id >= 1 AND a.id <= 3 and b.id > 5
[bookmark: _Toc181521638]Different ROLLBACK Syntax
Issue
Sybase can use ROLLBACK transaction_name and ROLLBACK WORK transaction_name syntax that does not exist in SQL Server 2005.

SSMA support
Yes

Solution
Change all occurrences of ROLLBACK <word> or ROLLBACK WORK <word> to ROLLBACK TRANSACTION <word> where <word> is a single word that is not equal to TRAN[SACTION].
[bookmark: _Toc181521639]Sybase Allows Aggregate Functions in UPDATE
Issue
Sybase can use aggregate functions in the SET clause of an UPDATE statement, which is illegal in SQL Server 2005.

SSMA support
Yes

Solution
SSMA constructs the converted statement according to the following algorithm:
1. Copy the UPDATE clause from the original query without changing it.
Add the following subqueries to the FROM clause after the comma (that is, cross-joined), each one with a generated alias:
1. The first subquery calculates aggregated values. The SELECT clause in this subquery includes the aggregate functions used in the SET clause of the original query. If a table has an alias, add this alias to each column of the table. For each aggregate function, add an alias. Move FROM and WHERE clauses from the original query. If the table specified in the UPDATE clause is missing in the FROM clause of the subquery, add it to the subquery's FROM clause with a comma delimiter (even if this table's fields do not participate in a subquery).
If the SET clause contains nonaggregated fields from one ore more other tables that are not updated, for each of these tables add the following subquery to the target query's FROM clause:

SELECT TOP 1 List_of_fields_participating_in_SET_clause FROM Table

Add the subquery for the second, third, and so on occurrence of the updated table in FROM, if the nonaggregated columns from the table show in the SET clause.
In the SET clause, replace aggregate functions and fields from non-updated tables with aliases from subqueries as follows:
If a field of an updated table has an alias at the left side of a SET clause, remove this alias.
If a field of an updated table has an alias at the right side of SET, replace the alias with the table name.
If a field of an updated table does not have an alias at the right side of SET, add the table name prefix to it.
The original WHERE clause is removed from the UPDATE statement and remains only in the subquery in step 2a.
Note Check this issue before checking conditions for the UPDATE aliases problem described in UPDATE Aliases earlier in this document. If this solution is applied, there is no need to perform the transformations for UPDATE aliases.
Example 1
Sybase
UPDATE tb_u
SET id = sum(subid)
WHERE subid>2

SQL Server 2005 equivalent
UPDATE tb_u
SET id = ssma_aggr.sum_subid
FROM
(
SELECT sum(subid) as sum_subid FROM tb_u WHERE subid>2
) ssma_aggr

Example 2
Sybase
UPDATE tb_u
SET a.id = sum(a.subid) + a.id,
 subid = value
FROM tb_u a
WHERE subid>2

SQL Server 2005 equivalent
UPDATE tb_u
SET id = sum_subid + id,
 subid = value
FROM
(
SELECT sum(a.subid) as sum_subid FROM tb_u a WHERE subid>2
) ssma_aggr

Example 3
Sybase
UPDATE tb_u
SET tb_u.id = sum(tb_u.value+tb_j.value),
 tb_u.subid = sum(tb_u.value) + tb_u.value + tb_j.value,
 tb_u.value=tb_j.value
FROM tb_u, tb_j
WHERE tb_u.id=tb_j.id and tb_u.subid>1 and tb_j.id>=2

SQL Server 2005 equivalent
UPDATE tb_u
SET tb_u.id=sum_tb_u_value_tb_j_value,
 tb_u.subid=sum_tb_u_value + tb_u.value + ssma_tb_j.value,
 tb_u.value=ssma_tb_j.value
FROM
(
SELECT sum(tb_u.value+tb_j.value) as sum_tb_u_value_tb_j_value,
 sum(tb_u.value) as sum_tb_u_value
FROM tb_u, tb_j
WHERE tb_u.id=tb_j.id and tb_u.subid>1 and tb_j.id>=2
) ssma_aggr,
(SELECT TOP 1 tb_j.value as value FROM tb_j) ssma_tb_j
[bookmark: _Toc181521640]Several Table Hints Are Used at Once
Issue
Sybase can use several hints with one table. If each hint is converted independently, SQL Server 2005 cannot support the result.

SSMA support
Yes

Solution
Combine several hints in a single pair of parentheses and delimit them with commas.

Example
Sybase
SELECT * FROM QQI (INDEX QQII) READPAST

SQL Server 2005
SELECT * FROM QQI WITH (INDEX (QQII), READPAST)
[bookmark: _Toc181521641]ORDER BY with Table Name and Column Alias
Issue
In Sybase, it is possible to specify the ordering when a table name (or alias) is used together with a column alias. SQL Server 2005 does not support this syntax. For example, the following Sybase code specifies the order:

SELECT c AS c_alias FROM tab_a ORDER BY tab_a.c_alias

SSMA support
Yes

Solution
Remove the table name or alias from ORDER BY. Sybase does not allow duplication of column names in single SELECT statement anyway.
[bookmark: _Toc181521642]CHAR Column Allowing NULLs
Issue
If a Sybase column has char type and is defined with a null specifier, it is treated as varchar. The column value is right-trimmed every time you retrieve it. That is not applicable to Sybase variables. This is also true for nchar and unichar column types.

SSMA support
None

Solution
This problem can be solved by one of the following two approaches:
Map all char NULL table columns to varchar data type.
Adjust business and application logic to support this feature.
[bookmark: _Toc181521643]Insertion of Default Values
Issue
In Sybase if all columns have defaults, the following INSERT command can add a row to the table without specifying any value:

INSERT INTO <a_table> VALUES ()

SQL Server 2005 does not support this syntax.

SSMA support
Yes

Solution
SSMA converts statements such as these to:

INSERT INTO <a_table> DEFAULT VALUES
[bookmark: _Toc181521644]Nested Aggregates in SELECT List
Issue
Sybase allows nesting aggregate functions like this:

SELECT x, SUM(y), MAX(SUM(y)) FROM tab GROUP BY x

In this case, SUM(y) is the sum per each value of x, and MAX(SUM(y)) is maximum for the entire table replicated in each row of the result set.

SSMA support
None

Solution
Emulate this type of SELECT statement by using subquery or common table expressions to calculate nested aggregates.

Example
 select x, sum(y) as s,
 ms = (select max(s) from (select sum(y) as s
 from table_a group by x) in_query)
 from table_a group by x

 with base_query (x,s)
 as (select x, sum(y) as s from table_a group by x)
 select x, s, (select max(s) from base_query) as ms
 from base_query
[bookmark: _Toc181521645]DELETE Aliases
Issue
In a DELETE statement, SQL Server 2005 does not allow using a table name if the FROM clause contains duplicates of the table and the table's first occurrence in the FROM clause has an alias.

SSMA support
None

Solution
If the first mention of the table in the FROM clause is referred to by an alias, change the table name in the DELETE clause to the name of the alias.

Example
Convert the source code:
 delete dt from dt a, dt b where b.i>1 -- deleted from a

To:
 delete a from dt a, dt b where b.i>1 -- deleted from a
[bookmark: _Toc181521646]Named Constraint on Temporary Table
Issue
SQL Server 2005 does not allow multiple PK (PRIMARY KEY) constraints with the same name, even on different tables on different user sessions.

SSMA support
Yes

Solution
When a PK (PRIMARY KEY) constraint name is defined manually, migrate its name in this format: table_name$pk_name. Also replace all references to the constraint name.

Example
Convert the following Sybase code:
CREATE TABLE prices_subgroup_daily
(fosg_c char(32) NOT NULL,
investment_id char(24) NOT NULL,
CONSTRAINT prices_subgroup_daily_pk PRIMARY KEY NONCLUSTERED (fosg_c, investment_id))

To:
CREATE TABLE prices_subgroup_daily
(fosg_c char(32) NOT NULL,
investment_id char(24) NOT NULL,
CONSTRAINT prices_subgroup_daily$prices_subgroup_daily_pk
PRIMARY KEY NONCLUSTERED (fosg_c, investment_id)
)
[bookmark: _Toc181521647]Global Variables
This section covers specific migration problems that can arise when migrating global variables.
[bookmark: _Toc181521648]@@ERROR
Issue
Generally, Sybase error codes differ from those of SQL Server 2005.

SSMA support
Partial

Solution
SSMA does not change anything in expressions where @@ERROR is compared with 0, such as @@ERROR = 0, @@ERROR != 0.
If @@ERROR is used in other contexts, SSMA writes the warning, "Microsoft SQL Server may use different error code." Separately investigate each occurrence of a specific number because many error codes are identical on both platforms. Some have different numbers and some Sybase errors may not exist in SQL Server 2005.
[bookmark: _Toc181521649]@@PAGESIZE
Issue
The page size may vary in Sybase.

SSMA support
Yes

Solution
SSMA substitutes a 8192 constant in place of @@PAGESIZE, which reflects the actual page size in SQL Server 2005.
[bookmark: _Toc181521650]@@SQLSTATUS
Issue
Sybase error codes differ from SQL Server 2005.

SSMA support
Yes

Solution
@@SQLSTATUS is equivalent to:

CASE @@FETCH_STATUS WHEN -1 THEN 2 ELSE 0 END

In comparisons, you can avoid the CASE expression as shown in the following table.

	Source
	Target

	@@SQLSTATUS = 0
	@@FETCH_STATUS = 0

	@@SQLSTATUS > 0
	@@FETCH_STATUS < 0

	@@SQLSTATUS != 0
	@@FETCH_STATUS < 0

	@@SQLSTATUS = 2
	@@FETCH_STATUS = -1

[bookmark: _Toc181521651]@@TRANCHAINED
Issue
@@TRANCHAINED is not available in SQL Server 2005.

SSMA support
Yes

Solution
Replace with (@@OPTIONS & 2).
[bookmark: _Toc181521652]@@TRANSTATE
Issue
@@TRANSTATE is not available in SQL Server 2005.

SSMA support
Partial

Solution
SSMA can make the conversion when @@TRANSTATE is compared with 1:

Replace (@@TRANSTATE > 1) with (@@ERROR != 0)
Replace (@@TRANSTATE <=1) with (@@ERROR = 0)
[bookmark: _Toc181521653]@@UNICHARSIZE
Issue
@@UNICHARSIZE is not available in SQL Server 2005.

SSMA support
Yes

Solution
Replace it with the numeric literal ‘2’.
[bookmark: _Toc181521654]Data Migration
This section covers specific migration problems that can arise during data migration.
[bookmark: _Toc181521655]Timestamps
Issue
When you migrate a Sybase timestamp to a SQL Server 2005 timestamp, the target field receives values that are generated automatically, and not the original values. If the application logic includes timestamp comparisons on different rows, it can fail after migration.

SSMA support
Partial

Solution
Map timestamp to binary(8) type for table columns. During SSMA conversion, add a new column named SSMA_timestamp that has an Transact-SQL timestamp type. Add the default @@DBTS for the old timestamp column to ensure that this column receives proper timestamp values after the migration finishes.
The SSMA_timestamp column is necessary to advance the @@DBTS value after the row is update.

Example
Convert the Sybase table:

CREATE TABLE (ts timestamp, id int, name varchar(100))

To:

CREATE TABLE (ts binary(8) default @@DBTS, id int, name varchar(100), SSMA_timestamp timestamp)
[bookmark: _Toc181521656]Numeric with Scale > 26
Issue
If the source decimal or numeric column is defined with a scale greater than 26, a ‘Number too large’ error is generated and the transfer terminates.

SSMA support
None

Solution
To migrate this type of data you can use SSIS instead of SSMA data migration, or change the column's data type to a numeric data type that has a scale that is less than 26.
[bookmark: _Toc181521657]Constraints and Bound Rules
Issue
If a constraint or bound rule is not satisfied, an error displays and the transfer terminates.

SSMA support
Partial

Solution
By default, SSMA data migration does not check constraints. You can change this by setting the Check Constraint property in project settings to true.
If you migrate data via SSIS, you can turn constraint checks on or off by switching the BulInsertCheckConstraints property in the data flow destination component.
[bookmark: _Toc181521658]Defaults Vs. NULLs
Issue
If a table has a column or bound default, all NULLs in that column are replaced by default values.

SSMA support
Partial

Solution
By default, SSMA keeps nulls while transferring data (see the KeepNulls option in the project options).
[bookmark: _Toc181521659]Keeping Identities
Issue
Identity columns are regenerated when inserting data in the SQL Server 2005 table. If a foreign key is referenced in the identity column, the original link is broken.

SSMA support
Partial

Solution
By default, SSMA data migration does not fire triggers (see the Fire Triggers property in the project settings). If you migrate data via SSIS, you can set the FireTriggers property of the OLE DB destination to false.
[bookmark: _Toc181521660]Triggers
Issue
INSERT triggers may be executed during the transfer, which can greatly decrease performance.

SSMA support
Partial

Solution
By default, SSMA data migration does not fire triggers (see the Fire Triggers property in the project settings). If you migrate data via SSIS, you can set the FireTriggers property of the OLE DB destination to false.
[bookmark: _Toc181521661]Other Migration Issues
[bookmark: _Toc181521662]Cursor Scope
Issue
Sybase limits the cursor scope to the stored procedure where it is declared and to nested stored procedures. The cursor is deallocated automatically on exiting the procedure.
SQL Server 2005 supports two types of cursors—local and global. Local cursor scope is limited to the stored procedure where it is declared and the cursor is deallocated automatically on exiting the procedure. Global cursor scope is limited to the user session, and the cursor still exists after the procedure in which it was declared exits.
To emulate this behavior you can try two possible solutions:
Declare all cursors as global so they are deallocated explicitly before each exit point of the procedure. The cursor will also be visible to nested procedures.
Automatically deallocate the cursor by declaring it as local. While the cursor is not visible to nested procedures, this may be enough for most applications.

SSMA support
Yes—implemented in the second solution.

Solution
Try one of the following two solutions:
At the end of the procedure but before each RETURN statement, add the following statements for each cursor that is declared in the procedure:
IF CURSOR_STATUS(‘GLOBAL’, ‘<cursor_name>’) > -3
	DEALLOCATE <cursor_name>

(Preferred) Convert all Sybase cursors to Transact-SQL LOCAL cursors.

DECLARE <cursor_name> CURSOR LOCAL FOR …
[bookmark: _Toc181521663]Case Sensitivity
Issue
Sybase identifiers and object names are case sensitive. If you transfer the source to a case-insensitive target, name conflicts may arise.

SSMA support
None

Solution
The only solution for this problem is to rewrite the code using distinct objects and identifier names. You could script an entire database into a single file, then use a text editor to find and replace ambiguous names.
[bookmark: _Toc181521664]Reserved Keywords
Issue
A Sybase object or table column may have a name that is identical to SQL Server 2005 reserved keywords.

SSMA support
None

Solution
Enclose every occurrence of the identifier in Transact-SQL code in square brackets, such as: [FUNCTION].
[bookmark: _Toc181521665]Syb_identity Pseudocolumn
Issue
To reference the IDENTITY column, Sybase can use the syb_identity keyword.

SSMA support
Yes

Solution
IDENTITYCOL is the proper SQL Server 2005 equivalent.
[bookmark: _Toc181521666]Different Syntax of IDENTITY() Function
Issue
Sybase syntax is identity(precision), but Transact-SQL uses identity (data_type [,seed, increment]).

SSMA support
Yes

Solution
Replace Sybase identity(precision) with identity(numeric(precision))
[bookmark: _Toc181521667]Login Triggers
Issue
By using the sp_modifylogin system procedure, in Sybase you can use login triggers, which are procedures that are executed every time a user logs in.

SSMA support
None

Solution
Handle this problem on the application level if the application provides a call to the trigger code before any other activity on the database server.
[bookmark: _Toc181521668]Cross-Database Foreign Key
Issue
Sybase allows the creation of foreign key references to other databases, which SQL Server 2005 cannot do.
Example of a legal Sybase statement that fails in SQL Server 2005:

ALTER TABLE dbo.MyTable ADD CONSTRAINT fk_MyTable_Id
FOREIGN KEY (parent_id)
REFERENCES Outerbase.dbo.parentlist (id)

SSMA support
None

Solution
Change the schema mapping so that the referenced tables go to the same target database. If that is not allowed, resolve the problem by using the INSTEAD OF trigger on the master table to ensure that no slave records exist in slave tables. Use a check constraint on slave tables to ensure that there is an appropriate record in the master table.

Example:
Suppose there are two tables: a master (named header and stored in database A) and a slave (named detail and stored in database B). The following code creates the tables:

create table header(id int identity primary key, name varchar(25))
create table detail(parent_id int not null, detail_name varchar(25))

The Parent_id field of the detail table refers to the id field of the header table:

Alter table detail add constraint fk_main
FOREIGN KEY (parent_id)
REFERENCES A.dbo.header(id)

To implement this functionality, first create an INSTEAD OF trigger:

create trigger iodHeader
on dbo.header instead of delete
as begin
 set nocount on
if exists(select * from deleted a join dbo.detail b on a.id = b.parent_id) begin
	raiserror('Cannot delete from "master" table - corellated records in "detail" ',16,-1) with seterror
	return
 end
 delete h
 from	dbo.header h join deleted d on h.id = d.id
 return
end

Next, create a function that checks the detail table:

create function dbo.ckDetail(@parent_id int)
returns int
as begin
 declare @ret int set @ret = 0
 select top 1 @ret = 1 from dbo.Header where id = @parent_id
 return @ret
end

Lastly, add a check constraint to the detail table:

ALTER TABLE dbo.detail ADD CONSTRAINT
CK_detail CHECK (dbo.ckDetail(parent_id)=1)

As a result:
The INSTEAD OF trigger prevents you from deleting records in the header table if dependent records in the detail table exist.
The check constraint ck_detail prevents you from storing (via an INSERT or UPDATE statement) incorrect (nonexisting) values into the parent_id field.
The scalar function ckDetail makes check constraint possible. (In check constraints you can use only simple expressions—subqueries are not allowed.)
Note This solution doesn’t take into account cases when the primary key on the master table can be modified.
Note Because of the behavior of calling ROLLBACK inside of a trigger in SQL Server, this is not a common case solution. Assume that you have the following code:

delete header where id = 47
select @@error

If the DELETE statement in your trigger fails, all modifications made by the trigger are rolled back and the batch is terminated. Therefore, the next statement (select @@error) will never execute.
For more information see CREATE TRIGGER and Rollbacks and Commits in Stored Procedures and Triggers in SQL Server 2005 Books Online.
[bookmark: _Toc181521669]Deprecated Equivalents
Issue
SQL Server 2005 fully supports Sybase object categories such as DEFAULTs and RULEs. However, SQL Server 2005 Books Online describes these categories as deprecated and not recommended for use in any new development.

SSMA support
None

Solution
During conversion SSMA will:
Replace RULE with the appropriate CHECK constraint.
Ignore RULE when applied to user data types.
Convert DEFAULTS as the column default.
[bookmark: _Toc181521670]Different Scope of Constraint Names
Issue
Named constraints in different Sybase tables can use the same name. In SQL Server 2005, constraint names must be unique in the database.

SSMA support
Yes

Solution
Generate SQL Server 2005 constraint names by concatenating the table name and the Sybase constraint name.
Note If you use hard-coded constraint names (for example, a primary key name) in your application, SSMA will not handle this automatically. Manually replace old constraint names in your code with new ones.
[bookmark: _Toc181521671]Dynamic SQL
Issue
The EXECUTE statement in both Sybase and SQL Server 2005 is identical in syntax and semantic, but the dynamic SQL string may need conversion.

SSMA support
No

Solution
SSMA adds a warning that reads, "Dynamic SQL string was not converted" each time the converter encounters an EXECUTE statement. Usually, you must manually rewrite the code.
But in some (not so rare) cases, you can copy the source code to the Statements node in the SSMA Sybase Metadata Explorer, and then convert it. (For detailed instructions about how to work with the Statements node, see SSMA Help.)
Note that using dynamic SQL is not good practice; it can hurt SQL Server performance because of query recompilation and optimization, and it can lead to security issues. Try, therefore, to avoid using dynamic SQL.
[bookmark: _Toc181521672]Proxy Tables
Issue
Sybase proxy tables look like normal tables, but their content is synchronized with a date on a remote server.

SSMA support
None

Solution
A solution requires information about the remote server—including plans to migrate objects on that platform. Generally, you should create a linked server at the local server that is running SQL Server and that points to the remote database. Proxy tables are emulated as views on OPENQUERY(), or as four-part object identifiers. In both cases, create synonyms on the converted objects so that the original code is not changed.
Note that four-part identifiers may not work on Oracle servers.
[bookmark: _Toc181521673]Variables in Cursor Declaration
Issue
In SQL Server 2005, cursor variable values do not change after a cursor is declared. In Sybase (as in SQL Server version 6.5 and earlier), variable values are refreshed every time a cursor is reopened.

SSMA support
None

Solution
Move the cursor declaration statement to directly before the cursor open statement, and then add the DEALLOCATE CURSOR statement before the iterative cursor declaration statement.
[bookmark: _Toc181521674]Different Behavior of the MIN and MAX Functions with Character Columns in Sybase and SQL Server
Issue
The Sybase min and max functions implicitly convert the char data type to varchar and the unichar data type to univarchar, stripping all trailing blanks.

SSMA support
None

Solution
Wrap the expression containing the min or max function in the RTRIM function if the expression in the target code has a char or nchar data type.
[bookmark: _Toc181521675]Potential Challenges
Some features of Sybase ASE cannot be automatically handled by SSMA and require manual intervention. Those features include:
Dynamic SQL
Incompatible system tables and procedures
Proxy tables
User messages stored in the sysusermessages table
Dates before 1/1/1753 AD
Dynamic SQL is problematic because it is not generally possible to see the real text of a dynamic statement at conversion time. The statement gets its final form only when the generated code is executed. Still, you can use the Statement window in SSMA to convert ad hoc SQL statements, including dynamic SQL. Try the same approach to convert SQL strings embedded in the user's application code by using the following steps:
1. Cut the statement from the application (or reconstruct it if the statement is built according to an algorithm).
Paste it into the Statement window.
Execute Convert Schema.
Paste the result back into the proper place in the application code.
Temporary tables in stored procedures can create problems when their definitions are absent in the module you are converting. Generally, you should convert the module where a temporary table is created before converting the modules from which the temporary table is referenced. That way, SSMA is able to remember the table definition and to use it properly.
Note that duplicated identifiers can result when you move a case-sensitive Sybase source to a case-insensitive SQL Server object. To resolve this issue, we recommend that the target server collation be case insensitive.
[bookmark: _Toc181521676]Resources
For more information:
SQL Server Migration Assistant for Sybase on Microsoft.com
If you need help on SSMA Sybase or have questions about Sybase ASE to SQL Server 2005 migration, send e-mail to syb2sql@microsoft.com.

Did this paper help you? Please give us your feedback. Tell us on a scale of 1 (poor) to 5 (excellent), how would you rate this paper and why have you given it this rating? For example:
· Are you rating it high due to having good examples, excellent screenshots, clear writing, or another reason?
· Are you rating it low due to poor examples, fuzzy screenshots, unclear writing?
This feedback will help us improve the quality of white papers we release. Send feedback.

	Microsoft Corporation ©2007
	Microsoft Corporation ©2007
	Microsoft Corporation ©2007
image2.png
Mode - S
Comversion | Dynamic SOL Convert and mark wit warning
Migration Equality check conversion Simple conversion
CollecingDate | Format strings Creste newsting
Insert an explict value into a timestamp column Exclude column
Null value check Feeplace with space
Proxy table conversion Merkwih error
PAISERROR base message number 30001
System objects Convert and mark wit warning
Unresolved identiiers Convert and mark with warning
UPDATE statement conversion Merkwith error
& System Functions
CHARINDEX function Koop curtnt eyntex
Replace function
INDEX_ COL function Display arror
INDEX COLORDER function Display error
NEXT IDENTITY function Display rror
PEPLICATE function Keep current syntex
General RTRIM function Keep current syntax
Loadng Objects | SUBSTRING function Keep current syniex -
cul DATALENGTH function

Specifies whether to replace calls to DATALENGTH with & Sybase ASE-equivalent function ar keep the current

Type Mapping | syntex.
Aty Cancsl

image3.png
Mode eS|

G Dynamic SQL Convert and mark wit warming

Migration Equality check conversion Simple conversion

CollecingDate | Format strings Creste newsting
Insert an explict value into a timestamp column Exclude column
Null value check Replace with space
Proxy table conversion Merkwih error
PAISERROR base message number 30001
System objects Convert and mark wit warning
Unresolved identiers Convert and mark with warning
UPDATE statement conversion Markwith error

& System Functions
CHARINDEX function Koop currrt eyntex
DATALENGTH function Keep current syniex
INDEX_ COL function Display arror
INDEX_COLOPDER funcion Display rror
NEXT IDENTITY Convert function
PEPLICATE function Keep current syniex
o) RTRIM function Keep curent syniax
Loadng Objects | SUBSTRING function Keep current syniex -
cul NEXT_IDENTITY function

Specifies whether to convert calls to NEXT_IDENTITY with a Sybase ASE-equivalent function or display an errar

Type Mapping | message.
Aty Cancsl

image4.png
Mode -EN|E
Conversion B Misc
Migration @@ERROR Convert and mark wit warming
Collecing Data | Conversion of LIKE operatar Simple conversion
CONVERT and CAST binary string conversion Canvertand mark with warming
Dynamic SOL Convert and mark wih warning
Equality check conversion Simple conversion
Formet strings Creste newsting
Insert an explict value into a timestamp column Exclude column
Null value check Replace with space
Praxy table conversion Merkwih error
RAISERROR base message number 30001
System objects Convert snd mark with warming
Unresalved idertifiers Convert and mark with warning
UPDATE statement conversion Markwith error
& System Functions
HARINDEX f Replace function =
DATALENGTH function Keep cunrent syniex
o) INDEX_COL function Display ermor
Loadng Objects | NDEX COLORDER function Display rror
NEXT IDENTITY functinn Display anrar
cul CHARINDEX function
Speciies whether to replace calls to CHARINDEX with a Sybase ASE-equivalent function or keep the current syntax
Type Mapping

Aty Cancsl

image5.png
Mode eS|
omversion | Dynamic SOL Convert and mark wit warming
Migration Equality check conversion Simple conversion
CollecingDate | Format strings Creste newsting
Insert an explicit velue into a timestemp column Exclude column
Null value check Replace with space
Praxy table conversion Merkwih error
RAISERROR base message number 30001
System objects Convert and mark wit warning
Unresalved idertifiers Convert and mark with warning
UPDATE statement conversion Markwith error
& System Functions
CHARINDEX function Koop currrt eyntex
DATALENGTH function Keep current syniex
INDEX_COL function Display arror
INDEX_ COLOPOER function Display rror
NEXT IDENTITY function Display rror
Replace function|
General RTRIM function Keep current syntax
Loadng Objects | SUBSTRING function Keep current syniex -
GUL REPLICATE function
Speciies whether (o replace calls to REPLICATE with & Sybase ASE-equivalent function or keep the current syntax.
Type Mapping

Aty Cancsl

image6.png
fault Project Settings

Mode EPS]
Conversion Dynamic SOL Convert and mark with warning
Migration Equality check conversion Simple conversion

Collecting Data

Gereral

Loading Objects

Format strings
Insert an explicit value inta a timestamp column
Nul value check

Proxy table conversion

PRAISERROR hase message number

System ohbjects

Unresolved identifiers

UPDATE statement conversion

B System Functions

CHARINDEX function
DATALENGTH function
INDEX_COL function

INDE:

NEXT IDENTITY function
REPLICATE function
RTRIM function
SUBSTRING function

Create new string
Exclude column

Replace with space

Markwith error

30001

Convert and mark with warning
Convert and mark with waring
Mark vith error

Keep current syntax
Keep current syntax
Display ertor
Convert function
Display ertor

Keep current syntax
Keep current syntax
Keep current syntax

GUI

Type Mapping

INDEX_COLORDER function

Specifies whether to convert calls to INDEX_COLORDER with a Sybase ASE-equivalent function or display an error

message.

image7.png
Mode EPS]
Conversion Dynamic SOL Convert and mark with warning
Migration Equality check conversion Simple conversion

Collecting Data

Gereral

Loading Objects

Format strings
Insert an explicit value inta a timestamp column
Nul value check
Proxy table conversion
PRAISERROR hase message number
System ohbjects
Unresolved identifiers
UPDATE statement conversion

B System Functions
CHARINDEX function
DATALENGTH function
INDEX_COL fi
INDEX COLORDER function
NEXT IDENTITY function
REPLICATE function
RTRIM function
SUBSTRING function

Create new string
Exclude column

Replace with space

Markwith error

30001

Convert and mark with warning
Convert and mark with waring
Mark vith error

Keep current syntax
Keep current syntax
Convert function
Display error
Display error

Keep current syntax
Keep current syntax
Keep current syntax

GUI

Type Mapping

INDEX_COL function

Specifies whether to convert calls to INDEX_COL to SQL Server 2005 syntax or display an error message.

image8.png
[Edit Type Mapping

Source type Target type
character(ength) =] | | [ehartiengtry -
[Length nchar
_ nchar(length)

P From: 1 G rvarchar

rvarchar(length)
P To 16384 - rvarchar(may)

varchar

[varchar(ength)

image9.png
fault Project Settings

Mode -[EEE

Conversion B Misc
Migration @@ERROR Convert and mark wit warming
Collecing Data | Conversion of LIKE operatar Simple conversion
CONVERT and CAST binary string conversion Canvertand mark with warming
Dynamic SOL Convert and mark wih warning
Equality check conversion Simple conversion
Formet strings Creste newsting
Insert an explicit velue into a timestemp column Exclude column
Null value check Replace with space
Proxy table conversion Merkwih error
30001
Systerm obiects Convert snd mark with warming
Unresalved idertifiers Convert and mark with warning
UPDATE statement conversion Markwith error
& System Functions
CHARINDEX function Keep current syniex —
DATALENGTH function Keep current syniex
o) INDEX_COL function Display ermor
Loadng Objects | NDEX COLORDER function Display rror
NEXT IDENTITY functinn Display anrar
cul RAISERROR base message number

RAISERROR base message number used during mapping Sybase user messages to SQL Server 2005 user

Type Mapping | messages,

image1.png
Microsoft*

SQL Server 2005

