PAGE

[image: image1.jpg]% Windows Server System

[image: image2.png]Microsoft

Internet Security &
Acceleration Server 2006

ISA Server 2006 Firewall Core

White Paper

Published: June 2006

For the latest information, please see http://www.microsoft.com/isaserver/
Table of Contents

3Introduction to the ISA Server 2006 Firewall Core

3NDIS and the Windows Networking Stack

4Firewall Engine (Firewall Packet Engine)

4Firewall Service

4Application Filter API

4Web Filter API

5Policy Engine

6Details of the ISA Server 2006 Firewall Core Components

7Firewall Engine (Firewall Packet Engine)

8Connection Rules, Connection Elements, and Creation Elements

10Eliminating Common Intrusion Attempts

14Kernel-Mode Policy

16Rules Engine (Policy Engine)

17Firewall Service

18Lockdown Monitor

18Connectivity Monitoring

18Logging

19Listener

19Server Publishing

20Firewall Client Listener

20DNS Cache

21RADIUS

21Statistics Provider

21Dial-On-Demand

21Firewall Chaining

23Summary

Introduction to the ISA Server 2006 Firewall Core

Microsoft® Internet Security and Acceleration (ISA) Server 2006 is an integrated firewall, remote access virtual private network (VPN), site-to-site VPN, Web proxy, and caching server solution. ISA Server 2006 can be configured to act in all of these roles or any subset of them. This enables ISA Server to provide a flexible network security solution for businesses of all sizes.

The ISA Server 2006 security model is built around the firewall core. The ISA Server 2006 firewall core features provide an anchor to all ISA Server roles as a network security device. The discussions in this white paper are limited to the ISA Server 2006 firewall core. Other ISA Server components such as Web Proxy Filter, specific applications filters, or the ISA Server 2006 VPN extensions are not discussed except as they relate to the ISA Server 2006 firewall core services.
The ISA Server firewall core depends on the following components and their interactions:

· Network Driver Interface Specification (NDIS) and the Microsoft Windows® Networking Stack

· ISA Server Firewall Engine (also known as the Firewall Packet Engine)

· Microsoft Firewall service

Figure 1 provides a conceptual view of the ISA Server 2006 kernel and user-mode components and displays the relationships between the components. The Firewall Engine and Windows networking components are in kernel mode, and components of the Policy Engine are accessible in kernel mode by the Firewall Engine. The remainder of the ISA Server 2006 architecture runs in user mode.

[image: image3.emf]Policy

Engine

Firewall Engine

NDIS

TCP/IP Stack

Firewall Service

Application Filter API

Web Proxy Filter

SMTP

Filter

RPC

Filter

DNS

Filter

APP

Filter

Web Filter API (isapi)

Web

Filter

Web

Filter

Policy

Store

User

Mode

Kernel

Mode

Figure 1 ISA Server 2006 components

NDIS and the Windows Networking Stack

At the lowest layers of Figure 1, you see the NDIS and the TCP/IP protocol stack. Both these components of the Windows operating system run in kernel mode. Enhancements to the Windows networking stack enable developers to hook into the networking stack at a very low level to access packets for filtering and other services before they are fully processed by the operating system. ISA Server 2006 takes full advantage of those programming interfaces to improve packet and application-layer filtering and firewall performance.

Two specific hooks used by ISA Server 2006 include the packet filter hook and firewall hook. These are located at the bottom and top of the Windows networking stack, respectively. While NDIS and the TCP/IP protocol stack are parts of the operating system, the remaining blocks in the diagram represent ISA Server 2006 components.

Firewall Engine (Firewall Packet Engine)

The Firewall Engine (also known as Firewall Packet Engine or fweng) and the Firewall service are the two components of the ISA Server 2006 firewall core. These components utilize the Windows networking stack programming hooks described earlier. At the bottom of the protocol stack, the kernel-mode Firewall Engine receives packets via the firewall TCP/IP hook. The packets are associated with a connection rule (which will be discussed later), and then packets are inspected. If the packets are authorized at this low layer, firewall policy is applied.
Handling these operations in kernel mode improves both performance and security. If the Firewall service has already authorized the packets, the Firewall Engine can create a kernel-mode data pump. This white paper examines an example of this type of processing as it relates to File Transfer Protocol (FTP) operations. After the Firewall Engine completes operations, packets continue moving through the Windows networking stack, where normal processing such as packet reassembly and routing occur.
Firewall Service

The Firewall service runs in user mode, at the top of the TCP/IP protocol stack, and it employs a hybrid architecture combining elements of both proxy and stateful inspection firewall behavior. The Firewall service performs additional packet inspection after clearance by the Firewall Engine. The Firewall service has the ability to manage traffic across multiple connections and perform associated processing, such as application filtering.

The Firewall service creates and manages connections. For each connection, there are two endpoints: one for the source and one for the destination. The Firewall service pumps data between the endpoints. The Firewall service also handles communications and connections made by the Firewall Client, which will be discussed later in this white paper.

Application Filter API

The Application Filter API is located above the Firewall service. This API provides extensibility for developers by enabling the inclusion of additional application filters written to operate on specific application-layer protocols. This enables ISA Server 2006 to adapt to new applications and application protocols that appear in the marketplace or as a result of Windows operating system updates and enhancements.
Note the Web Proxy Filter in Figure 1. In ISA Server 2006, Web Proxy Filter is an application filter and not an independent service as it was in ISA Server 2000. This change unifies the firewall architecture, which enables the Web proxy components to benefit from the security services of the Firewall service. The integration of the Web proxy services into the architecture of the Firewall service and Firewall Engine streamlines processing leading to performance benefits.

Web Filter API

Located above the Web Proxy Filter is the Web Filter API. This API is at a higher level than the Application Filter API. While the Application Filter API is focused primarily on Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) sessions, connections, and sockets, the Web Filter API specifically manages Hypertext Transfer Protocol (HTTP) and Secure HTTP (HTTPS) communications and provides processing notifications as well as other Web protocol targeted tasks.
Not depicted in Figure 1, but related to Web Proxy Filter, is the Web cache. The Web cache is written and read directly by the Web Filter API.

Policy Engine

The Policy Engine communicates with all the components of the ISA Server firewall core, both with the kernel-mode Firewall Engine and the user-mode Firewall service. In addition, the Policy Engine communicates with both layers of application and Web filters. One benefit of this arrangement is improved performance and stability, because policy is processed in kernel mode.
An overarching goal of the ISA Server 2006 core firewall architecture is to allow the firewall components to gain access to packets very early and to inspect and apply policy to the packets in the faster and more secure kernel mode. ISA Server 2006 uses a layered architecture to enable the enhanced security and performance provided by kernel-mode processing. Policy-based decisions can be made by kernel-mode components early in packet processing, and this is done without the overhead of distributing packets to another layer for policy to be read and applied.
Details of the ISA Server 2006 Firewall Core Components

This section discusses the details of the ISA Server 2006 firewall core components. As seen earlier, the firewall core components are the kernel-mode Firewall Packet Engine driver and a user-mode Firewall service.

The Firewall Engine driver is called to inspect network traffic sent and received by the firewall. It may then pass the traffic, drop the traffic, or forward the request to the Firewall service. If passed to the Firewall service, the Firewall service determines whether to pass or drop the traffic.

The Firewall service does all packet processing not handled by the Firewall Engine. The Firewall service has a collection of components that perform a number of services, including:

· Firewall traffic control, which includes:

· Rules engine

· User-mode data pump

· Server publishing

· Firewall client listener

· Connection limits

· Firewall support services, which includes:

· Domain Name System (DNS) cache

· Connectivity monitoring

· Lockdown monitor

· Network configuration detector

· Dial on demand

· VPN interface

· Firewall management, which includes:

· Logging

· Statistics provider

· System infrastructure, which includes:

· Buffer management

· Sockets and socket pools

· Thread pool

Figure 2 depicts the structure of the firewall core and its associated components.

[image: image4.png]User
Mode

Kernel
Mode

Fitar Fiter

Userode |[NS
Data Pump || Cache

(WSPSRY)

RRAS

VRN
Plugin

oo | qun [o,
o Fowmion
Oumand i ncn
Sarr camectnty || satca
Publishing VeN Monitor Provider
s Miaaiicare
To o | e | oo |
D i)
TCP/IP Stack
Firewall Engine
Fweno)

NDIS

Figure 2 Firewall core structure

The remainder of this white paper focuses on the technical details of the ISA Server 2006 Firewall Engine driver and Firewall service.

Firewall Engine (Firewall Packet Engine)

The Firewall Engine is a kernel-mode driver. (The driver name is fweng. The file name is fweng.sys). The Firewall Engine driver is called whenever network traffic arrives or leaves an ISA Server network interface and modifies it if necessary. No network traffic is sent if the Firewall Engine driver does not allow it.

Note The Firewall Engine driver is the root of the firewall dependency tree. Stopping the Firewall Engine driver (by using net stop fweng /y at the command prompt) also stops the other firewall components, which opens the computer to all network traffic. In contrast, stopping the Firewall service (by using net stop fwsrv at the command prompt) places the ISA Server computer in lockdown mode and allows only a limited set of protocols to and from the ISA Server computer itself.

The Firewall Engine driver hooks into the Windows networking protocol stack at two places. The first place is at a point early in packet processing, after the Internet Protocol security (IPsec) driver, but before any reassembly is done. This can be considered as a filter layer between layer 2 (Media Access Control) and layer 3 (Network). This hook into the Windows networking stack allows ISA Server 2006 to inspect traffic before it gets to the first layer (Network or layer 3) of the operating system’s TCP/IP protocol stack. Because of this low-level hook into the Windows networking stack, the driver protects the Windows TCP/IP protocol stack from attack.

At this level, the driver performs:

· Intrusion detection.

· Spoof detection.

· IP options policy checking.

· Logging dropped packets (if configured to do so).

The second location where the Firewall Engine driver hooks into the Windows networking stack is at the Windows TCP/IP protocol stack. This allows the Firewall Engine driver access to packets before they arrive at processes running on the ISA Server computer itself.

For example, ISA Server 2006 includes a feature called port stealing that allows the firewall to inspect traffic intended for a service running on the ISA Server computer, before the service receives it. (Consider a Simple Mail Transfer Protocol (SMTP) server listening at TCP port 25.) This is accomplished without any special configuration to the service. At this level, the Firewall Engine driver may also change the packet’s source and destination addresses by performing address translation.

The Firewall Engine driver is passive. After the driver registers for the two types of notifications, the Firewall Engine driver is called whenever the stack does the appropriate processing. This means the first lower hook is called whenever a packet is received, and the second higher hook is called when the Windows networking stack processes a complete Internet Protocol (IP) packet.
Note There is not a one-to-one association between fragments seen by the lower hook and packets seen by the higher hook. A packet may become fragmented into several packets. In this case, the lower hook will get fragments = n notifications per packet.
Connection Rules, Connection Elements, and Creation Elements

The Firewall Engine driver attempts to associate any packet it receives with a connection rule, based on the source IP address, protocol, and port, and the destination IP address, protocol, and port.

A connection rule has the following attributes:

· Protocol number

· Source (IP address, and port or endpoint)

· Destination (IP address, and port or endpoint)

· Source address translation (optional)

· Destination address translation (optional)

· Statistics (number of bytes transferred and last access time)

· Miscellaneous information (including checksum delta, which is used when doing address translation)

The elements listed in bold are unique to a connection rule. These elements are commonly referred to as a five-tuple. For protocols such as Internet Control Message Protocol (ICMP) that do not use TCP or UDP as a transport, the five-tuple concept can be replaced with a three-tuple by leaving out the ports as endpoints.

A connection rule is associated with a connection. A connection may have one or two connection rules, depending on whether the traffic is unidirectional or bidirectional. A connection rule is required to allow traffic through the firewall. Connection rules also have the ability to modify allowed traffic. Modification is done if address translation is required, or if traffic needs to be redirected to another port, as in the case of ISA Server port stealing.

The Firewall Engine driver maintains a list representing all currently allowed connections. Each item in the list is called a connection element. A connection element representing a TCP connection exists as long as the TCP connection lives. In contrast, a connection element representing a UDP communication has a built-in time-out that closes after a period of inactivity.

You can use the FWEngMon.exe tool, which can be downloaded at the Microsoft Download Center, to view the connection table. FWEngMon has the switches that appear in Figure 3.

[image: image5.png]Command line switches can be combined.
/Session /§ — print a list of active sessions (comnection table).
“Creations <C ~ print a list of active creation objects.
“GueryNLB /N - print a list of active NLB hook rules.
“Allow /A <From> <to> - opens up the Firewall for free access to/from
the range of IPs specified.
/NoAlloy — cancel the alloved IP range.
U = prints_verbose mode (i.e. all flags, including internal undocunmented>
71D <id> = Select a specific connection / creation element
and print detailed information about it.
/Organize /0 By Src_IP i By Dst_IP | By Svc_Port ! By Dst_Port ! By Protocol
~“Sovt list by the specified item.
/Filter /F Src_IPiDst_IPiSrc_Port Dst_Port <Port/IP> | Protocol
- Filter list by specified item.
/E <path> - export output to xnl file.
77 ~'prints a short help explaining each option.

exanples:
fuengmon /C_/Session /0 By Src_IP

= Uill print out all creations and all sessions sorted by source ip.
fuengmon /A 11.11.11.11 22.22.22.22

~ will open a hole in the Firewall from 11.11.11.11 to 22.22.22.22
fuengnon /8 /F Src_IP 10.18.16.18 Dst_Port 88

= Uill print all sessions with a source ip of 10.10.10.10

and a destenation port of §8.

Figure 3 FWEngMon switches

Figure 4 shows a list of currently defined connection elements by using the FWEngMon tool.
[image: image6.png]Active Sessions:

Source / Destination /
Protocol Source Proxy Dest. Proxy 2-way Timeout
TCP(6) 10.0.0.2:1425 207.46.236.102:21 Yes Yes

10.0.0.1:1189

57 TCPC6) 192.168.1.71:1184 207.46.198.60:80 Yes Yes

60 TCPC6) 192.168.1.71:1185 207.46.225.59:80 Yo Yo

63 TCPC6) 192.168.1.71:1186 207.46.198.59:80 Yo Yo

66 ICPC6) 192.168.1.71:1187 207.46.225.59:80 Yo Yo

69 TCPC6) 192.168.1.71:1188 207.68.178.239:80 Yo Yo

73 ICPC6) 192.168.1.71:1190 207.46.20.59:80 Yo Yo

74 TCPC6) 19216801 71:1191 Yo Yo

77 TCPC6) 192.168.1.71:1192 Yo Yo

80 TCPC6) 192.168.1.71:1193 Yo Yo

H ICPC6) 192.168.1.71:1194 Yo Yo

86 TCPC6) 192.168.1.71:1195 Yo Yo

89 TCPCE> 192.168.1.71:1196 287.46.236.182:21 Yes Yes

Figure 4 Connection elements

Figure 5 shows that with the ID switch, you can obtain a detailed look at the packets.

[image: image7.png]Protocol: TCP<6>
Foruard Rule

Source Compare: 192.168.1,71:1196
Destination Compare: 207.46.336.102:21
Bytes Sent: 883

Reverse Rule
Source Compare: 207.46.236.102:21
Destination Compare: 192.168.1.71:1196
Bytes Recieved: 1185

List Type: No Timeout

Flags: 0x0081B074

Cookie Number: 89

Last Access Before (secondsd : 194

Figure 5 Packet details

Another type of element in the Firewall Engine driver is the creation element. A creation element represents a potential for creating new connections. The Firewall Engine driver maintains a list of creation elements in parallel with the list of connection elements.
A creation element has the following attributes:

· Properties:

· Protocol number
· Source (IP address, and port or endpoint)
· Destination (IP address, and port or endpoint)
· Protocol-specific control flags (stateful inspection)
· Properties mask

· Source address range and networks

· Optional address translation (copied to the connection rule):

· Source address translation
· Destination address translation
The properties mask indicates which properties to match. The source address range and networks limit the applicable sources to match against. Address translation instructions are copied to a connection rule if a connection rule is created from the creation element. Finally, protocol-specific control flags allow stateful controls over the creation element. For example, a creation element for a TCP connection may indicate that the creation element can create only one connection (and then be removed automatically), or that it may create an infinite number of connections.

Creation elements are created:

· When there is a server publishing rule, one or more creation elements are created in anticipation of incoming connections to the published server.

· When a Firewall client uses a complex protocol requiring secondary connections, creation elements are created for the secondary connections.

· When there is an application filter enabling the creation of secondary connections, creation elements are created for the secondary connections.

· When there is a Firewall Client listener defined for a network element allowing Firewall clients to connect to the firewall, creation elements are created.

· When there is a Web listener defined for a network allowing Web proxy clients to connect to the firewall, creation elements are created.

Figure 6 shows how you can view creation elements using the FWEngMon tool.
[image: image8.png]Creation Ohjects:
Profocol Source Destination

ICPE) 9.0.9.0
ICP(6) 0.0.0.0:
ICPE> 8.8.8.8

127.0.0.1:8080

Figure 6 Creation elements viewed using FWEngMon

Figure 7 shows how you can view details of a creation element using the /ID switch.

[image: image9.png]Protoco.
Source
Destination:
TCP Offset & Flags:
Flags:

Connection Flags:

Cookie Numbex:

Has Pending Connection(s)

ICP<6> [BxFF1
8.9.6.0; [0x08080000 : 0x2080 1
16.8.9.1:8080 [Bx@BOBFFFF : 0xFFFF 1
Dx0062 [BxB0121

No—Notify(2), Multiple(),

2

Figure 7 Creation elements viewed using /ID switch

Eliminating Common Intrusion Attempts

The Firewall Engine driver includes a set of filters that recognize and protect against several types of network intrusions. The Firewall Engine driver implements stateless intrusion detection in that it protects against attacks that can be identified based on a single packet. In contrast, the Firewall service does stateful intrusion detection through application filters.

The Firewall Engine driver protects against the following types of attacks:

· IP options-based attacks

· Address spoofing attacks

· SYN attacks

· Windows out-of-band attacks

· Land attacks

· IP half scan attacks

· Ping of death attacks

· UDP bomb attacks

· Enumerated ports scan attacks

IP Options-based Attacks

Using various IP options fields (such as source routing) is a common attack vector. The Firewall Engine driver can be instructed to verify that arriving packets do not have various IP option fields set. The Firewall Engine driver can drop packets that have any option set or drop packets based on the specific IP option that is actually set.
The IP has provisions for optional header fields identified by an option type field. Options 0 and 1 are exactly one octet, which is their type field. All other options have their one octet type field, followed by a one octet length field, followed by length-2 octets of option data. The option type field is subdivided into a one-bit copy flag, a two-bit class field, and a five-bit option number. These taken together form an eight-bit value for the option type field. IP options are commonly referred to by this value. Table 1 shows this IP options information.

	Copy
	Class
	Number
	Value
	Name
	Reference

	0
	0
	0
	0
	EOOL - End of Options List
	RFC 791

	0
	0
	1
	1
	NOP - No Operation
	RFC 791

	1
	0
	2
	130
	SEC - Security
	RFC 1108

	1
	0
	3
	131
	LSR - Loose Source Route
	RFC 791

	0
	2
	4
	68
	TS - Time Stamp
	RFC 791

	0
	0
	7
	7
	RR - Record Route
	RFC 791

	1
	0
	8
	136
	SID - Stream ID
	RFC 791

	1
	0
	9
	137
	SSR - Strict Source Route
	RFC 791

	1
	0
	20
	148
	RTRALT - Router Alert
	RFC 2113

Table 1 IP options

The following list provides a description of each IP option:
· End of Options List This option indicates the end of the option list in the IP header. This might not coincide with the end of the header according to the header length. This is used at the end of all options, and not at the end of each option, and need be used only if the end of the options would not otherwise coincide with the end of the IP header.

· No Operation This option may be used between IP options.

· Security This option provides a way for hosts to send security, handle restrictions, and TCC (closed user group) parameters.
· Time Stamp The originating host must compose this option with a large enough time stamp data area to hold all the expected time stamp information. The size of the option does not change due to adding time stamps. The initial contents of the time stamp data area must be zero or IP address/zero pairs. If the time stamp data area is already full (the pointer exceeds the length), the datagram is forwarded without inserting the time stamp, but the overflow count is incremented by one. If there is some room, but not enough room for a full time stamp to be inserted, or the overflow count itself overflows, the original datagram is considered to be in error and is discarded. In either case, an ICMP parameter problem message may be sent to the source host.

· Record Route This option provides a means to record the route of an IP datagram. When an Internet module routes a datagram, it checks to see if the Record Route option is present. If it is, it inserts its own Internet address as known in the environment into which this datagram is being forwarded into the recorded route beginning at the byte indicated by the pointer, and increments the pointer by four.
· Stream ID This option provides a way for a 16-bit SATNET stream identifier to be carried through networks that do not support the stream concept. It must be copied on fragmentation and may appear at most once in a datagram.

· Source Routing Source routing is a technique where the sender of a packet can specify the route a packet should take through the network. As a packet travels through the network, each router examines the destination IP address and chooses the next hop to forward the packet. In source routing, the source (the sender) makes some or all of these decisions. In strict source routing, the sender specifies the exact route the packet must take. However, this is an uncommon scenario.
The more common method used by attackers is loose source record route (LSRR or loose source routing), in which the sender provides one or more hops that the packet must go through.
Source routing is used for the following purposes:

· Mapping the network Used with tracert to find all routes between points on the network.

· Troubleshooting Used to determine why from point "A," computers "C" and "B" cannot communicate.

· Performance A network administrator might decide to force an alternate link (such as a satellite connection) that is slower but avoids congesting the default routes.
· Hacking Loose source routing can be used in a number of ways for hacking purposes. Sometimes computers will be on the Internet but will not be reachable. However, there might another computer that forwards packets that is reachable to both sides. Someone can then reach that private computer from the Internet by source routing through that intermediate device.

· Router Alert This option can be used to alert transit routers to more closely examine the contents of an IP datagram. This is useful for new protocols that are addressed to a destination but require complex processing by routers along the path.

Address Spoofing Attacks

The Firewall Engine driver detects spoof attempts. A spoofed packet is one where the packet’s source address has been changed to look as if it were received through an adapter different than the one it came from. The Firewall Engine may also detect a spoof attack when a network element is incorrectly configured, and an incorrect routing configuration causes the packet to be sent on the wrong interface.

In network spoofing, a system presents itself as though it were a different system. For example, computer A impersonates computer B by sending computer B's IP address instead of its own as the source. Network spoofing occurs in the following manner: If computer A trusts the IP address of computer B and computer C spoofs the IP address of computer B, computer C can gain access that would be otherwise be denied. For spoofing to be successful in this example, trust must be based on IP address authentication alone.

SYN Attacks

SYN attacks take place when an attacker sends a stream of TCP SYN messages to a single server using a false source IP address. Unprotected servers allocate resources for each SYN message received and so are vulnerable to resource drain during the attack.

The Firewall Engine driver includes a SYN attack protection mechanism. This attack protection mechanism activates when the number of unacknowledged SYN packets exceeds a pre-determined limit. In this case, the driver employs internal mechanisms that prevent resources from being allocated for SYN packets.

Windows Out-of-Band Attacks

A Windows out-of-band attack takes place when a Windows system receives a packet with the "URGENT" flag set and it expects data will follow that flag. The exploit consists of setting the URGENT flag, but not following it with data. Windows out-of-band alerts notify you that there was an out-of-band denial of service attack attempted against a computer protected by ISA Server. If mounted successfully, this attack causes the computer to fail or causes a loss of network connectivity on vulnerable computers.

Land Attacks

Land attacks take place when a TCP SYN packet is sent with a spoofed source IP address and port number that matches the destination IP address and port. This attack can cause some TCP implementations to go into a loop that causes the computer to fail.

Ping of Death Attacks

A ping of death attack takes place when an IP fragment is received with more data than the maximum packet size. This attack can cause kernel buffer overflows, which causes the computer to fail.

IP Half Scan Attacks

During a normal TCP connection, the source initiates a new connection attempt by sending a SYN packet to an IP address and port on the destination system. If a service is listening on that port, the service responds with a SYN/ACK packet. The client initiating the connection then responds with an ACK packet and the connection is established. This process is commonly referred to as the three-way handshake.

If the destination host is not waiting for a connection on the specified port, it responds with a TCP RST. Most system logs do not log completed connections until the final ACK is received from the source. Sending other types of packets that do not follow this sequence can elicit useful responses from the target host without causing a connection to be logged. This attack is also known as a stealth scan because it does not generate a log entry on the scanned host.

UDP Bomb Attacks

A UDP bomb attack takes place when there is an attempt to send an illegal UDP packet. A UDP packet can be constructed with invalid values in specific fields, which can cause some older operating systems to fail when the packet is received. If the target computer does fail, it is often difficult to determine the cause.

Enumerated Port Scan Attacks

This attack takes place when an attempt is made to count the services running on a computer by probing well-known ports for a response.

All Ports Scan Attacks

This alert notifies you that an attempt was made to access more than the preconfigured number of ports. You can specify a threshold indicating the number of ports that can be accessed.

Kernel-Mode Policy

The Firewall Engine driver and Firewall service share a single implementation of the rules engine. The rules engine decides if policy allows the traffic. The following process shows how the rules engine interoperates with the kernel-mode Firewall Engine driver:

1. The Firewall Engine driver waits for a call.

2. If the traffic is a possible intrusion attempt, it is dropped (via the lower hook from IP stack).

3. Try to locate a connection element matching the packet (via the higher hook).

4. If a connection element is found, allow the packet. (Further processing might be required.)

5. If a connection element is not found, attempt to create a new connection element:

A. Try to locate a creation element matching this packet.

B. If a creation element is found, create a new connection element and allow the packet.

C. If a creation element is not found, look for the first policy rule that the packet matches. (This is only on connection establishment.)

D. If an allow rule matches, create a new connection element and allow the packet.

E. If a deny rule matches, drop the packet.

F. If matching cannot be done in kernel mode, delay the packet and request that the Firewall service handle the packet.

The actual mechanism is more complex because the Windows networking stack does not allow the Firewall Engine driver to delay a packet at this stage. To solve this problem, the Firewall Engine driver copies the packet to its own memory, and then informs the Windows networking stack to drop the packet. The Firewall Engine driver finally instructs the Firewall service to determine what to do with the packet. If the Firewall service lets the traffic through, it creates the necessary objects and then tells the Firewall Engine driver to inject this packet into the Windows networking stack (at the high hook) as if the packet has just arrived from the lower Windows networking layers. This mechanism is called the re-inject mechanism.

Connection elements are created because there is an allow rule that can be checked by either the Firewall Engine driver or the Firewall service, or when there is a creation element. The allow rules represent static rules configured by the administrator. A creation element is a dynamic mechanism through which Firewall service components can allow anticipated traffic. For example, the Firewall service instructs the Firewall Engine driver to create one creation element per published server. When a client attempts to connect to the published server, the creation element allows creating a new connection element for this connection.

The Firewall Engine driver cannot match some aspects of a connection because blocking is not allowed at this point. For example, matching user identity and performing reverse DNS name lookup are two operations that take an unspecified amount of time and are not done by the Firewall Engine driver. If the Firewall Engine driver cannot completely match policy with the information it has, the driver delays traffic and places it in a queue and then it informs the Firewall service that it must determine the appropriate rule. The Firewall Engine driver removes the packet, and any similar packets received in the interim from the queue, and continues processing normally after the Firewall service has reached a decision.

There are other cases where the Firewall Engine driver determines that it needs to send traffic to the Firewall service. Examples include when there is an application filter handling the traffic and when the traffic is to or from a Firewall client.

Kernel-Mode Data Pump

After the Firewall Engine driver creates a new connection element, it allows packets to be sent over this connection. Data transfer may be done by the Firewall service (user-mode data transfer or data pump) or by the Firewall Engine driver (kernel-mode data transfer or kernel-mode data pump). Kernel-mode data transfer is faster and more efficient but sometimes kernel-mode data pumping isn’t possible. Situations where kernel-mode data pumping cannot be used take place when:

· An application filter needs to inspect the traffic.

· One end of the connection is a Firewall client.

When establishing a kernel-mode data pump, the Firewall Engine driver needs to do the following:

· Reserve ports from the port reservation pool, which is required for network address translation (NAT) communications.

· Log the traffic. (The driver signals the Firewall service to do logging.)

· Charge the quota. (The Firewall Engine driver informs the Firewall service that a new kernel-mode data pump was created. The Firewall service determines if the connection quota has been exceeded and what actions to take.)

Lockdown Mode

A critical function of a firewall is to react to attack. When an attack occurs, it may seem that the first line of defense is to disconnect from all networks and isolate all networks and the firewall from the attackers. Although intrusion response is appropriate, normal network connectivity must be resumed as quickly as possible and the source of the attack must be identified.

The lockdown feature included with ISA Server 2006 combines the need for firewall and network isolation with the need to stay connected. ISA Server enters the lockdown mode when the Firewall service shuts down due to an attack. Lockdown mode also occurs when:

· An event triggers the Firewall service to shut down. Administrators can configure alert definitions that cause the Firewall service to shut down.

· The Firewall service is shut down manually.

When in lockdown mode, the following functionality applies:

· The Firewall Engine driver applies firewall policy. The lockdown policy consists of four system policy rules and some hard-coded settings.

· The following system policy rules enabling inbound connection to the Local Host network are still applicable:

· Allow ICMP from trusted servers to the local host.

· Allow remote management of the firewall using Microsoft Management Console (MMC), using remote procedure call (RPC) through port 3847.

· Allow Dynamic Host Configuration Protocol (DHCP) replies from DHCP servers to ISA Server.

· Allow remote management of the firewall using Remote Desktop Protocol (RDP).

Note Lockdown mode does not change the state of these system policy rules. For example, if the Allow ICMP from trusted servers to the local host system policy rule is disabled, the disabled state of this rule is copied to Lockdown policy.

· Outgoing traffic from the Local Host network to all networks is allowed. For example, a DNS query can receive a DNS response.

· No incoming traffic is allowed unless a system policy rule from the previous list that specifically allows the traffic is enabled. The one exception is DHCP traffic, which is always allowed. The UDP Send protocol on port 68 is allowed from all networks to the Local Host network. The corresponding UDP Receive protocol on port 67 is also allowed.

· VPN remote access clients and site-to-site VPN gateways cannot access ISA Server.

· Changes to the network configuration, while in lockdown mode, are applied after the Firewall service restarts and ISA Server exits lockdown mode.

· ISA Server does not trigger alerts.

· ISA Server exits lockdown mode and continues functioning when the Firewall service restarts. Any changes made to the ISA Server configuration are applied after ISA Server exits lockdown mode.

Note Troubleshooting ISA Server when the Firewall service is disabled can be difficult because operations allowed in lockdown mode are restricted. Because the Firewall service is disabled, all connections from Firewall clients fail. To test connectivity from a Firewall client, you must disable the Firewall Client. You can also enable unrestricted connectivity to and from a particular host. At a command prompt, run FWEngMon /allow from to, where from and to denote an IP address range that you want to allow. At a command prompt, run FWEngMon /noallow false to disable this IP address range. The information is not persistent and does not survive a computer restart.

Policy Change Notifications

The Firewall Engine driver receives notifications on policy changes from the Firewall service. The driver has a policy replacement mechanism allowing it to replace current policy with the new policy. Policy change notifications typically arrive within a few seconds after being written to storage.

Note There is no notification from the Firewall Engine driver that policy update is complete. One method to identify policy updates is to track CPU usage following a policy change submission. There will be two spikes in CPU activity within seconds of the submission, then a few more seconds of low activity, and then another spike. After the third spike, both the Firewall service and the Firewall Engine driver have updated policy.

Statistics Data

The driver’s statistics information, such as the number of open connections or the total number of bytes sent through the Firewall Engine driver is exposed through Windows performance counters. The performance object ISA Server Firewall Packet Engine contains a number of counters relevant to Firewall Engine driver operations.

Note Information is reported by the Firewall Engine driver through the Microsoft ISA Server Control service (isactrl). Performance Monitor receives it by making RPC calls to isactrl. No Firewall Engine driver performance data is available when isactrl is not running.

Rules Engine (Policy Engine)

The rules engine is used by both the Firewall Engine driver and the Firewall service to decide if traffic is allowed by firewall policy. The rules engine takes the following input:

· List of policy rules in storage.

· List of network rules in storage.

· The traffic’s five-tuple or three-tuple.

· User identity when applicable. User identity is known only for Firewall, Web proxy, and VPN clients. SecureNAT clients are not authenticated.

· DNS name resolution. Performed only when required by a rule.

The result of the rules engine is either an allow or deny decision. The rules engine is activated when a connection is created. The rules engine is not invoked again as the data flows through the established connection. Therefore, a change in a policy rule applies only to new connections and not existing ones.

Firewall Service

The Firewall service complements the Firewall Engine driver in that it performs all firewall operations that the Firewall Engine driver cannot perform. For example, the Firewall service:

· Performs policy decisions that cannot be made by the Firewall Engine driver.

· Handles all Firewall Client traffic.

· Handles server publishing rules.

· Performs logging (for itself as well as on behalf of the driver).

· Acts as a Web proxy.

· Hosts application filters.

The Firewall service runs with the Network Account credentials. It has the service name fwsrv, and runs in the process wspsrv.exe. The Firewall service depends on the Firewall Engine driver, the ISA Server control service (isactrl), and the logging service (MSSQL$MSFW).

Network Configuration Detector

The ISA Server network model requires networking information from both the Windows operating system and the firewall configuration database (STORAGE). Networking information in the firewall configuration database or Windows operating system might change at any time. The Firewall service reads and tracks changes to this information by using the network configuration detector.

The network configuration detector obtains information from the following sources:

· OS IPHLPR This component provides information about the network interfaces defined on the computer, whether they are enabled and connected, as well as routing table information.

· OS RAS and RRAS These components provide information about phone books and dial-up connections required for dial-on-demand.

· STORAGE This component provides information about network elements and network rules.

· Firewall VPN This component provides information about addresses shifted to and from VPN-related network elements. For example, when a quarantined VPN client is released from quarantine, its address is shifted from the Quarantined VPN Clients Network to the VPN Clients Network.

The network configuration detector combines information gathered from these sources into a single view called a snapshot. The network configuration detector then provides both this snapshot as well as a stream of change notifications to Firewall service components requiring this information. The network configuration detector tracks changes as they occur and responds immediately by notifying the other Firewall service components.

Some changes may require considerable firewall activity to complete, for example, when changes to the network configuration are reported to the server publishing component. This component calculates the new state it needs to be in. Instead of destroying the previous state and creating a new state, it calculates a state delta and performs the necessary actions. This operation takes a few seconds, so changes to the network configuration that result in changes to the server publishing state will be observed after this period of time.

Lockdown Monitor

The lockdown monitor synchronizes lockdown policy stored in the Firewall Engine driver’s registry area to the latest lockdown policy written to STORAGE. The lockdown monitor reads four specific system policy rules and copies them to a separate registry key in a format that the Firewall Engine driver can read.
Note Other than these four rules, the remainder of the lockdown policy is hard coded in the driver and cannot be modified.
The four specific system policy rules are:

· Allow ICMP from trusted servers to the local host.

· Allow remote management of the firewall using MMC (RPC through port 3847).

· Allow DHCP replies from DHCP servers to ISA Server.

· Allow remote management of the firewall using RDP.

The lockdown monitor does a one-time synchronization of the lockdown policy after the Firewall service starts running and then is idle until there is a notification that the lockdown policy has changed in STORAGE, at which point it synchronizes the driver’s registry area again. The Firewall Engine driver samples the lockdown policy in the registry when it starts, and then whenever it enters lockdown mode. Changes to lockdown policy components of system policy while the Firewall service isn’t running do not take effect until the Firewall service restarts.

Connectivity Monitoring

This component tests connectivity from the ISA Server computer to other hosts on a periodic basis. This facilitates health monitoring for connectivity issues.

Logging

The logging component writes log information to a data store. It is also capable of reading the log back.

There are two logs:

· Firewall log This is a unified log consisting of log records generated by both the Firewall Engine driver and the Firewall service. The Firewall Engine driver generates log records and sends them to the Firewall service to write.

· Web Proxy log This log records activity processed by the Web proxy application filter and is written to by the Firewall service.

The logging component supports three persistent storage targets:

· A Microsoft SQL Server™ Desktop Engine (MSDE) database installed on the ISA Server computer. This is the default configuration.

· An SQL database.

· Text files, which is in World Wide Web Consortium (W3C) extended log format or ISA Server log format.

The logging component also provides read access to the logs. It can provide information about log records as it writes them by acting as an RPC server. It also has the capability of reading log information back and providing it to clients if the log information is stored in an MSDE database by providing an RPC interface. Both capabilities are used by the management console.

Configuring Logging

Logging is configured in the Monitoring node with the Logging tab selected. Depending on which logging method is chosen, different options are available. Consider the following when configuring logging:

· MSDE is the default log method. This can be changed by the firewall administrator.

· The MSDE database uses the Local System account.

· If logging to a SQL Server database, the system policy rule named Allow remote logging using NetBios transport to trusted servers must be enabled.

· File locations for MSDE and text logging should be set on NTFS-formatted partitions.
· There is a default alert configured to stop the Firewall service if logging should stop for any reason.

Listener

A listener represents a request by the Firewall service to accept traffic from the network. A listener is the result of a creation element created by the Firewall Engine driver and a socket allocated to channel this traffic to the Firewall service.

Common scenarios where listeners are created include:

· When a component running on the ISA Server computer is the target of new connections. Examples include the Firewall Client listener (TCP port 1745) and the Web proxy listener (TCP port 8080 by default).

· When a server publishing rule uses a NAT listener to forward traffic to the published server.

Note You can identify listeners by running FWEngMon /C at a command prompt and inspecting the creation elements. Creations elements that intercept multiple connections and have no destination replacements are most likely created by listeners.

Server Publishing

The server publishing component of the Firewall service handles management tasks required for server publishing rules. A server publishing rule is more complex than an access rule and requires special handling by the Firewall service. Examples of this additional complexity include:

· Support for port redirection The TCP or UDP port clients connect to can differ from the port the server listens on. In addition, both may differ than the publishing protocol’s port.

· Support for limiting client source ports to a particular range This enables the ISA Server computer to accept connections only when a specific range of source ports are included in the connection attempt.

· Support for replacing the original client IP address Traffic sent to the published server appears as if it came from the ISA Server computer itself.

The server publishing component tracks changes to server publishing rules and adapts the existing state. Adding or deleting a server publishing rule or modifying the parameters of an existing rule triggers the server publishing component to wake up and update its state.

Server Publishing and NAT Listeners

A NAT listener is created when a server "S" is published and the address relationship between the server and its potential clients "C" is NAT S(C. This listener maintains a creation element in the Firewall Engine driver and allows traffic coming from clients to the firewall to be forwarded to the published server. A NAT listener can be created per network interface and can carry this traffic. In contrast, if all clients behind a specific network interface have a route relationship with the published server, no NAT listener is created for that network interface because the connections are routed to the destination.

For example, assume that you publish Server A on Address:Port located on Network A, so that the address relationship is NAT A(B. Because hosts on Network B cannot access Server A directly, a NAT listener is created on the firewall network interface associated with Network B. If the firewall network interface has IP address F, hosts on Network B can connect to published Server A by connecting to F:Port.

A NAT listener enables clients of either NAT or route address relationships to connect to the published server. For example, if Computer C is also in Network A, and its address relationship is ROUTE A(C, hosts on Network C can connect to Server C on Network A either by connecting directly to ServerC_Address:Port, or by using the NAT listener at F:Port.

Port Stealing

Publishing a server running on the ISA Server computer has the potential to cause a collision between the listener for the published port and the server software listening to the same port. ISA Server implements a feature called port stealing to eliminate this problem.

When publishing a server running on the ISA Server computer, the firewall does not attempt to bind to the same port that the published server binds to. Instead, ISA Server binds a different port and instructs the Firewall Engine driver to steal all traffic directed at the published server. The Firewall service intercepts this traffic. Only after the traffic undergoes policy-based inspection is the traffic sent to the published server.

In some cases, port collisions between the Firewall service and server software running on the ISA Server computer cannot be avoided. If the server software is not published by ISA Server and ISA Server is publishing another server using the same IP address and port, a collision could occur.

Note In contrast to server publishing rules, port stealing doesn’t work for Web publishing rules, which use Web listeners. Port stealing only works for server publishing rules and access rules.
For example, consider an FTP server running on the ISA Server computer binds TCP port 21 on all network interfaces and that there is a server publishing rule for another FTP server running in the Internal network. If the local FTP server binds the port before the Firewall service attempts to create a NAT listener for the published FTP server, the firewall will fail to bind to port 21. Instead, the ISA Server computer will bind a different port and steal the traffic directed at port 21 to itself and forward this traffic to the published server. The local FTP server will not receive any traffic.

Continuing the example, if the Firewall service binds to port 21 before the local FTP server is started, the local FTP server will fail to bind to port 21, potentially generating a service error event in the event log and preventing traffic from arriving at the local FTP server.

Firewall Client Listener

The FwcWsp.dll file is registered with the Windows Winsock protocol stack when the Firewall Client is installed. Any user-mode process using Winsock will have FwcWsp.dll loaded to filter its communication. FwcWsp.dll tracks all calls that the process makes to Winsock and determines which ones should be routed to the ISA Server computer. All Firewall Client mediated network operations are sent directly to the ISA Server computer and sent over a Firewall Client protocol to the Firewall Client listener (which listens on TCP port 1745).

Most communications across the ISA Server computer done by applications running on Firewall Client computers are done using Firewall Client. When a new connection is created, Firewall Client communicates with the Firewall Client listener running in the Firewall service, authenticates, and then asks to create a new connection.

In addition, DNS name resolutions to addresses that Firewall Client does not consider local are sent via the Firewall Client listener to the firewall itself. By default, all addresses defining the network element on which the Firewall Client listener is enabled are considered local.

DNS Cache

The Firewall service includes its own DNS cache component that is built on top of Windows DNS resolver. The purpose of the Firewall service DNS cache is to reduce the number of DNS queries that exit the firewall.

The DNS cache consists of three separate caches:

· A cache of DNS name-to-address resolutions

· A cache of DNS address-to-name resolutions (reverse DNS cache)

· A cache of failures to perform DNS address-to-name resolutions (negative cache)

The purpose of the negative cache is to mitigate possible denial of service attacks on the reverse cache. After a failure to locate an entry in the reverse cache, the negative cache is consulted. If the entry is found there, the firewall will not attempt to do a reverse DNS query against the Windows DNS resolver.

Entries are removed from the three caches in one of the following events:

· If during a lookup request, it is determined that an entry’s Time to Live (TTL) has been reached. ISA Server 2006 uses the TTL given by the DNS server. However, if the TTL is less than 6 minutes, it is changed to 6 minutes, or if it is higher then 6 hours, it is changed to 6 hours.

· When the cache size reaches some maximum threshold (DnsCacheSize, by default 3000) 25 percent of the entries will be removed from the cache, according to the earliest TTL.

· To reduce memory consumption, if the previous two events haven’t occurred over a pre-determined period of time, the Firewall service also traverses the three caches once every 30 minutes and removes cache entries whose TTL has expired.

The values are stored in the registry in: HKLM\SOFTWARE\Microsoft\Fpc\storage\Array-Root\Arrays\{ARRAYGUID}\ArrayPolicy\LowLevelSettings. Default values are used until they are changed through a script. The three values of the FPCLowLevelSettings administrative COM object are:

· DnsCacheNegativeTtl

· DnsCacheRecordMaxKB

· DnsCacheSize

Note Do not edit the registry to make these changes. Changes must be made via the ISA Server administrative COM.
RADIUS

This component in the Firewall service serves to copy the list of Remote Authentication Dial-In User Service (RADIUS) servers in the ISA Server storage into Routing and Remote Access. The authentication mechanism has been implemented as a Web filter and is configured on a per-rule basis.

Statistics Provider

The Firewall service provides access to some operational values that it maintains to help diagnose its state. It provides access to its own performance counters via the ISA Server Firewall Service object and to the list of active sessions via an RPC entry.

Dial-On-Demand

This component implements the Automatic Dial-Up Connection feature. A single network element is defined for automatic dial-up so that whenever traffic is directed toward that network, the firewall automatically dials it up (by using Routing and Remote Access). The dial-up connection is automatically terminated after a predetermined period of time.
The firewall automatically disables kernel-mode packet routing when an automatic dial-up network is defined, so that all traffic is sent via the Firewall service. This may have a negative performance impact. The performance impact can be realized even if no traffic is ever sent to the dial-up network.

Firewall Chaining

It is possible to chain one firewall to another. In this scenario, one firewall (called the downstream firewall) acts as a Firewall Client whose firewall is the other firewall (called the upstream firewall).

The downstream firewall determines which requests to send to the upstream firewall using an algorithm similar to the Firewall Client itself. It inspects requests, and if they are targeted at an address that is not in the local network that it received from the upstream firewall, it forwards them to the upstream firewall. Like dial-on-demand, when firewall chaining is defined, kernel-mode packet routing is disabled, resulting in possibly reduced performance.

Another important issue in firewall chaining is that the downstream firewall requires a successful retrieval of the local address table (as defined by the configuration of the network element on which the Firewall Client listener is created) and local domain table (as defined by the configuration of the network element on which the Firewall Client listener is created) from the upstream firewall to function properly. After such retrieval has been made, the information that the upstream firewall has returned is used until the next successful retrieval. If traffic is sent through the firewall before it has a chance to get the information from the upstream firewall, it will be blocked.

Another important item of firewall chaining is the scenario where the downstream ISA Server computer is chaining through a firewall to the upstream ISA Server computer. After the initial handshake on TCP port 1745, Winsock uses a wide range of client ports to connect to the upstream ISA Server computer. Because normally these ports are not open on the firewall between the ISA Server computers, you must either open all ports or change the architecture. The solution is to allow all traffic between the downstream and upstream endpoints.

Summary

ISA Server 2006 is an integrated firewall, remote access VPN, site-to-site VPN, and Web proxy and caching server solution. ISA Server 2006 can be configured to act in all of these roles or any subset of them. This enables ISA Server to provide a flexible network security solution for businesses of all sizes and with differing security requirements.

The ISA Server firewall core consists of the Firewall Engine driver and the Firewall service. The Firewall Engine driver runs in kernel mode and the Firewall service runs in user mode. The Firewall Engine driver hooks into the Windows networking protocol stack at a low level to intercept packets before they reach the Windows TCP/IP protocol stack and re-injects these packets into the stack after stateful inspection and application of firewall policy.

The Firewall service receives packets from the Firewall Engine driver for more advanced processing. The Firewall service includes an interface with the Application Filter API, which enables the Firewall service to perform policy-based inspection for application-layer protocols. In addition, the Firewall service provides an array of supporting services including DNS cache, logging, listeners, and many more.

Both the Firewall Engine driver and the Firewall service interface with the ISA Server Policy Engine. This enables ISA Server policy to be quickly and efficiently applied to packet processing that takes place both at user and kernel modes. This ensures that ISA Server is able to provide rapid and more secure communications to all connected networks.

[image: image10.jpg]% Windows Server System

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, Exchange, Internet Security and Acceleration (ISA) Server 2006, Microsoft Operations Manager, Outlook, PowerPoint, SharePoint, Windows Mobile, are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All other trademarks are property of their respective owners.
1
PAGE
Notes:

1
1

