File System FilTer Manager

Mapping Common Operations
to Filter Manager

This document summarizes how common operations for legacy filter drivers map to the Filter Manager model.

	Legacy Filter Model
	Filter Manager Filter Model

	Pass through operation with no completion routine
	Option 1:

· Do not register callbacks for this operation – filter never does work for this operation.
Option 2:
· Return FLT_PREOP_SUCCESS_NO_CALLBACK from PreOperation callback registered for this operation.

	Pass through operation and set a completion routine
	Return FLT_PREOP_SUCCESS_WITH_CALLBACK from PreOperation callback.

	Pend operation during the PreOperation callback
	· Ensure the buffers are properly locked to be accessed in a worker thread by calling FltLockUserBuffer().

· Queue the work to a worker thread (FltAllocateDeferredIoWorkItem(), FltQueueDeferredIoWorkItem()).

· Then return FLT_PREOP_PENDING from PreOperation callback.
· When ready to return processing control of this IO back to the Filter Manager, call FltCompletePendedPreOperation().

	Pend operation during the PostOperation callback
	· Ensure the buffers are properly locked to be accessed in a worker thread in the pre-operation routine by calling FltLockUserBuffer().

· Queue the work to a worker thread (FltAllocateGenericWorkItem(), FltQueueGenericWorkItem()).

· Then return FLT_POSTOP_MORE_PROCESSING_REQUIRED from PostOperation callback.

· When read
y to return processing control of this IO back to the Filter Manager, call FltCompletePendedPostOperation().

	Synchronize the operation
	Return FLT_PREOP_SYNCHRONIZE from PreOperation callback.

	Complete the operation in the PreOperation callback
	· Put the final operation status in the FLT_CALLBACK_DATA.IoStatus and fill in requested data as necessary.

· Then return FLT_PREOP_COMPLETE from PreOperation callback.

	Complete the operation after it has been pended in the PreOperation callback
	· Put the final operation status in the FLT_CALLBACK_DATA.IoStatus and fill in requested data as necessary.

· Call FltCompletePendedPreOperation() with the CallbackStatus of FLT_PREOP_COMPLETE from the worker thread processing the IO.

	Do all completion work in completion routine
	Return FLT_POSTOP_FINISHED_PROCESSING from PostOperation callback.

	Do completion work at safe IRQL.
	· Post the completion work to a worker thread if this operation is safe to post. FltDoCompletionProcessingWhenSafe() will check to see if it is necessary to post this completion work, then post the completion work if it is safe to post.
· Then return FLT_PREOP_COMPLETE from PreOperation callback.

	Synchronize back to the dispatch routine by signaling an event.
	· FLT_PREOP_SYNCHRONIZE should have been returned from the PreOperation callback for this operation.
· There is no specific work necessary from the PostOperation callback – it will just be called in the appropriate thread context at safe IRQL.

	Cancel a successful CREATE operation.
	· Put the proper failure status in FLT_CALLBACK_DATA.IoStatus.

· Call FltCancelFileOpen() to undo the create.

· Return FLT_POSTOP_FINISHED_PROCESSING.

	Disallow IO via the FAST_IO path.
	Return FLT_STATUS_DISALLOW_FAST_IO from PreOperation callback.

	Change operation parameter.
	· Set the appropriate value in the FLT_CALLBACK_DATA.Iopb.

· Mark the FLT_CALLBACK_DATA dirty by calling FLT_SET_CALLBACK_DATA_DIRTY().

	Lock user buffer for operation.
	· Call FltLockUserBuffer() to allocate MDL, probe and lock buffer as appropriate for this operation.
· Call MmGetSystemAddressSafe() to get a system buffer that represents this memory.

Disclaimer
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.
This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.
© 2004 Microsoft Corporation. All rights reserved.
Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

© 2004 Microsoft Corporation. All rights reserved.

1

