[image: image1.png]Windows Hardware and Driver Central

Updating Windows 2000 IFS Drivers to Windows XP - 10

Updating Windows 2000 IFS Drivers to Windows XP
Version - August 31, 2001

Abstract

This document is a checklist for developers who are updating Microsoft® Windows® 2000 file system drivers to Windows XP. The document includes information about new features, changes to existing features, kernel changes, and new kernel-mode functions that affect file system drivers.

This information applies for the following operating systems:

Microsoft Windows 2000

Microsoft Windows XP

The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/driver/filterdrv/default.mspx
Contents

3Introduction

3New Features

4Changes to Existing Features

6Base Kernel Changes and New APIs

Disclaimer
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.
© 2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

This document is a checklist for developers of file systems and file system filter drivers who are developing or porting Windows 2000 drivers to run under Windows XP, including information about new features. Readers should be familiar with Windows 2000 file systems. The document does not attempt to describe each of these issues fully, but is intended to help developers keep track of the various issues that they should consider.

New Features

	Item
	Description

	WebDAV Redirector
	Windows XP builds 2269 and later include a new component: the WebDAV redirector.

The WebDAV redirector allows applications on Windows XP to connect to and natively read and write data on Internet sites. The WebDAV redirector uses the WebDAV protocol, an extension to HTTP that allows data to be written to HTTP targets. The WebDAV redirector provides file system-level access to these servers in the same way that the existing redirector provides access to SMB and CIFS servers.

You can access an existing WebDAV share using the "net use" command, as in the following example:

NET USE * http://webserver/davscratch

To connect to an MSN Web Community, use http://www.msnusers.com/yourcommunityname/files as the target. The credentials you need in this case are your Passport credentials. (For more information about Passport, see http://www.passport.com.) You can enter you Passport credentials in the "connect using different user name" dialog if you are using map network drive, or use the /u: switch with the NET USE command, as shown in the following example:

NET USE http://www.msnusers.com/yourcommunityname/files /u:yourpassportaccount@hotmail.com

Note: You will need to install build 2290 or later to get access to the MSN Web Communities.

You can also create your own WebDAV server using Internet Information Server (IIS) or MSN Communities.

With the IIS 5.0 implementation of WebDAV, you can allow remote authors to move, search, edit, or delete files and directories–as well as their properties–on your server. WebDAV is configured using the Web server permission settings. For more information, see http://www.microsoft.com/windows2000/techinfo/howitworks/iis/iis5techoverview.asp
File Cabinets in MSN Communities are WebDAV shares. For more information, see http://communities.msn.com/filecabinets.

Further information about WebDAV is available from http://www.webdav.org.

	System Restore
	System Restore is a combination of file system filter driver and user-mode services that provide a way for users to unwind configuration operations and restore a system to an earlier configuration.

System Restore is a feature of Windows XP Personal and Professional SKUs only. It is not in Server-based SKUs.

System Restore includes a file system filter driver, SR.SYS, which helps to implement a copy-on-write process by which older copies of files are backed up. Specifically, SR.SYS logs the necessary information about changes to application files so that these changes can be undone at a later time.

	64-bit Intel Itanium support
	For information about 64-bit Intel Itanium support, see

http://www.microsoft.com/whdc/system/platform/64bit/default.mspx

	Volume Snapshot Service
	A snapshot of a volume is a point-in-time copy of that volume. The snapshot is typically used by a backup application so that it may backup files in a consistent manner, even though they may really be changing during the backup. Windows XP includes a framework for orchestrating the timing for a snapshot, as well as a storage filter driver (not a file system filter driver) that uses a copy-on-write technique in order to create a snapshot.

File system filter drivers, such as antivirus programs, that need to fail an operation that would otherwise write to a read-only snapshot should return STATUS_MEDIA_WRITE_PROTECTED.
One important new snapshot-related IOCTL that affects file systems is IOCTL_VOLSNAP_FLUSH_AND_HOLD_WRITES. This is actually intended for interpretation by file systems, even though it is an IOCTL. This is because all file systems should pass the IOCTL down to a lower-level driver that is waiting to process the IOCTL after the file system. The choice of an IOCTL instead of an FSCTL ensures that even legacy file system drivers will pass the IOCTL down.

This IOCTL is sent by the Volume Snapshot Service. When a file system, such as NTFS, receives the IOCTL, it should flush the volume, and hold all file resources to make sure that nothing more gets dirty. When the IRP completes or is cancelled, the file system then releases the resources and returns.

IOCTL_VOLSNAP_FLUSH_AND_HOLD_WRITES is documented in the Volume Snapshot SDK.

Changes to Existing Features

	Item
	Description

	FAT32 on DVD-RAM
	DVD-RAM disks can appear as both CD-ROM/DVD-ROM devices and as rewritable disks (like MO disks). Windows XP allows DVD-RAM media in DVD-RAM drives to be formatted and used with the FAT32 file system.

	Defragmentation APIs
	Since NT 4.0, the Windows NT file systems have exposed APIs which allow a user-mode application to query the allocated ranges of files on disk, and optimize file arrangements in order to defragment (or carefully fragment) files in order to minimize seeks while processing file I/O.

In Windows 2000 these APIs have a number of limitations. For example, they do not function on the MFT, the PageFile, or NTFS Attributes.

The feature set in Windows XP changes the behavior on NTFS as follows:

· The defrag APIs no longer defragment data via the system cache. This means Encrypted files no longer need to be opened with read access.

· NTFS now defragments at the cluster boundary for non-compressed files. In Windows 2000 RTM, this was limited to the page granularity for non-compressed files.

· NTFS now defragments the MFT. In Windows 2000 RTM, defragmentation of the MFT was not allowed. In Windows XP, defragmentation of the MFT is performed through the regular code path, so there is no limit to how much of the MFT can be defragmented at once, and any part of the MFT can be moved except for the first 0x10 clusters. If there is no available space in the MFT to describe the change then it will be rejected. The API can move an MFT segment even if a file with its File Entry in that section is currently open.

· NTFS now defragments for cluster sizes greater than 4 KB.

· NTFS now defragments: Reparse points, bitmaps, and attribute lists. These can now be opened for file read attributes, and synchronize. The files are named using the regular syntax (file:name:type), so, for example foo:$i30:$INDEX_ALLOCATION or foo::$DATA or foo::$REPARSE_POINT or foo::$ATTRIBUTE_LIST.

· NTFS's QueryBitmap FSCTL now returns results on a byte boundary rather than page boundary.

· NTFS now defragments all parts of a stream up to and including the allocation size. In Windows 2000 RTM it was not possible to defrag the file tail between VDL and EOF.

· You can now defrag into or out of the MFT Zone. The MFT Zone is now just an NTFS-internal hint for the NTFS allocation engine.

· To defragment a file, the Win32 open mode needs only to have FILE_READ_ATTRIBUTES | SYNCHRONIZE.

· It is possible to Pin an NTFS file so that it may not be defragged using FSCTL_MOVE_FILE. This is done by calling FSCTL_MARK_HANDLE and passing MARK_HANDLE_PROTECT_CLUSTERS as an argument. This stays in effect until the handle is closed.

	Large Files
	Windows XP (and Windows 2000 Service Pack 2) are able to create sections on arbitrarily large mapped files. The constraint that had existed in earlier versions of the memory manager (creating Prototype Page Table entries for all pages in the section) does not apply since the Windows XP memory manager can reuse PPTEs for any parts of a section that do not have a mapped view.

	Verifiers
	There are new verifier levels in addition to a new deadlock verifier. For more information, see http://www.microsoft.com/whdc/DevTools/tools/DrvVerifier.mspx

	Read-Only NTFS
	NTFS now mounts read-only on an underlying read-only volume. If the volume requires a log restart or a chkdsk, the mount will fail.

	New flag: FILE_READ_ONLY_VOLUME
	The Microsoft Win32 GetVolumeInformation function now returns FILE_READ_ONLY_VOLUME for read-only volumes. This flag is documented in the Windows XP Platform SDK.

	RSS on MO media
	The Remote Storage Services feature provided only Hierarchical Storage Management with tape as second-tier in Windows 2000. In Windows XP, RSS also supports jukeboxes with certain types of rewritable optical disks, such as Magneto-Optical (MO) disks.

	EFS Interoperability
	The Client Side Caching database can now be encrypted.

As of Windows XP Beta 1, encrypted files cannot be replicated using FRS, or backed up using snapshots. Both of these issues were resolved for Windows XP Beta 2 and later.

	Default NTFS ACL
	The default ACL on NTFS volumes has been strengthened.

Base Kernel Changes and New APIs

	Item
	Description

	Kernel Enhancements for Windows XP
	The Windows XP DDK and IFS Kit documentation sets include a new section, "Kernel Enhancements for Windows XP," which summarizes new and changed kernel features. This section can be found in the "OS Version-Specific Information" portion of the Windows DDK Appendix.

	Cancel-Safe Queue Routines
	Rather than having drivers perform device queuing and handling the IRP cancellation race, Windows XP I/O automates this process. In Windows XP, drivers handle IRP queuing and do not have to handle IRP cancellations. Intelligence in the queuing process lets the I/O routines handle requests rather than drivers in cases where the I/O is canceled. A common problem with cancellation of IRPs in a driver is synchronization between the cancel lock and the InterlockedExchange in the I/O Manager with the driver's queue lock.

Windows XP abstracts the cancel logic in the routines while allowing the driver to implement the queue and associated synchronization. The driver provides routines to insert and remove IRPs from a queue, and it provides a lock to be held while calling these routines. The driver ensures that the memory for the queue comes from the correct pool. When the driver actually wants to insert something into the queue, it does not call its insertion routine, but instead calls IoCsqInsertIrp.

To remove an IRP from the queue, the driver can either specify an IRP to be retrieved, or pass NULL, and the first IRP in the queue will be retrieved. Once the IRP has been retrieved, it cannot be canceled; it is expected that the driver will process the IRP and complete it quickly.

	Kernel and HAL pages marked read-only
	On many Windows XP systems, the kernel and HAL pages are now marked read-only. This has affected those drivers which were attempting to patch system code, dispatch tables, or data structures.

The change to read-only kernel and HAL does not happen on all systems:

· On most systems, this only happens if you have < 128 MB of RAM.

· If you have >= 128 MB of RAM, Windows XP uses large pages to map the kernel and HAL, so we do not make their code read-only.

· On all platforms, all driver code is made read-only, as they are never mapped with large pages.

· Driver Verifier disables large pages so you can enable this on any machine of any size in order to test your code.

You should NOT attempt to overcome this page protection. Instead, please work with Microsoft so that we can find an API-based method to make your drivers work without the need to manipulate the kernel or HAL directly.

	SetFileShortName
	There is a new Win32 function, SetFileShortName, to set the short name of a file on NTFS. This function is documented in the Windows XP Platform SDK.

	GetVolumePathNamesForVolumeName
	A new Win32 function, GetVolumePathNamesForVolumeName, allows you to list all volume paths that a VolumeName may be mounted on.

BOOL

GetVolumePathNamesForVolumeName(

 LPCWSTR lpszVolumeName,

 LPWSTR lpszVolumePathNames,

 DWORD cchBufferLength,

 PDWORD lpcchReturnLength

)

This routine returns a Multi-Sz list of volume path names for the given volume name. The returned 'lpcchReturnLength' will include the extra tailing null characteristic of a Multi-Sz unless ERROR_MORE_DATA is returned, in which case the list returned is as long as possible and may contain a part of a volume path.

Arguments:

 lpszVolumeName - Supplies the volume name.

 lpszVolumePathNames - Returns the volume path names.

 cchBufferLength - Supplies the size of the return buffer.

 lpcchReturnLength - Returns the number of characters copied back to the return buffer on success or the total number of characters necessary for the buffer on ERROR_MORE_DATA.

Return Value:

FALSE - Failure.

TRUE - Success.

GetVolumePathNamesForVolumeName is documented in the Windows XP Platform SDK.

	New FileInformationClass changes
	Two new file information classes have been added to the FILE_INFORMATION_CLASS enumeration:

FileIdBothDirectoryInformation

FileIdFullDirectoryInformation.

Corresponding structure types have also been defined:

FILE_ID_BOTH_DIR_INFORMATION

FILE_ID_FULL_DIR_INFORMATION.

The new file information classes can be passed as FileInformationClass parameter values to ZwQueryDirectoryFile and IRP_MN_QUERY_DIRECTORY.

FILE_ID_BOTH_DIR_INFORMATION and FILE_ID_FULL_DIR_INFORMATION are documented in the Windows XP IFS Kit Reference,

	File system filters no longer bypassed in Fast IO Acquire/Release calls
	There has been a long-standing problem for file system filter driver writers that they are bypassed when any of the following Fast IO calls are made:

FastIoAcquireFileExclusive

FastIoReleaseFile

FastIoAcquireFileForCcFlush

FastIoReleaseFileForCcFlush

FastIoAcquireFileForModWrite

FastIoReleaseFileForModWrite

The filters in the file system filter stack were skipped in these calls because the system could not tolerate the filter not passing the operation down to the base file system. To solve this problem, the filter team has come up with a new way for file system filters to register for callbacks for these operations in such a way that we can now ensure that the operation is getting to the base file system.

To register these callbacks, filters should call FsRtlRegisterFileSystemFilterCallbacks. This new interface has two key benefits:

· Currently, the filter driver writer community has developed a number of very ugly hacks so that they can see these operations occurring. The hacks usually severely limit the interoperability between filters. The new interface provides a safe mechanism that enables filter drivers to see these operations, so these hacks are longer needed.

· In the past, even if a filter could find some way to get notified of these operations, there was no way that the filter could fail the FastIoAcquireFileExclusive operation (in rare cases, this is needed by HSM's filter). Now, filters have the ability to fail acquire operations and these failures will be passed back to the originator of the operation.

FsRtlRegisterFileSystemFilterCallbacks is documented in the Windows XP IFS Kit Reference.

	SetFileValidData
	NTFS has the concept of valid data length for a file stream. This is a way to preserve the C2 ‘Object Reuse’ requirement but not force file systems to write zeroes into file-tails.

Definitions:

VDL = ‘Valid Data Length.’ Each stream has such a value.

EOF = Allocated file length. Each stream has such a value.

File Tail = the region from VDL to EOF. Clearly, each stream has such a region (but may be 0-length)

By definition, VDL must be >=0 and <= EOF. Any reads from the file tail are implicitly returned as zeroes by NTFS. Any writes into the file tail cause VDL to be increased to equal the end of this write, and any data between the previous VDL and the start of this write is written as zeroes.

In Windows XP, we have added an NTFS-only Win32 function, SetFileValidData, to be used by all administrative users (explicitly, those users with the SeManageVolumePrivilege – see below) to set the Valid Data Length on a file.

Expected users:

· A ‘Restore’ application that has the ability to pour the raw clusters directly onto the disk through a hardware channel. They want a method of informing the file system that the range contains valid user data and it can be returned to the user.

· Multimedia/database tools that want to create large files, but not pay the zero-filling cost at (a) file extend time (cost here is to make the extend a synchronous operation) or (b) create time (cost here is filling the file with zeroes).

· Served-metadata cluster file systems that need to extend the file remotely, then ‘pump in’ the data directly to the disk device.

This function is documented in the Windows XP Platform SDK.

	SeManageVolumePrivilege
	A new privilege, SeManageVolumePrivilege, allows non-administrators and remote users to perform administrative disk tasks on a machine. As of Windows XP this privilege is only used to allow non-administrators and remote users to call SetFileValidData.

Note: SeManageVolumePrivilege is the same as SE_MANAGE_VOLUME_NAME (winnt.h) and SE_MANAGE_VOLUME_PRIVILEGE (ntifs.h).

	SeFilterToken
	Driver writers can use a new routine, SeFilterToken, to create restricted tokens. This routine is documented in the Windows XP IFS Kit Reference.

	IoCreateFileSpecifyDeviceObjectHint
	A new routine, IoCreateFileSpecifyDeviceObjectHint, lets file system filter driver writers direct a Create request to a specific point in the driver stack. This routine is documented in the Windows XP IFS Kit Reference.

	Filter Context Management Routines and Structures
	The following new FsRtlXxx routines have been added to help file system filter drivers manage file stream context information using the new FSRTL_PER_STREAM_CONTEXT structure:

FsRtlGetPerStreamContextPointer
FsRtlInitPerStreamContext

FsRtlInsertPerStreamContext

FsRtlLookupPerStreamContext

FsRtlRemovePerStreamContext

FsRtlSupportsPerStreamContexts

In addition, the following routines have been added to help file systems provide support for filter context management:

FsRtlSetupAdvancedHeader

FsRtlTeardownPerStreamContexts

All of the above routines, as well as the new FSRTL_FILTER_CONTEXT structure and the existing FSRTL_ADVANCED_FCB_HEADER and FSRTL_COMMON_FCB_HEADER structures, are documented in the Windows XP IFS Kit Reference.

	IoGetDiskDeviceObject
	IoGetDiskDeviceObject returns the disk device object associated with a file system volume device object. The disk device object need not be an actual disk but in general associated with storage. This routine is documented in the Windows XP IFS Kit Reference.

	Device Object Routines
	Three additional device object routines have been added:

IoEnumerateDeviceObjectList
IoGetDeviceAttachmentBaseRef
IoGetLowerDeviceObject
These routines are documented in the Windows XP IFS Kit Reference.

	Heap Routines
	Four new heap routines have been added:

RtlAllocateHeap
RtlCreateHeap
RtlDestroyHeap
RtlFreeHeap
These routines are documented in the Windows XP IFS Kit Reference.

	Handle-Based Security Routines
	The following handle-based security routines have been added to ntifs.h:

PsImpersonateClient

PsReferenceImpersonationToken

PsReferencePrimaryToken

RtlGetAce

ZwOpenProcessTokenEx

ZwOpenThreadTokenEx

ZwQueryInformationToken

ZwQuerySecurityObject

ZwSetInformationToken

ZwSetSecurityObject

These routines are documented in the Windows XP IFS Kit Reference.

	Other New Routines
	The following new routines are documented in the Windows XP IFS Kit Reference:

CcGetDirtyPages
CcSetLogHandleForFile
FsRtlBalanceReads
FsRtlIsAnsiCharacterLegalNtfsStream
FsRtlLookupLastLargeMcbEntryAndIndex
FsRtlNotifyVolumeEvent
IoAcquireVpbSpinLock
IoCreateStreamFileObject
IoCreateStreamFileObjectLite
IoIsOperationSynchronous
IoIsSystemThread
IoRegisterDriverReinitialization
IoReleaseVpbSpinLock
IoSetDeviceToVerify
IoVerifyVolume
KeStackAttachProcess
KeUnstackDetachProcess
ZwLoadDriver
ZwUnloadDriver
ZwQueryDirectoryFile
ZwQueryVolumeInformationFile.

Version - September 30, 2004

[image: image1.png]