
WPF Application Quality Guide

Microsoft® Windows Presentation Foundation Team

Last update: April 28, 2009
4Introduction

4Editions of This Document

5Suggested Roadmap [Updated]

7Getting Started

7Introduction to Software Testing

8The Testing Stack

8Testing Resources

8Introduction to the WPF Programming Stack

9WPF Architecture

9WPF Design Principles

10Major Subsystems of WPF

11General Development Process for a WPF Application

11Resources for Best Practices for Creating WPF Applications

12Test Methodology, Planning, and Strategies

14Automated Testing

14Data-Driven Testing

14Overview

18Methodology

19Conclusion

20UI Testing

20Basic Guidelines for Making UI Available

20Discovery of UI Elements

28UI Events and Interaction

28Visual Verification Testing

29Media Testing

31Verification of Animations and Other Transitions

36Graphics and 3D Content Testing

36API Testing and Unit Testing

37Performance and Scalability Testing [Updated]

37Development Practices and References

37Testing Practices

37Security Testing

37Best Practices for Developing Secure WPF Applications

38Testing Practices

38Threat Modeling

38Globalization and Localization Testing

38Basic Globalization and Localization Concepts

39Best Practices for Globalizing WPF Applications

41Creating Localizable UI Layouts in WPF

42Approaches to Localizing WPF applications

43Process Flow for BAML Localization

47Additional Resources

47Accessibility Testing

47Basic Accessibility Concepts

48Implementing WPF UI for Accessibility

50Accessibility Testing Best Practices

51Key Resources

52Stability and Stress Testing

52What is Stress and Reliability Testing?

52Why Run Stress Tests?

53Considerations For Stress Testing

53Stress-Testing Principles

53Test-Case Design

55Stress-Testing Best Practices

55Catching and Reporting Bugs

58Stress-Test Metrics and Quality Tracking

58Custom Control and Extensibility Testing

62Integration and Scenario Testing [New]

62Integration Testing

64Scenario Testing

66Manual Testing and Record and Play

66Choosing Whether to Automate a Test

66How to Write a Good Manual Test

67Recording a Manual Test

70Tools [Updated]

70TestApi [Updated]

70TestApi Example 1 – Input Injection

71TestApi Example 2 – Command-Line Parsing

72TestApi Example 3 – Visual Verification

72UI Automation Tools

73Debugging Tools [Updated]

73Performance Profiling Tools [Updated]

75WPF Application Design and Development Tools [Updated]

75XAML Editing Tools and Visual Studio Add-ins [Updated]

75Other Useful Tools and Resources for WPF Developers and Testers

76Resources

77Acknowledgements [Updated]

78Appendix

78A1. Building a WPF Application Test Suite by Using VSTS, NUnit, or xUnit [New]

78Quick Guide to MSTest / VSTS

79Quick Guide to NUnit

80Quick Guide to xUnit

81Best Practices for Building a WPF Application Test Suite

82A2. WPF Data Binding and Debugging

82A3. WPF Interoperability

83A4. Considerations for WPF Browser Applications [New]

Introduction

This document provides an overview of testing Windows Presentation Foundation (WPF) applications and controls. The document is intended for developers and testers who use Microsoft WPF technologies.

Topics that are covered include the following:

· A basic definition of software testing.

· Information about the WPF programming stack.

· Information about different levels of testing, from API testing to integration to system testing.

· A list of available tools and related references.

Sample code is provided wherever applicable. The content flow of each topic, when applicable, goes from the general concepts or definitions, to development practices highlights, to testing practices, and then to sample code (if any).

Editions of This Document

The document will be released in several editions. This is the fifth edition. Sections that are not yet covered in this document will be included in future editions, as noted in this document.

Please send any feedback to wpftbest@microsoft.com.

Suggested Roadmap

Updated for the fifth edition

This document is targeted at several software engineering “personas,” from Quality Assurance Engineers to Control Developers. The table below suggests a reading roadmap for the different personas.

	Persona
	Role
	Suggested Reading Plan

	Quality Assurance Engineer/

Software Test Engineer
	Creates and/or executes manual tests. Might created automated tests using high-level testing tools (VisualTest, etc.) or scripts.
	1.
Introduction to Software Testing
2.
Test Methodology, Planning, and Strategies
3.
Integration and Scenario Testing
4.
Manual Testing and Record and Play
5.
Globalization and Localization Testing
6.
Accessibility Testing

7.
Other Useful Tools and Resources for WPF Developers and Testers

	Developer in Test
	Creates automated tests and/or test tools using unmanaged code (C++) or managed code (C#, Visual Basic, etc.)
	1.
Introduction to Software Testing (for developers who are inexperienced in test)

2
Introduction to the WPF Programming Stack
3.
Test Methodology, Planning, and Strategies
4.
Automated Testing
5.
Globalization and Localization Testing
6. Stability and Stress Testing
7.
Accessibility Testing

8.
A1. Building a WPF Application Test Suite by Using VSTS, NUnit, or xUnit
9.
Tools (including TestApi REF TestApiLink \h * MERGEFORMAT
 REF TestApiLink \h * MERGEFORMAT
)

	Application Developer
	Creates WPF applications
	1.
Introduction to the WPF Programming Stack
2.
WPF Application Design and Development Tools
3.
Debugging Tools
4.
A1. Building a WPF Application Test Suite by Using VSTS, NUnit, or xUnit
5.
Performance Profiling Tools
6.
Other Useful Tools and Resources for WPF Developers and Testers
7.
A3. WPF Interoperability
9.
A4. Considerations for WPF Browser Applications

	Control Developer
	Creates WPF controls and control libraries
	1.
Introduction to the WPF Programming Stack
2.
WPF Application Design and Development Tools
3.
Debugging Tools
4.
A1. Building a WPF Application Test Suite by Using VSTS, NUnit, or xUnit
5.
Custom Control and Extensibility Testing
6.
Globalization and Localization Testing
7.
Accessibility Testing
8.
Other Useful Tools and Resources for WPF Developers and Testers

Getting Started

Introduction to Software Testing

There are many definitions of software testing. However, all these definitions boil down to essentially the same thing: executing software in a controlled manner in order to evaluate a program or system, and to determine whether it meets its design requirements (customer requirements and specifications, etc).
This section describes high-level concepts for software testing, including techniques, approaches, types, and the testing stack. It also offers some references for additional information about software testing.

Depending on how the testing is managed in a team and on the test type (described below), testing can be performed by testers, by developers, or both. For example, even if a development team includes dedicated testers, unit testing (described below) is performed by developers.
The following are some key concepts for software testing.

Objective

The objective of software testing is to proactively prevent defects and to improve quality.

Techniques

Testing techniques include the following:

· White box testing. This is testing that is based on knowledge of an application's implementation. Code inspections and code coverage analysis are two examples of white box testing.

· Black box testing. This is testing that is based solely on what can be observed about an application's interface and behavior, without knowledge of the application's implementation.

· Grey box testing. This is a mix of white box testing and black box testing, where some knowledge of the application's implementation is used to guide observation-based testing.

Approaches

Software testing can be carried out by using the following approaches:

· Manual tests. These are typically tests that work best with human eyes, brains, and intuition behind the keyboard.

· Automated tests. These are tests that can be coded and run without user intervention. They are typically repetitive in nature, and they can be run on a frequent and regular basis, giving constant feedback to the developers about how things are working.

Types

The different levels of testing generally include the following:

· Unit testing. Using white box testing, developers carry out unit testing in order to check whether a particular module or unit of code is working properly. Unit testing is implemented at a fundamental level; it is carried out when the unit of the code is developed or when particular functionality is built.

· Integration testing. This is performed in order to test whether two or more units or modules coordinate properly. Integration testing helps to discover whether there are defects in the interface between different modules.

· Functional testing. This tests whether a system meets functional requirements. Functional testing does not cover internal coding of the project. Instead, it checks whether the system behaves according to expectations.

· System testing. This evaluates the system's compliance with its specified requirements, such as performance, compatibility, security, regression, reliability, accessibility, and so on.

· Acceptance testing. This is performed on a system prior to its delivery, either from the development team to the test team, or from the system provider to the customer (the user or client). In either case, the testing involves running a suite of tests on the completed system to verify basic functionality.

The Testing Stack

The design of tests is usually subject to the same basic engineering principles as the design of software. The design consists of stages from high-level strategy to detailed test procedures. The testing stack generally includes the following:

· Creating a test plan and test specification (test documentation).

· Designing tests (test cases).

· Executing tests (manual or automated).

· Capturing and analyzing test results (logging and failure analysis).

· Identifying problems (bug isolation and reporting).

· Having problems fixed and then repeating tests as needed.

Note that complete testing of a product is infeasible. The limiting factor is complexity—that is, the large number of variables that are represented by all the inputs, feature interactions, configurations, code paths, and so on in an application. At some point, software testing has to stop and the product must to be shipped or development must be discontinued. The point at which testing can be suspended is decided by the trade-off between time and budget (or with respect to other team-specific criteria), or if the reliability estimate of the software product meets the stated requirements.

Testing Resources

The following books provide information about automated testing:

· Automated Software Testing: Introduction, Management, and Performance by Elfriede Dustin, Jeff Rashka, and John Paul, Addison-Wesley, 1999.

· Just Enough Software Test Automation by Daniel J. Mosley and Bruce A. Posey, Yourdon Press, 2002.

· Software Test Automation: Effective Use of Test Execution Tools by Mark Fewster and Dorothy Graham, Addison-Wesley, 1999.

· Testing Computer Software by Cem Kaner, Hung Quoc Nguyen, and Jack Falk, Wiley, 1999.

The following Microsoft Web sites also provide information about testing:

· Microsoft Tester Center on the MSDN Web site.

· Testing Software Patterns on the Microsoft Patterns & Practices Web site.

For unit testing frameworks and tools, you can use Microsoft Visual Studio Team System Test Edition to create, run, and analyze unit tests. Visual Studio also provides code-coverage test framework and graphical UI for test-result analysis. For a list of tools that you can use to create, debug, profile, and test WPF applications, see the Tools section of this document.

Introduction to the WPF Programming Stack

The section focuses on:
· WPF architecture.

· WPF design principles.

· The core subsystems of WPF.

· The general development process for a WPF application.

· Resources for best practices for creating WPF applications.

WPF Architecture
WPF provides a very rich and highly integrated UI stack, exposed through a .NET programming model. Figure 1 illustrates the overall architecture and the key components of WPF.
[image: image1.jpg]3
2
3
s
o
4
S

Input & Events
Property System

Figure 1: Architecture and key components of WPF

The new platform and new tools lead to improved application development workflow, and offer increased productivity, improved ability to implement an application design, and faster time to market.

WPF Design Principles

The basic design principles of WPF can be categorizes as follows:
· Integration. WPF provides a unified programming model that is consistent across controls, graphics, text, and media services, and that enables seamless integration of these elements within a single application. The WPF content model enables any control to host any group of other controls. To help arrange the content either in fixed or flow layout, WPF provides container elements that implement various layout algorithms in a way that is completely independent of the content that they are holding. Furthermore, data binding, templates, triggers, and animation provide visualized content and bring the UIs to life, giving users immediate feedback as they interact with the UI.

· Vector graphics. WPF takes full advantage of the powerful graphical processing units (GPUs) that are part of modern PC systems. At its heart, the composition engine is vector-based, enabling WPF to scale all output to match the resolution of a specific output device. In situations where hardware rendering cannot be used, software rendering is available as a fallback. In addition, a floating-point logical pixel system and 32-bit ARGB color support provide a rich, high-fidelity visual experience that anticipates future technology needs, such as high-DPI displays.

· Declarative programming. WPF introduces XAML (Extensible Application Markup Language), an XML-based language for instantiating and populating nested object hierarchies. The design of XAML enables applications to parse and manipulate UI elements at run time. The XAML/code-behind model is supported both by the designer tool Expression Studio and the developer tool Visual Studio, which enable designers and developers to work collaboratively on application design and development.

· Easy deployment. With ClickOnce for deployment and with support for both standalone applications and browser-hosted applications, WPF offers the best of both deployment models.

Major Subsystems of WPF

WPF is structured by using subsystems or classes that are defined in different namespaces. These classes have a very deep inheritance hierarchy. Figure 2 shows these important classes and their relationships.

[image: image2.png]Object

DispatcherObject

DependencyObject

UlElement ContentElement | presentationCore.di

,,,,,,,,,,,,,,,,,,,,, S ————

FrameworkElement
T

[1
(se) Control D)

ContentControl

flemeConte] PresentationFramework.dll

Figure 2: Classes that make up WPF subsystems

The following list describes the classes that make up the WPF subsystems (links lead to documentation on the MSDN Web site for the individual class):

· Object. The base class for all .NET Framework classes.

· DispatcherObject. The base class that handles messages from other objects.

· DependencyObject (DO). The base class for any object that can support dependency properties (DPs). This class defines the GetValue and SetValue methods that are central to the operation of DPs.

· Freezable. The base class for objects that have a modifiable state and can be “frozen” into a read-only state for performance purposes.

· Visual. The base class for all objects that have their own visual representation. This class provides a tree of visual objects, each optionally containing drawing instructions and metadata about how to render those instructions, such as clipping, transformation, and so on. Visual is the entry point to the WPF composition system. It is also the point of connection between two subsystems, the managed API and the unmanaged milcore (the core of the WPF rendering system).
· UIElement. The base class for all visual objects, which provides support for layout, input, focus, and routed events (collectively referred to as LIFE).

· ContentElement. A base class that is similar to UIElement, but for content that does not have its own rendering behavior. In order to be rendered in the UI, ContentElement objects must be hosted in an object that derives from Visual.
· FrameworkElement. A base class that adds support for styles, data binding, resources, and a few common mechanisms for Windows-based controls such as tooltips and shortcut menus.

· Control. The base class that provides basic elements for GUI development, such as Button, ListBox, and so on. The controls separate the data model (properties), interaction model (commands and events), and display model (templates), which enables developers to completely replace their visual aspect.
· Shape. The base class for shape elements, such as Ellipse, Polygon, and Rectangle.
· Panel. The base class for all Panel elements, which is used to position and arrange child objects in WPF applications.
· ContentControl. The base class for controls that can have only one child element. This child element can be anything from a string to a layout panel with a combination of other controls and shapes.
· ItemsControl. The base class for controls that can be used to present a collection of items, such as the ListBox and TreeView controls.

The following table summarizes the most important of these core classes in WPF and their basic functionalities:

[image: image3.png]DispacherObyect

[DependencyObject
[Visual x | x| x [x

UiEement x| [x [x [x [x| x|«

FrameworiEement | x | x | x | x | x | x | x [x | x | x| x| x
Conrol w | [x [x [x [x| x|« [x| x|x]|x
ConenControl w | [x [x [x [x| x|« [x| x|x]|x

bemsCommol | x | x | x | x| x | x| x | x | x| x [x| x

General Development Process for a WPF Application

For an overview of WPF and a tutorial that shows how to develop a WPF application, see the following articles on the MSDN Web site:

· Getting Started with Windows Presentation Foundation. This tutorial provides a simple introduction to the development of a WPF application.

· Introduction to Windows Presentation Foundation. This overview covers the key capabilities and concepts of WPF.

Resources for Best Practices for Creating WPF Applications

For information about best practices for designers and for developers, and about design pattern for WPF applications, see the following whitepaper on the Windows Client Web site and on the MSDN blog site:

· Best Practices for Designers
· Best Practices for Developers
· The blog post Model/View/ViewModel pattern for building WPF apps by John Gossman on the MSDN blog site

Test Methodology, Planning, and Strategies

Many books and resources are available that cover software testing methodologies, planning techniques, and testing strategies. (For a list of resources, see the Testing Resources in the Introduction to Software Testing section in this document.) This section provides a high-level overview of general test methodology, planning, and strategies.

A test strategy is a statement of the overall approach to testing. It identifies the levels of testing to be applied and the methods, techniques, and tools to be used. Forming a sound testing strategy is the first step in designing tests, before you move to developing test plans, specifying test-case design, implementing tests, gathering test execution results, and identifying and fixing bugs.
The following are a few key factors to consider in forming a good test strategy and in conducting WPF applications test planning:

· In-process versus out-of-process testing. Each approach has different performance and security implications, and so on. You select the one or the mix of both based on your application’s needs.

· White box testing, black box testing, or a combination of both (control-flow testing, data-flow testing, use-case testing, and so on).

· Manual tests versus automated testing (when and what tests should be automated).

· Unit testing, system testing, and so on.

· Synchronization and timing, and so on.

There are many test strategies. Each has advantages and disadvantages that depend on the overall business needs, to name a few. Some of these test strategies are:

· Analytical test strategies. These start with analysis as a base. This is an object-guided strategy, looking at requirements, design, and implementation objects in order to determine testing focus. This strategy requires an up-front investment of time.

· Model-based test strategies. These develop models for how the system should behave. This strategy relies on the ability of the tester to develop good models.

· Methodical test strategies. These use a relatively informal approach, although it is an orderly and predictable one, to determine where to test. This strategy is suitable for relatively stable systems.

· Process-oriented test strategies. These follow the standardized test procedures defined by ISO, or use agile, lightweight processes. These strategies are often used for user acceptance testing. They are also suited to being able to respond to late changes, and can be tailored for small teams whose product has low scalability.

A good testing principle is to align the project context, the test mission, the test strategy, and the tactics. The better aligned these factors are, the more effective and efficient the test effort will be.

An effective software testing process is typically a mix of test types, executed through a combination of manual and automated testing. The mix and number of tests is determined by the quality requirements of the application. For example, is the application mission critical? Is time-to-market the most important factor?

For developers, the test-driven development (TDD) methodology can be adapted in unit testing. The benefits of TDD are that because many bugs can be discovered during the early development stage by using unit tests, the software testing phase is considerably shorter, and the cost for fixing bugs is lower. This can appeal to companies or projects that have little or no budget for QA staff. These companies can use TDD to improve code quality before the code ever reaches the testing phase.

The ultimate goal of this guide is to help improve the quality and testability of WPF applications. The benefits of testability include availability, flexibility, maintainability, reliability, usability, changeability, and fault tolerance. The following are high-level guidelines for improving testability of WPF applications:

· Refactor business logic out of the UI by using the Model/View/ViewModel pattern in both application design and testing. For more information about the Model/View/ViewModel pattern for WPF applications, see John Gossman's blog.

· Deliver simple tests early by investing in unit testing. This finds bugs and defects early in the product cycle, which results in a much lower cost for fixing them.

· Automate tests from the bottom up (see Figure 3). First develop unit tests, then functional tests, then system tests, and so on. Integration tests can be expensive and time consuming. Therefore, create solid unit tests, functional tests, and system tests before moving on to integration tests.

· Test the UI and code components separately.

· Perform integration testing on stable UI and on representative customer scenarios.

[image: image4.png]Unit Testing (TDD)

Figure 3: A bottom-up model for automating tests.

For more details about different test methodologies, planning processes and various strategies, see the Testing Resources section of the Introduction to Software Testing topic of this document.

Automated Testing

Data-Driven Testing

Overview

A typical test suite consists of hundreds or thousands of test variations. Test frameworks such as vsUnit, NUnit, etc. provide ways to declare variations by letting testers mark classes and methods with attributes or by other means. Often, test variations are determined at compile time; the tester or developer typically creates a test method and marks it as a test method.

For example, imagine that you need to test the following class:

public class Person

{

 public Person(string firstName, string lastName, int age);

 public int Age { get; private set; }

 public string FullName { get; private set; }

}

A traditional unit test might look like the following example:

//

// This is a Visual Studio unit test, but the ideas are applicable to any unit

// test framework.

//

[TestClass()]

public class PersonTests

{

 ...

 [TestMethod()]

 public void CreatePersonWithValidParameters()

 {

 string firstName = "John";

 string lastName = "Smith";

 int age = 21;

 Person p = new Person(firstName, lastName, age);

 Assert.AreEqual(firstName + " " + lastName , p.FullName);

 Assert.AreEqual(age, p.Age);

 }

 [TestMethod()]

 [ExpectedException(typeof(System.ArgumentException))]

 public void CreatePersonWithInvalidAge()

 {

 string firstName = "Peter";

 string lastName = "Jones";

 int age = -5;

 Person p = new Person(firstName, lastName, age);

 // The code above assumes the c’tor of Person will throw upon invalid age.

 }

}

Although this approach is effective in unit-testing scenarios, it has several drawbacks:

· In order to add, remove, or modify a test, the tester needs to recompile part of the test suite or the entire test suite.

· Code might be duplicated.

· The test code might not be fully reusable.

· Filtering tests and executing subsets of the tests can be tricky.

· This approach can potentially bypass proper test planning.

An alternative approach is data-driven testing. In data-driven testing, test variations (or part of them) are constructed at run time rather than at compile time. Typically, variations are read from an external file, although sometimes variations are coded in a data structure such as an array.

Using the previous example, the following steps show a possible data-driven test implementation.

1. The tester defines a schema to represent all test variations using XML, as in the following example:

<!-- MyVariations.xml -->

<Variations>

 <Variation Id="1"

 FirstName="John" LastName="Smith" Age="21"

 ExpectedFullName="John Smith" ExpectedAge="21"

 ExpectedExceptionType="null"

 />

 <Variation Id="2"

 FirstName="Peter" LastName="Jones" Age="-5"

 ExpectedFullName="Peter Jones" ExpectedAge="0"

 ExpectedExceptionType="ArgumentException"

 />

 ...

</Variations>

2. The test code deserializes the variations in memory, creating one or more variation-description objects.

3. The test code executes variations by traversing the collection of variation-description objects, using code like the following example:

[TestClass()]

public class PersonTests

{

 ...

 [TestMethod()]

 public void CreatePerson()

 {

 //

 // The code assumes the existence of ReadVariationsFromFile, which

 // deserializes the variations from the MyVariations.xml file shown above.

 //

 List<Variation> variations = ReadVariationsFromFile("MyVariations.xml");

 foreach (Variation v in variations)

 {

 Person p = null;

 Type actualExceptionType = null;

 string actualFullName = String.Empty;

 int actualAge = 0;

 try

 {

 p = new Person(v.FirstName, v.LastName, v.Age);

 actualFullName = p.FullName;

 actualAge = p.Age;

 }

 catch (Exception e)

 {

 actualExceptionType = typeof(e);

 }

 //

 // The verifications below can be and often are encapsulated in a

 // separate verifier. Often verifiers are specified as part of the

 // data-file schema and are created dynamically by a factory.

 //

 if (v.ExpectedFullName == actualFullName &&

 v.ExpectedAge = actualAge &&

 v.ExpectedExceptionType == actualExceptionType)

 {

 // Pass. You may want to log details about the pass here

 }

 else

 {

 // Fail. Log the expected and actual results for failure analysis.

 Assert.Fail(

 "FullName: exp: {0}, act: {1}; Age: exp: {2}, act: {3}; ExceptionType: exp: {4}, act: {5}",

 v.ExpectedFullName, actualFullName,

 v.ExpectedAge, actualAge,

 v.ExpectedExceptionType, actualExceptionType);

 }

 }

 }
}

For illustrative purposes, the code for the Variation class may look as follows:

public class Variation

{

 public Variation(XmlNode variationNode)

 {

 this.Id = variationNode.Attributes["Id"].Value;

 this.FirstName = variationNode.Attributes["FirstName"].Value;

 this.LastName = variationNode.Attributes["LastName"].Value;

 this.Age = Int32.Parse(variationNode.Attributes["Age"].Value);

 this.ExpectedFullName = variationNode.Attributes["ExpectedFullName"].Value;

 this.ExpectedAge =

 Int32.Parse(variationNode.Attributes["ExpectedAge"].Value);

 this.ExpectedExceptionType =

 Type.GetType(variationNode.Attributes["ExpectedExceptionType"].Value);

 }

 public string Id { get; private set; }

 //

 // Expected input values

 //

 public string FirstName { get; private set; }

 public string LastName { get; private set; }

 public int Age { get; private set; }

 //

 // Expected output values

 //

 public string ExpectedFullName { get; private set; }

 public int ExpectedAge { get; private set; }

 public Type ExpectedExceptionType { get; private set; }

}

And the ReadVariationsFromFile method may look as follows (this method is often included as a static method in the Variation class itself or in a VariationUtilities class with other facilities related to processing Variation instances):

...

public static List<Variation> ReadVariationsFromFile(string filename)

{

 List<Variation> list = new List<Variation>();

 XmlDocument doc = new XmlDocument();

 doc.Load(filename);

 foreach (XmlNode n in doc.GetElementsByTagName("Variation"))

 {

 Variation v = new Variation(n);

 list.Add(v);

 }

 return list;

}

The code in the previous example is a bit more complicated than the equivalent unit-test code. However, it provides the following benefits:

· New test variations can be easily added, removed, modified, or temporarily disabled.

· Combinatorial variations can be generated.

· Tests are more easily debugged, because there typically is a single structure holding all data associated with a variation.

· Validation strategies can be determined at run time. Testers can initialize verifier objects from the data file the same way they initialize variations.

· Code is more easily reused, and there is less code duplication. A carefully planned data-driven test results in a number of reusable classes (factories, verifiers, etc.). Large parts of the test code can be reused for stress tests, scalability tests, functional tests, etc.

· The test planning process can be improved. For example, before implementing the test, the tester can list the test factors that need to be varied and the observables that need to be verified.

Some of the benefits do not become evident until a test suite includes thousands of variations.

On the other hand, the drawbacks of data-driven testing are the following:

· As a result of the additional data files, there is slight overhead in deploying and managing tests.

· Code might be more complex than corresponding unit-test code.

· Because of the dynamic nature of data-driven tests, some compile-time checks are no longer present.

Most sophisticated tests and testing techniques, such as model-based testing, fuzz testing, etc., often end up using a data-driven approach.

It is important to note that a lot of the existing unit-test frameworks (Mb Unit, MSTest, xUnit) do provide support for data-driven tests. The XML-based data-driven approach demonstrated above is one of many possible data-driven test implementations and may not be the right implementation for unit-test frameworks that support data-driven tests. The sample above is meant to demonstrate ideas, not implementation details. Developers and testers are strongly advised to utilize the data-driven capabilities of the specific unit-test framework that they use.

Methodology

The following steps describe the general methodology to create data-driven tests.

4. The tester lists all factors that he or she intends to vary during the testing, along with the specific values for all of them, and all observables that he or she intends to verify. This is called a “test matrix”.

The test matrix for the earlier example might be as follows:

	Factor
	Type
	Possible Values

	First name in constructor
	String
	· Valid name

· Invalid string

· String that contains any of the following: a number at the beginning and or end, non-alphabetical characters, incorrect capitalization

· Single letter

· Empty string

· Very long string

· String containing special characters (invisible characters, etc.)

· null

	Last name in constructor
	String
	(same as above)

	Age in constructor
	int
	· Valid

· Invalid (negative, unreasonably large, etc.)

	…
	
	…

Note that some of the factors tracked in the matrix may be “environmental factors” such as System Locale, OS, etc. The table above does not show any such environmental factors, but a typical test matrix contains at least a few of those.

	Observables

	Exception thrown from constructor

	Expected object state is verified (properties return correct values, etc.)

	Etc.

5. The tester discusses the test matrix with the developer, who typically suggests additions to the matrix.
6. The tester lists the mainline scenarios and the high-priority tests.

7. The tester creates a data schema to hold all data that is related to a single variation.

8. The tester uses a tool to generate variations combinatorically. (Most variation-generation tools let testers reduce variations.) Mainline scenarios and high-priority tests are marked as such (either by the tool or manually)

9. The tester designs and implements any necessary reusable pieces (e.g. verifiers) and implements the tests.

10. The tester plans and implements other fundamentals tests (performance, scalability, security, etc.).

Conclusion

Data-driven testing is an important pattern that can improve code reuse, debuggability, and the overall design of test code when combined with the appropriate upfront test planning. A lot of the existing unit-test frameworks provide facilities for data-driven testing that can be used to deploy data-driven tests.

Data-driven testing does not override unit testing. Both approaches are mostly complementary, with data-driven tests typically implemented as an extension to fundamental unit tests.

UI Testing

Basic Guidelines for Making UI Available

The ability to uniquely identify and locate any control within the UI provides the basis for automated test applications to operate on that UI. Programmatic access to UI elements requires that all UI elements are labeled, that property values are exposed, and that appropriate events are raised. For standard WPF controls, most of this work is already done through the AutomationPeer class. Custom controls require additional work to make sure that programmatic access is correctly implemented.

Enabling Programmatic Access to All UI Elements and Text

User interface (UI) elements should be configured to enable programmatic access. If a developer is working with a standard WPF control, support for programmatic access is built into the control. If the control is a custom control—a control that has been derived from an existing control or a control that has been derived directly from the Control class—the developer must check the related AutomationPeer implementation for areas that might need modification. To improve testability, make sure that every control in the application has been assigned an AutomationId value (one of the key Microsoft UI Automation properties) that is unique and language neutral. An AutomationId value that is consistent from build to build makes it easy to identify the control in the visual tree, compared to searching for the control by another method.

Adding Names, Help Text, Titles, and Descriptions to UI Objects

Assistive technologies, especially screen readers, use the title to identify the location of the frame, object, or page in the navigation scheme. Therefore, the title must be descriptive. Similarly, for WPF controls, the NameProperty and HelpTextProperty values are important for assistive technology devices and for automated testing. This is especially important for WPF ItemsControl objects (TreeView, ListBox, ComboBox, etc.), because the individual item's AutomationId value might be reused in a different subtree under the shared parent.

When an ItemsControl instance is bound to an XML data source, the assistive tool (such as the Narrator application) uses the ToString method to get the value of each item in the ItemsControl instance. This value is simply the string “System.Xml.XmlElement”. To provide a meaningful value to the Narrator application, developers can bind the AutomationProperties.Name property to the data source's property that is displayed in the ItemsControl instance.

Making Sure that Programmatic Events Are Triggered by All UI Activities

If a control is derived from a standard control or from the Control class, developers must check the related AutomationPeer class for areas that might need modifications. Developers must also expose related events for the new control as needed. By following these practices, developers enable assistive tools to be notified of changes in the UI and to notify the user about these changes. For more information about how to create a custom control with AutomationPeer, see the section Custom Control Authoring and Extensibility Testing later in this document. For more information about how to make UI accessible, see Accessibility Best Practices on the MSDN Web site.

A tool such as UI Spy (UISpy.exe) can also help identify the visual elements in the UI tree, discover their properties and what events they raise, and help developers interact with the visual elements. The UI Spy tool is part of the Windows SDK download that is available on the Microsoft Download Web site.

Discovery of UI Elements

This section focuses on how to use Microsoft UI Automation for Automated Testing. It provides a brief introduction to the UI Automation Object Model, outlines the steps for implementing UI Automation in a WPF application, lists best practices and several different approaches to allocating UI elements, and then provides code examples for these approaches.

The UI Automation API Object Model

Every UI element, such as a window, a button, and so on, is represented by the AutomationElement derived class in the System.Windows.Automation namespace of the UIAutomationClient assembly. An AutomationElement instance corresponds to a UI element regardless of the underlying UI framework (WPF or Win32). All Automation elements are part of a tree, in which the root element represents the Windows desktop. Through the AutomationElement.RootElement static property, developers can obtain a reference to the Windows desktop element and from there find any child UI element.
AutomationElement objects expose control patterns that provide properties and events specific to common control types (such as windows, buttons, check boxes, and so on). Control patterns in turn expose methods that enable clients to obtain additional information about the element and to provide input to the element.

Steps for Implementing UI Automation

The following table lists the steps that are required in order to implement UI Automation in a WPF application.

Steps in implementing UI Automation in a WPF application

	Step
	Description

	Add UI Automation references
	Developers must add the following UI Automation DLLs:

· UIAutomationClient.dll. Provides access to the UI Automation client APIs.

· UIAutomationClientSideProvider.dll. Provides the ability to automate Win32 controls and to automate the WPF controls that interact with Win32 features. For more information, see UI Automation Support for Standard Controls.

· UIAutomationTypes.dll. Provides access to the types that are defined in UI Automation.

	Add the System.Windows.Automation namespace
	This namespace contains everything that UI Automation clients need in order to use the capabilities of UI Automation, except text handling.

	Add the System.Windows.Automation.Text namespace
	This namespace contains everything that UI Automation clients need in order to use the text-handling capabilities of UI Automation.

	Find controls
	Automated test scripts locate UI Automation elements that represent controls in the Automation tree. Developers can reference UI Automation elements in code in the following ways:

· Query the UI by using a Condition statement. This is typically where the language-neutral AutomationId value is used.

Note

Developers can obtain an AutomationIdProperty value by using a tool such as UI Spy (UISpy.exe) that can itemize the UI Automation properties of a control.
· Use the TreeWalker class to traverse the whole UI Automation tree or a subset.

· Track focus.

· Use screen location, such as the location of the pointer.

For more information, see Obtaining UI Automation Elements on the MSDN Web site.

	Obtain control patterns
	Control patterns expose common behaviors for functionally similar controls. After automated test scripts locate the controls that require testing, they obtain the control patterns of interest from those controls, such as the InvokePattern control pattern for typical button functionality or the WindowPattern control pattern for window functionality.

For more information, see UI Automation Control Patterns Overview on the MSDN Web site.

	Automate the UI
	After the control pattern has been obtained, automated test scripts can control any UI from a UI framework by using the information and functionality that is exposed by the UI Automation control patterns.

Best Practices for Obtaining UI Automation Elements

The following are best practices for obtaining UI Automation elements:

· As a rule, obtain only direct children of the RootElement object. A search for descendants might iterate through hundreds or even thousands of elements, possibly causing a stack overflow. If developers or testers are trying to obtain a specific element at a lower level, they should start the search from the application window or from a container at a lower level.

· To find a known element (identified by its Name property, AutomationId property, or other property or combination of properties), it is easiest to use the FindFirst method. If the element to find is an application window, the starting point of the search can be the RootElement object.

· To find all elements that meet specific criteria that are related to a known element, use the FindAll method. For example, developers can use this method to retrieve list items or menu items from a list or menu, or to identify all controls in a dialog box.

· If developers have no prior knowledge of the applications that the client might be used with, they can construct a subtree of all elements that they are looking for by using the TreeWalker class. The application might do this in response to a focus-changed event. That is, when an application or control receives input focus, the UI Automation client examines children and perhaps all descendants of the element that has received the focus.

· To find the supported patterns for a given UI element, developers should not call GetSupportedPatterns. Performance can be severely affected because this method calls GetCurrentPattern internally for each existing control pattern. If possible, developers should call GetCurrentPattern only for the patterns that they require.

Ways of Finding UI elements by Using UI Automation

Developers and testers can use the following ways to find an element by using UI Automation:

· Search for an element's AutomationId value. Note that the AutomationId value could be reused in the descendants. For more information, see Use the AutomationID property on the MSDN Web site.

· Search based on the localized control name.

· Search based on a control type.

· Search based on a PropertyCondition value.

· Obtain a control reference in an event handler.

· Search a ListItem object.

· Search based on a ClassName property value.

· In a multi-threaded apartment (MTA) application, create a single-threaded apartment (STA) thread for accessing UI that might appear broken.

· Use the WPF Dispatcher object to automate the AutomationElement object on the UI thread

If the client application might attempt to find elements in its own user interface, developers and testers must make all UI Automation calls on a separate thread. For more information, see UI Automation Threading Issues.

Samples for Locating UI Elements

This section includes examples that show how to locate UI elements. The following code examples are excerpts from the code that is available in the sample test project listed under Custom Control Authoring and Testing Sample later in this document.

Example 1. This example shows how to find a button that has the AutomationID value button1 in a WPF application, and then click it.

/// <summary>

/// Finds a UI Automation child element by AutomationID.

/// </summary>

/// <param name="automationID">AutomationID of the control, such as "button1".</param>
/// <param name="rootElement">Parent element, such as an application window, or
/// AutomationElement.RootElement object when searching for the application

/// window.</param>

/// <returns>The UI Automation element.</returns>

private AutomationElement FindElementByID(String automationID,

 AutomationElement rootElement)

{

 if ((automationID == "") || (rootElement == null))

 {

 throw new ArgumentException("Argument cannot be null or empty.");

 }

 // Set a property condition that will be used to find the control.

 Condition c = new PropertyCondition(

 AutomationElement.AutomationIdProperty, automationID,

 PropertyConditionFlags.IgnoreCase);

 // Find the element.

 return rootElement.FindFirst(TreeScope.Element | TreeScope.Children, c);

}

Example 2. This example shows how to find a control by control name.

/// <summary>

/// Finds a UI Automation child element by name.

/// </summary>

/// <param name="controlName">Name of the control, such as "button1".</param>
/// <param name="rootElement">Parent element, such as an application window, or
/// AutomationElement.RootElement object when searching for the application
/// window.</param>

/// <returns>The UI Automation element.</returns>

private AutomationElement FindElementByName(String controlName,

 AutomationElement rootElement)

{

 if ((controlName == "") || (rootElement == null))

 {

 throw new ArgumentException("Argument cannot be null or empty.");

 }

 // Set a property condition that will be used to find the control.

 Condition c = new PropertyCondition(

 AutomationElement.NameProperty, controlName,

 PropertyConditionFlags.IgnoreCase);

 // Find the element.

 return rootElement.FindFirst(TreeScope.Element | TreeScope.Children, c);

}

Example 3. This example shows how to find a control by control type.

/// <summary>

/// Finds a UI Automation child element by control type.

/// </summary>

/// <param name="controlType">Control type of the control, such as Button.</param>
/// <param name="rootElement">Parent element, such as an application window, or
/// AutomationElement.RootElement when searching for the application window.</param>

/// <returns>The UI Automation element.</returns>

private AutomationElement FindElementByType(ControlType controlType,

 AutomationElement rootElement)

{

 if ((controlType == null) || (rootElement == null))

 {

 throw new ArgumentException("Argument cannot be null.");

 }

 // Set a property condition that will be used to find the control.

 Condition c = new PropertyCondition(

 AutomationElement.ControlTypeProperty, controlType);

 // Find the element.

 return rootElement.FindFirst(TreeScope.Element | TreeScope.Children, c);

}

Example 4. This example shows how to find a control based on a control condition, such as all buttons that are enabled.

/// <summary>

/// Finds all enabled buttons in the specified root element.

/// </summary>

/// <param name="rootElement">The parent element.</param>

/// <returns>A collection of elements that meet the conditions.</returns>

AutomationElementCollection FindByMultipleConditions(AutomationElement rootElement)

{

 if (rootElement == null)

 {

 throw new ArgumentException();

 }

 Condition c = new AndCondition(

 new PropertyCondition(AutomationElement.IsEnabledProperty, true),

 new PropertyCondition(AutomationElement.ControlTypeProperty, ControlType.Button)

);

 // Find all children that match the specified conditions.

 return rootElement.FindAll(TreeScope.Children, c);

}

Example 5. This example shows how to find a control in an event handler. When the application is notified about a UI Automation event, the source object that is passed to the event handler is an AutomationElement instance.

// Shows how to track the Start button’s Invoke event.
// start is the AutomationElement object that represents the Start button.
// Register an event handler for the InvokedEvent method of the Start button.

Automation.AddAutomationEventHandler(InvokePattern.InvokedEvent, start,

 TreeScope.Element,

 new AutomationEventHandler(OnStartInvoke));

// The event handler.
private void OnStartInvoke(object src, AutomationEventArgs e)

{

 MessageBox.Show("Start has been invoked");

}

Example 6. This example shows how to find an element from a list item. The example uses the FindAll method to retrieve a specified item from a list. This is faster for WPF controls than using the TreeWalker class.

/// <summary>

/// Retrieves an element in a list by using the FindAll method.

/// </summary>

/// <param name="parent">The list element.</param>
/// <param name="index"> The index of the element to find.</param>
/// <returns>The list item.</returns>

AutomationElement FindListItemByIndex(AutomationElement parent, int index)

{

 if (parent == null)

 {

 throw new ArgumentException();

 }

 Condition c = new AndCondition(

 new PropertyCondition(AutomationElement.IsControlElementProperty, true));

 // Find all children that match the specified conditions.
 AutomationElementCollection found = parent.FindAll(TreeScope.Children, c);

 return found[index];

}

Example 7. This example shows how to find a UI element by class name.

/// <summary>

/// Finds an element by its class name starting from a specific root element.

/// </summary>

/// <param name="root">The root element to start from.</param>
/// <param name="type">The class name of the control type to find.</param>
/// <returns>The list item.</returns>

AutomationElement FindListItemByType(AutomationElement root, String type)

{

 if ((root == null) || (type == ""))

 {

 throw new ArgumentException("Argument cannot be null or empty.");

 }

 Condition c = new AndCondition(

 new PropertyCondition(AutomationElement.ClassNameProperty, type));

 // Find all children that match the specified conditions.
 AutomationElementCollection found = root.FindAll(TreeScope.Children, c);

 return found[index];

}

Example 8. Sometimes, it is useful to automate an application from within the same process; basically, the application automates itself. This can be useful because your test has access to internal application state that cannot easily be accessed from another process. However, you must be careful not to block the main UI thread, or the application can hang. Therefore, you must run the UIAutomation code on a separate thread. Examples 8 and 9 show a couple of ways to accomplish this.

Example 8 shows how to create an STA thread to access UI that might appear broken in an MTA application. The most common scenario for this situation is when users are using certain builds of Internet Explorer. In these cases, HTML will appear to have no UIAutomation tree. The exception message is:

Message: UI Automation tree navigation is broken. The parent of one of the descendants exists but the descendant is not the child of the parent.

A problem with Internet Explorer is not the only possible source of this error, but if the application is MTA, testers should try the approach illustrated in the following example. The approach is a general good practice for accessing HTML content, because testers do not have to know what platform or version of Internet Explorer the user has. For more information about threading in the .NET Framework, see Managed Threading on the MSDN Web site.

ParameterizedThreadStart workerThread = new

 ParameterizedThreadStart(handleWindowNewThread);

Thread thread = new Thread(workerThread);

thread.SetApartmentState(ApartmentState.STA);

thread.Start(<single object for argument to method>);

thread.Join();

...

private void handleWindowNewThread(object arguments) {...}

Example 9. This example shows how to use the WPF Dispatcher object to create a separate thread to automate an AutomationElement object on the UI thread.

private Dispatcher dispatcher = null;

private delegate void SimpleDelegate();

public void PerformAutomationOperations()

{

 dispatcher = Dispatcher.CurrentDispatcher;

 Thread automationThread =

 new Thread(new ThreadStart(ProcessAutomationElementOnThread));

 automationThread.SetApartmentState(System.Threading.ApartmentState.STA);

 automationThread.Start();

}

private void ProcessAutomationElementOnThread()

{

 AutomationElement element = AutomationElement.FocusedElement;

 // Perform operations on the AutomationElement object.

 dispatcher.BeginInvoke(DispatcherPriority.ApplicationIdle,

 new SystemDelegate(ReturnBacktoUiThread));

}

private void ReturnBackToUiThread()

{

 Application.Current.MainWindow.Title = "Back on the UI Thread";

}

UI Events and Interaction

To be covered in future editions.

Visual Verification Testing

Visual verification testing validates that an application or an application component has been rendered to the screen as expected. Fundamentally, there are two types of visual verification testing: verification based on a master image and analytical visual verification. The methods differ only in how an expected image is obtained.

Master Image Verification
For master-image verification, testers are responsible for obtaining the master images. These master images are generally obtained by performing an initial run of a test case and getting a screen capture. The tester visually examines the screen capture for correctness. If it is correct, it is marked and stored as the master image for that test case. All subsequent runs of the test compare an image obtained during the test to the master image.

This approach is simple, but has the following drawbacks:

· Master images are generally tied to screen resolution, platform, and window chrome and styling. In theory, testers would have to create master images for all combinations of these variables. However, testers can reduce the number of stored images by creating master images that include only a window’s client area and not the entire set of chrome. In addition, testers can transform the scale of comparison images to match the master image DPI.

· Depending on the number of tests and the permutations of platform and DPI, the number of master images can become large. Updating master images requires that a tester check the correctness of each master image. A large number of master images can result in a test suite that has high ongoing support cost. In addition, the combined size of the stored master images can require significant storage space, which results in longer test setup times, run times, and cleanup times. Therefore, it is important to limit the size and the number of master images. One way to keep down the size of master images is to capture small regions (not full windows) and to capture integrated content (instead of creating a master image for every primitive).

In general, master image verification will work regardless of how the master images are generated. Testers are not bound by knowledge of the internal workings of a component, because they give final approval to the master image that is used for testing.
Analytical Visual Verification
A second, more involved method of visual verification is analytical visual verification. In this verification method, the collection of master images is replaced by creating a comparison image on the fly. This created image is assumed to be the visually correct image, and is compared against the captured image in the test. In this verification scheme, testers or developers must provide a way to create the reference image, ideally in a way that is entirely independent of the custom component. Creating the reference image generator is directly tied to the implementation details of the custom component, and different solutions are necessary depending on what is being verified.

In some cases, the analytical verification tool might be a reference image renderer. In other cases, it might be a visual recognition system that discovers and validates elements in the rendered image. For example, it might confirm that a blue rectangle of certain size and position exists in the rendered image, or something similar.

In visual validation of Animation objects, a developer or tester could create an expected-value calculator. The tester would use the calculator to generate a static version of an animated scene at a particular point in the animation, which would serve as the reference image. For verification during a test, the animated scene screen capture should match up with the static screen capture that was analytically created.

Generating the reference image on the fly mitigates problems that are associated with master image verification and with differences in platforms, DPI, and so on. With a more fundamental knowledge of the scene being rendered, testers can create masks to remove parts of scene and allow for additional tolerances in cases where a video adapter (or other hardware) matters. Analytical visual verification is more robust, but incurs the cost of creating the rendering tool for analytical verification.

Expected versus Actual Image Comparison

The final step involves comparing two images. The least robust solution would be to directly compare the images and indicate failure if even one pixel is different. A better solution is to allow some level of tolerance when comparing the images. There are numerous approaches to adding tolerance, which depend on the scale and complexity of the required tolerance. In a simple case, a test could simply count the number of pixels that differ and indicate failure if a certain percentage of the pixels is different. Additional levels of complexity could be added by not only counting pixels that differ, but measuring the color difference in the pixels and allowing an acceptable tolerance curve.

A more sophisticated approach yet is to use predefined tolerance profiles. A tolerance profiles is essentially a histogram that is based on pixel differences. For example, a tolerance profile can be expressed as “there should be no more than 10 single-pixel mismatches, no more than 2 double-pixel mismatches, no more than 0 mismatches of 3 or more consecutive pixels.” The test passes if the observed differences are below the values set in the tolerance profile. For maximum flexibility and robustness in a visual verification suite, it is useful to provide a way to adjust a comparison tolerance.

Media Testing

Media validation presents unique challenges because of the asynchronous nature of media playback and the rate at which video frames are updated during playback (usually 30 frames per second). This means that a one-minute video clip requires 1800 frames (30 frames per second times 60 seconds). Visually verifying the frame accuracy of video playback through the traditional master-image method, as described in Visual Verification Testing, is infeasible due to the volume of master images and difficulty of capturing a targeted frame in a motion video.

With these challenges in mind, a new verification system was designed to meet the following testing goals:

· Ability to verify video frame sequence or number.

· Ability to verify the frame color accuracy.

· Ability to verify video frame accuracy and completeness.

· Ability to verify a video frame independently of system DPI and of the size of the video being rendered.

· Ability to verify the video without the use of master images (that is, to make the video self-verifiable).

One solution is to create a custom video from a sequence of composite frames, which are pictures that are obtained by superimposing fields of a frame. The custom video contains multiple decodable sections in every frame, known as frame parts. In this approach, regardless of which frame is captured during testing, the frame always includes information that can be decoded into frame data, such as the frame number, frame orientation, frame content (to check for completeness and accuracy), and actual color sequence (to check for color accuracy).

Figure 4 shows a sample of the composite frame.

[image: image5.jpg]Frame content part Frame content part

Frame orfentation part Color palete part

Frame number part —f Frame info part

Frame content part Frame content part

Figure 4: A composite frame that shows frame parts

Composite Frame Parts

The composite frame illustrated in Figure 4 contains the following frame parts:

· Frame-orientation part (middle left). This frame part consists of a two-bit pattern and indicates the orientation of the frame. The order of 1 (black) and 0 (white) indicates that the frame is displaying in an upright position. The order 0-1 would mean that the frame is vertically flipped.

· Frame-number part (to the right of the frame-orientation part). This part represents the current frame number in binary form. The value is a 12-bit pattern indicated by black (1) and white (0) squares. The pattern for each frame is different, based on the frame number offset from the first frame. For example, when the pattern shows WWWWWWWWBWBW, it indicates a binary value of 000000001010 (in decimal, the tenth frame). Having 12 bits of data provides information for a 30 fps video at a maximum duration of 2.27 minutes. (2^12 = 4096 frames, 4096 frames/30 fps = 136 seconds, 136 seconds = 2.27 minutes). Note that it is not usually practical to create a test video that is longer than 30 seconds.

· Frame-info parts (to the right of the frame-number part). These parts contain human-readable information about the current frame, such as the decoded binary bits of the frame number, the expected color sequence values, and the frame number in decimal form. This is useful during test-failure analysis.

· Color-palette part (middle right). This section consists of four color squares that represent RGB and alpha channels (the alpha channel enables full or partial opacity verification). The color squares appear in different sequence based on the frame number. During color validation, a pixel of each square is sampled and converted into a color value and then compared to the expected color. Due to data loss during the encoding and decoding process, a tolerance value is required.

· Frame-content part (four corners of the frame). This part consists of four identical sections that are located at the four corners of the composite frame. They are used to validate frame accuracy by comparing any of the two parts for visual defects. Due to data loss that occurs during the video encoding and decoding process, it is normal that the sections show some level of difference. A tolerance value is used to accommodate these differences.

Using composite frame parts for validation does not require testers to maintain any master images, because each frame of the video contains all the information that is needed to verify that frame, including a color bit for full or partial opacity verification. In addition, validation can be done independently of the resolution and the DPI of the video, because frame-part coordinate calculations are based on a percentage value rather than on absolute values. This methodology also enables the tester to validate video playback speed by comparing it to the expected frame number.

Verification of Animations and Other Transitions

During the process of adding animations, choices that the developer makes when creating animations can affect how the animations are tested and verified. This section describes some common methods for verifying animations, and it describes design decisions that can make it easier to test animations. For more information about animations, see Animation Overview in the WPF section of the MSDN Web site.
Ways to Apply Animation

There are three ways to animate content in WPF: by using only XAML, by using only code, and by using a hybrid of XAML and code. Both XAML-only and XAML/code approaches rely on creating storyboard structures that are called in response to a trigger. In XAML-only animation, triggers can be specified by using EventTrigger, PropertyTrigger (triggers used inside styles), and DataTrigger attributes. In a XAML/code approach, individual storyboards can be triggered as needed outside a RoutedEvent call by using the BeginStoryboard element or other means. It is also possible to control storyboards interactively.
Code-only animation offers several options for creating and adding animations. Storyboards can be created and applied in a way similar to the XAML/code approach, either by creating triggers through code or by calling the BeginStoryboard or Storyboard.Begin methods directly. In addition to the storyboard method of appending animation, entire interactive clock trees can be created and added directly to DependencyObject/DependencyProperty (DO/DP) pairs. This direct approach is often simpler than the storyboard approach, because the developer can apply the animations as either Animation or Clock objects directly to the DO/DP pair without having to create PropertyPath objects that signify the property to be animated. However, the developer is then in charge of beginning or controlling the interactive aspects of the animation.

The following example shows an animation in XAML.

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 WindowTitle="Fading Rectangle Example">
 <StackPanel Margin="10">
 <Rectangle Name="MyRectangle" Width="100" Height="100" Fill="Blue">
 <Rectangle.Triggers>
 <!-- Animates the rectangle's opacity. -->

 <EventTrigger RoutedEvent="Rectangle.Loaded">
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName="MyRectangle"
 Storyboard.TargetProperty="Opacity"
 From="1.0" To="0.0" Duration="0:0:5"
 AutoReverse="True" RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Rectangle.Triggers>
 </Rectangle>
 </StackPanel>
</Page>

The following example shows how to create an animation with BeginAnimation and ApplyAnimationClock.

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;
using System.Windows.Shapes;
using System.Windows.Media.Animation;

namespace Microsoft.Samples.Animation.TimingBehaviors
{
 public class AnimationClockExample : Page
 {
 ScaleTransform myScaleTransform;
 public AnimationClockExample()
 {
 this.WindowTitle = "Opacity Animation Example";
 this.Background = Brushes.White;
 StackPanel myStackPanel = new StackPanel();
 myStackPanel.Margin = new Thickness(20);
 // Create a button that with a ScaleTransform object.

 // The ScaleTransform object animates when the

 // button is clicked.

 Button myButton = new Button();
 myButton.Margin = new Thickness(50);
 myButton.HorizontalAlignment = HorizontalAlignment.Left;
 myButton.Content = "Animate";
 myScaleTransform = new ScaleTransform(1,1);
 myButton.RenderTransform = myScaleTransform;
 // Associate an event handler with the
 // button's Click event.
 myButton.Click += new RoutedEventHandler(myButton_Clicked);
 myStackPanel.Children.Add(myButton);
 this.Content = myStackPanel;
 }
 // Create and apply and animation when the button is clicked.

 private void myButton_Clicked(object sender, RoutedEventArgs e)
 {
 // Create a DoubleAnimation instance to animate the

 // ScaleTransform object.

 DoubleAnimation myAnimation =
 new DoubleAnimation(
 1, // "From" value
 5, // "To" value
 new Duration(TimeSpan.FromSeconds(5))
);
 myAnimation.AutoReverse = true;
 // Create a clock for the animation.

 AnimationClock myClock = myAnimation.CreateClock();
 // Associate the clock's ScaleX and

 // ScaleY properties of the button's

 // ScaleTransform object.

 myScaleTransform.ApplyAnimationClock(
 ScaleTransform.ScaleXProperty, myClock);
 myScaleTransform.ApplyAnimationClock(
 ScaleTransform.ScaleYProperty, myClock);
 }
 }
}

Ways to Test Animation

Understanding the options for testing animation can help developers tailor how to apply animations to custom code. Assuming that an animation has already been created and applied, there are three ways to verify that the animation is progressing as specified:

· Periodic screen captures or value comparisons.

· Screen captures with value validation at completion.

· Full-value validation.

Periodic Screen Captures or Value Comparisons

Animation is simply a function that describes change over time. Therefore, the most fundamental verification method is to check for the amount of change over a given time. For visual verification, a sequence of screens can be captured and compared against previous captures to check for change. For value comparison, testers can use values instead of screen captures, checking the value returned either by the property being affected by the animation or by the animation itself.
Checking for change is the simplest animation verification method, but some knowledge of the underlying animation is required in order to make this method robust. Some prerequisites for using this method are:

· Knowledge of when the animation begins or ends, and an expected duration if the animation is not continuous. Obviously, checking for rate of change at a time when the animation is not actively progressing or has already completed will return no changes. For robust validation, developers who add animation must expose a means of obtaining this information.

· For periodic-values validation, a means of obtaining either the animation (by calling GetCurrentValue) or the DependencyProperty that is being animated are necessary for retrieving the current value of the animation.

· Ideally, the current progress of the animation is exposed as a read-only value to assist in validating an animation. But the BeginTime and Duration properties can also be used to determine whether the animation is complete. Exposing these values also enables full-value validation when needed.

Screen Captures with Value Validation at Completion

In addition to validating based on screen captures, testers can inject an additional validation point to ensure not only that the animation is progressing, but that the animation completes at its expected value. Without fully implementing an expected value calculator, testers can infer the final value for animations if they are familiar with the animation. For the most common animation types (From-To, To, and From-By), testers can determine the final value of the animation. For From-To and To animations, the final value should be equal to the value specified in the To property of the animation. For From-By, the final value should be the By value added directly to the From value. This simple calculation quickly becomes quite complex if AutoReverse or RepeatCount is specified when IsAdditive or IsCumulative is set to true.

For the most common animations (From-To and To), the final value calculation will always be the To value regardless of the values of repeatCount and IsAdditive or IsCumulative. However, setting AutoReverse requires a different calculation. For a From-To animation with AutoReverse set to true, the final value should always be the From value. For a To animation, the final value reverts to the original value of the DependencyProperty before the animation was applied. Obviously, the more complex the animation is that is applied, the more difficult it is to calculate the final value.

For a single validation point at completion, it is often easier to hard-code the expected value (if known) in the test. This saves the trouble of implementing a final value calculator.

As animation tests become more complex, testers require more information about the animation and the object that it is affecting in order to properly validate the animation's progress. In order to calculate the final value at completion, testers need access to nearly all the animation properties, such as From, To, By, AutoReverse, BeginTime, Duration, and possibly IsAdditive or IsCumulative.

For validation by visual screen captures or by final value, testers can obtain the required information from the Animation template that is used for the animation. Each AnimationTimeline object is internally used to create an individual AnimationClock instance, so exposing the actual animation exposes only a template. If the developer grants read access to the animation template, a tester can obtain all the information that is required in order to calculate a final value and to make sure that the animation has occurred.
Full-Value Validation

To perform full-value validation for an animation, testers need either the output of the GetCurrentValue method, or the GetValue value of the DependencyProperty of the object that is being animated. For GetCurrentValue, testers can get the origin value through the GetAnimationBaseValue method of the UIElement or Animatable objects. The destination value for common FromTo, To, and By animations is not used to determine the current value of the animation—it is used only for From animations. To be able to use the GetValue method of DependencyObject, testers need access to the DependencyObject that is being animated.

The internal object that is being animated and the feasibility of exposing the DependencyObject for testing purposes determines which method to use to expose a way to get the animated value. For multiple internal objects, if developers want to limit the exposure of internal objects, the easiest route is to expose the result of the GetCurrentValue method. If the animation occurs on a component that is already exposed, the preferred way is to use the GetValue method.
For full-value validation, testers must get the CurrentProgress value of any animation clocks that need to be tested. The CurrentProgress value will be used to calculate the expected value of an animation. The CurrentProgress value can also be calculated from the properties of the animation template and the current time that has elapsed since the application started, by using a calculation like the following one:

CurrentProgress = (CurrentTime – BeginTime) % Duration

To calculate the expected values for an animation, testers should determine the range of the animation and multiply it by the animation progress. Each animation type has a different calculation function, as shown in the following list:
· (FromTo) currentValue = From + (To – From) * currentProgress
· (To) currentValue = DO.BaseValue + (To – DO.BaseValue) * currentProgress
· (FromBy) currentValue = From + By * currentProgress

· (By) currentValue = DO.BaseValue + By * currentProgress
· (From) currentValue = DO.BaseValue - From * (1 – currentProgress)
The CurrentProgress value is generally in the range of 0 to 1. However, if an animation is repeating, this value will increase at each repetition. For example, during the first iteration of the animation, the progress range will be from 1 to 2; in the second iteration (first repetition), from 2 to 3, and so on. For all animation types that do not specify IsCumulative or IsAdditive, testers should assume that the CurrentProgress value is in the range of 0 to 1 when performing the previous calculations. An animation with AutoReverse set to true will progress from 0 to 1, and then back to 0.
Verifying animations that are set with Repeat, AutoReverse, and IsCumulative or IsAdditive values is more complex and is not described here. Combining animations through either ClockGroup or SnapShotAndReplace and Compose HandoffBehavior properties complicates the animation calculation function even further. In general, for composing animations, the order in which the animations are processed matters (the order that they are applied or added to the group or triggers, and so on). The calculated value from each individual animation is passed to the next animation as the updated BaseValue property. For multiple composing or interacting animations, the easiest way to validate is to check for consistent change through periodic screen captures or value validation.
Animation APIs that Affect Progress

The following animation properties and methods affect the calculation of animation progress:

· Repeat property. On repeat, the CurrentProgress value increments with the repeat count. During the initial animation, the progress goes from 0 to 1. During the first repeat, the value goes from 1 to 2, and so on. For non-additive or cumulative animations, the CurrentProgress value should be considered as going only from 0 to 1.

· AutoReverse property. On auto-reverse, the CurrentProgress value returns to the starting point. For example, the progress value goes from 0 to 1 and then back to 0, from 1 to 2 and then back to 1, and so on.

· Seek, Pause, and Resume methods. The process of seeking performs an update on the CurrentProgress value to the specified point at the next tick. Setting SeekAlignedToLastTick seeks to the specified position as of the current tick. Pause and resume status can be checked by the IsPaused property of an AnimationClock instance.

Developer and Tester Recommendations

Depending on the type of animation validation that is required, developers can tailor the animation element exposure of custom components. For simple validation, testers can obtain periodic screen captures and compare them to detect changes by using screen capture and image comparison tools. For triggered animations within a component, testers can begin the capture process after triggering the animation. For ambient animations, validation can be performed at any point.

For more complicated validation, components must expose more information. In order to enable determination of the final value of an animation, the animation template must be exposed so that testers can obtain the animation property values that are required for calculating a final value. Alternatively, if exposure of the animation template is not feasible, the expected value can be hard-coded within the test.

The most complicated validation scheme requires the most exposure. At a minimum, a tester needs the DependencyObject/DependencyProperty (DO/DP) pair for any animation that is applied, or the current result of GetValue, as well as access to the CurrentProgress of the AnimationClock instance. In order to expose AnimationClock instances, BeginAnimation calls must be replaced with ApplyAnimationClock calls for any DO/DP pairs. For Storyboard objects, Storyboard.CreateClock can be used.

The level of exposure that a developer builds into a component dictates the level of animation validation that a tester can implement. For simple FromTo, To, or By animations, exposing the DO/DP pair (or even just the result of GetValue) and the CurrentProgress value of the animating clock delivers the most value in providing the tester complete freedom to validate animations by any means. The level of animation validation that is required should determine the level of exposure of internal components. However, for the most part, simple periodic screen captures can go a long way in validating that an animation is working properly.

What If Testers Do Not have Access to the Animation?

If an animation does not expose sufficient information to enable in-depth testing, testers can still perform some testing. Periodic screen captures to check for change is still a viable method of determining that an animation was applied and is running. The output from DependencyProperty.GetValue also reflects change during the course of the animation.
Testing for Animations that Interact with Base Values and FillBehavior

Another factor to consider during animation testing is the interaction of additional animations that might be applied to the code or component. Developers must remember that a custom component can have additional animations applied to it, and that animations triggered from separate layers compose together. WPF animations are composed in the order they are applied, which can result in things not always working the way end users expect.

For example, with the default fill behavior of the HoldEnd property, any animation applied to a property continues to affect the property after the animation completes. If an internal FromTo animation is applied to the Width property of a custom component whose default FillBehavior value is HoldEnd, at the completion of the animation, an end user cannot change the value of the Width property. Regardless of the base value specified, the To portion of the animation always remains at the held value. For developers, the FillBehavior value can be specified as Stop, which decouples the animation on completion, and results in the value returning to the base value. This is frequently not the desired behavior, especially for non-auto-reversing animations. Therefore, a typical scenario is for the animation to remain at its final value, but not to block changes. This can be accomplished by handling the Completed event. In the handler, the developer replaces the base value with the new value, and then decouples the animation, as shown in the following example:

someAnimation.Completed += delegate

{

 yourObject.yourDP = someAnimation.To;

 // Calling BeginAnimation with null removes any existing animations.

 yourObject.BeginAnimation(yourObject.yourDPProperty,null);

}

Any tests that check this behavior just need to determine whether the animation still applies. For FromTo, FromBy, and To animations, if the animation's FillBehavior property is set to the default value, setting the base value when the animation is completed results in no change to GetValue. For By animations, GetValue always return the animated value plus the By value (essentially, it returns anything other than the base value applied). Validation can then be accomplished with no knowledge of the underlying animation. If the tester can make sure that internal animations do not continue to affect any additional animations, the component will interact well with those additional animations.

Testing for Animations that Interact with External Triggers

To check that internal animations interact well with triggered animations, a tester can use a similar testing methodology. If the internal animation removes itself on completion and replaces the final value, any subsequent externally triggered animations can animate the value without trouble. An internal animation applied outside the trigger layer will be calculated before the trigger layer, and will not be preempted by the externally applied trigger.

If an external trigger applies an animation and an internal trigger is used to apply an animation to the same property and the same triggering event, WPF always composes the two. In that case, there is no straightforward way to determine during testing the order in which the animations are being composed, outside of having access to each animation and implementing an expected-value calculator.

Animation Best Practices

For information about best practices for creating animations, see Animation Tips and Tricks on the WPF section of the MSDN Web site.
Animation Samples

The following articles on the MSDN Web site provide samples of WPF animations:

· Animation Overview.

· Animation Example Gallery. This sample shows how to animate a variety of objects, include text, 2-D transforms, and 3-D transforms. It also demonstrates splined interpolation, path animations, and custom animations.

· Animation and Timing System Overview.

· How to: Animate a Property by using a Storyboard.

Graphics and 3D Content Testing

To be covered in future editions.

API Testing and Unit Testing

To be covered in future editions.

Performance and Scalability Testing

Updated for the fifth edition
Performance testing determines how fast a system performs under a particular workload. It can also serve to validate and verify other attributes of the system, such as scalability, reliability, and resource usage. Scalability testing tests how well an application reacts to increasing and decreasing load.

Note This release of the document provides references to development practices for improving WPF application performance. Performance and scalability testing practices will be covered in a future release.

Development Practices and References

The following articles on the MSDN Web site provide information about best development practices for WPF:

· Optimizing WPF Application Performance (article)

· Improving Scrolling Performance in Windows Presentation Foundation (downloadable whitepaper)
The following blog posts provide additional information:

· Maximizing WPF 3D Performance on Tier-2 Hardware
· Finding Memory Leaks in WPF-based Applications
· Performance Improvements in WPF in .NET 3.5 / 3.0 SP1
· What’s New for Performance in WPF in .NET 3.5 SP1
· Improving WPF Applications Startup Time
· Splash Screen to Improve WPF Application Perceived Cold Startup Performance
Testing Practices

To be covered in a future release.
Security Testing

Security testing helps to determine how well a system or application is protected against unauthorized access and code or data tampering. Security testing helps to identify software flaws that potentially lead to security violations, and to validate the effectiveness of security measures.
The issues that security testing addresses can be remembered by using the acronym STRIDE: spoofing, tampering, repudiation, information disclosure, denial of service, and elevation of privilege. For information about each of these categories, see the blog entry Threat Modeling Again, STRIDE by Larry Osterman.

Best Practices for Developing Secure WPF Applications

The following articles on the MSDN Web site provide information about best development practices for securing WPF applications:

· For information about general managed-code security, Patterns and Practices Security Guidance for Applications.
· For information about code access security (CAS), see Code Access Security.
· For information about security and ClickOnce, see ClickOnce Deployment Overview.
· For information about threat modeling, see Threat Modeling.
· For information about security in WPF, see Windows Presentation Foundation Partial Trust Security.
· For information about the security model in UI Automation, see UI Automation Security Overview.
Testing Practices

The general approach for security testing of any area is to ask "What do we not want a malicious user to have access to?" For example, if an application is allowed to read any file on the computer's hard drive, hackers could use this to steal personal information or find enough information to compromise the computer.

Any input that comes from outside the feature (for example, from a user, from system files, from registry keys, or from the Internet) must be examined carefully to be sure it cannot be tampered with, or it must be properly tested in order to accept only valid input.

Threat Modeling

Threat modeling examines a feature to determine what security threats the feature faces, and lists how these threats can be mitigated. A development team must create a threat model for areas that might have security implications. Testers must understand the threat model, attempt to devise threats that are not listed in the threat model, and test that all described security mitigations are in place.

When testing partially trusted .NET Framework applications, such as .xbap applications, testers must follow these guidelines:

· Avoid using workarounds to obtain full-trust behavior from inside an .xbap application. A common way to implement this workaround is to put a fully-trusted assembly in the global assembly cache (GAC), and to have this assembly perform elevated-trust operations. This is not a realistic customer scenario and should be avoided unless the elevated operations being performed are unrelated to the scenarios being tested.

· When running tests on Windows Vista, pay attention to the elevation level of the process. Security-related (and other) bugs might be hidden when a tester runs a test from an elevated-privilege process. When possible, testers should execute applicable scenarios both as restricted and as elevated processes on Windows Vista.

Globalization and Localization Testing

This section covers the following topics:

· Basic globalization and localization concepts.

· Best practices for globalizing WPF applications.

· Creating localizable UI Layouts in WPF.

· Approaches to localizing WPF applications.

· Process flow for BAML localization.

· Additional resources.

Basic Globalization and Localization Concepts

The following table defines terminology and summarizes basic concepts that are associated with globalization and localization testing.

	Term
	Description

	Globalization
	The process of designing and developing a software product that functions in multiple cultures/locales.

	Internationalization
	A term used outside of Microsoft to indicate globalization and localizability.

	Localizability
	The design of the software code base and resources such that a program can be localized into different language editions without any changes to the source code.

	Localization
	The process of adapting a globalized application that is already processed for localizability to a particular culture/locale. The localization process refers to translating the application user interface (UI) or adapting graphics for a specific language and culture.

	Pseudo-localization
	A process of simulating localization by extending or seeding English string resources with non-ASCII characters. This is part of localizability testing.

	UI culture/UI language
	The language in which the operating system displays its menus, Help files, and dialog boxes. This setting determines which set of resources is chosen.

	Current culture/User locale
	A collection of rules and data that are specific to a language and a geographic area. User locale, represented by CurrentCulture in the .NET Framework, includes information about sorting rules, date and time formatting, numeric and monetary conversions, and character classification.

	Invariant culture
	A culture value that can be passed to culture-sensitive methods (such as string.Compare) to ensure consistent behavior regardless of system settings or operating-system version. The invariant culture must be used only by processes that require culture- and language-independent results, such as system services. Otherwise, it produces results that might be linguistically incorrect or culturally inappropriate.

	System locale
	Determines which character set is used by non-Unicode applications. This is the locale that is emulated by the system, as seen by applications. There is no reason for managed code to have dependencies on system locale.

The following figure illustrates the relationship among the concept that are listed in the preceding table.

[image: image6.jpg]Internation:

‘World-Readiness‘ ‘ Localization ‘

——

[Globalization | | Localizabilty |

Figure 5: Globalization and localization concepts

Best Practices for Globalizing WPF Applications

Best practices for developing globalized WPF applications are for the most part no different from the best practices for developing any globalized application, with only some aspects specific to .NET Framework and WPF application development. All these practices focus around three major processes that are required to make the application world-ready: globalization, designing for localizability, and localization.

The first source of information a developer should look at is the Microsoft World Ready Guide Web site, which is a comprehensive resource for all the steps involved in designing and testing world-ready applications. The guide includes the following topics:

· Testing for World-Readiness Overview and World-Ready Approach to Testing, which introduce the process.

· Globalization of the Test

· Localizability Testing

· Localization Testing

The World-Ready guide also offers some sample test cases for globalization and localizability. The sample test cases do a good job of presenting areas of globalization testing for deployment and general functionality, text handling, and locale awareness. You can get the samples from the Sample International Test Cases page of the step-by-step guide.

To learn about .NET Framework globalization and localization, refer to Globalizing and Localizing Applications on the MSDN Web site, which links to a great article, Best Practices for Developing World-Ready Applications. After you have looked at these .NET Framework guidelines, return to MSDN to the WPF article on Globalization and Localization, which links to the detailed article WPF Globalization and Localization Overview.

Testing Considerations for WPF Applications

This section includes information about general issues for testing globalization in WPF applications.

Testing Deployment for Globalized Applications

Make sure that you test on the correct platform. WPF applications can run on a variety of platforms. If the application targets multiple platforms, you must ensure that the deployment and functionality is consistent between them. Localized operating systems might have localized account names, system folders, a different set of fonts, and different input methods.

Examples of platform variables that you might need to account for include the following:

· Deploying on Windows XP versus deploying on Windows Vista.

· Deploying on localized versions of the operating system.

· Deploying on English-language operating systems that have the Multilingual User Interface (MUI) installed.

Make sure that applications are built correctly and can be deployed and run in different language environments. A common problem in building a globalized application is not setting the UltimateResourceFallback property in the AssemblyInfo file when the UICulture property is set in the project file. Not setting the fallback causes the application to function only in a single language environment, and to crash when it runs under any other language. (These settings are described further in a later section of this document.)

Testing General Functionality

Choose the appropriate test environment for the platform that you are testing:

· The operating system's user locale (represented in WPF as the CurrentCulture class) is an important variable in testing WPF applications. This setting affects sorting, data formatting, calendar display, currency formatting, and other operations that are important for many applications. Setting the user locale in Windows to a different language makes your test environment ideal for finding issues. This is especially true if you set the user locale to a language that offers special challenges for applications, such as sorting with Turkish i, or using delimiters in European languages.

· Manipulating the user locale can also detect incorrect usage of the CultureInfo class in application design. For operations such as parsing and internal sorting and casing, InvariantCulture must be passed as a culture parameter instead of CurrentCulture. (CurrentCulture should only be passed when an application is displaying something to the user.) If the application does not use InvariantCulture correctly, changing the user locale of the operating system often causes the application to fail.

· Changing System Locale is usually not relevant for testing WPF applications unless the application being tested interacts with non-Unicode data.

Testing Text Handling and UI

Pay special attention to the xml:lang section, because xml:lang (or the Language property) is responsible for how international text is handled in the UI. It is important for developers to add xml:lang, which is used in the following ways in WPF applications:

· It specifies which font to use for Unicode codepoints in the composite font. This is crucial for languages that share the same codepoints but use different glyphs to display them, such as Japanese, Korean, and Chinese.

· It is used to determine digit substitution for languages such as Arabic.

· It is used to determine the spell-checking language and word breaking (hyphenation) in text.

More information about testing text handling and UI is provided in the next section.

Creating Localizable UI Layouts in WPF

To make a WPF application localizable, you must make sure that the UI can adapt to new resources after the application is localized. The techniques for achieving this in WPF are similar to those for other presentation technologies—for example, do not use fixed-width controls with localizable strings. However, WPF provides extensive support for automatic layout, therefore WPF applications often require less modification during localization in order for UI to display and work properly with localized content.

In general, the best practices creating localizable UI layouts in WPF are the following:

· Write the UI in XAML and avoid creating UI in code. When you create UI by using XAML, it automatically takes advantage of built-in localization APIs.

· Avoid using absolute positions and fixed sizes to lay out content. Instead, use relative or automatic sizing, including the following:

· Use the SizeToContent property, and set widths and heights to Auto.

· Avoid using the Canvas element to lay out UIs.

· Use the Grid control and its size-sharing feature.

· Provide extra space in margins because localized text often requires more space. Extra space allows for possible overhanging characters.

· Enable the TextWrapping property of the TextBlock class in order to avoid clipping.

· Set the xml:lang attribute. This attribute describes the culture of a specific element and its child elements. The value of this property changes the behavior of several features in WPF, such as hyphenation, spell checking, number substitution, complex script shaping, and font fallback. For more information, see xml:lang Handling in XAML on the MSDN Web site.

· Create a customized composite font for better control of fonts that are used for different languages. By default, WPF uses the GlobalUserInterface.composite font in the Windows\Fonts directory. For more information about composite fonts, see the Composite Fonts section in FontFamily Class on the MSDN Web site.

· When you create navigation in applications that might be localized using a culture that displays text in a right-to-left (RTL) format, explicitly set the FlowDirection property of every page to ensure that the page does not inherit its FlowDirection setting from the NavigationWindow object.

· When you create navigation applications that are hosted outside a browser, set the StartupUri property for the initial application to a NavigationWindow instance instead of to a page. For example, make the following setting:

<Application StartupUri="NavigationWindow.xaml">
This design enables you to change the FlowDirection property of the window and the navigation bar. For more information, see Globalization Homepage Sample on the MSDN Web site.
In addition to the best practices outlined in the previous list, take into account the following considerations for designing globalization-ready WPF applications:

· The FlowDirection property must be explicitly set only for elements that must maintain a static direction. For all other elements, the direction is dictated by localization. One exception is the Image class, which does not inherit a FlowDirection value from its parent.

· If property inheritance does not apply (for example, in the case of an interop HWND instance), explicitly set the FlowDirection property to "RightToLeft".

· Whenever possible, use DockPanel controls and StackPanel controls.

· Avoid specifying Font instance details such as font name and font size unless you need a specific font in the UI and this is a design requirement for the application. Some languages might not have a mapping for the font you specified, and specifying Font instance details requires additional adaptation for localizers. If no font is specified in the UI, WPF uses the GlobalUserInterface.composite font by default, which has a mechanism for font fallback that can display the text in any language. If this mechanism is not sufficient for your application, you can complement it with a composite font.

Testing Considerations

The following list includes suggestions that you should take into consideration when you test globalization of WPF applications.

· When you test WPF applications, you should be familiar with all the international application design guidelines that were listed earlier in this section, and you should raise an issue if these guidelines are not applied.

· When you use Path element, make sure that the control behaves correctly in right-to-left (RTL) languages. If you do not require the Path to be mirrored, explicitly set FlowDirection to "LeftToRight" in the resource styles.

· When you use screen coordinates in operations such as drag and drop, make sure that RTL is working properly.

· Use pseudo-localization to test the limits of the UI. Replace strings in the UI with longer strings to imitate localization.

· Manually set the FlowDirection property on the root of the UI to “RightToLeft” and then test how the UI looks in bi-directional languages. Make sure that functionality is not affected.

Approaches to Localizing WPF applications
There are different approaches to localizing WPF applications. Which approach you choose depends on a variety of factors, including the following:

· The size of the content to be localized. It is one page or 10,000 pages?

· The complexity of the content, such as whether it is a simple string table or elements that make up complex UI.

· The presence of legacy resources with or without existing localization.

· The requirement to be able to localize before, during, after the development process or at multiple stages of development.

· How technical the person is who is localizing and how familiar they are with the application and the platform.

· The localization budget.

· How much time is available for localization.

The remainder of this section provides an overview of the following approaches:

· Localization from markup, which includes BAML localization and localization by using markup extensions in XAML.

· Localization from code by using ResourceManager objects.

Choose the approach which best fits your project localization requirements. If the application does not include many legacy resources, our recommendation is to use BAML localization.

BAML Localization

XAML files compile to BAML resources (Binary Application Markup Language), which are a binary representation of the original declarative markup. Each XAML file has a corresponding BAML resource in the compiled target assembly. For example the MyDialog.xaml file will generate a resource with the key MyDialog.baml.

These BAML resources are localized for different cultures, instead of using the key/object resources (.resx files) that are used for Windows Forms applications. This means that any element in the markup that is attributed correctly can be localized. For example, the background color of a Grid control or the FontSize property of a label can be localized.

Although BAML resources contain all UI and are localized per culture, not all markup is exposed to localization, which makes the localizer's job easier. The only elements that expose localizable resources to the localizer are those that have localization attributes set on their class, in application code, or in XAML. These elements can provide context to localizers by using comments, by using their localization category, or simply by using their ID.

For more information about how to implement BAML localization, see Process Flow for BAML Localization later in this document.

Localization by Using Markup Extensions in XAML

Another approach that you can use to localize WPF applications is Markup Extensions. Markup Extensions lets you link resources from a separate container to your UI. The container can be localized and then loaded by the platform automatically or triggered by code inside your application.

You can use the following Markup Extensions:

· Binding. This lets you store resources in any DependencyProperty and then bind to them using binding expressions to a string table.

· StaticResource. This lets you replace a XAML property with a resource that is already defined in the ResourceDictionary object, which can be a separate XAML file.
· DynamicResource. This is similar to StaticResource Markup Extension, but it forces resource lookup every time that the resource is accessed. This method allows you to switch UI language of the application at run time.
· x:Static. This lets you load resources from any static construct that can hold resources. For example, this Markup Extension lets you reference resources in a .resx file from inside a XAML file, therefore allowing you to localize at the design time.
Localization by Using the ResourceManager Class in Code

Another localization option is to use the ResourceManager class. This approach applies only if you are referencing the localizable UI in code. You can store the resources in a .resx string table and then access them directly in code by using the ResourceManager class.

Process Flow for BAML Localization

This section discusses how to localize a WPF Application by using BAML localization. The section includes the following information:

· How to create localizable XAML files.

· How to build localizable XAML files into your project.

· How to localize BAML (compiled XAML files).

How to Create Localizable XAML Files

To use BAML localization, you must make your XAML files localizable as described in this section.

Using the x:Uid Attribute

To mark an element for localization, add the x:Uid attribute to the element. The Uid value must be a unique identifier within the current scope, which is the current markup file (XAML). Each XAML file has its own resource set, so you can use the same Uid value in different .xaml files.

The following example shows a TextBlock element with its x:Uid attribute set.

<TextBlock x:Uid="TextBlock_LicencedTo">Licensed To:</TextBlock>
By default, the Content or Text attributes of an element are marked for localization. The following example shows how to achieve the same result as the previous example.

<TextBlock x:Uid="TextBlock_LicencedTo" Text="Licensed To:" />
You can automatically add x:Uid attributes to all XAML files in a project when you build the project by specifying the /t: (target) option in the MSBuild command for building the project, as shown in the following example:

msbuild /t:UpdateUid MyApp.proj
The UpdateUid target performs duplicate Uid resolution and adds missing Uid attributes and values.

You can verify Uid attributes in a project by running the following command:

msbuild /t:CheckUid MyApp.proj
The current version of CheckUid and UpdateUid targets is based on the XML parser. It adds an x:Uid attribute to every XML element in every XAML file that is listed in the project file. This tool does not recognize and exclude XAML elements that are not localizable.

An advantage of this approach is that adding Uid attributes to all elements prevents developers from skipping Uid attributes for parts of UI that are localizable or that serve as localization context. If an element does not contain a Uid attribute, the property of the element without a Uid attribute will not be exposed for localization. Furthermore, there is no way to expose this property later after the default language of the UI has been released.

Adding Uid attributes to every element of a XAML file has the following disadvantages:

· XAML files become less readable.

· If the application contains many large XAML files, run-time performance can be affected.

· The XAML file might contain elements that do not support the x:Uid property, such as MC:Choice. In that case, if the Uid attribute is not removed manually, the project will not compile.

· Some parts of UI are never localizable, and adding Uid attributes to those elements adds clutter. In that case, one workaround is to put the non-localizable UI in a separate XAML file and mark it with <Localizable>False</Localizable> inside the project file on order to make sure that it is not built into the localizable resource assembly.

An advantage of having Uid attributes throughout the localizable XAML files is that localizers have complete control over the XAML elements and can solve many localization issues. Uid attributes also help in testing, because they make it possible to look up BAML resources. In addition, the Uid value becomes the AutomationID value of an element, which is a persistent ID that remains fixed even if the UI changes.

For most scenarios, it is strongly recommended that you run the Uid tools to add Uid attributes, and that you keep the Uid attributes on every element that can be displayed, even if the element does not have to be localized. Localization can then be controlled by using Localization.Attributes settings, as explained in the next section.

To determine what is localizable, use the WPF localization APIs in the System.Windows.Markup.Localizer namespace, along with attributes set by the developer and localizer.

Localization Attributes and Comments

XAML localization is not simply a matter of translating key/value pairs. WPF supports a way to attach additional information to the localizable attribute, as shown in the following examples:

<TextBlock x:Uid="TextBlock_LicencedTo"

 Localization.Comments="Text (This is localizable text)"

 Text="Licensed To:" />

<TextBlock x:Uid="TextBlock_LicencedTo"

 Localization.Comments="$Content (This is localizable text)">
 Licensed To:

</TextBlock>

The first example adds the comment "This is localizable text" to the Text attribute of the TextBlock element whose Uid value is "TextBlock_LicencedTo". The second example is similar, but the Content property of the element has a comment (specified by using the $Content expression) for a named attribute.

You can mark other property attributes for localization by adding additional entries to the Localization.Comments field. (You can also omit the comment for $Content if you want.) The following example shows how to mark other property attributes.

<TextBlock x:Uid="TextBlock_LicencedTo"

 FontSize="30pt"

 Localization.Comments="$Content (This is localizable text)

 FontSize (Font size of the TextBlock with licensing text. Don’t make it larger than 35pt.)">

 Licensed To:

</TextBlock>

The previous example adds a free-form comment to the FontSize property of the TextBlock element whose Uid value is "TextBlock_LicencedTo". This comment is localized by a localizer.

Localization comments do not have to be compiled into XAML. WPF provides an MSBuild task to extract localization comments into a separate file that can be used by localization tools.

WPF also provides the Localization.Attributes property, which lets you declare the type of localization that is applicable to an element’s attribute. Note that any attributes that are specified in the XAML file override the default attributes of the underlying element (control). For example, you might want to mark a TextBlock element as unmodifiable; by default, it is modifiable by localizers.

For each property of the element, you specify the following three fields (separated by spaces):

· Localization category. This is the type of the resource to be localized. For a list of values, see LocalizationCategory Enumeration on the MSDN Web site. Other values are possible as well.

· Localization readability, which specifies whether a property can be read by the localizer. For a list of values, see Readability Enumeration on the MSDN Web site.

· Localization modifiability. This specifies whether the localizer can change this value. For a list of values, see Modifiability Enumeration on the MSDN Web site.

The following example shows how to set localization attributes for a Button element.

<Button FontSize="20pt"

 Localization.Comments="$Content (Button Content)

 FontSize (Size of typeface)"

 Localization.Attributes="$Content (Button Readable Modifiable)

 FontSize (Font Readable Unmodifiable)">

 Hello

</Button>

The previous example defines the following rules for localizability:

· The element content falls into the Button localization category, it is readable (viewable) by the localizer, and it can be modified by the localizer.

· The FontSize property of the button falls into the Font category. Localizers can read it, but they cannot modify it.

The example is verbose for a simple button. However, localization attributes are needed only if you are overriding default behavior for WPF controls.

When you create custom controls in WPF (classes derived from WPF UI types), you can override the default localizability of classes, methods, and properties by using the Localizability attribute. This attribute accepts the same arguments as the XAML Localization.Attributes property described earlier. The following example shows how to use the Localizability attribute.

[Localizability(LocalizationCategory.Button,

 Modifiability=Modifiability.Modifiable,

 Readability=Readability.Readable)]

public class MyAmazingControl : Control

{

 [Localizability(LocalizationCategory.Text)]

 public string MyProperty { get; set; }

}

The previous example shows how to add localizability attributes of a Button control to your custom class and how to specify Text attributes to a class property in order to make it localizable. Alternatively, you can specify the LocalizationCategory.NeverLocalize attribute on a class that you are sure has no localizable content. In that case, no localizable UI will inherit from it.

Localization tools provide an additional way to control localizability of WPF UI. The tools can override all the localization attributes that are set either in code or XAML. This is useful if a localizable property is not exposed for localization or if the localizer sees too many non-localizable entries in the key/value pair table and wants to hide them.

How to Build Localizable XAML Files into a Project

When you localize WPF applications, it is recommended that you put all localizable resources into a satellite assembly, including the default-language resources. BAML resources can bloat the size of an assembly. Therefore, putting default-language resources in a satellite assembly saves customers who use a non-default language from having two copies of BAML resources (one in the parent assembly, the other in the satellite assembly) and wasting disk space. Separating resources from the main assembly also separates code and resources, and allows the language-neutral part of the application to be serviced separately from the localizable resources.

Generating a Satellite .resources.dll Assembly

To enable localization, all culture-dependent resources (such as the BAML assembly) should to be compiled into a satellite assembly, leaving the parent assembly culture independent. To configure this, modify the project file to contain the following settings. This specifies that all resources in the project are treated as English resources and compiled into a satellite assembly.

<PropertyGroup>

 <UICulture>en</UICulture>

</PropertyGroup>

Note that removing neutral resources from the main assembly can cause the application to crash if it used with locales that you did not build satellites for. To avoid this problem, make one of your satellite assemblies a default fallback resource by setting the UltimateResourceFallback location in the AssemblyInfo file of the project.

The following example shows how to set a satellite assembly as the ultimate fallback.

[assembly: NeutralResourcesLanguage("en", UltimateResourceFallbackLocation.Satellite)])
After you make the modification to the project file, build the project. After the build completes, check the build output folder (for example, bin\debug) and look for an en directory that contains the English satellite assembly. For example, the project might contain the following files:

· bin\debug\MyApp.dll

· bin\debug\en\MyApp.resources.dll

Assemblies with Mixed Resources

If your assembly contains resources from XAML files and resources from .resx files, when you build the project, the resources from XAML will be in the satellite assembly and the resources from the .resx are in the main assembly. This is a limitation of MSBuild.

The workaround is to rename the .resx files to include the culture in the name. This forces MSBuild to place the resources from the .resx files in the specified culture satellite assembly. For example, you might want to force resources from the Resources.resx file to be placed in the following location:

bin\debug\en\MyApp.resources.dll

To do so, rename the file Resources.en.resx.

To verify that this workaround was successful, you can use the NET Reflector tool to examine the satellite assembly and to ensure that all the correct BAML and .resx resources are there. You can also use an excellent BAML Viewer add-in for .NET Reflector that can display the BAML in an assembly as XAML.

Resources that Should not Be Localized

If your project file contains images (for example, it includes an element such as <Resource Include="MyIcon.png">), and if the UICulture property is set in the project, by default these resource will be put in the "en" version of the satellite assembly. If you are not planning to localize images, you can exclude them from the satellite assembly and keep them in the main assembly. You can also do this for other resources, including XAML files that you do not want to have localized.

To prevent resources from being localized, mark the resource as non-localizable and have the resource built into the main assembly instead of the satellite. The following example shows markup from the project file that illustrates how to do this.

<ItemGroup>

 <Resource Include="MyIcon.png">

 <Localizable>False</Localizable>

 </Resource>

</ItemGroup>

How to Localize BAML (Compiled XAML Files)

If you are using BAML localization, you can use the following options for localizing your application:

· Use the sample LocBaml tool that is described in How to: Localize an Application on the MSDN Web site. This topic describes a sample that demonstrates how to use WPF localization APIs and localize a BAML inside a resource assembly. It is not a supported tool; instead, it is a sample that shows how to write a solution to your localization needs. The technique illustrated in this sample can be sufficient for localizing small applications. However, it is not suitable for bigger projects without additional customization.
· Write your own localization tool. Every application is different and there is no single solution for everybody’s localization needs. Therefore, it is recommended that for bigger projects, you write your own localization tool that uses WPF localization APIs as documented on MSDN and as shown in the LocBaml tool sample.
· Use the WPF Visual Localization tool. This is another sample tool that is currently under development. Check for this tool’s availability on the WPF Testing blog January 2009. The tool will address known issues in the LocBaml tool and will add the ability to visually display the content of BAML files during the localization process.
· Use a third-party localization tools. There are many tools that are becoming available on the Web that provide better support for existing localization solutions as well as new approaches, many of which use Markup Extensions. As WPF adoption grows, we expect better localization support from both Microsoft and from external tool vendors.

Additional Resources

For more information about globalization and testing globalization, see the following resources.

· The entry Best Practices for Globalization and Localization in WPF in the Windows Presentation Foundation SDK blog.

· The entry An App for Help Test WPF Applications in Different Cultures in the Windows Presentation Foundation SDK blog, which includes source code.

· The article Localizing WPF Applications using LocBaml on the CodePlex site, which includes source code.

Accessibility Testing

This section covers the following topics:

· Basic accessibility concepts.

· Implementing WPF UI for accessibility.

· Accessibility-testing best practices.

· Key resources for accessibility testing.

Basic Accessibility Concepts

The term accessibility refers to making sure that access to information is available to the widest possible audience. The design of a WPF application helps to determine its accessibility. WPF applications need to be accessible to users with disabilities, in accordance with standards such as those established by section 508 of the Americans with Disabilities Act (http://www.section508.gov) and the Web Content Accessibility Guidelines from the W3C (http://www.w3.org/TR/WCAG10/).

Accessibility is designed into applications by using several layers of specialty features that focus on improving or solving specific interaction issues with software. These layered features include the following:

· Operating system settings, such as large fonts; high-DPI display; high-contrast themes; cursor blink rate; settings for features such as StickyKeys, FilterKeys, MouseKeys, SerialKeys, and ToggleKeys; screen resolution; custom mouse settings; and input from on-screen keyboards.

· Accessibility features that are built into the application or content, such as tab order, hotkeys, shortcut keys, and multi-modal support.

· APIs, which include frameworks such as MSAA, UIA, UIA-Ex, and OM, which all enable developers to create applications that interact well with assistive-technology tools.

· Assistive-technology tools such as screen readers, magnifiers, speech recognition, and speech-input programs.

Implementing WPF UI for Accessibility

Accessibility support is built in to the WPF framework through its integration with the Microsoft UI Automation framework. Microsoft UI Automation is the new accessibility framework for Microsoft Windows, which enables control and application developers to make their products accessible.

UI Automation exposes every piece of the UI to client applications as an AutomationElement object that is contained in a tree structure with the desktop as its root. Each element has properties, control patterns, and methods that can be used to describe and manipulate its behavior.

WPF standard controls provide accessibility support through AutomationPeer objects, which is WPF implementation of UI Automation provider interfaces. Overall WPF accessibility best practices are:

· Enable programmatic access to controls and applications. For more information about how to make UI elements accessible, see Basic Guidelines for Making UI Available in this guide.

· Do not override system accessibility settings.

· Do not hard-code colors.

· Support all high-contrast settings

· Support high-DPI display. WPF applications are automatically DPI-aware because they use coordinates that are expressed in device independent units (DIU). One DIU is defined as 1/96 of an inch. (This contrasts with Win32 applications, which use coordinates whose units are based on physical pixels.) To make sure that bitmapped graphics scale correctly, follow the guidelines in the “Scaling bitmapped graphics” section of Creating a DPI-Aware Application on the MSDN Web site. In general, you must create multiple versions of each interface graphic. When your application renders its user interface, it can then match the bitmap to the system DPI setting.

· Provide keyboard navigation that has tab stops for all controls that the user can interact with, and make sure that keyboard focus is visible.

· Provide alternatives for visual elements, such as alternative text for graphics.

For information about how to create a custom WPF control with automation and accessibility support, see UI Automation of a WPF Custom Control on the MSDN Web site. This article outlines how to create a custom WPF control, and includes example code that demonstrates how to add an AutomationPeer object and expose the control in XAML.

For information about how to make WPF applications and custom controls inherit system settings, see SystemParameters Class on the MSDN Web site, and see the following additional articles on the MSDN Web site:

· How to: Use System Parameters Keys
· How to: Use SystemParameters
· How to: Use SystemFonts
· How to: Paint an Area with a System Brush
· How to: Use System Colors in a Gradient
The following general accessibility development practices should be followed for UIs, including those in WPF applications:

· If a control contains a bitmap but not a label, that bitmap must be unique to the feature and must be used consistently throughout the application. This practice is aligned with Section 508, subsection 1194.21 (e): When bitmap images are used to identify controls, status indicators, or other programmatic elements, the meaning assigned to those images shall be consistent throughout an application's performance.
· If your feature allows text editing, it must report the text insertion point (IP) location by overlaid system caret (e.g., call CreateCaret API to position system caret over the place where custom caret is drawn). Application should also support and support text services such as IME via Text Services Framework. This allows users who use assistive technology applications to edit complex languages, and it allows assistive technology applications to access the caret location. This practice is aligned with Section 508, subsection 1194.21 (f): Textual information shall be provided through operating system functions for displaying text. The minimum information that shall be made available is text content, text input caret location, and text attributes.
· If your feature uses animation to convey information, the feature must allow the animation to be disabled and still convey the same information. Typically this is also necessary for the feature to work over a terminal server connection. This practice is aligned with Section 508, subsection 1194.21 (h): When animation is displayed, the information shall be displayable in at least one non-animated presentation mode at the option of the user.
· If your feature uses color, it must not rely on color alone to convey information. An example of a violation would be to make some items in a list red in order to convey that those items are high priority. If color is used in such a situation, the item must also have some other visual cue to convey the same information. In the example, high-priority items could also be bold in addition to being red. To help with this, visualize your feature on a monochrome monitor. This practice is aligned with Section 508, subsection 1194.21 (i): Color coding shall not be used as the only means of conveying information, indicating an action, prompting a response, or distinguishing a visual element.
· Avoid having your feature blink, flash, or pulse. If it is absolutely necessary for your feature to pulse (for example, the way that the Office button does), you must ensure that the pulse frequency is either below 2 Hz or above 55 Hz. Anything that flashes or pulses on the screen can cause seizures and potentially even lead to death for people with epilepsy. This practice is aligned with Section 508, subsection 1194.21 (k): Software shall not use flashing or blinking text, objects, or other elements having a flash or blink frequency greater than 2 Hz and lower than 55 Hz.
· Any object that can be inserted into a document must allow text to be associated with it—that is, it must support alternative text, or "alt text." This allows a screen reader to read a description of the object to a visually impaired user. Examples of such objects include pictures, charts, clip art, and shapes. This practice is aligned with Section 508, subsection 1194.22 (a): A text equivalent for every non-text element shall be provided (e.g., via "alt", "longdesc", or in-element content).
· Any video must have speech to narrate it or some way to output narration to a screen reader for visually impaired users. The video must also either be closed captioned or have written text associated with it for hearing-impaired users, audio description should also be recommended for hearing-impaired users. This practice is aligned with Section 508, subsection 1194.22 (b): Equivalent alternatives for any multimedia presentation shall be synchronized with the presentation.
· Your feature should not have any UI that the user must interact with that disappears based on a timeout. Avoiding a timeout allows users with severe motion impairment to respond in time to the UI. This requirement does not apply to functions such as save, print, and open that display a progress bar that eventually times out. This practice is aligned with Section 508, subsection 1194.22 (p): When a timed response is required, the user shall be alerted and given sufficient time to indicate more time is required. Windows Operating Systems has a few useful system parameters, and it is best practice to follow those timeout and other timing parameters as much as possible.

For more information about Microsoft UI Automation and about accessibility best practices for WPF applications, refer to the following resources on the MSDN Web site:

· Accessibility Best Practices. This article provides additional details about the practices listed earlier.

· UI Automation Overview. This is an overview of the UI Automation framework, including key components and resources.

· Managed code reference for UI Automation. This article lists types in the System.Windows.Automation namespace that provide support for WPF UI Automation clients.

· Active Accessibility Bridge to UI Automation. This article describes Active Accessibility Bridge, which enables applications that implement Active Accessibility to access applications that implement UI Automation.

Accessibility Testing Best Practices

In general, to test accessibility support for a WPF application, you perform the following tasks:

· Ensure that the UI works correctly with high-DPI display enabled.

· Ensure that the UI works correctly with high-contrast mode enabled.

· Run verifications in the UIA Verifier tool and AccChecker tool against the UI and investigate all errors. This includes reviewing the output of the Screen reader tab in the AccChecker tool to make sure that nothing unusual or confusing to the customer is read.

· Verify that the UI displays and functions correctly while using the Magnifier.exe tool.

· Make sure that the controls in the UI are accessible from the keyboard.

You can use the following tools for UI Automation and accessibility support in WPF controls and applications:

· UI Automation Verify Test Automation Framework. UIA Verify is a test automation framework that features the UIA Test Library and Visual UIA Verify, the GUI tool. The framework facilitates manual and automated testing of the UIA Provider implementations including WPF controls and applications.

· AccChecker. This tool enables testers without prior MSAA experience to easily discover problems with MSAA implementations in an application's UI.

· UI Spy. This tool enables developers and testers to view and interact with the user interface (UI) elements of an application. By viewing the application's UI hierarchical structure, property values, and raised events, developers and testers can verify that the UI that they are creating is programmatically accessible to assistive technology devices such as screen readers. UI Spy is included in the Windows Software Development Kit (SDK).
· Photosensitive Epilepsy Analysis Tool (PEAT) – for testing of the flashing visual.

For WPF applications that are used as standalone client UIs, browser-hosted XAML browser applications (.xbap files), or loose XAML files, accessibility testing should focus on the following tasks:

· Visual mode verification, including large fonts, high-DPI settings, high-contrast themes, and cursor blink rate and width.

· Testing for multimodal support. If your feature displays content, that content must be multimodal; in other words, it must be available to multiple senses. For example, if the feature contains audio, does it have closed captioning or real-time text scripting?

· Testing keyboard accessibility, to make sure that all functionality for your application is reachable from the keyboard. Can common functionality be reached in five keystrokes or less? Is the keyboard model sensible, consistent, and usable?

· Testing for programmatic access. This makes sure that your feature has the proper UIA support to support third-party assistive technology.

· Testing for compatibility with assistive-technology tools, such as Screen Reader, Windows Narrator, Windows Magnifier, and JAWS, in order to make sure the UI works as expected.

· Testing other system metrics. Testing should determine whether your feature acts as expected for system settings. This includes proper scaling based on screen resolution, handling custom mouse settings, and handling input from on-screen keyboards.

· Testing international accessibility. Accessibility is a goal worldwide, so you should test for international sufficiency and localizability of visual modes, keyboard access, and programmatic access. Most of the information exposed by UI Automation properties is string data, but not all strings must be localized. Any values that refer to control IDs or formal type names should not be localized. The following properties are the ones that must be localized according to the application UI language. The contents of Name property must be consistent with the UI text of the associated UI element on the screen (or with alternative text for non-textual objects).

· AcceleratorKey
· AccessKey
· HelpText
· ItemStatus
· ItemType
· LocalizedControlType
· Name
The Name property is a string for the text representation of the element. The Name property should always be consistent with the label text on the screen. For example, Name should be “Browse…” for a button element that has a label “Browse…”. The Name property must not include the mnemonic character for the access key (that is, the character prefixed with “&”), which is underlined in the UI text presentation. The Name property also should not be extended or modified other than the text on the screen. Otherwise, the inconsistency with the visual text can confuse users.

When the corresponding label text is not visible on the screen, or when it is replaced by graphics, alternative text should be chosen. The alternative text should be concise, intuitive, and localized to the application UI language or to the operating system’s default UI language. Good alternative text is not a detailed description of the element’s appearance; instead, it is a concise description of the UI function or the feature. For example, the alternative text for the Microsoft Vista Start button might be “Start” instead of “Windows Logo on blue, round graphic”. For information about best practices for creating alternative text, see Creating Text Equivalents for Images on the MSDN Web site.

When a UI label uses text graphics (for example, using “>>”for the button that copies or moves an item from left to right), the Name property should be overridden by an appropriate text alternative (for example, “Add”). However, the practice of using text graphics as UI label is discouraged due to both localizability and accessibility concerns.

The Name property must not include the control role or type information such as “button” or “list”. If it does, it will conflict with the text from the LocalizedControlType property.

The Name property may not be used as a unique identifier among siblings. However, if it is consistent with UI presentation, the same Name value can be supported among peers. For test automation, clients should consider using the AutomationId or RuntimeId properties instead.

For an example of how to use the Name property in data binding for the WPF application, see the entry Accessible Data: Making your data available for all on the WPF SDK team blog.

Key Resources

For more information about how to design for accessibility, see the following resources. Except for the Section 508 information, all resources are articles on the MSDN Web site.

· Section 508. This web site outlines the technical standards for Section 508 of the U.S. Rehabilitation Act, amended in 1998. Section 508 requires that all electronic and information technology procured, developed or maintained by a federal agency be accessible to people with disabilities. The U.S. government agencies are required to consider accessibility in their market research and purchase the technology that meets the most accessibility requirements.

· MSDN Accessibility Developer Center
· UI Automation and Microsoft Active Accessibility. This provides details about UI Automation and how it differs from Active Accessibility. This is a good reference resource if you are familiar with Active Accessibility and want to implement UI Automation support.

· Testing for Accessibility. This provides how-tos for testing keyboard accessibility, high contrast, and assistive-technology compatibility.

· Accessibility Samples. This includes UI Automation provider and control pattern samples.

· Using UI Automation for Automated Testing. This describes how Microsoft UI Automation can be useful as a framework for programmatic access in automated testing scenarios.

· Windows Automation API 3.0 Overview and a few useful topics at the CoDe Magazine, other topics include:

· Open Accessibility

· Windows Automation API 3.0 Overview

· What’s New in Windows 7 Automation API

· Creating Accessibility-aware Silverlight 2 Content

· Microsoft Accessibility Testing Tools vs. the Ten-ton Gorilla of Accessibility Guidelines Compliance

· A Pragmatic Approach to WPF Accessibility

· Writing a UI Automation Provider for a Win32-based Custom Control

· Creating UI Automation Client Applications

Stability and Stress Testing

This section covers the following topics:

· What is stress and reliability testing?

· Why run stress tests?

· Stress-testing principles.

· Test-case design for stress testing.

· Stress-testing best practices.

· Catching and reporting bugs.

· Stress-test metrics and quality tracking.

What is Stress and Reliability Testing?

Stress testing refers to the process of exercising a target application in extreme ways. This could mean sending many requests to a server, repeatedly starting and stopping a service, or flooding a UI application with mouse and keyboard input. Stress testing is any activity that causes a target application to work hard, or become “stressed.”

For WPF developers, stress testing can mean many things. Your tests might include making dynamic changes to the way you style controls, making continual updates to the items in a DataSource object, or running simulations of how users interact with UI components. Whatever stress testing looks like for the application, testing usually involves long-running, concurrent activities that magnify the user input you expect to see in the real world.

Stress testing differs from functional testing in several ways. Although stress tests mimic user behavior, they often exaggerate this behavior to an unrealistic point. Stress tests typically run for much longer than functional tests. In addition, multiple stress tests are run simultaneously, which is different from other forms of testing. Stress tests do not perform verification. Instead they look for severe application failures such as crashes, hangs, failed assertions, and memory leaks. In a nutshell, stress testing means creating the most extreme conditions that the application will ever face in order to see the application at its worst.

Why Run Stress Tests?

There are two motivations for running stress tests. The first is to make statements about the reliability of your application. By measuring of stress that the application it is able to withstand, you can better understand the expected mean time to failure and the application's robustness in a production environment. Repeatedly running stress tests while your application is under development enables you to track changes in its reliability in response to changes, and gives you a better understanding of the severity of particular bugs, based on how frequently they are encountered by your stress tests.

The second reason to run stress is of course to uncover bugs. Stress testing attempts to uncover application bugs that cause three types of problems:

· Degradation of performance over time.

· Degradation of performance under load.

· Degradation of performance during concurrency.

These are typically some of the most painful bugs for users, because they cause application failure and data loss.

Considerations For Stress Testing

When stress testing is in the design phases, there are 2 things to consider:

· The resources which affects the application

· The application that is under consideration

One of the first things to consider for stress testing an application is to deny the resources it needs. This includes memory, disc space, network bandwidth, etc. Most of the time, the machines that are used for production are at the higher end of the resource scale and hence, it becomes important to simulate a condition when these resources are low. Another facet of this resource control is file fuzzing, which comes into the picture when you are dealing with files. A file fuzzer will generate a huge number of files to be consumed by your application. Whether you need to create your own file fuzzer would depend on whether the application is dealing with a proprietary file format.

Once the resources are under control, the next in line is stressing the application itself. This is dealt in detail in the following sections.
Stress-Testing Principles

Stress tests look slightly different for every application. However, almost any application can be stress-tested by following these principles.

· Build a pool of scenario-based actions. A stress action should be atomic and based on real-world behavior. Some of these actions can be blind while others are deliberate. For example, you might include arbitrary mouse-clicks executed against the UI and targeted mouse-clicks against specific controls. However, each action should be one that could plausibly occur under real-world conditions. The smaller each action is, the easier it is to build different combinations of them, and the richer your coverage becomes.

· Mix and match actions. Create long-running (even indefinitely-running) tests by sequentially executing randomly selected actions. This creates a complex and ever-changing mix of tests that yields far more scenarios than you can hard-code with simple unit testing or functional testing. Mixing actions also generates scenarios that customers could potentially enact without requiring the tester or developer to anticipate these actions.

· Run many actions concurrently. In addition to running one long string of actions, run many additional strings of actions at the same time. This will help you uncover race conditions and corner cases that might never be encountered during fixed end-to-end tests.

· Listen for catastrophic failure. Stress testing is so extreme that the types of functional problems that would be considered bugs in ordinary cases become less pressing or even expected. Stress testing should focus on finding problems in your application that are unquestionably problems you want to fix. While your tests are running, you need a mechanism to listen for these.

· Capture information that helps you investigate failure. Uncovering bugs is not especially helpful unless you have a means of fixing them. Stress tests need to capture the run-time data that enables a developer to return to the failure point, figure out the root cause of the problem, and fix it.

· Avoid using non-deterministic random generators in tests. The reason for this is that very often the crash dump/stack indicates the error but the developer needs to have some context to decide whether the fix needs to be made. The ideal situation is to run the stress application on the developers machine and see the crash again.

Test-Case Design

The principles listed above can be illustrated by describing the type of stress coverage you might design if you were testing the Southridge Realty sample application. This sample application uses WPF to display and interact with local real-estate listings. Features of the application include a data-bound display of real estate properties and their amenities, the ability to search for listings, interactive search criteria, and extensive content, including images for each property, as shown in Figure 6.

[image: image7.png]L

@) centerCty Seotie Aparment

[Seotte AreaConco

[——
e Recmond Hame

G 2a bome
e w—
Wateront iiand Condo
Center Gty Sette Aparment
SetteAresCondo

Downtown Belevse Condo
Ui Recmond Home

Gosc Sl Hame

Upscle Qe Anne Aparmert

Waterfront Kirkland Cando

EEreEPpeEEEE®®

Center City Seattie Apartment

<[<]<]<

Price
$425,00000

$475,00000

$550,000.00

546500000
$50000000
$53500000
542500000
547500000

$515,00000

$55000000
546500000
$50000000
$53500000

$425,00000

1

Southridge Realty | Client Profile for Henry Johnson

21

<J<]<]<

edrooms | Bathrooms r
1 4

2 = et

1985

2 T 208
25 1976
2 T 10
2 1901
15 2002
1 T 10
2 198
2 T 208
25 T 1076
2 T 10
2 T 100
15 T 20
1 w10

==

a

Top floor view condo w/wonderful floor plan in the heart of the desirable Admiral District. Sroll to Admiral Theatre, Metropol

1400
2780 Show Calendar [13)
1600 Show Calendar [13]
2850 e [
2560 Show Calendr [13]
2100 10312008 i3
1850 Show Calendr [13]
1400 Show Calendr [13]
2780 [107772006 [i3]]
1600 Show Calendr [13]
2850 1152008 i3
2560 Show Calendr [13]
2100 Show Calendr [13]
1850 [om02008 [i3l]
1400 [Show Colendr (53]

qr. Footage | Appointment

92012008 [i3]

Rating Address

678 Spring Street

& kok 2345 California Ave.
fitan M. and trendy.

321 Bellevue Way
567 Redmond Way
123 NW S7th st
765 Denny Way
234 Lake Ave

678 Spring Street
2345 Calfornia Ave
321 Bellevue Way
567 Redmond Way
123 NW STth st
765 Deany Way
234 Lake Ave

678 Spring Street

10/01/

09713/

08/03/
02s02/
outo/
os/o0y/
0925/
1001/
Ve
08/03/

02702/

0110/

09/01/ .

Figure 6: The Southridge Realty Sample Application

Some of the stress tests for this application might include the following actions:

· Resize the Ribbon toolbar.

· Add and remove options in the quick-access toolbar.

· Select an appointment date and submit it.

· Make background changes to the data in the data source.

· Run a search query.

· Edit search parameters.

· View property photos.

· Change the theme.

This list would be extended to cover a comprehensive set of basic actions that are specific to the application. A test harness would be responsible for creating many threads and for queuing and running actions indefinitely on each.

For some applications, it makes sense to group certain actions together and to isolate others. The Southridge Realty application developers might run one set of actions with the Search Criteria tab open, and to run another set of actions for the Search Results tab. To perform this task, the stress test harness should pause, switch tabs, and then resume testing.

This behavior is easily achieved by using a reader/writer lock on the action pool. Before running any action, test threads take the lock for reading (enabling many other actions to do so concurrently). When the test is ready to shift control from one tab to the next, a single thread takes the lock for writing (which guarantees that no action is running). The test thread then switches tabs and switches the set of actions that are available to run. As soon as the lock is released, the original test threads all resume testing, and can now exercise new tests on a different part of the application.

Optionally, the time between periods of stress testing can be used to run functional or performance tests. This lets you perform functional or performance test validation after the application has experienced stressful conditions, without the difficulty of validating against a moving target.

While all of these tests are running, the stress-test infrastructure monitors for crashes, hangs, failed assertions, and memory leaks, as described in a later section. When any of these error conditions is encountered, debugging tools run in order to give developers either a memory dump of SouthridgeRealty.exe or a live debugger session to investigate the root of the failure.

Stress-Testing Best Practices
In addition to building your stress testing architecture based on the principles outlined earlier, follow these guidelines to maximize the effectiveness of your tests.

· Stay in the source code. The more time that the CPU spends setting up, running, and tearing down tests, the less time it spends exercising application code. Optimize tests to spend the most time running application code and the least time in the test code.

· Do not mask application code exceptions. If you handle application exceptions, do so deliberately and sparingly. If you do any in-process stress testing, catching exceptions might hide problems that will eventually be seen by users.

· Minimize logging and text output. This is especially true when you run concurrent tests, because logging serializes threads and prevents you from encountering race conditions. Because failure information can be collected by debuggers, logging is less critical during stress testing than it is during functional testing. It is strongly recommend that you use no logging.

· Add performance metrics. A lot of performance degradation occurs only under stressful conditions. It might be helpful to integrate performance testing with your stress-test runs.

· Do not let test code produce unhandled exceptions. Because it is easy to turn all unhandled exceptions into stress-test failures, minimize noise by catching exceptions that come from your test code rather than from the target application. You can take advantage of this and deliberately throw exceptions from your test code when you want to create a stress failure. If there are system health indicators that you want to monitor while your application is under stress, you can measure these and throw exceptions if the indicators show specific types of degradation.

· Do not write stress tests to verify functionality. Stress tests should not fail because a test encountered incorrect behavior that should cause a functional test to fail. Failing in this way would lead to a huge number of bugs you are unlikely to fix, and it would undermine the ability of the stress tests to find the bugs that should they be flushing out.

Catching and Reporting Bugs
A critical piece of stress testing is capturing failure information. A simple way to do so is to take advantage of the .NET Framework just-in-time (JIT) debugger settings. In the registry, expand the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework key and locate two values: DbgManagedDebugger and DbgJITDebugLaunchSetting.

For stress testing, set DbgManagedDebugger to the command line that launches the debugger. Set DbgJITDebugLaunchSetting to 2. This causes the debugger command line to execute automatically whenever a managed exception is not handled.

For more information about the JIT debugging settings, see Enabling JIT-attach Debugging on the MSDN Web site.

Investigating Failure By Using Live Debugger Sessions

The debugger command line you use depends on how you expect to run your stress tests. If you plan to run stress occasionally on just one or just a few computers, it might make the sense to attach the VSJitDebugger.exe tool to the crashed process and investigate by using a live remote session. To do this, set DbgManagedDebugger to the following value:

"%systemroot%\system32\vsjitdebugger.exe" PID %d APPDOM %d EXTEXT "%s" EVTHDL %d

Investigating Failure By Using Memory Dumps

The most accurate stress data is collected when tests are run repeatedly on many computers for extended periods of time. If you devote a large number of computers to running stress tests daily, it might make sense to collect crash dumps that you can investigate at your leisure rather than taking up computer time until you are ready to investigate. In that case, you should use a debugger that can collect memory dumps and that can accept debugger commands as command-line arguments. One option is to download Debugging Tools for Windows from the WDK and Developer Tools Web site. In order to attach to the crashed process, automatically collect a memory dump, and then exit, set DbgManagedDebugger to the following value:

"%program files%\debugging tools for windows\ntsd.exe" –p %ld –c ".dump /ma <path to dump file>; q"

If you want to store dump files in a more organized way, use the code that is listed in the following example. This code will store dump files in the user’s temp directory, named by date and process. It will also open a remote channel to enable local or remote debugging of the failure. If you would rather close the debugger after collecting the dump, add ;q to the end of the command line that you pipe to ntsd.exe.

public class JitDebuggerWrapper

{

 private static string commandLine;

 public static void Main(string[] args)

 {

 string debuggerPath = DebuggerSettings.Default.DebuggerPath ==

 "Default" ?

 Path.Combine(

 Environment.ExpandEnvironmentVariables("%programfiles%"),

 "Debugging Tools for Windows\\ntsd.exe") :

 DebuggerSettings.Default.DebuggerPath;

 string pipeName = DateTime.Now.ToString() + "-";

 for (int i = 0; i < args.Length; i++)

 {

 commandLine += " ";

 commandLine += args[i];

 pipeName += args[i];

 }

 commandLine = "-server npipe:pipe=" + pipeName;

 Process.Start(debuggerPath, commandLine);

 string dumpPath = Path.Combine(

 Environment.ExpandEnvironmentVariables("%userprofile%"),

 "appdata\\local\\temp\\");

 dumpPath += "crashDump" + pipeName + ".dmp";

 Process.Start(

 debuggerPath,

 "-remote npipe:server=" +

 Environment.MachineName +

 ",pipe=" +

 pipeName +

 " -c \".dump /ma " + dumpPath + "\"");

 }

}

Capturing Stress-Test Asserts

Stress tests can be used to detect failures other than application crashes. The JIT debugger will collect failure information from test code exceptions. This gives you the opportunity to generate failures by throwing intentionally. You can also add a custom trace listener to turn failed assertions into unhandled exceptions. Well-written assertions (that is, assertions that should never fail) give you the opportunity to catch a wider range of problems with stress tests than you can if you monitor for application crashes alone.

The following code defines a simple custom trace listener that will turn a failed assertion into an unhandled exception. For more information about trace listeners, see TraceListener Class on the MSDN Web site.

/// <summary>

/// Trace listener to detect asserts and turn them into stress failures by

/// throwing unhandled exceptions

/// </summary>

public class AssertTraceListener : TraceListener

{

 public override void Fail(string message)

 {

 throw new Exception("Assertion failed, message: " + message);

 }

 public override void Write(string message)

 {

 }

 public override void WriteLine(string message)

 {

 }

}

After you build your custom trace listener, add a reference to it in the machine.config file. You will need the fully qualified name of your DLL. The following example shows the machine.config section that includes a reference to a custom trace listener.

<system.diagnostics>

 <trace autoflush="false" indentsize="4">

 <listeners>

 <add name="assertlistener" type="[Fully Qualified Type Name] />"

 <remove name="Default" />

 </listeners>

 </trace>

</system.diagnostics>
Debugging Stress-Test Failures

You can debug crash dumps using any of the Windows debuggers, such as WinDbg or NTSD. Using these tools is different than using the Visual Studio debugger. However, the CLR provides helpful managed debugging extensions in the SOS library. The following table lists a few commands that can help you get started.
	Command
	Use

	.loadby sos mscorwks
	Loads SOS.dll. If you are debugging a dump on the computer where the dump was created, use this command load SOS.dll. This gives you access to all the managed debugging extensions. If you are debugging a dump a different machine, use the following command in order to load SOS directly:

.load <path to library>

SOS.dll is located in the .NET Framework directory on your computer.

	!Threads
	Prints a summary of all active threads, which lets you see whether a thread has thrown an exception and what exception is.

	!PrintException

or

!pe
	Prints information about the most recent exception that was thrown on the current thread (which for one of the threads is likely the reason for the crash).

	!dso
	Dumps stack objects, which displays information about the objects that are currently on the stack.

	!clrstack
	Shows a managed stack trace for the current thread.

	!eeheap
	Displays the size of memory on the managed heap.

	!dumpheap
	Displays the objects on the managed heap.

	~1s
	Switches to the thread with the ID 1. Substitute the thread ID that you want to switch to.

	~*
	Displays all active threads.

For more information about SOS debugging, see SOS Debugging Extension (SOS.dll) on the MSDN Web site.

Stress-Test Metrics and Quality Tracking

A final consideration in stress testing is to determine how much weight you want to put on stress failures. A useful stress-test metric is the pass rate of stress tests. Pass rate can be measured by setting a fixed amount of time (for example, 12 hours), running stress tests on many computers for that duration, and then examining the percentage of computers that complete the run without failing. For comprehensive stress-test suites and a statistically significant number of machines, a pass rate of 90% or higher is a good indication of a reliable application.

Custom Control and Extensibility Testing

This section covers the following topics:

· General considerations for custom control authoring and extensibility.

· Best practices for custom control authoring.

· The custom control authoring process with AutomationPeer objects.

· A sample of a custom control with UI Automation.

· Testing WPF custom controls with AutomationPeer objects.

The section also provides sample code for custom control authoring and testing.

General Considerations for Custom Control Authoring and Extensibility

The richness of the WPF framework lets developers easily customize controls by using templates (control, data, etc.), styles, themes, and so on. Therefore, developers rarely have to create a new control or custom control. However, if developers have to create a new control with new behavior, they should keep in mind the considerations that are outlined in this section.

Selecting a Class to Derive From

WPF provides three models for creating a control, each with different features and levels of flexibility. Developers should make sure that they understand these models before they create a new control. The following table lists the models and characteristics of each.

	Model
	Characteristics

	Derive from UserControl.
	Pros: Supports rich content, styles, and triggers.

Cons: Does not support templates and themes; not customizable.

When to use:

· The control consists only of existing components.

· The control does not have to support complex customization.

	Derive from Control. This is the model that is used by most of the built-in WPF controls.
	Pros: Designed to separate the operational logic from the visual representation by using templates and themes, and therefore provides the most flexibility.

Cons: More complex compared to building a class that derives from UserControl.

When to use:

· The developer wants the appearance of the control to be customizable by using the ControlTemplate class.

· The developer wants the control to support different themes.

	Derive from FrameworkElement.
	Pros: Most flexible. Better performance if you do not have to have the templating mechanism.

Cons: Can be more complex than other models.

When to use:

· The developer does not want to use a template for the control; instead, the developer will handle creation and hookup of visual children.

· The developer wants more fine-grained control over functionality than what is available when the control derives from UserControl or Control (which rely on composing existing elements).

There are two standard methods for building this kind of control: direct rendering and custom element composition. Direct rendering involves overriding the OnRender method of FrameworkElement and providing DrawingContext operations that explicitly define the component visuals. Custom element composition involves instantiating and using objects of type Visual to compose the appearance of the component.

Additional Considerations

The following list provides additional points to be considered when a custom control is created.

· How should I package the control?

· When should I use DependencyProperty objects instead of CLR properties?

· When should I use RoutedEvent objects instead of CLR events?

· When I should I use Command objects?

· How do I create templates for the control and what is the performance cost? What are the ways I can reduce the performance costs?

· How do I author theme-based styles and templates for the control?

· How should I package themed resources?

· How do I make the control accessible?

· How do I make the control localizable?

· How do I add design-time support to the control?

· How do I build a design experience for the control in Microsoft Expression Blend and Microsoft Visual Studio?

· How do I support journaling for the control's properties?

· How can I virtualize the UI pieces in the control (if applicable)?

· How can I support data virtualization for the control?

Best Practices for Custom Control Authoring

The following list describes best practices to follow when a custom control is created.

· Developers should make sure that they understand the three general models for control creation before they commit to a model for the new control.

· To make a control easy to reuse, the control should be packaged into its own assembly.

· Generally, it is a good practice to back all the properties in the new control with a DependencyProperty object. For more information, see Custom Dependency Properties on the MSDN Web site.
· Just as dependency properties extend CLR properties with additional functionality, routed events extend standard CLR events. When developers create a new WPF control, it is a good practice to implement events as RoutedEvent objects. For more information, see Routed Events Overview and How to: Create a Custom Routed Event on the MSDN Web site.
· To decouple the UI of the control from its logic, developers should consider using data binding. This is especially important if they define the appearance of the control by using a ControlTemplate class.
To add support for custom WPF controls in the WPF Designer for Visual Studio, developers should follow these guidelines:

· For DependencyProperty objects, implement CLR get accessor for read-only properties.

· For AttachedProperty objects, do the following:

· Create a public static read-only DependencyProperty instance of the form PropertyNameProperty by using the RegisterAttached method.

· Implement a pair of public static CLR methods named GetPropertyName (for all properties) and SetPropertyName (for read/write properties). These methods must route directly to the GetValue and SetValue methods of the target dependency object.

· Use a Command object, which is a more flexible way to handle input (events, etc.) than without using it. For more information about commands, see Commanding Overview.

· Consider creating a theme assembly that contains resource dictionaries that override the default styles. To do this, create multiple ResourceDictionary files, by using the naming convention of Theme Name.Theme Color.xaml (for example, Luna.NormalColor.xaml). Put the files in the directory named Themes. Developers should make sure that they include a Generic.xaml file to serve as a fallback style. For more information, see Themes in the WPF section of the MSDN Web site.

Security Considerations

Automation peers must work in a partial-trust environment. Because the UIAutomationClient assembly is not configured to run under partial trust, a developer's provider code (the custom control code) should not reference that assembly. If it does so, the code might run in a full-trust environment but then fail in a partial-trust environment. In particular, developers should not use fields from classes in UIAutomationClient such as those in AutomationElement. Instead, they should use the equivalent fields from classes in the UIAutomationTypes assembly, such as AutomationElementIdentifiers.
Additional Resources for Custom Control Authoring

For more information about custom control authoring, see the following resources on the MSDN Web site:

· Control Authoring Overview.

· Guidelines for Designing Stylable Controls.

· Using Templates to Customize WPF Controls by Charles Petzold.

Custom Control Authoring with Automation Peers

To create a custom control with Automation support, follow the steps listed in the following table.

	Functionality
	Implementation

	Expose the control to UI Automation
	Override the OnCreateAutomationPeer method for the custom control so that it returns the provider object, which must derive directly or indirectly from AutomationPeer. For example, if a custom control that is derived from Button is named MyButton, the object returned by OnCreateAutomationPeer should be MyButtonAutomationPeer.

	Provide property values
	Override the methods of the base peer class that get property values of the control (for example, AutomationPeer.GetAcceleratorKey) and of any additional control pattern interfaces that are implemented by a custom peer (for example, IToggleProvider.ToggleState).

	Enable the client to interact with the control
	Override methods of the base peer class (for example, ToggleButtonAutomationPeer.IToggleProvider.Toggle) and of any additional control pattern interfaces that are implemented by a custom peer. In the provider's implementation of GetPattern, developers should return the object that supports the specified control pattern. This could be the peer object, or it could be the control object that the peer object represents.

	Raise events
	Call RaiseAutomationEvent and RaisePropertyChangedEvent methods of the custom AutomationPeer class in order to raise the appropriate pattern events. For example, in a custom control's OnClick event (for example, MyButton.OnClick), developers should make the following call:

myButtonPeer.RaiseAutomationEvent(AutomationEvents.InvokePatternOnInvoked)

Developers should remember the following points when they create a custom control with Automation support.

· If the custom control's UI includes a collection of standard controls (for example, Button and TextBox), in the custom control's AutomationPeer class, developers should override the base peer class's GetChildrenCore or GetChildren method in order to return the collection of the standard controls' Automation peers. If the custom control derives from UIElementAutomationPeer, by default the implementation of GetChildrenCore will walk the children in the visual tree and return the list of the children’s Automation peers. If developers do not want to expose all the visual elements, they can override GetChildrenCore and return only the peers that they want.

· If the custom control contains a Popup control, developers should not rely on walking the visual tree, because Popup content is in a separate visual tree. For example, ComboBoxAutomationPeer.GetChildrenCore should return a list of Automation peers that correspond to the elements under the Popup control's visual tree.

· If the custom control is derived from the Control class, and the Control class does not include an AutomationPeer object itself, developers should derive the custom peer class from FrameworkElementAutomationPeer.

· When developers raise Automation events, for performance reasons they should make sure that the events are raised only when there are listeners on the clients. To do this, developers can use AutomationPeer.ListenerExists to check related events.

Custom Control Authoring and Testing Sample

A sample solution is available that developers and testers can use and examine to learn more about how to create custom controls and about how to test them. To obtain the sample, download a compressed file that contains the sample from the WPF Testing blog.

The sample solution contains the following projects:

· A custom control library that includes two custom controls, both with UI Automation support built in.

· A WPF application that uses the custom controls.

· A test project to drive the WPF application by using UI Automation APIs.

· A second test project that shows how to embed test code in the application that is being tested.

For more samples that show how to create WPF custom controls, see Control Customization Samples on the MSDN Web site.
Testing WPF Custom Controls with UI Automation Peers

When testers test WPF custom controls with UI Automation peers, they should follow these guidelines:

· Make sure that the custom control supports UI Automation with AutomationPeer. For more information, see the sample solution described in the section Custom Control Authoring and Testing Sample.

· Follow the best practices described in the section Basic Guidelines for Making UI Available in order to make sure that controls are properly labeled.

· For information about how to unit-test a custom control, examine the example described in the blog entry Unit Testing WPF controls with Automation Peers. The example shows how to test a standard control. The steps are the same for the custom control, except that testers use the custom control's AutomationPeer object for testing.

· To test the custom control as part of an application's UI Automation testing process, see the sample solution described in the section Custom Control Authoring and Testing Sample.
· Make sure that support in the control for different themes is validated.

Integration and Scenario Testing
New for the fifth edition

Integration and scenario testing are related methodologies that test multiple units of a product to evaluate how well these units work together. The subsequent sections discuss these two approaches in more detail.

Integration Testing

Unit testing involves testing a single unit/module or component of code. Integration testing builds on unit testing to make sure that the different units interact with each other successfully. Even if a software component is unit tested extensively, it is of little or no value if it cannot be successfully integrated with the rest of the system.

Integration testing is critical for the success of the product. In many cases, a dedicated testing team focuses on integration testing.

Many bugs can emerge during the integration step. The following are some of the reasons that problems are found during the integration phase:

· Components developed by different programmers or teams.

· Incomplete or inaccurate specifications or assumptions.

· Bugs in individual components.

· Global data structures that present problems.

· Data lost across an interface.

· Distributed features.

· Individually acceptable imprecision may be magnified to unacceptable levels.
Steps in Integration Testing

The following are the steps involved in integration testing:
11. Identify unit interfaces. Identify and document the unit’s interfaces with other units.

12. Reconcile interfaces for completeness. Whenever a unit interfaces with another, those interfaces must be checked for inconsistencies. For example, if unit A sends data to unit B, unit B should indicate that it received that input from unit A.

13. Create integration test conditions. Test conditions are prepared for integrating each unit and documented.

14. Evaluate the completeness of test conditions. Some questions that help guide this are the following:

1. Are all interfaces between units validated so that output of one is recorded as input of another?

2. Is the processing of each unit validated before integration testing?

3. Do all unit developers agree that the integration test conditions are adequate to test each unit’s interfaces?

4. Are all units included in integration testing?

Integration Strategies
There are several approaches to integration testing. These approaches depend on how the application is integrated. The following are some of the commonly used techniques.
All at once (big-bang): Very small systems are often integrated and tested in one phase. This makes efficient use of testing resources because there is no overhead associated with constructing stubs and drivers to perform module testing or partial integration. Consider, for example, a simple calculator application – it generally has a UI part and an arithmetic logic component. Because the application is small, it is a lot easier to concentrate resources on testing the whole application rather than on testing individual components and their integration.

[image: image8]
Figure 7: Big-Bang integration

For most real or large systems, big-bang testing is impractical. The system would fail in so many places at once that the debugging and retesting effort would be prohibitive. Large systems may required many integration phases, beginning with assembling modules into low-level subsystems, then assembling subsystems into larger subsystems, and finally assembling the highest level subsystems into the complete system.

Top-down: The top-down strategy begins with the highest level modules and tests their interactions. This allows early testing of the data flow of the highest level components. However, this approach often requires stubs for unimplemented functionality and doesn’t help to test early product releases with limited functionality.

An example of this approach could be applied to a photo application. You may start off with a UI design with all image paths hard-coded on the machine. The next component could be an authentication component for access to an online photo album. Integration testing would include how the UI interacts with the authentication component. Next in development could be the photo fetching and caching component.

[image: image9]
Figure 8: Top-down integration

Bottom-up: The bottom up strategy begins with the lowest-level units. This allows early testing of these interactions and eliminates the need for stubs. This generally requires drivers to call into these modules and also has poor support for early, limited-functionality releases.

[image: image10]
Figure 9: Bottom-up integration
Sandwich: The sandwich strategy uses top-down tests for upper levels of the program structure and bottom-up tests for subordinate levels.

Critical pieces first: This approach follows the guideline “Integrate the most critical components first. Add the remaining pieces later.” This guarantees that the most important components work first, but integrating the system might become complicated for the rest of the components.

Additional Resources
· http://www.exforsys.com/tutorials/testing/integration-testing-whywhathow.html
· http://www.softwaretestingstuff.com/2008/12/integration-testing-four-step-procedure.html
· http://www.softwaretestingstuff.com/2008/12/how-to-do-integration-testing-writing.html
Scenario Testing

A scenario testing is to evaluate whether a user can successfully complete certain task from start to finish with a product. Scenario and integration testing are related methodologies that test multiple units of a product to evaluate how well they work together. Integration tests generally verify multiple modules interface correctly, while scenario tests verify end-to-end scenarios the user cares about work correctly. Both are examples of real-world use of the product.

For example, the Southridge Realty Hands-on Lab has many opportunities for scenario and integration tests. Integration tests would involve a few modules: profile creation and maintenance, search criteria manipulation, search results, data display, client contact, and general UI correctness. A scenario test would try to use multiple modules to verify user scenario from create a new profile with a complex search query, to display the results on a map, print the results, and e-mail the client.

Motivation for Scenario Testing

Scenario tests can provide several important benefits:

· A vehicle for exploratory testing and helping testers to learn the product.

· Verification that key user requirements are satisfied.

· Tests that can be reused for stress, reliability, and performance tests.

· Surfacing design-related issues and possibly raising new design issues.
Approach to Scenario Testing

Several principles should be used when designing scenarios:

· The scenario should tell a story about the user and their motivations in using the product.

· The story should be motivating: it illustrates one or more key requirements the program must meet.

· The story should be credible: it could happen in the real world.

· The story should demonstrate complex or expert-level use of the product for complex programs, or intuitive use otherwise.

· The results of the test should be easy to evaluate. Due to the complex nature of the scenario, this is especially important. Testers can easily sign off on any plausible behavior; rigorous, easily verified results help prevent this.

Negative scenarios also provide valuable coverage. Scenarios showing malicious misuse (trying to subvert security requirements, for example) should fail and provide no information on how to construct a scenario that might succeed. Scenarios showing accidental misuse (using the wrong feature to achieve a valid goal) should either help the user find the correct feature or force reevaluation of the design decisions that made the scenario possible.

Scenario creation can be driven from different angles. Cem Kaner lists 12 ways to create scenarios:

15. Write end-to-end stories/histories for objects in the system.

16. List possible users; analyze their interests and objectives.

17. Consider disfavored users: how do they want to abuse your system?

18. List expected events. How does the system handle them?

19. List unusual events. What accommodations does the system make for these?

20. List benefits that the system provides and create end-to-end tasks to check them.

21. Interview users about famous challenges and failures of the old system.

22. Work alongside users to see how they work and what they do.

23. Read about similar systems and how they operate.

24. Study complaints about the predecessor to this system or its competitors.

25. Role play as the real user of the system.
26. Use data/scenarios from competing or predecessor applications on the current system.

While scenario testing is critical, it is important to realize that it is very easy to overdo it. One must pick the right number of scenarios to justify the return on investment.

Additional Resources

· Cem Kaner, An Introduction to Scenario Testing

· Sandeep Konchady, What to Expect from User Scenario Testing
Manual Testing and Record and Play

This section focuses on creating manual and recorded tests, including

Choosing Whether to Automate a Test

How to Write a Good Manual Test

Recording a Manual Test

Choosing Whether to Automate a Test

Manual tests are how software testing started, in the form of developers with a list of “stuff to try.” They continue to be an important component of how software is tested.

Automated tests are very useful when used properly, but are expensive to produce and maintain, and are limited in the types of defects they detect. Creating automated tests is a significant investment, whether you are recording each test and paying to maintain it, or building a careful test stack or application model and investing heavily in the design. It is worthwhile to have a strategy for deciding what to automate, what to leave as a manual test, and what to leave out. Otherwise, testing costs can quickly dominate the software project.

These are some questions worth asking before you decide to automate a test:

· How important is the functionality that this test is covering?

· How often might this functionality break? Is it relatively stable or fragile?

· How quickly do you need to know about a problem that this test will find?

· How difficult is the test to automate and maintain?

If the test covers important functionality, if the functionality is likely to break often, if you need to know about errors quickly, and if the test is easy to automate, it is a clear candidate for automation. If the functionality is unlikely to break again after it is working, if it is not important to know about errors immediately, if the behavior changes frequently (in valid ways), or if test authoring is very complex and prone to failure, the test is probably best implemented as a manual test.

For example, in Visual Studio, we automate tests that determine whether the debugger hits breakpoints or that determine whether event handlers for controls are added correctly. These types of functionality break frequently during development, the errors represent critical bugs, and the tests are straightforward to write. Some tests that are not automated are those that determine whether Find and Replace options work correctly, or that determine whether options for text colorization in the editor are working. These tests cover stable functionality that is unlikely to break and they find bugs that we do not need to know about right away. In addition, in the case of colorization, the tests are harder to properly automate than other Visual Studio tests.

How to Write a Good Manual Test

A manual test is fundamentally a list of things to do and to check in an application. Manual tests have two important goals. The first is to ensure that anyone can understand the test, and the second is that when the test is executed, it performs the actions and verifies the results that you intended.

The following list includes some guidelines for creating manual tests:

· Create a glossary to explain product- or feature-specific terminology.

· Create a document that discusses known issues, describes how to distinguish bugs from valid changes, and describes how to perform complex verification for your feature (if needed).

Be specific about how to perform steps when the exact procedure matters. For example, add a comment such as the following, which describes the gestures that are used in the test: Add a Button to the beginning of the Window by double-clicking it in the Toolbox.

· Be generic about how to perform steps when the exact procedure does not matter. For example, a test might include the comment Move the value to the bottom of the document instead of the more specific comment Select the value, type Ctrl+X, type Ctrl+End, type Ctrl+V.

· Refactor steps. Document shared steps in one place and refers to them by name. For example, you might create a procedure in a shared location named "Create a new Web project" that includes the following instructions:

5. Close the open solution, if any.

6. Click File -> New Web Site.

7. Select "Default Web Site" as the template.

8. Click OK.

9. (etc.)

After you have created this shared set of instructions, any test that requires these steps can simply reference the “Create a new Web Project” procedure.

· Be specific about what to verify and what you expect at each step. The following examples show information that might be included in a test, in increasing order of usefulness:

· Format the Document. (Poor)

· Format the Document. Verify formatting of script. (Better)

· Format the Document. Verify that spacing in expressions changes to match Tools.Options settings. (Best)

· Pay attention even to results that the test does not explicitly ask to verify. The items defined in the test are the minimum that should be tested and verified.

· As a rule, focus on one feature in each test.

· Avoid the need to perform steps before and after the real test. Use pre-built content or test data to start your test so that it is ready to go. For example, you might include a pre-built page or form that already has test data in it. You can then write instructions like the following ones:

10. Open FormattingSample.xaml. (This pre-built window contains test data.)

11. Select ... and format. Verify that (The tester can proceed directly to the test case.)

· Design your test so that it can run efficiently as a manual test, as illustrated in the following test instructions:

· Type the following 100 lines: (Poor—it would take a long time to type 100 lines)

· Paste the following 100 lines: (Better—this is far more efficient)

Recording a Manual Test

If you have created a useful manual test and later decide that it is worth automating, one option is to use recording technology to record the steps. This can be a very cost-effective way to automate existing tests, but there are some things to keep in mind. The following sections provide guidelines for recording tests.

Factor Steps

As with manual tests, factor shared actions and lists their steps in one place so that they can be referred to by name elsewhere. For example, the precise steps to create a Web site in Visual Studio changed many times during development, and if we had had thousands of recorded tests which each had a copy of the steps, we would have had a massive amount of maintenance work.

As part of the factoring, note instructions where a manual test was not specific. For example, if a test instruction is to paste something, but the instruction does not specify how to paste, you can factor implementations that use different ways of pasting and then vary the factored instructions over time (Ctrl+V, from the main menu, and from the shortcut menu). If the test is not specific about data (for example, it simply says resize the rectangle), factor the data and vary it over time as well. This helps to keep the automated test from being too consistent compared to the manual equivalent.

Separate Data When Possible

If a test includes the same steps repeatedly with different data (for example, try 'hello', then 'StRANge', then ...), record the steps once and then factor the code to separate out the data. This allows you to easily add additional values, and it keeps the maintenance reasonable if the steps change in the future.

Add Appropriate Verification Logic

Recorders do not record verification, only your actions. After you have recorded test steps, you must add appropriate verification yourself. This is often the most costly part of automation, because figuring out how to read state from your application is often much more complex than the interactions themselves.

It is a good practice to write shared code to extract state from parts of your product that are tested extensively. For example, you might write code to extract text from the editor in Visual Studio. You can then share this state-testing code among tests. The logic to read state can require frequent maintenance, so it is preferable not to duplicate it.

Be thoughtful about how broad your verification is—how much of the product state you are checking. Humans are excellent at verification; however, you cannot cost-effectively duplicate human-quality verification in an automated test. Look at the defects that you have found and make sure that your automated verification would detect them also. (For example, if the Paste command is disabled after a step in your test, are you checking that menu items are enabled and disabled as you expect?)

Be thoughtful as well about how specific your verification is. If a manual test asks to verify that the formatting of text matches settings in Tools.Options, a human tester will typically look at more than the one line that changed. Should your test make sure everything else was left alone? Should your test notice whether the capitalization of words has changed? If you verify every detail of the document after formatting, will the formatting change as the product is developed, forcing you to update the test?

Choose Reliable Actions

In some cases your original manual test will contain actions that are difficult for automation to reproduce. Consider replacing these with actions that are easier for an automated test, or limit the number of times that the test will perform the action. If the specific way that you interact with the application is not important to the test, choosing a more reliable alternative can reduce the number of test failures you see that are not product issues. UI Automation is not perfectly reliable, and the load of difficult actions often determines how much trouble will be reported.

Some difficult actions include the following:

· Drag and drop

· Typing long strings of characters

· Mouseover actions (example: looking for a Tooltip)

· Scrolling

· Navigating menus (example: move mouse, wait, move mouse, etc.)

For all of these actions, the stream of events that are raised in Windows when a human performs these gestures is very long (many mouse events or keystrokes). The longer the stream of actions, the harder it is to simulate the actions properly in automated tests. In a long stream of actions where automation will be much faster than a human user, you are most likely to see differences in behavior simply because of the difference in the time that it takes to complete the actions.

Many of these actions are also difficult (or at least slow) for human users. A good solution is to design your product with faster alternatives that can be used both by users and by test automation. These alternatives include shortcut keys for menu commands, partially typing values to cause scrolling to the item you want, and so on.

Add Good Waiting Logic

Recorded tests often produce actions much faster than a human tester would. Some test frameworks can play the delays that are typical during a manual test. However, this means that your tests will run more slowly, and it does not really guarantee that the product will be ready for each subsequent step in the test.

Often, the number of tasks that require waiting is limited, so you can write shared code for this. (Typical examples might be "Wait for a project to be created" and "Wait for the editor to finish loading".) It is important to factor this code and keep it in one place, because this code is often one of the parts of an automated test that changes most frequently. Good factoring gives you the flexibility to choose a bad strategy initially (for example, to wait as long the human did when recording) and then replace it with a better one as you figure out how to do so.

The simplest type of waiting that UI Automation frameworks encode is waiting for a UI element to appear. For example, if you click Edit -> Find and you then want to type text in the “Find what” text box, waiting for the Find dialog box to appear might be all you need to do.

Another simple waiting strategy is to wait for a value to be read by your verification methods. For example, if a test must type a long value into a text box and you need to make sure that the text has been completely entered, an easy way to check is to read the value from the text box repeatedly until the correct value is observed or a reasonable timeout has elapsed.

When an action requires waiting logic, other actions will likely need similar waiting logic. In that case, all tests that involve the action should use the same waiting logic. It is a good practice to factor the waiting logic itself, and also to factor the action that requires the wait and to have it call the waiting logic directly. This ensures that all tests that involve the action perform the waiting logic that represents your best strategy, and other actions that need waiting logic can share the best implementation. Over time, the implementations of waiting strategies and the strategy that you use are likely to change.

Tools

This section provides a preliminary list of the tools available for creating, debugging, profiling, and testing WPF applications. In the current release of the document, we list tools for performance profiling. Other tools will be covered in future editions.

TestApi
Updated for the fifth edition

TestApi is a library of test and utility APIs that enables developers and testers to create automated tests for WPF applications, Windows Forms applications, and other .NET Framework and Win32 applications in general. The development of the library is sponsored by the WPF team at Microsoft.

TestApi provides a set of simple, documented, componentized, and layered test APIs that complement this guide and the materials available on the WPF Testing blog.

The TestApi package contains the following elements:

· Binaries. Binaries and symbol files are provided for direct inclusion in projects.

· Documentation, which includes MSDN-style API documentation and high-level conceptual documents describing testing areas and patterns.

· Source code. The complete source code of the library is released with an Ms-PL license.

· Samples. Complete project samples with walkthrough documentation are included, which demonstrate how to use the library from within popular test suites such as Visual Studio Team System, NUnit and xUnit.

The library is available on http://codeplex.com/testapi. Today, the TestApi library provides the following areas and can save you significant time when creating tests:

· Input injection APIs.
· Visual verification APIs.

· Automatic application control APIs.
· A full-featured command-line parser.
· WPF dispatcher helpers.
· UIA helpers.

As the library evolved we will be providing APIs for additional areas. The feature roadmap is available on http://codeplex.com/testapi.

The examples below demonstrate how to use TestApi in your automated tests.

TestApi Example 1 – Input Injection

Input injection is the act of simulating user input. The code below demonstrates how to use the Mouse and Keyboard classes provided by TestApi to simulate user input:
//

// EXAMPLE:
// Discover the location of a TextBox with a given name, then simulate a mouse click

// and keyboard input on it
//

string textboxName = “ssnInputField”;

AutomationElement textBox = AutomationUtilities.FindElementsByName(

 AutomationElement.RootElement,

 textboxName)[0];

Point textboxLocation = textbox.GetClickablePoint();

//

// Move the mouse to the textbox, click, then type something

//

Mouse.MoveTo(textboxLocation);

Mouse.Click();

Keyboard.Type(“Hello world. ”);

Keyboard.Press(Key.Shift);

Keyboard.Type(“hello, capitalized world.”);

Keyboard.Release(Key.Shift);
For more information, refer to the TestApi documentation or to the article “Introduction to TestApi – Part 1: Input Injection APIs”.
TestApi Example 2 – Command-Line Parsing

TestApi provides a layered command-line parsing API through the use of the CommandLineDictionary and CommandLineParser classes. The code below demonstrates the basic command-line parsing facilities in the library:
//

// EXAMPLE: Parsing a command-line such as "RunTests.exe /verbose /testId=123"

//

using System;

using Microsoft.Test;

public class Program

{

 public static void Main(string[] args)

 {

 CommandLineDictionary d = new CommandLineDictionary(args);

 bool verbose = d.ContainsKey("verbose");

 int testId = Int32.Parse(d["testId"]);

 // use the parsed command-line parameters

 }

}

TestApi provides facilities for strongly-typed command-line parsing too as demonstrated by the code below:

//

// EXAMPLE:

// Sample for parsing the following command-line:

// Test.exe /verbose /runId=10

// This sample declares a class in which the strongly typed arguments are populated

//
public class CommandLineArguments

{

 bool? Verbose { get; set; }

 int? RunId { get; set; }

}

CommandLineArguments a = new CommandLineArguments();

CommandLineParser.ParseArguments(a, args);
For more information, refer to the TestApi documentation or to the article “Introduction to TestApi – Part 2: Command-Line Parsing APIs”.

TestApi Example 3 – Visual Verification

Visual verification is the act of verifying that your application or component is displayed correctly on screen. TestApi provides a fairly complete set of visual verification APIs. The following example demonstrates one of the provided visual verification approaches, through the use of the Snapshot and the ShapshotToleranceMapVerifier classes:

//

// EXAMPLE: Verify the correct display of a window.

//

// Take a snapshot, compare to the master image and generate a diff

Snapshot actual = Snapshot.FromWindow(hwndOfYourWindow,);

Snapshot expected = Snapshot.FromFile("Expected.png"));

Snapshot difference = actual.CompareTo(expected);

// Load the tolerance map. Then use it to verify the difference snapshot

Snapshot toleranceMap = Snapshot.FromFile("ExpectedImageToleranceMap.png");

SnapshotVerifier v = new SnapshotToleranceMapVerifier(toleranceMap);

if (v.Verify(difference) == VerificationResult.Fail)

{

 // Log failure, and save the actual and diff images for investigation

 actual.ToFile("Actual.png", ImageFormat.Png);

 difference.ToFile("Difference.png", ImageFormat.Png);

}
For more information, refer to the TestApi documentation or to the article “Introduction to TestApi – Part 3: Visual Verification APIs”.
UI Automation Tools

The following list provides information about UI automation tools.

· UI Spy (UISpy.exe) is a graphical user interface (GUI) application that can be used to gather UI Automation information for both provider and client development and debugging. UI Spy is included in the Windows Software Development Kit (SDK).
· UIAutoCmd is a command-line tool with capabilities similar to those of UI Spy.

· UI Automation Verify (UIA Verify) Test Automation Framework - UIA Verify is a test automation framework that features the User Interface Automation Test Library (UIA Test Library) and Visual UI Automation Verify (Visual UIA Verify), a graphical user interface tool.

· UI Accessibility Checker (or AccChecker) is a tool that enables testers without prior experience in accessibility to easily discover potential problems with Microsoft Active Accessibility (MSAA) and to discover other accessibility problems in UI implementations.

· MSAABridge exposes UI Automation information to Active Accessibility clients. The primary goal of bridging UI Automation to Active Accessibility is to provide existing Active Accessibility clients the ability to interact with any framework that has implemented UI Automation.

· NUnit in conjunction with UI Automation Framework can be used to perform unit test of WPF controls.

· White UI Test framework - an open source extension for the NUnit open source test framework. The tool uses the System.Windows.Automation namespace to access UI pages and controls for test purposes. It can support testing Win32, Win Form, WPF, and SWT (java) applications.

The following list provides information about shows some third-party UI Automation testing tools that are often used outside Microsoft:

· TestComplete. This tool has XAML/WPF application testing support.

Debugging Tools

Updated for the fifth edition

The following list provides information about debugging tools for WPF.

· Snoop. This is a WPF application debugging utility that simplifies visual debugging of WPF applications.
· Mole for Visual Studio by Karl Shifflett, Josh Smith, and Andrew Smith: A Visual Studio visualizer that enables users to drill into and edit objects at run time.
· Crack.NET by Josh Smith: A debugger visualizer that enables users to view and alter any and all objects on the managed heap at run time. A blend of Snoop and Mole.
· WinDBG with SOS by Microsoft: A low-level debugging tool with a lightweight GUI. The SOS extension included with the .NET Framework adds specific managed debugging support.
Performance Profiling Tools

Updated for the fifth edition

The following list provides information about performance-profiling tools for WPF.

· Performance Profiling Tools for WPF by Microsoft

· Event Trace. This tool is used for analyzing events and for generating event log files.

· Perforator. This tool is used for analyzing rendering behavior.
· ETW Trace Viewer. This tool can record, display, and browse Event Tracing for Windows (ETW) log files in a WPF user-interface format.

· Visual Profiler. This tool profiles the use of WPF services by elements in the visual tree, such as layout and event handling.

· Working Set Analyzer. This tool analyzes the working-set characteristics of an application.
· .NET Memory Profiler by SciTech Software: A tool that enables leak detection and improved memory usage through manual inspection, memory snapshots, memory profiling, and automated testing.
· CLR Profiler by Microsoft: A memory profiler that displays information about managed allocations; has fewer features than the .NET Memory Profiler but can be downloaded free of charge.
WPF Application Design and Development Tools

Updated for the fifth edition

The following table provides information about several tools for creating WPF applications: Expression Design, Expression Blend, and Visual Studio 2008. The table lists the areas of WPF for which they provide support.

	
	Expression Design
	Expression Blend
	Visual Studio 2008

	Layout
	Static, absolute positioned
	Dynamic
	Dynamic

	Styling
	No
	Visual Editor
	No

	Templating
	No
	Visual Editor
	No

	Resources
	As export option
	Visual Editor
	No

	Code support
	No
	Basic editor
	Rich IntelliSense

	XAML roundtrips
	One-way
	Yes
	Yes

	XAML exporting
	Limits capabilities early to prevent lossiness
	Yes
	Yes

	Animation
	No
	Visual editor
	XAML editor only

For additional information about development and design tools for WPF, see the white paper The New Iteration by Karsten Januszewski and Jaime Rodriguez on the Windows Client Web site.

XAML Editing Tools and Visual Studio Add-ins

New for the fifth edition

The following list provides information about additional tools for creating WPF applications.

· XAML Power Toys. A Visual Studio 2008 SP1 Multi-AppDomain Add-In that extends the XAML editor and enables developers to lay out and maintain line-of-business (LOB) application forms using the UI controls from WPF and Silverlight, including the WPF Toolkit.
· XAMLPad. This is a basic visual editor for Extensible Application Markup Language (XAML).

· ZAM 3D by Electric Rain. This tool provides developers and designers with a quick and easy solution for creating 3D interface elements for WPF-based applications. It also provides a 3Ds-to-XAML and dxf-to-XAML converter.
· XamlCruncher by Charles Petzold. A XAML editor similar to XamlPad that renders objects in real time. Adds additional features to those provided by XamlPad and is open-source.
Other Useful Tools and Resources for WPF Developers and Testers

The following list provides information about additional tools for creating WPF applications.

· Reflector for .NET. This tool is a class browser, explorer, analyzer and documentation viewer for .NET Framework types. Reflector lets you view, navigate, search, decompile, and analyze .NET Framework assemblies created in C# or Visual Basic, or in MSIL.

· Trace sources in WPF .This is a blog entry that provides how-to information for adding various trace sources available in WPF in order to get debugging details about an application.

· ShowMeTheTemplate! This is a tool for exploring the templates (data, control, items panel, and so on) that come with the controls that are built into WPF.
· WPF Content Control Viewer. This is a tool that gets the content of a control.
Resources

To be covered in future editions.

Acknowledgements

The authors would like to thank the following people (in alphabetical order) for their contributions to this document.

	Contributor
	Content

	Alexis Roosa
	Stress and Stability Testing, Tools, reviewer.

	Alik Khavin
	Globalization and Location Testing.

	Andre Needham
	Security Testing.

	Anne Gao
	Introduction; Introduction to Software Testing; Introduction to the WPF Programming Stack; Test Methodology, Planning, and Strategies; UI Testing; Accessibility Testing; Custom Control and Extensibility Testing; Tools; sample solution; reviewer.

	Atanas Koralski
	Custom Control and Extensibility Testing; reviewer.

	Ivo Manolov
	Document idea and skeleton; Introduction; Suggested Roadmap; Introduction to the WPF Programming Stack; Data-Driven Testing; TestApi, reviewer.

	Lester Lobo
	Discovery of UI Elements sample; sample project, Integration and Scenario Testing, reviewer

	Nathan Anderson
	Integration and Scenario Testing

	Masahiko Kaneko
	Accessibility Testing, reviewer

	Michael Hunter
	Introduction to Software Testing; Test Methodology, Planning, and Strategies; reviewer.

	Matt Galbraith
	Discovery of UI Elements sample; Considerations for WPF Browser Applications, reviewer.

	Pu Li
	Media Testing.

	Ranjesh Jaganathan
	Integration and Scenario Testing

	Scott Louvau
	Manual Testing and Record-and-Play.

	Steven Galic
	Visual Media Validation; Verification of Animations and Other Transitions.

	Tim Cowley
	Accessibility Testing.

	Varsha Mahadevan
	Custom Control and Extensibility Testing; reviewer.

Reviewers: Alan Page (Engineering Excellence), Brian McMaster (Client Development Tools), Corom Thompson, Daniel Marley, Dennis Cheng, John Gossman, Jason Grieves (WEX PM), Laura Ruby (TwC Solutions & Outreach), Michael Shim, Patrick Danino, Paul Harrington (Visual Studio Platform developer), Peter Antal, Rob Relyea, Scott Louvau (Web Development Tools team), Sean Hayes (Accessible Technology), Shozub Qureshi, Stephen Coy, Zia Rahman Mohammad.

Editors: Mike Pope (ASP.NET User Education team), David Carlson (.NET Framework User Education team).

Appendix

A1. Building a WPF Application Test Suite by Using VSTS, NUnit, or xUnit

New for the fifth edition

VSTS (Visual Studio Team System), NUnit, and xUnit are test harnesses that can all be used as a basis for building comprehensive WPF test suites. This section provides a quick introduction to all of these suites and provides specific guidance for creating and deploying a WPF test suite.

VSTS is a much more comprehensive suite than NUnit and xUnit, providing various versioning, workitem and bug tracking, reporting, and analysis facilities that are not available in NUnit and xUnit and are not discussed here. VSTS also provides manual testing facilities.

The TestApi package (http://codeplex.com/TestApi) provides samples of MSTest/VSTS, NUnit, and xUnit WPF application tests as well as most of the content available here.

Quick Guide to MSTest / VSTS

Visual Studio Team System (VSTS) is a comprehensive platform for creating and managing automated and manual tests. VSTS provides unit-testing capabilities, both through an interface integrated in Visual Studio itself (see Walkthrough: Creating and Running Unit Tests) as well as with a simple command-line utility known as MSTest.

The unit testing capability in Visual Studio is referred to with several different names: VSTS, MSTest, and VSUnit. This document refers to it as MSTest.
The MSTest tests are typically packaged in a DLL. A class can expose one or more test methods. The fundamental rules for constructing an MSTest test are simple:

· Any class containing test methods must be marked with the [TestClass] attribute.

· Test methods are marked with the [TestMethod] attribute.

· Test results are verified by using the methods of the Assert class (for example, Assert.IsTrue).

· Expected exceptions are marked with the [ExpectedException] attribute, applied to the method where the exception is expected.

The following simple class demonstrates MSTest test code.

using System;

using Microsoft.VisualStudio.TestTools.UnitTesting;
[TestClass]
public class SampleTests
{
 // The following test demonstrates the use of Assert methods to assert an

 // expected test result.
 [TestMethod]
 public void TestThatAlwaysPasses()

 {

 Assert.IsTrue(10 > 5, "10 is greater than 5 (still!)");

 }
 // The following test demonstrates the use of the [ExpectedException] attribute

 // to assert that an expected exception is thrown within the test method.
 [TestMethod]
 [ExpectedException(typeof(ApplicationException))]
 public void TestThatExpectsAnException()

 {

 SomeThrowingMethod();

 }

 private void SomeThrowingMethod()

 {

 throw new ApplicationException();

 }

}
The test project needs to include the Microsoft.VisualStudio.TestTools.UnitTesting namespace and reference the following DLLs:

· Microsoft.VisualStudio.QualityTools.UnitTestFramework.dll

· Microsoft.VisualStudio.TeamSystem.Data.UnitTesting.dll

Quick Guide to NUnit

NUnit is probably the most popular free unit testing framework for .NET applications. NUnit is available at http://nunit.org. For more information, refer to the “NUnit Quick Start” section for the current stable release. The Quick Start tutorial for release 2.4.8 (the stable release at the time of writing of this document) is available on http://nunit.org/index.php?p=quickStart&r=2.4.8.

NUnit tests are packaged in a DLL. A class can expose one or more test methods. The fundamental rules for constructing a NUnit test are simple:

· Any class containing test methods must be marked with the [TestFixture] attribute.

· Test methods are marked with the [Test] attribute.

· Test results are verified by using the methods of the Assert class (for example, Assert.IsTrue).

· Expected exceptions are marked with the [ExpectedException] attribute, applied to the method where the exception is expected.

The following simple class demonstrates NUnit test code.

using System;

using NUnit.Framework;
[TestFixture]
public class SampleTests
{
 // The following test demonstrates the use of Assert methods to assert an

 // expected test result.
 [Test]
 public void TestThatAlwaysPasses()

 {

 Assert.IsTrue(10 > 5, "10 is greater than 5 (still!)");

 }
 // The following test demonstrates the use of the [ExpectedException] attribute

 // to assert that an expected exception is thrown within the test method.
 [Test]
 [ExpectedException(ExceptionType=typeof(ApplicationException))]
 public void TestThatExpectsAnException()

 {

 SomeThrowingMethod();

 }

 private void SomeThrowingMethod()

 {

 throw new ApplicationException();

 }

}
The test project needs to include the NUnit.Framework namespace and reference NUnit.Framework.dll.
Quick Guide to xUnit

xUnit is a free unit testing framework, inspired by NUnit, and available at http://codeplex.com/xunit. xUnit has the following characteristics:

· Simplifies the development of unit tests, removing some unnecessary attributes.

· Introduces additional capabilities, such as state management and transaction support, data-driven testing support, specifications test support, and tracing ability.

· Makes use of new features of the .NET Framework, such as generics, anonymous delegates, and extension methods.

For more information, see Why did we build xUnit.net? For a concise comparative study, see How does xUnit.net compare to other .NET testing frameworks?

xUnit tests are packaged in a DLL. A class can expose one or more test methods. The xUnit loader traverses all classes in the DLL and executes those that contain test methods.

The fundamental rules for constructing an xUnit test are simple:

· Test methods are marked with the [Fact] attribute.

· Test results are verified by using the methods of the Assert class (for example, Assert.True).

· Expected exceptions are marked with the Assert.Throws method.

· Data-driven test methods are marked with the [Theory] attribute (instead of [Fact]). Specific variations are fed in with the [InlineData(…)] attribute.

The following simple class demonstrates xUnit test code.

using System;

using Xunit;
using Xunit.Extensions;
public class VisualVerificationTests

{
 // The following two tests demonstrate the use of Assert methods

 // to assert an expected test result.

 [Fact]
 public void TestThatAlwaysPasses()

 {

 Assert.True(10 > 5, "10 is greater than 5 (still!)");

 }
 [Fact]
 public void TestThatExpectsAnException()

 {

 Assert.Throws<ApplicationException>(

 delegate

 {

 SomeThrowingMethod();

 });

 }

 private void SomeThrowingMethod()

 {

 throw new ApplicationException();

 }

 // The following test demonstrates the use of the [Theory] attribute

 // and the [InlineData] attribute to enable data-driven tests.

 [Theory]

 [InlineData("WA", 98103)]

 [InlineData("WA", 98052)]

 [InlineData("CA", 90010)]
 public void TestWithVariations(string state, int zip)

 {

 Assert.InRange<int>(zip, 10000, 99999);

 }

}
The test project must include the Xunit namespace and reference xunit.dll. To enable data-driven tests, the test must also include the Xunit.Extensions namespace and reference xunit.extensions.dll.

Best Practices for Building a WPF Application Test Suite

In general, building a suite for testing of WPF applications and components is not different from building a suite for testing of any .NET Framework application. The following are some important factors that should be considered when building a WPF test suite.

In-process and out-of-process testing

A typical WPF test suite consists of unit tests, in-proc and out-of-proc functional and scenario tests, and various “fundamentals” tests (such as performance and stress). In-proc and out-of-proc functional and scenario tests are an important category, which comes with its own challenges and peculiarities.

Typically, you need to employ a combination of in-proc and out-of-proc tests to ensure proper test coverage. Out-of-proc tests may be more realistic, but they incur an additional synchronization burden (monitoring the target application, reacting to events). In-proc tests can be easily integrated in the application, but they often require creation of an internal testing façade to prevent them from taking unintended dependencies on application internals, which can result in poor maintainability of the tests.

The TestApi package (http://codeplex.com/testapi) includes test APIs that are specifically targeted at out-of-proc and in-proc application control.

Data-driven tests

It is important for a test suite to use a data-driven testing technique. The section on Data-Driven Testing earlier in this document provides an overview of this important technique. VSTS/MSTest and xUnit provide data-driven testing support out of the box, and there are data-driven extensions for NUnit.

Tests and test harnesses integrated in the build environment

It’s always a good idea to store and build the tests alongside the tested code. All test metadata should ideally be kept alongside the tests, so that a developer can build and execute the tests without having any server dependencies. Test authors some times have an urge to keep test data and metadata in a database, which sounds like a good idea, but has serious source code versioning and branching drawbacks.
Ideally tests runs would also be integrated as part of the post-build process, thus preventing defects from entering the codebase in the first place. The xUnit package for example provides a MSBUILD task that accomplishes this.

State management

Some tests change the state of the system during their execution. These changes can range from copying files, to installations, to system parameter changes such as locale, DPI, theme, and so on. It is a good idea to construct a common state-management strategy (which includes recording and reverting state) early in the test development effort to avoid later high maintenance and refactoring costs.

A2. WPF Data Binding and Debugging

The second edition of this document focuses on resources. There are many good resources for information about WPF data binding and debugging. For information about data binding, see the following articles and blog posts:

· The Data Binding article in the WPF section of the MSDN Web site.

· The list of data-binding how-to topics in the WPF section of the MSDN site.

· Beatriz Costa’s blog, which includes many useful data-binding tips.

For debugging, the following blog entries are good resources:

· The entry How do I debug WPF Bindings? in Beatriz Costa’s blog.

· The entry Trace Sources in WPF in Mike Hillberg's blog.

A3. WPF Interoperability

The following articles in the WPF section of the MSDN Web site provide information about WPF interoperability with Win32.

· WPF and Win32 Interoperation Overview
· Tutorial: Create a Win32 Application Hosting WPF Content
· Tutorial: Create a WPF Application Hosting Win32 Content
· Windows Forms and WPF Interoperability Input Architecture
· Windows Forms and WPF Property Mapping
· Windows Forms and WPF Interoperability Input Architecture
· Windows Forms and WPF Property Mapping
· Windows Forms Controls and Equivalent WPF Controls
· Migration and Interoperability How-to Topics
The document WPF for those who know Windows Forms on the MSDN blogs Web site provides very useful comparisons between Windows Forms and WPF for those who already have experience in Windows Forms and who want to learn WPF.

The following articles and blog posts provide additional information.

· WPF Interoperability FAQs on the WindowsClient.NET Web site.

· The entry WPF-Win32 Interop Part 1: Hosting WinForms Controls (DataGridView) in WPF Windows in Ivo Manolov’s blog.

· The entry WPF-Win32 Interop Part 2: Hosting Win32 Controls (ListBox) in WPF Windows in Ivo Manolov’s blog.

A4. Considerations for WPF Browser Applications

New for the fifth edition

The following are common considerations for XBAP applications.

Common Approaches to Testing XBAPs

· Test the application's functionality from inside itself. This means that (a) the app must have some special knowledge about testing itself and (b) for many scenarios the app will need to be fully trusted to "drive" itself, such as being able to close itself.

· Drive the app to be tested externally. The vast majority of the XBAP automation works this way. Once the app has started, use the WPF UIAutomation APIs to control the app and the browser itself. It's also a nice way to make sure that your app is accessible, and to find out what sort of accessibility experience users will have. Make sure to set the "Name" property (or x:Name) on any control you are interested in manipulating externally.

CAS Considerations for Testing XBAPs

Trust level. Test your application with the same trust level that it will run with. Remember that the requested permission set, not the zone of origin, determines application trust. Therefore, Internet zone applications running from the local machine still run with Internet zone permissions, and full-trust applications will not be allowed to run from anywhere but the local machine unless Trusted Publishers elevation has occurred.

Drive automation externally. Some navigations require user initiation in partial trust, and they will be blocked unless an external application or user has begun the chain of input leading to the action (for example, navigation away from the application), and a self-driven app cannot produce input to itself.

Use UIAutomation APIs to find and invoke (or click) the application. The alternative here is to use an APTCA assembly in GAC for full-trust behavior. (Be very careful what you elevate!) The downside to this approach is that you may mask scenarios that do not work in partial trust by using this broker assembly in the GAC, which may or may not be present on the final customer's machine.

ClickOnce Considerations for Testing XBAPs

Typically you will want to clear the online application store before starting tests. Failure to do so can result in running "stale" versions of the application being tested.

· To clear the online store (SDK needed): Mage.exe -cc
· To clear the entire store: Delete %USERPROFILE%\Local Settings\Apps\2.0
Site of origin considerations

Often applications access files or services on their site of origin. This can lead to difficulty in testing applications when the test server is not the same as the real server.

· Avoid any hard-coded dependency on the server it is deployed from. Common scenarios that will run into this are Web services and loose file content.

· Test using real or simulated different sites-of-origin to reveal this.

· Review code, modify server name.

· When issues are found use BrowserInteropHelper.Source to replace the hard-coded URL with the deployment URL.

What if I can’t test from real server?

The following command will launch your application and (for CAS purposes) treat whatever the argument passed to debugSecurityZoneUrl as your "site of origin".

PresentationHost.exe -debug <Path to app> -debugSecurityZoneUrl <your real site>

Your app will need to have some knowledge of this, however, because you will not be able to rely on BrowserInteropHelper.Source for the accurate deployment URI when running in this mode.

Browser Considerations for Testing WPF Browser Applications
· ReadyState is your friend! When testing on Internet Explorer, you can block automation based on the value of readyState. See the XBAP loading UI forum post for more details.

· Get the browser to a known, consistent state before tests execute.

· Disable blocking dialogs. Disable first-run UI by changing Internet Explorer settings, or use Process Monitor to determine what you need to put in a .reg file to disable the first-run UI.

· Check any browser-setup automation on all supported platforms.

· Windows Server SKUs: Add your test site(s) to the Trusted Sites list, disable the server’s Enhanced Security configuration, or plan to automate clickthrough of this UI.

· Be very careful of your application’s input handling in the browser. There are certain key combinations that cannot be overridden, which can cause unintended effects.

· Certain Alt- and Ctrl- key combinations are localized; they are different in different OS locales. If you handle Alt, Ctrl, or Function key input in your browser app, you need to find out if these combinations are already defined in any locale you intend to support.

Test A

Test B

Test C

Test D

Test A,B,C,D

Test A

Test B

Test C

Test D

Test E

Test F

Test G

Test E

Test F

Test B,E,F

Test C

Test D,G

Test A,B,C,D,E,F

An event is any occurrence that the system is designed to respond to. An example in the Southridge Realty application is a user cancelling the search option

Page 1 of 84

