[image: image4.jpg]e
Windows Server System

[image: image4.jpg]

Security in BizTalk Server 2004

White Paper

Published: December 2003

For the latest information, please see http://www.microsoft.com/biztalk
Contents

1Introduction

How BizTalk Server addresses the primary security requirements of the SOA paradigm
2
Protecting the privacy of system elements
2
Focus on Private and Public Certificate Keys
2
Authenticating information, participants, and processes
3
Authorizing resource usage
4
Deploying BizTalk Server’s integrated security mechanisms
5
Scenario: Increasing security for a messaging service for financial information
6
Minimizing risk with multiple “Authentication Trusted” logical hosts
7
Conclusion
9

Introduction

In the Service Oriented Architecture (SOA) paradigm, an application is no longer an opaque, procedural implementation mechanism. It is an orchestrated, exposed interaction among semantically rich XML messages and the functional components of XML technologies that transform, route, and process them.

Business Process Management/Enterprise Application Integration (BPM/EAI) platforms that incorporate the SOA paradigm provide many compelling development and operational benefits:

· They use standards-based protocols and applications.

· They make the most of the Internet’s network infrastructure.

· They significantly decrease the dependency on procedural coding by eliminating the need to know and write to APIs.

· They facilitate the flexible “loose coupling” of components on a highly distributed basis.

· Applications are well documented because the process activities, components, and functions are exposed and self-describing.

· They can integrate any information source and application functionality, no matter where it resides, into a process.

· They enable the extensibility and reuse of both application components and entire applications.

· Any process can be easily replicated, extended, and scaled.

· Any process activity or component can be added, removed, or reconfigured without disrupting the process.

These characteristics of the SOA model are responsible for the efficiencies and versatility in developing applications; but these same virtues expose the generated applications to a multitude of security risks. Consequently, an event executed in an application or process must be protected, authenticated, and authorized. The development environment must provide security mechanisms and a comprehensive methodology for deploying those mechanisms, in anticipation of any potential security exposure. This document examines the security mechanisms, system components, and deployment methodologies used by BizTalk Server to create secure SOA-based applications.

BizTalk® Server is the Microsoft® BPM/EAI platform that embodies the SOA paradigm. BizTalk Server is designed around a messaging event model in which the messages and documents, as well as the processing components that interact with them, are based on XML and Web services technologies. With BizTalk Server, the same methodology can develop the components of a workflow process, application integration interface, or trading partner interaction. The difference lies in the nature of the participants involved, the location of execution, and their individual security requirements:

· Application integration is the development activity of making the functionality of an application and/or the information that it generates accessible and usable to other applications. While the integration interface takes place within one organization, it often spans multiple organizational units. As a result, it must impose constraints on who has access to the application and the information it generates.

· Workflow management is the discipline of optimizing the execution of business tasks among people, and between people and applications within an organization. It might also incorporate parties outside of the organization and consist of multiple steps. At various times in the workflow, both the participants and the documents the workflow generates need to be authenticated.

· Trading partner interaction (also known as business-to-business or B2B process integration) requires the protection and authentication of the information exchanged, as well as the authentication and authorization of the parties involved.

How BizTalk Server addresses the primary security requirements of the SOA paradigm

To protect the integrity of any system comprised of information, participants, and processes, three primary requirements guide security mechanisms: protecting the privacy of the system elements; authenticating the information, participants, and processes that enter and leave the system; and authorizing the access to and use of resources in the system.

Protecting the privacy of system elements

Protecting the privacy of communications in an open computing and networking environment is the function of encryption. BizTalk Server supports encrypted communications through Public Key Infrastructure (PKI), Secure Multipurpose Internet Mail Extensions (S/MIME), and Secure Sockets Layer (SSL).

PKI is a standards-based technology and methodology for exchanging public and private keys over an open network. It facilitates the authentication, encryption, and decryption of information sent and received through the network. BizTalk Server uses a fully compliant implementation of standards-based X509 certificates, as well as RSA and Diffie-Hellman algorithms for key exchange.

BizTalk Server uses the Secure Multipurpose Internet Mail Extensions (S/MIME) protocol to encrypt and decrypt messages sent and received in multistep, multiparty processes, with Data Encryption Standard (DES), 3DES, and RC2 encryption algorithm support. For encrypted point-to-point communication between a Web client and a Web server, BizTalk Server uses the Secure Sockets Layer (SSL) protocol.

Focus on Private and Public Certificate Keys

To authenticate and enhance protection of the privacy of messages, BizTalk Server makes extensive use of digital certificates (keys). The Public Key Infrastructure (PKI) is the set of Internet protocols that address the methodologies that promote secure exchange of keys, the procedures and hierarchy of authority for authenticating keys, and the algorithms deployed for these purposes.

Because PKI provides the foundation to improve secure communication over a public network, PKI is necessarily complex. One especially difficult concept is the relationship between public and private keys. A secure message exchange is one where the parties to the exchange are confident that:

· They know whom they are communicating with.

· No one else is intruding on, intercepting, or tampering with the exchanged messages.

· If someone were to intercept a message, he or she would not be able to read or alter the message.

The two security functions that facilitate these assertions are authentication and encryption. Authentication is the method of attaching something to a message that unequivocally identifies the party it came from, and encryption is a method of helping to ensure that only the intended recipient can read it.

Paper-based communication offers a very useful analogy. A written signature authenticates the sender. If someone signs a document in the presence of a witness (such as a notary public) who inspects the identifying credentials (for example, a driver’s license with a picture) of the signer, then the signature is authenticated for the instance of the document being signed. The original signed document and any copies of the signed document inherit their authenticity from the signature, and the copies can be compared to the original if necessary. The notary public maintains a record of the signing transaction as well, which can be referenced if needed. Anyone who receives a copy of the signed document can have a relative degree of confidence that the signature on the document was written by a specific individual, and he or she can authenticate the signature and the actual event of the document being signed.

Note that the signature includes a private and public function. Its private function is the creation of a signature that is unique to just one person. Its public function is the inspection of the document and signature and the ability to authenticate its validity.

The same dynamic applies to signing messages digitally. The digital certificate used to sign (encode) an electronic message is private, and the individual who owns it must protect it. To allow recipients of the digitally signed message to authenticate or decode the signature, the individual sends the recipients a public key that can authenticate or decode the individual’s private encoded signature. Protecting the public key is less important—its only function is authenticating the private signature of its owner.

However, if the privacy of a message is not protected (sealed or encrypted), an unauthorized party can intercept the signature and copy it onto another document, or make use of the contents of the communication. To prevent this in digital communication, the entire communication including the digital signature is encrypted so that only the authorized recipient can decrypt the message and then authenticate the signature of the sender.

Again, encryption and decryption include a private and public function. In this case the critical, private event is the decryption (the decoding) of the message, not the encryption (the encoding). It does not matter how many people have someone’s public key to encrypt a message, because the message would not be readable by anyone except the owner of the private key capable of decrypting the message.

The logical implication of this is to use one public key to authenticate a digital signature received from an individual and encrypt a message that is sent to that individual. Therefore, in a bidirectional digital message exchange between two parties, each individual’s private key is used to sign and decrypt the exchanged messages and their swapped public keys are used respectively to authenticate and encrypt the messages.

Public key certificates are kept in the Windows® Address Book certificate store and one exists for every party communicated with in this manner. Any given BizTalk Server group will have just one private key that uniquely identifies the organization operating it, and it is kept securely in the MY certificate store.

Authenticating information, participants, and processes

To authenticate information, participants, and processes, BizTalk Server relies on signing certificates, Windows Authentication, and an extended implementation of Windows Authentication in BizTalk Server known as “Enterprise Single Sign-On.”

Signing certificates are digital certificates (or “keys”) that identify two parties to each other in a messaging exchange. A signing certificate also determines if a message has been tampered with in transit. BizTalk Server can use stored public keys to decode digitally signed incoming messages, and can use private keys to sign outbound messages that it generates. For encryption and authentication, BizTalk Server receives public key certificates and stores them in the Windows Address Book certificate store. BizTalk Server uses a private certificate key to identify itself and decrypt incoming messages. BizTalk Server uses the MY certificate store to protect and securely store this private key.

One of the most difficult problems in creating applications and processes that span multiple platforms and organizations is preserving the identity and credentials of the initiating entities. Without this capability, it is not possible to authorize the use of required resources. BizTalk Server meets this requirement with Windows Authentication, and its extension within BizTalk Server, Enterprise Single Sign-On.

Windows Authentication is the default authentication method used in the Microsoft server product line, and is based on the Kerberos version 5 authentication protocol. The Kerberos protocol, standardized by the Internet Engineering Task Force (IETF) in September 1993, defines how clients interact with a network authentication. Using Kerberos, Windows Authentication enables single sign-on access to multiple Microsoft server resources. A client obtains a “ticket” representing its network credentials from the Kerberos Key Distribution Center (KDC), and it presents that ticket to a server when establishing connections. This ticket is cached, so when the user tries to connect to a server, the Kerberos protocol checks the ticket cache for a valid ticket for that server. If one is not available, the initial ticket for the user is sent to the KDC along with a request for a ticket for the specified server. That session ticket is added to the cache, and it can be used to connect to the same server until the ticket expires.

Enterprise Single Sign-On (SSO) is the BizTalk Server extension to Windows Authentication that allows parties and messaging events that are engaged in multistep BizTalk Server processes to authenticate themselves, at any step in the process, to any resource in the process, without requiring multiple logons. Messages received and sent both internally and externally, involving both Windows and non-Windows-based resources, can be authenticated.

Authorizing resource usage

Authorization is the allocation and management of usage rights to the resources of a system. The primary BizTalk Server authorization mechanisms are SQL Server Roles and Windows Authentication, and the MessageBox database.

Access to BizTalk Server databases and resources are assigned to administrators, users, and host accounts using SQL Server Roles. When creating the BizTalk Server administrators group and BizTalk Server host user groups, BizTalk Server creates SQL roles for these Windows groups in each database, and adds the groups to the roles. BizTalk Server then gives each SQL role the appropriate privileges for the tasks they must perform in each database. SQL Server relies on Windows Authentication to grant access to SQL Server resources.

BizTalk Server stores all incoming and outgoing messages in its MessageBox database, before sending them to an orchestration process and after the orchestration sends the messages to a Send Pipeline. The orchestrations and Send Pipelines receive messages based on having a subscription to certain types of messages, or messages that have specific properties. For example, a business process may subscribe to "Purchase Orders," which defines a certain message type, or the subscription may be for "Expense requests, greater than $100." Alternatively, the subscription criteria may contain a location instead of a message type. For example, a business process may subscribe to all messages, regardless of type, that originate from a specific company. Any number or type of context properties can be used as subscription criteria. A detailed description of this process follows.

Deploying BizTalk Server’s integrated security mechanisms

BizTalk Server’s security mechanisms are systemically embedded and integrated with each other. But before describing how these security mechanisms are embedded and integrated, we first need to understand what happens to a message when it enters, is processed by, and leaves BizTalk Server.

[image: image1.png]Inbound

Receiva
Adspter

Orchestrations.

Business Rules
Framework

Send
o Adspter

Message Path

A Receive Adapter is a transport-specific (for example, HTTP, SMTP, or SOAP) address (URI) that implements the communication mechanism for the respective transport protocol. The Receive Adapter passes the message to the Receive Pipeline, which accepts the message in its native format. The Receive Pipeline decrypts or decompresses it, authenticates the identification of the sender of the message, and converts the message into an XML format based on the BizTalk Server schema defined for the message. (The schema definition includes the message’s “subscription” context properties, which are explained later.)

The Receive Pipeline then writes the XML representation of the message to the MessageBox database. The MessageBox database publishes the subscription context properties of the message, so that a subscribing BizTalk Server orchestration (a process application) can be aware of its presence.

A BizTalk Server orchestration initiates a “Receive” action that contains a filter expression for the subscription criteria to a particular message type. When the orchestration finds a message that matches its subscription criteria, the orchestration initiates (or continues) its process functions. The orchestration writes any manipulated messages or derivative messages back to the MessageBox database. The messages written back to the database may also have context properties. The MessageBox database publishes these properties, which a Send Port might subscribe to.

Similar to a Receive Location, a Send Port is made up of a Send Pipeline and a Send Adapter. The Send Pipeline converts the message into the native format required by the receiving application, encrypting or encoding the message. The Send Pipeline then hands the message off to a Send Adapter, which is a transport-specific (for example, HTTP, SMTP, or SOAP) address (URI) that implements the communication mechanism for the respective transport protocol.

Scenario: Increasing security for a messaging service for financial information

With a basic understanding of how a message is processed, we can now describe a messaging scenario that requires strong security, and see how various BizTalk Server components implement mechanisms designed to increase security.

Suppose a company has devised a unique methodology for identifying significant trends from daily financial information, and they make this information available to subscribers throughout the world. Because this information is very valuable and subscribers pay a lot of money for it, it is very important to authenticate the subscriber at the time the information is requested, and when it is sent, which does not happen in the same session. Because the interactions between the company and its subscribers are highly confidential, all communications must be encrypted.

In this scenario, a subscriber starts a transaction by transmitting an encrypted, digitally signed electronic document to the company. The subscriber uses a private key to sign the message and the company’s public key to encrypt it. The company maintains the subscriber’s public signing key in a Windows Address Book certificate store. In addition, the company maintains two identification records for the subscriber:

· A Windows User/Group record, which can reside within Active Directory or as a local account assigned to the BizTalk Server host that communicates with the subscriber. A Windows Security ID (SID) is associated with this User record.

· A Party Identification record, created by BizTalk Server Explorer, which identifies a party that is allowed to participate in a BizTalk Server process application. The Party Identification record includes a unique Party Identifier (PID). The Party identification record can also be linked to the Windows User record by making the User SID an alias in the Party Identification record.

This diagram illustrates where authentication and authorization events take place in BizTalk Server:

[image: image2.png]Host 1 Host 2 Host 3

(Svchectl) (Svehcct2) (Svehcdt3)
Adapter Adapter
o | |
andjor
validate —p[" Decode Encode |17
Digial
Signature & =
parse Serialize
i
Resolve
Party >
MessageBox Encryp
Database ang/o
Sign
Autherfication
Required

Authentication Recelve
Tust Authorization

A logical host configured on one or more computers implements the services of a BizTalk Server Receive Location and/or Send Port, with their corresponding Adapter/Pipeline component pairs. The host also communicates with a specific Windows User/Group set. When the message arrives at the Receive Location, the Receive Adaptor attempts to obtain a SID from the message and look up the subscriber in the host’s User/Group. If the Adapter finds a match, it makes the Windows user name part of the message context and sends the message to the Receive Pipeline. The Receive Pipeline subsequently decrypts the message using the company’s private key, and verifies the digital signature against the subscriber’s public key stored in the Windows Address Book certificate store.

An alternative but less secure authentication method is to use the Windows Security ID (SID) only. While this method also authenticates the subscriber’s identity, the Receive Pipeline’s party resolution stage (described later) requires further authentication before allowing the subscriber to engage in a BizTalk Server process application.

In the party resolution stage, the Receive Pipeline matches the subscriber’s signing certificate or Windows credentials to a BizTalk Server Party identification record. In a successful party resolution, the Receive Pipeline obtains the PID and places it in the message context for downstream process authorization.

The Receive Pipeline obtains the PID using the following methods:

· If the message is signed and the Receive Adapter can verify the certificate, and the option to resolve the party using the certificate was selected, then the Receive Adapter uses the certificate to lookup the PID.

· If the message is not signed, and the option to resolve the party using the SID was chosen, then the Receive Adapter uses the SID to look up the PID.

If the Receive Adapter cannot resolve the party using either of these methods, it sets the PID to “Guest.”

If the Pipeline is marked as “Authentication Required” the Receiver Adapter sends the message to the MessageBox database only if the SID and PID have been obtained and resolved to a known party. If the SID is blank and/or the PID is set to Guest, then the message is discarded. “Authentication Required” can be used to ward off denial of service attacks where large quantities of messages are sent by an unknown party.

When the Receive Adapter has decrypted, authenticated, converted, and authorized the message, it writes the message to the MessageBox database. The message has context properties associated with it (the message type, specific values within the message, and security information), which the MessageBox publishes. An orchestration can be configured to execute only when it receives a message whose published context properties it subscribes to. A Send Port also uses this subscription method to filter the messages that it is designed to handle. Using this “Publish and Subscribe” methodology, an orchestration can receive messages from only those processes and components with the proper Receive Authorization.

Minimizing risk with multiple “Authentication Trusted” logical hosts

Deploying security mechanisms can be made more precise by configuring different logical hosts to interact only with specific parties and message types. Configuring several hosts does not necessarily mean several computers; different logical BizTalk Server hosts can reside on the same physical platform. The service accounts allowed to configure the host with the private key should be highly restricted.

For example, BizTalk Server can increase protection of the privacy of encrypted inbound messages by assigning the company’s private decryption key only to hosts that are authorized to read encrypted messages. This strategy is especially valuable in an ambiguous situation, such as a multistep process that requires the identity of the original message sender to be forwarded on to downstream or external processes.

But such multistep processes present a problem: a message that was received from an authenticated and authorized party may leave the auspices of one secure BizTalk Server process, and return later to another BizTalk Server process in some revised form. To resolve potentially conflicting authentications and authorizations, BizTalk Server includes a configuration property called “Authentication Trusted,” which is a means of upholding or denying the state of message authentication under different process auspices.

A host must be explicitly designated as Authentication Trusted in order to pass along the authenticating SID and PID context properties of a message to the MessageBox database. If a message has been previously authenticated and authorized (and has the SID and PID credentials in its context properties) but is then processed through a host that is not Authentication Trusted, then the MessageBox database overwrites the PID with “Guest,” and overwrites the SID with the service account that the host instance is running under.

Security boundaries, and the trustworthiness of messages and component resources, become clearer when hosts are designated as Authentication Trusted. When the MessageBox database receives a message, it takes the following steps to enforce the Authentication Trusted property of the host instance that sent the message:

· The MessageBox data store first determines whether the host sending the message is Authentication Trusted by checking if the message’s SID is obtained from a trusted host.

· If the host sending the message to the MessageBox database is Authentication Trusted, the MessageBox database leaves the SID and PID in the message context unchanged, unless they are empty. If the SID is empty, the MessageBox database is populated with the SID of the calling process, also known as the Host SID (HSID). If the PID is empty, the MessageBox database sets it to Guest.

· If the host sending the message to the MessageBox database is not marked as Authentication Trusted, the SID is populated with the HSID, and the PID is set to Guest, regardless of whether these fields were already populated or not.

To facilitate end-to-end message authentication and authorization across multiple hosts, the hosts must be explicitly set to Authentication Trusted. The default status of a host is “un-trusted,” which prevents it from authenticating messages. Before designating any host running BizTalk Server components as Authentication Trusted, conduct a thorough threat analysis of the server’s design, configuration, and connectivity.

When a message leaves BizTalk Server, different methods can be used to help protect the security when a message is sent and to help the receiving party authenticate the sender of the message. If the Send Pipeline contains an S/MIME encoding component that is configured to sign outbound messages, the signing certificate for the BizTalk Server group is retrieved from the MY certificate store and the message is signed using the private key. If the Send Pipeline’s S/MIME encoding component is also configured to encrypt outbound messages, the encryption certificate thumbprint of the recipient is used to retrieve the public key of the recipient from the Windows Address Book certificate store, and the message is encrypted using that key.

Conclusion

BizTalk Server’s security architecture is based on a robust set of mechanisms that are implemented throughout BizTalk Server using a variety of methodologies designed to increase security. The security mechanisms are Digital Certificates, Public Key Infrastructure (PKI), and S/MIME; Windows Authentication, SQL Server Roles, and Enterprise Single Sign-On; and Party Identification Records.

The components that incorporate the security mechanisms are Send and Receive Adapters, Pipelines, the MessageBox database, orchestrations, and message security context properties. The components use “Authentication Required” pipelines, multiple logical hosts and their “Authentication Trusted” property, and the Publish and Subscribe/Receive Authorization methodologies to deploy the security mechanisms.

This multifaceted security architecture of BizTalk Server provides numerous options for helping to design and execute more secure SOA-based messaging applications that can accommodate requirements of any class of application. Whether used to develop and deploy a workflow process, an application integration interface, or a trading partner interaction, BizTalk Server 2004 provides a best-practice approach to the privacy and integrity of system elements, and it adapts and scales up to any requirement change.

Security is the foremost issue surrounding any technology that attempts to make the most of the Internet’s connectivity and fluidity. The numerous benefits an open architecture affords can be easily lost in a disruption of business. Consequently, BizTalk Server has implemented rigorous security methods to enhance security in the SOA paradigm.

[image: image3.jpg]Windows Server System-

Windows Server System is comprehensive, integrated,
and interoperable server infrastructure that simplifies the
development, deployment, and management of flexible
business solutions.
www.microsoft.com/windowsserversystem

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2004 Microsoft Corporation. All rights reserved
Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place or event is intended or should be inferred.

BizTalk, Microsoft, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

[image: image5.jpg]e
Windows Server System

