[image: image2.jpg]e
Windows Server System

[image: image2.jpg]

Enterprise Integration

Vision Paper

Published: December 2003

For the latest information, please see http://www.microsoft.com/biztalk
Contents

1Introduction

Business Process Centric Computing
3
The Role of XML Web Services
4
Microsoft’s Products for Enterprise Integration and BPM
4
XML and BizTalk Server
5
Tying in the Information Worker
6
Human-Based Workflow with Microsoft InfoPath
8
Integration with Visual Studio .NET
8
Business Activity Monitoring
9
Conclusion
10

Introduction

Over the last ten years, the business sector made unprecedented investments in information technology. Two distinct developments drove the need for these investments: The introduction of enterprise framework applications, and the emergence of the World Wide Web, e-mail, and Internet applications.

Enterprise framework applications that were designed to reengineer core business operations include a wide range of applications including Supply Chain Management (SCM), Enterprise Resource Planning (ERP), and Customer Relationship Management (CRM). These sophisticated applications required substantial capital, specialized technical resources, and operational restructuring to implement. Companies that successfully deployed these enterprise frameworks derived significant efficiencies in their core operations that in turn translated into a competitive advantage.

Web applications and e-mail, which were typically designed for messaging and information exchange, were based on open standards and proved relatively easy to implement. Their deployment produced new capabilities and efficiencies for communicating information that resulted in improved workplace responsiveness and performance.

In companies everywhere, the proliferation of enterprise applications was accompanied by a simultaneous build-out of a computing and networking infrastructure designed to facilitate information exchange. The complications that have emerged from this proliferation of diverse technologies are due not to the multiplicity of the systems themselves, but rather to the strain on programming resources and IT budgets to make information residing in these application silos accessible and usable to other platforms, enterprise employees, and partners and customers.

With the widespread information processing and communication capabilities found in organizations today, the demand for information has become overwhelming. Every information worker with an Internet-enabled computer has the ability to access boundless information and computing functionality, though not necessarily the information or functionality that is most relevant to their day-to-day business tasks. The growing disparity between what we expect our information technology to provide, and what it actually delivers is the primary reason that enterprise application integration (EAI) and business process automation (BPA) projects are the number one IT priority in most organizations.

The problem is that enterprise framework applications consist of thousands of program modules, databases, and data files with operational procedures, controls, and access mechanisms that are extensive and rigid. Developing extended programmatic capabilities or attempting to make information accessible in ways that are not defined in these systems requires enormous resources, time, and capital because the work involved consists of numerous sequential, low-level programming tasks.

Hard-coding point-to-point integrations, is the prevailing method for information exchange. Programmers knowledgeable in the APIs of the interfacing applications develop custom programs to access a source application’s data (usually in binary format); map and convert the respective data structures; manipulate the data as required; and deliver it into the target application. This produces a tightly coupled, highly specific set of functions that exist and execute in the form of procedural code, just like the applications themselves. This type of development effort is highly linear; each step is dependent upon the completion of a previous step and cannot be broken out easily, or at all, into independent tasks executed by distributed resources. Consequently, scaling to meet a growing workload of integration projects means adding more programming resources.

The extent to which integration projects consume resources can be expressed by the N-Square equation: N* (N-1)/2, where N is the number of interface endpoints. If an organization has a fully meshed distribution matrix of just 20 inter-exchange endpoints (a very low number), 190 programmatic inter-exchanges must be developed. Because each integration interface is specialized and manifested in an encoded construct that is not modularly reusable, overall programming efficiency is not maximized by the proliferation of programming resources. As more integration requirements arise, they continue to overwhelm IT, eating up both resources and budgets. Not surprisingly, then, in most organizations, functions that require an automated solution continue to be executed on a manual basis.

An alternative integration methodology is to deploy a middle-ware integration hub or queuing platform. The purpose of these products is to capture the proprietary data formats of the enterprise framework applications, often using a provided adaptor, and then use the mapping, conversion, and transport facilities of the middle-ware platform to facilitate the data exchange between the application endpoints. Middle-ware platforms also provide support mechanisms for transactional exchanges, event monitoring, error capture, and security. While these platforms eliminate a substantial amount of procedural coding and minimize the working knowledge of endpoint behavior, they are not always feasible—they are costly, complex, and proprietary. As with point-to-point integration, highly specialized resources are required to actualize the potential efficiencies of these platforms, and the integration interfaces created remain tightly coupled, representing another manifestation of the closed system architecture that binds information to their internal workings, propagating an ongoing dependency.

Both the software development community and end users alike understand that a major impediment to using information technology more effectively throughout the enterprise is the linear and costly process of making information available and usable to multiple applications and processes. This impediment prevents businesses from being able to create agile, process-centric business environments that can organize, monitor, and modulate themselves to achieve operational equilibrium in response to both subtle and gross changes in the business environment.

Fortunately, a new computing paradigm has emerged that alleviates the inefficiencies of EAI and BPA development, and the software standards bodies have worked quickly to codify its protocol methodologies. The defining concept of this paradigm is the elevation of the integration process from the program layer to the information (document) and transport (messaging) layer. By separating information from the applications that use it, exposing it as clear text, and using self-describing XML metadata to give it meaning and structure, the information can be processed by any application capable of parsing and interpreting XML metadata. Even the operational functions and invocation methods of applications themselves can be described and exposed using XML, allowing them to be executed without regard for where they reside, how they were originally developed, or what platform they run on. This is the underlying premise of the Web Services protocols, Simple Object Access Protocol (SOAP), and Web Services Definition Language (WSDL).

Business Process Centric Computing

One of the most important impacts of this messaging paradigm is that it provides a viable and accessible solution for any process-centric requirement. A managed workflow, application integration interface, or trading partner interaction can be described, composed, and implemented by an orchestrated flow of structured XML documents and messages. These messages are then routed, transformed, and processed according to content, formatting requirements, and business rules. With integration development platforms based on this model, there is no longer a requirement to write code to access, map, and convert data formats. Nor is there a need to understand the APIs of several applications. Tightly coupled hard-coded interfaces, which require specialized programming to create, no longer exist in this paradigm. Instead information is uncoupled from its source and available for any inter-application exchanges.

XML and Web Services will profoundly affect the way in which businesses create and integrate the applications and processes that govern the operating efficiencies of their business. In the same way that e-mail and the World Wide Web made it possible for people to communicate and access information anywhere in the world, XML and Web Services will enable the fluid and automated exchange of information between applications and business processes—regardless of the applications or platforms from which the information originated. However, XML and Web Services have limited functional relevance as stand-alone technologies. They cannot be simply inserted into an organization’s existing infrastructure and expected to provide functional efficiencies, or to conform to the operational performance standards to which IT organizations are accustomed. Their value is actualized when implemented within a framework of complementary and supporting technologies that facilitate their use within an embedded infrastructure.

For XML and Web Services to be truly useful in creating agile, process-centric business environments, their capabilities must be embedded within host applications that end users and developers can easily and readily use. In addition to integration platforms that use XML to connect disparate systems, software development tools must generate Web Services directly, databases must store XML metadata natively, personal productivity tools must be able to parse, process, and generate XML documents transparently, and SOAP must be the underlying messaging mechanism that allows all of these components to communicate with each other. This is how a process-centric infrastructure will come about that allows business to become agile.

Business agility is the ability to marshal and reconfigure an enterprise’s resources and processes in response to business contingencies, and augment or decompose them in an orderly, nondisruptive manner. The following attributes define the characteristics of an agile, process-centric infrastructure:

· Visibility of end-to-end process activities both in creation and execution

· Process components and functionality that are exposed and self-describing

· Ability to integrate any information source and application functionality into a process—no matter where it resides

· Information flow and event notification that can be automated throughout a process

· Human resource workflow activities that make the most of the desktop technology already in use

· Service level agreements that can be specified, monitored and enforced for activities in a process

· Ability to add, remove, or reconfigure any activity in a process, without disrupting any other activity in the process

· Activities that can be monitored in real time or near real time

· Process designs that can accommodate any exception handling requirement

· Processes that can be easily replicated, extended and scaled

· Ability to deploy all attributes in an efficient and cost effective manner

The Role of XML Web Services

Microsoft® continues to be at the forefront of the XML and Web Services development movement. Microsoft was an original sponsor of the Web Services protocols submitted to the World Wide Web Consortium. Microsoft also introduced BizTalk® Server, one of the first EAI / B2B and BPA tools based on the XML messaging paradigm. More than any other software developer, Microsoft is committed to the adoption of these enabling technologies, and nowhere are the potential capabilities of XML and Web Services more evident and maximized than within Microsoft’s integration, development, and productivity technologies.

The XML and Web Services capabilities found in the new releases of BizTalk Server, Visual Studio® .NET, and Microsoft Office 2003, demonstrate a coherent vision for distributing EAI and BPA development and deployment activities, both along functional lines and among stakeholders.

This paper examines how XML and Web Services are implemented within these applications and describes how these three platforms, representing Microsoft’s foundation for Enterprise Integration activities, interact with each other to create a process-centric computing infrastructure. The paper also examines additional Microsoft technologies that provide connectivity, monitoring, performance management, scalability, and fault-tolerance support to BizTalk Server and allow this XML-based integration and process management architecture to conform to the design and operational performance standards to which IT organizations are accustomed.

Microsoft’s Products for Enterprise Integration and BPM

BizTalk Server and Visual Studio .NET have been tightly integrated to provide Microsoft’s Enterprise Integration (EI), Business Process Management (BPM), and Trading Partner Interaction (TPI) development and run-time platform. They embody the integration and business process automation capabilities facilitated by XML and Web Services technologies. Visual Studio .NET has been imbued with an extensive and robust set of application integration and workflow development tools, while BizTalk Server functions as the process execution and activity monitoring engine for the integration applications created in Visual Studio .NET. The following lists describe the core modules found within the combined Visual Studio .NET and BizTalk Server 2004 integrated development environment (IDE).

BizTalk Server development components found in Visual Studio .NET:

· An XML editing tool to define document semantics (XML schemas

· An XSLT-based mapping tool to dynamically transform documents into different formats

· A publish and subscribe messaging infrastructure that provides the logical processing facilities to validate, authenticate, encrypt, transform, and route document exchanges. The infrastructure also supports correlation and persistence of messages

· A graphic orchestration tool for creating sophisticated processes that supports drag-and-drop assembly

Components found in the BizTalk Server environment:

· A process execution engine that uses the XML-based XLANG and allows for import and export of Business Process Execution Language (BPEL) documents

· A Business Rules Composer engine designed to create complex business rule sets that can be applied and modified in a highly modular fashion

· Health and Activity (HAT) management tools for monitoring and viewing real-time information about the status of active messages and process activities, as well as historical data

· A Business Activity Management (BAM) module for generating and analyzing real time performance metrics of business processes. These metrics can be the results of a business process or components within a business process. BAM is a complementary technology to Business Intelligence (BI).

XML and BizTalk Server

One of the most important features of the new version of BizTalk Server is the adoption of the XML Schema standard for defining internal BizTalk Server document definitions. XML Schema is a set of specifications for defining the structure, content, and semantics of XML documents.

BizTalk Server uses the XML Schema to create an internal structural and semantic model (a document definition) of the proprietary information formats that it will receive from or send to external applications or process steps. BizTalk Server stores and publishes these internal document definitions in a shared repository. A mapping tool maps the conversion of one application’s information format (based on its internal BizTalk Server document definition) to any other format (also based on an internal document definition) to create a transformation map. The transformation maps are also stored and published in a repository. A data exchange takes place when BizTalk Server receives information from one application that it identifies as input for another and executes the format conversion through its mapping facility. BizTalk Server then delivers the information to the receiving application or process step in the format required.

The flexibility and efficiency of this information hub model becomes apparent when applied to a one-to-many or many-to-many integration requirement. For example, an application could generate a document containing information that is used selectively and differently by numerous other applications. This document can be automatically distributed through a “publish and subscribe” function of BizTalk Server to multiple transformation pipelines. From these pipelines the required information for each document instance is extracted and transformed according to the transformation map at each channel. The information is subsequently passed off to a different application or process.

The technologies supporting the execution of these transformations are also based on XML protocol standards—XML Schema, SOAP, XSLT, and XPATH. It is important to note that the implementation of these transformations requires no procedural programming. The BizTalk Server application components abstract the underlying complexities of XSLT, XPATH and XML Schema. This effectively reorients the integration development process from a highly specialized and opaque procedural programming function to an easily accessible and transparent assembly activity.

Tying in the Information Worker

XML technologies also figure prominently in the workflow management capabilities of Microsoft Office 2003, the second cornerstone of Microsoft’s strategy for providing organizations with the tools that will help them build process-centric infrastructures. Workflow management is the discipline of optimizing the execution of business tasks that depend on the flow of information between people and systems. Because human resources represent the single largest cost to any organization, any and all improvements in worker productivity can have a significant impact on an organization’s economics and competitive standing. Workflow inefficiencies are generally attributable to the following factors:

· Generation, handling, and processing of paper documentation including processing duplicity

· Delays in obtaining prerequisite information to complete a task

· Delays because of bottlenecks and prioritization conflicts

· Incomplete or incorrect information that stalls a process

· Unwarranted sequential dependencies in process steps

The Web, more than any other technology, reduced the costs and improved the efficiencies of workflow tasks by giving participants direct access to functions and information that previously required intermediary resources. However, Web-based access to business functions and information is most useful and applicable to activities characterized by discrete, short-lived transactions, where all or most of the steps in the process are completed at once under the control of the originating participant. Making a purchase and checking the status of an order are examples of these types of activities. However, there are many workflow scenarios where Web-based interactions do not adequately address the documentation requirements and dynamics of a complex process.

The documentation dynamics of complex workflows typically have the following characteristics:

· Documentation is part of a multistep, long-running process where information is generated by multiple participants, moves from one participant to another, or iteratively moves back and forth between participants, and is periodically modified or extended

· Documents may need to be referenced in their original context at any step in the process

· Document routing and processing requirements are contingent on information found in the documents

· Information derived from other information is documented within the documentation itself (self-documenting)

· Documentation and participant IDs are authenticated at some point in the process

Examples of these types of complex workflows are expense report processing, insurance policy applications, financial reporting, merchant banking letters of credit, tax returns, loan applications, and claims form processing. In these workflows there can be multiple documents and addenda that must be preserved throughout the life cycle of the process, which takes place over an extended period and involves multiple participants and applications.

Paper-based documentation, while highly inefficient to process, still satisfies the fundamental documentation requirements of multistep, multiparty, long-running workflows in a number of ways:

· Preserves information in its original form and context

· Combines and aggregates documentation or specific information contained in the documentation without affecting the integrity of the original documentation

· Authenticates the documentation and the parties creating or modifying the documentation

· Provides comprehensible information, that is easily processed and routed through the association of metadata (definitions, instructions, references) within the documentation

· Ensures content accessibility independent of any software application

To facilitate workflow processes that are entirely digital, these documentation characteristics and workflow dynamics must be emulated in ways that are acceptable and accessible to participants. Furthermore, the real benefits and efficiencies of digital information are obtained when the information can be exchanged and processed between applications automatically and transparently. A form created in a word processing or spreadsheet program can be filled out easily enough, but the information that is entered is not comprehensible or capable of being processed by the same application or other applications without programmatic or human intervention. This is another manifestation of the general computing problem of how to make digital information universally understood and functionally usable, independent of any host application. This problem, as well as the emulation of the characteristics of paper-based documentation in a complex workflow, is well within the scope of an XML solution.

More specifically, this problem is addressed by the capabilities of XML Schema and XSLT in the same way that BizTalk Server employs them to translate and process the structure and content of one document format to another for application data exchanges. If the applications themselves could generate and decode XML documents with their respective schema definitions and processing instructions, they would be capable of engaging in event-level interactions based on the information and metadata found within the documents (for example, upon receipt of the document, inspect root node and process according to scripted instructions for the identified node). That is, the applications could be capable of performing automated information processing functions negotiated and enacted directly between applications, and between applications and participants.

This is the fundamental concept behind Web Services. Event-level interactions are based on embedded processing instructions within the documents themselves. Because these processing instructions can be executed by the applications exchanging them, the characteristics of paper-based documentation can be maintained, but without the burden of processing paperwork—a task typically involving content analysis and reconstitution of existing information into a higher-level format. With built-in application support for XML processing, much of the analysis and all of the reconstitution of information can be offloaded to the application while limiting user interaction to a single task: executing the determinant actions they are responsible for in the workflow.

When applications become fully XML-capable, their capacity to facilitate process efficiencies increases dramatically. It is of significant consequence then, that in the upcoming release of Microsoft Office 2003, Word and Excel will adopt XML as a native document format using a schema definition file. Essentially redefining the functional concept and capabilities of these applications, XML will enable Word and Excel to behave like network clients (in the manner of a Web browser or e-mail client) and perform sophisticated and automated interactions with any source of XML information, including themselves. Clearly the quality and usability of information generated anywhere in an organization can be improved immediately because of the native deployment of XML within these applications.

Human-Based Workflow with Microsoft InfoPath

In Office 2003, Microsoft introduces InfoPath™, an XML-based form application designed to address complex workflow documentation requirements. An InfoPath form template consists of one or more underlying schemas and XSLT styles sheets, as well as business logic and control scripts. The template controls the behavior of the form created from it in the following ways:

· Assigning data types and constraining and validating the values that can be entered in a form

· Controlling the dependencies for data entry and activating form sections

· Generating automatic, derived, and computed values

· Invoking events, prompts, and instructions

· Providing access to remote information sources

· Enabling the incorporation of digital signatures

When an InfoPath form is populated, it generates an XML document that contains the entered and derived information, optional digital signatures, and the relevant data generated by the form template regarding invocation events, prompts, and instructions. The document also includes a reference to the schemas that allows any application (including BizTalk Server) to validate the document against the respective schemas. The XML documents created by InfoPath emulate the characteristics of paper in a conventional workflow in the following ways:

· An original, digitally-signed document always resides with its originator

· The document can be distributed to any number of parties, with its signature, and be protected from unauthorized modification

· The contents of the document are self-describing and can be processed and routed based on information found within the document itself

· The document can be combined with other XML documents while maintaining its original integrity

Besides addressing many of the prevalent issues surrounding the workflow inefficiencies detailed earlier, InfoPath also makes it possible to create coordinated workflows that can accommodate nearly any organization’s performance and operational requirements. When InfoPath-generated XML documents are combined with the orchestrated messaging and activity facilities of BizTalk Server, their mutual operative functions take advantage of each other to make unprecedented workflow efficiencies possible.

Integration with Visual Studio .NET
In BizTalk Server 2004, the Orchestration Designer module found in previous versions is now fully integrated with Visual Studio .NET. With its expanded functionality, the Orchestration Designer module provides a new integration or process assembly workspace that graphically represents the design logic that is bound to implementation objects like messaging pipelines, ports, and schemas.

Though Visual Studio .NET is a programming environment, the method for implementing integration requirements or process designs only vaguely resembles conventional procedural programming techniques. Instead, Orchestration Designer draws on the logic flow dynamics and implementation assembly components of the messaging paradigm—a model based on sending, receiving, inspecting, and transforming exposed XML messages and documents. Furthermore, the implementation mechanisms for highly complex functions, such as transactions requiring two-phase commit, correlations, and so on, are provided by the platform itself—thus eliminating the need to write complicated procedural code to implement these capabilities.

Integration interfaces and business processes created in this way are isolated and loosely coupled. Each messaging event and its implementation binding is functionally independent of any other messaging event and implementation binding. A change made to a particular coupling does not affect the overall process logic or integrity of any other binding. Consequently, modifying or completely reusing any integration interface or process developed in the BizTalk Server environment is a straightforward exercise. In conventional process development, a complex integration or process scenario is embodied in opaque programming code. That code incorporates the structure of endpoint objects, the process flow logic, the conversion of data formats, the business rules, and the bindings to transport infrastructure. If a modification is required to any one facet of the code, the integrity of the entire code module is compromised. The risk of introducing errors when modifying code has always been a pitfall of software development and accounts for the hesitancy to make ongoing process changes in response to business requirements. This is no longer the case when both the development environment and the applications created in the environment are transparent and loosely coupled.

The capabilities of this exposed and modular development environment are further enhanced by the introduction of another new and significant functional component of BizTalk Server 2004, the Business Rules Composer module. The Business Rules Composer consists of a business rule editor and engine for creating and processing sophisticated rule sets using a forward-chaining inference model. A rule set (or “Policy”) that drives a specific activity or function is created with the Business Rules Composer and becomes a resource object that is referenced in a BizTalk Server orchestration. Transparency and loose coupling governs the creation and implementation of business rules. A rule set incorporated within a BizTalk Server orchestration can be viewed, modified, or replaced both at design and run time, without affecting any other operational aspect of a process or interrupting running instances of the affected process.

The flexibility that an exposed and modularized rule engine provides for modifying business processes is of fundamental significance. In conventional application development, business rule logic is embedded in procedural code and is not accessible for modification without changing the code itself, which consumes both time and resources and can result in unpredictable program behavior. Because most modifications to a business process life cycle pertain to changes in business rules (as opposed to technology-related modifications), the ability to isolate business rules entirely from procedural code, or any process implementation mechanisms will dramatically improve the efficiencies of managing and adapting business processes throughout their life cycle.

Business Activity Monitoring

After an integration interface or business process has been created, a run-time version of the integration application or process is generated by Visual Studio .NET and is instantiated and managed by the BizTalk Server execution engine. Within the BizTalk Server run-time environment, thousands of short- and long-running transactions, document exchanges, and process instances can take place at any given time. Tracking, monitoring and ensuring the persistence of these activities are essential functions of a process execution engine—and capabilities that set BizTalk Server 2004 apart from other products.

Health and Activity Tracking (HAT) and Business Activity Monitoring (BAM) are two new modules that provide auditing and analytical facilities. The Health and Activity Tracking module provides views into historical and real-time activity through a robust query facility that presents comprehensive annotations for queried processes and exchange activity steps.

While the Business Activity Management module is an OLAP analytic tool that defines and generates historic and real time qualitative and quantitative performance metrics on any aspect of a BizTalk Server activity. Together, these two modules provide an unlimited range of tracking and analysis configuration capabilities that can be applied to BizTalk Server objects and their attributes to manage operational performance and generate valuable business intelligence.

Conclusion

Microsoft, more than any other information technology provider, has recognized the enormous possibilities of XML to engender the creation of highly integrated and workflow-efficient organizations. And more than any other information technology company, Microsoft has reengineered its entire product line around XML technologies to actualize the vision of an agile enterprise. In an agile enterprise, distributed resources and assets (people, information, technology, and partners) can be marshaled and coordinated to respond and adapt to any business need or opportunity in a timely and optimal manner. By empowering knowledge workers with accessible and easy-to-use tools for building and deploying XML-based workflow and integration applications, the agile enterprise is well within the reach of any organization.

[image: image1.jpg]Windows Server System-

Windows Server System is comprehensive, integrated,
and interoperable server infrastructure that simplifies the
development, deployment, and management of flexible
business solutions.
www.microsoft.com/windowsserversystem

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2004 Microsoft Corporation. All rights reserved
Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place or event is intended or should be inferred.

Microsoft, BizTalk, Visual Studio, and InfoPath are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

14

