Internal Working Document

Released for informational purposes only

	
	

	
	Draft Standard ECMA-xxx

	
	November 2000

Standardizing Information and Communication Systems

Common Language Infrastructure (CLI)

Partition II:
Metadata Definition and Semantics

Final Draft, Apr 2005
Table of contents

11
Introduction

22
Overview

33
Validation and verification

44
Introductory examples

44.1
“Hello world!”

44.2
Other examples

55
General syntax

55.1
General syntax notation

55.2
Basic syntax categories

65.3
Identifiers

75.4
Labels and lists of labels

85.5
Lists of hex bytes

85.6
Floating-point numbers

85.7
Source line information

95.8
File names

95.9
Attributes and metadata

95.10
ilasm source files

116
Assemblies, manifests and modules

116.1
Overview of modules, assemblies, and files

126.2
Defining an assembly

136.2.1
Information about the assembly (AsmDecl)

156.2.2
Manifest resources

156.2.3
Associating files with an assembly

166.3
Referencing assemblies

176.4
Declaring modules

176.5
Referencing modules

186.6
Declarations inside a module or assembly

186.7
Exported type definitions

197
Types and signatures

197.1
Types

207.1.1
modreq and modopt

217.1.2
pinned

217.2
Built-in types

217.3
References to user-defined types (TypeReference)

227.4
Native data types

258
Visibility, accessibility and hiding

258.1
Visibility of top-level types and accessibility of nested types

258.2
Accessibility

258.3
Hiding

269
Generics

289.1
Generic type definitions

299.2
Generics and recursive inheritance graphs

309.3
Generic method definitions

309.4
Instantiating generic types

319.5
Generics variance

329.6
Assignment compatibility of instantiated types

339.7
Validity of member signatures

349.8
Signatures and binding

349.9
Inheritance and overriding

369.10
Explicit method overrides

369.11
Constraints on generic parameters

379.12
References to members of generic types

3810
Defining types

3810.1
Type header (ClassHeader)

3910.1.1
Visibility and accessibility attributes

4010.1.2
Type layout attributes

4010.1.3
Type semantics attributes

4110.1.4
Inheritance attributes

4110.1.5
Interoperation attributes

4210.1.6
Special handling attributes

4210.1.7
Generic parameters (GenPars)

4610.2
Body of a type definition

4710.3
Introducing and overriding virtual methods

4710.3.1
Introducing a virtual method

4810.3.2
The .override directive

4810.3.3
Accessibility and overriding

4910.4
Method implementation requirements

5010.5
Special members

5010.5.1
Instance constructor

5010.5.2
Instance finalizer

5010.5.3
Type initializer

5210.6
Nested types

5310.7
Controlling instance layout

5410.8
Global fields and methods

5511
Semantics of classes

5612
Semantics of interfaces

5612.1
Implementing interfaces

5612.2
Implementing virtual methods on interfaces

5813
Semantics of value types

5913.1
Referencing value types

5913.2
Initializing value types

6013.3
Methods of value types

6214
Semantics of special types

6214.1
Vectors

6214.2
Arrays

6414.3
Enums

6514.4
Pointer types

6614.4.1
Unmanaged pointers

6714.4.2
Managed pointers

6714.5
Method pointers

6914.6
Delegates

7014.6.1
Delegate signature compatibility

7114.6.2
Synchronous calls to delegates

7214.6.3
Asynchronous calls to delegates

7315
Defining, referencing, and calling methods

7315.1
Method descriptors

7315.1.1
Method declarations

7315.1.2
Method definitions

7315.1.3
Method references

7315.1.4
Method implementations

7315.2
Static, instance, and virtual methods

7415.3
Calling convention

7515.4
Defining methods

7615.4.1
Method body

7915.4.2
Predefined attributes on methods

8215.4.3
Implementation attributes of methods

8415.4.4
Scope blocks

8415.4.5
vararg methods

8515.5
Unmanaged methods

8515.5.1
Method transition thunks

8615.5.2
Platform invoke

8715.5.3
Method calls via function pointers

8715.5.4
COM interop

8815.5.5
Data type marshaling

8915.5.6
Managed native calling conventions (x86)

9216
Defining and referencing fields

9216.1
Attributes of fields

9316.1.1
Accessibility information

9316.1.2
Field contract attributes

9416.1.3
Interoperation attributes

9416.1.4
Other attributes

9416.2
Field init metadata

9516.3
Embedding data in a PE file

9516.3.1
Data declaration

9616.3.2
Accessing data from the PE file

9716.3.3
Unmanaged thread-local storage

9716.4
Initialization of non-literal static data

9716.4.1
Data known at link time

9816.5
Data known at load time

9816.5.1
Data known at run time

10017
Defining properties

10218
Defining events

10519
Exception handling

10519.1
Protected blocks

10619.2
Handler blocks

10619.3
Catch blocks

10619.4
Filter blocks

10719.5
Finally blocks

10719.6
Fault handlers

10920
Declarative security

11021
Custom attributes

11021.1
CLS conventions: custom attribute usage

11021.2
Attributes used by the CLI

11121.2.1
Pseudo custom attributes

11221.2.2
Custom attributes defined by the CLS

11221.2.3
Custom attributes for CIL-to-native-code compiler and debugger

11321.2.4
Custom attributes for remoting

11321.2.5
Custom attributes for security

11521.2.6
Custom attributes for TLS

11521.2.7
Pseudo custom attributes for the assembly linker

11521.2.8
Custom attributes provided for interoperation with unmanaged code

11621.2.9
Custom attributes, various

11822
Metadata logical format: tables

11922.1
Metadata validation rules

12122.2
Assembly : 0x20

12122.3
AssemblyOS : 0x22

12222.4
AssemblyProcessor : 0x21

12222.5
AssemblyRef : 0x23

12222.6
AssemblyRefOS : 0x25

12322.7
AssemblyRefProcessor : 0x24

12322.8
ClassLayout : 0x0F

12522.9
Constant : 0x0B

12622.10
CustomAttribute : 0x0C

12722.11
DeclSecurity : 0x0E

12922.12
EventMap : 0x12

13022.13
Event : 0x14

13122.14
ExportedType : 0x27

13322.15
Field : 0x04

13522.16
FieldLayout : 0x10

13622.17
FieldMarshal : 0x0D

13722.18
FieldRVA : 0x1D

13822.19
File : 0x26

13822.20
GenericParam : 0x2A

14022.21
GenericParamConstraint : 0x2C

14022.22
ImplMap : 0x1C

14122.23
InterfaceImpl : 0x09

14222.24
ManifestResource : 0x28

14322.25
MemberRef : 0x0A

14422.26
MethodDef : 0x06

14822.27
MethodImpl : 0x19

14922.28
MethodSemantics : 0x18

15022.29
MethodSpec : 0x2B

15122.30
Module : 0x00

15122.31
ModuleRef : 0x1A

15222.32
NestedClass : 0x29

15222.33
Param : 0x08

15322.34
Property : 0x17

15422.35
PropertyMap : 0x15

15522.36
StandAloneSig : 0x11

15622.37
TypeDef : 0x02

16022.38
TypeRef : 0x01

16122.39
TypeSpec : 0x1B

16323
Metadata logical format: other structures

16323.1
Bitmasks and flags

16323.1.1
Values for AssemblyHashAlgorithm

16323.1.2
Values for AssemblyFlags

16323.1.3
Values for Culture

16423.1.4
Flags for events [EventAttributes]

16423.1.5
Flags for fields [FieldAttributes]

16523.1.6
Flags for files [FileAttributes]

16523.1.7
Flags for Generic Parameters [GenericParamAttributes]

16623.1.8
Flags for ImplMap [PInvokeAttributes]

16623.1.9
Flags for ManifestResource [ManifestResourceAttributes]

16623.1.10
Flags for methods [MethodAttributes]

16723.1.11
Flags for methods [MethodImplAttributes]

16823.1.12
Flags for MethodSemantics [MethodSemanticsAttributes]

16823.1.13
Flags for params [ParamAttributes]

16823.1.14
Flags for properties [PropertyAttributes]

16823.1.15
Flags for types [TypeAttributes]

17023.1.16
Element types used in signatures

17223.2
Blobs and signatures

17423.2.1
MethodDefSig

17523.2.2
MethodRefSig

17623.2.3
StandAloneMethodSig

17723.2.4
FieldSig

17723.2.5
PropertySig

17823.2.6
LocalVarSig

17823.2.7
CustomMod

17923.2.8
TypeDefOrRefEncoded

18023.2.9
Constraint

18023.2.10
Param

18023.2.11
RetType

18123.2.12
Type

18123.2.13
ArrayShape

18223.2.14
TypeSpec

18223.2.15
MethodSpec

18323.2.16
Short form signatures

18323.3
Custom attributes

18523.4
Marshalling descriptors

19024
Metadata physical layout

19024.1
Fixed fields

19024.2
File headers

19024.2.1
Metadata root

19124.2.2
Stream header

19124.2.3
#Strings heap

19124.2.4
#US and #Blob heaps

19224.2.5
#GUID heap

19224.2.6
#~ stream

19625
File format extensions to PE

19625.1
Structure of the runtime file format

19625.2
PE headers

19725.2.1
MS-DOS header

19725.2.2
PE file header

19825.2.3
PE optional header

20025.3
Section headers

20125.3.1
Import Table and Import Address Table (IAT)

20125.3.2
Relocations

20225.3.3
CLI header

20325.4
Common Intermediate Language physical layout

20425.4.1
Method header type values

20425.4.2
Tiny format

20425.4.3
Fat format

20525.4.4
Flags for method headers

20525.4.5
Method data section

20625.4.6
Exception handling clauses

20726
Index

1 Introduction
This specification provides the normative description of the metadata: its physical layout (as a file format), its logical contents (as a set of tables and their relationships), and its semantics (as seen from a hypothetical assembler, ilasm).

2 Overview

This partition focuses on the semantics and the structure of metadata. The semantics of metadata XE "metadata:semantics of" , which dictate much of the operation of the VES, are described using the syntax of ILAsm XE "ILAsm" , an assembly language for CIL. The ILAsm syntax itself (contained in clauses 5_5_General_Syntax through 21_20_Custom_Attributes) is considered a normative part of this International Standard. (An implementation of an assembler for ILAsm is described in Partition VI_alink=Partition_V.) The structure XE "metadata:structure of" (both logical and physical) is covered in clauses 22_21_Metedata_Logical_Format_Tables through 25_24_File_Format_Extensions_to_PE.

[Rationale: An assembly language is really just syntax for specifying the metadata in a file, and the CIL instructions in that file. Specifying ILAsm provides a means of interchanging programs written directly for the CLI without the use of a higher-level language; it also provides a convenient way to express examples.

The semantics of the metadata can also be described independently of the actual format in which the metadata is stored. This point is important because the storage format as specified in clauses 22_21_Metedata_Logical_Format_Tables through 25_24_File_Format_Extensions_to_PE is engineered to be efficient for both storage space and access time, but this comes at the cost of the simplicity desirable for describing its semantics. end rationale]
3 Validation and verification

Validationxe "validation" refers to the application of a set of tests on any file to check that the file’s format, metadata, and CIL are self-consistent. These tests are intended to ensure that the file conforms to the mandatory requirements of this specification. When a conforming implementation of the CLI is presented with a non-conforming file, the behavior is unspecified.

Verificationxe "verification" refers to the checking of both CIL and its related metadata to ensure that the CIL code sequences do not permit any access to memory outside the program’s logical address space. In conjunction with the validation tests, verification ensures that the program cannot access memory or other resources to which it is not granted access.

Partition III_alink=Partition_III specifies the rules for both correct and verifiable use of CIL instructions. Partition III

_alink=Partition_III also provides an informative description of rules for validating the internal consistency of metadata (the rules follow, albeit indirectly, from the specification in this Partition); it also contains a normative description of the verification algorithm. A mathematical proof of soundness of the underlying type system is possible, and provides the basis for the verification requirements. Aside from these rules, this standard leaves as unspecified:

· The time at which (if ever) such an algorithm should be performed.
· What a conforming implementation should do in the event of a verification failure.

The following graph makes this relationship clearer (see next paragraph for a description):

[image: image1.png]Syntactically correct CIL

Valid CIL

Typesafe CIL
Verifiable CIL

Figure 1: Relationship between correct and verifiable CIL

In the above figure, the outer circle contains all code permitted by the ILAsm syntax. The next inner circle represents all code that is correct CIL. The striped inner circle represents all type-safe code. Finally, the black innermost circle contains all code that is verifiable. (The difference between type-safe code XE "code:type-safe" \b and verifiable code XE "code:verifiable" \b is one of provability: code which passes the VES verification algorithm is, by-definition, verifiable; but that simple algorithm rejects certain code, even though a deeper analysis would reveal it as genuinely type-safe). Note that even if a program follows the syntax described in Partition VI_alink=Partition_V, the code might still not be valid, because valid code shall adhere to restrictions presented in this Partition and in Partition III_alink=Partition_III.

The verification process is very stringent. There are many programs that will pass validation, but will fail verification. The VES cannot guarantee that these programs do not access memory or resources to which they are not granted access. Nonetheless, they might have been correctly constructed so that they do not access these resources. It is thus a matter of trust, rather than mathematical proof, whether it is safe to run these programs. Ordinarily, a conforming implementation of the CLI can allow unverifiable code XE "code:unverifiable" \b (valid code that does not pass verification) to be executed, although this can be subject to administrative trust controls that are not part of this standard. A conforming implementation of the CLI shall allow the execution of verifiable code, although this can be subject to additional implementation-specified trust controls.
4 Introductory examples

This clause and its subclauses contain only informative text.

4.1 “Hello world!”
To get the general feel of ILAsm, consider the following simple example, which prints the well known “Hello world!” salutation. The salutation is written by calling WriteLine, a static method found in the class System.Console that is part of the standard assembly mscorlib XE "mscorlib" (see Partition IV_alink=Partition_IV). [Example:
.assembly extern mscorlib {}
.assembly hello {}
.method static public void main() cil managed

{ .entrypoint
 .maxstack 1
 ldstr "Hello world!"
 call void [mscorlib]System.Console::WriteLine(class System.String)
 ret
}
end example]
The .assembly extern XE ".assembly extern;assembly extern" declaration references an external assembly, mscorlib, which contains the definition of System.Console XE "System.Console" . The .assembly XE ".assembly;assembly" declaration in the second line declares the name of the assembly for this program. (Assemblies XE "assembly" are the deployment unit for executable content for the CLI.) The .method XE ".method;method" declaration defines the global method main, the body of which follows, enclosed in braces. The first line in the body indicates that this method is the entry point for the assembly (.entrypoint XE ".entrypoint;entrypoint"), and the second line in the body specifies that it requires at most one stack slot (.maxstack XE ".maxstack;maxstack").

Method main contains only three instructions: ldstr, call, and ret. The ldstr instruction pushes the string constant "Hello world!" onto the stack and the call instruction invokes System.Console::WriteLine, passing the string as its only argument. (Note that string literals in CIL are instances of the standard class System.String XE "System.String" .) As shown, call instructions shall include the full signature of the called method. Finally, the last instruction, ret, returns from main.

4.2 Other examples

This Partition contains integrated examples for most features of the CLI metadata. Many subclauses conclude with an example showing a typical use of some feature. All these examples are written using the ILAsm assembly language. In addition, Partition VI
_alink=Partition_V contains a longer example of a program written in the ILAsm assembly language. All examples are, of course, informative only.

End informative text

5 General syntax XE "ILAsm:syntax" \b
This clause describes aspects of the ILAsm syntax that are common to many parts of the grammar.

5.1 General syntax notation

This partition uses a modified form of the BNF syntax notation. The following is a brief summary of this notation.

Terminals are written in a constant-width font (e.g., .assembly, extern, and float64); however, terminals consisting solely of punctuation characters are enclosed in single quotes (e.g., ‘:’, ‘[’, and ‘(’). The names of syntax categories are capitalized and italicized (e.g. ClassDecl) and shall be replaced by actual instances of the category. Items placed in [] brackets (e.g., [Filename] and [Float], are optional, and any item followed by * (e.g., HexByte* and [‘.’ Id]*) can appear zero or more times. The character “|” means that the items on either side of it are acceptable (e.g., true | false). The options are sorted in alphabetical order (to be more specific: in ASCII order, and case-insensitive). If a rule starts with an optional term, the optional term is not considered for sorting purposes.

ILAsm is a case-sensitive XE "ILAsm:case sensitivity of" \b language. All terminals shall be used with the same case as specified in this clause.

[Example: A grammar such as

Top ::= Int32 | float Float | floats [Float [‘,’ Float]*] | else QSTRING
would consider all of the following to be valid:

12
float 3
float –4.3e7
floats
floats 2.4
floats 2.4, 3.7
else "Something \t weird"

but all of the following to be invalid:

else 3
3, 4
float 4.3, 2.4
float else
stuff
end example]
5.2 XE "terminal" \b Basic syntax categories
These categories are used to describe syntactic constraints on the input intended to convey logical restrictions on the information encoded in the metadata.

Int32xe "int32" \b is either a decimal number or “0x” followed by a hexadecimal number, and shall be represented in 32 bits. [Note: ILAsm has no concept of 8- or 16-bit integer constants. Instead, situations requiring such a constant (such as int8(...) and int16(...) in §16.2) accept an Int32 instead, and use only the least-significant bytes. end note]
Int64xe "int64" \b is either a decimal number or “0x” followed by a hexadecimal number, and shall be represented in 64 bits.

HexBytexe "hexbyte" \b is a hexadecimal number that is a pair of characters from the set 0–9, a–f, and A–F.
RealNumber XE "realnumber" \b is any syntactic representation for a floating-point number that is distinct from that for all other syntax categories. In this partition, a period (.) is used to separate the integer and fractional parts, and “e” or “E” separates the mantissa from the exponent. Either of the period or the mantissa separator (but not both) can be omitted.

[Note: A complete assembler might also provide syntax for infinities and NaNs. end note]
QSTRINGxe "QSTRING" \b is a string surrounded by double quote (″) marks. Within the quoted string the character “\” can be used as an escape character XE "character:escape" \b , with “\t XE "\\t" \b ” representing a tab character, “\n XE "\\n" \b ” representing a newline character, or “\” followed by three octal digits XE "\\ooo" \b representing a byte with that value. The “+ XE "+" \b ” operator XE "operator:+" \b can be used to concatenate string literals XE "string literal:concatenation of" \b . This way, a long string can be broken across multiple lines by using “+” and a new string on each line. An alternative is to use “\” as the last character in a line, in which case, that character and the line break following it are not entered into the generated string. Any white space characters (space, line-feed, carriage-return, and tab) between the “\” and the first non-white space character on the next line are ignored.
[Example: The following result in strings that are equivalent to "Hello World from CIL!":

ldstr "Hello " + "World " +
"from CIL!"

and

ldstr "Hello World\

\040from CIL!"

end example]

[Note: A complete assembler will need to deal with the full set of issues required to support Unicode encodings, see Partition I_alink=Partition_I (especially CLS Rule 4). end note]
SQSTRINGxe "SQSTRING" \b is just like QSTRING except that the former uses single quote (′) marks instead of double.

IDxe "ID" \b is a contiguous string of characters which starts with either an alphabetic character (A–Z, a–z) or one of “_”, “$”, “@”, “`” (grave accent), or “?”, and is followed by any number of alphanumeric characters (A–Z, a–z, 0–9) or the characters “_”, “$”, “@”, “`” (grave accent), and “?”. An ID is used in only two ways:

· As a label of a CIL instruction (§5.4).
· As an Id (§5.3).
5.3 Identifiers

Identifiersxe "identifier" \b

xe "id" \b are used to name entities. Simple identifiers are equivalent to an ID. However, the ILAsm syntax allows the use of any identifier that can be formed using the Unicode character set (see Partition I_alink=Partition_I). To achieve this, an identifier shall be placed within single quotation marks. This is summarized in the following grammar.

	Id ::=

	 ID

	| SQSTRING

A keyword shall only be used as an identifier XE "identifier:keyword as an" \b if that keyword appears in single quotes (see Partition VI
_alink=Partition_V for a list of all keywords).

Several Ids can be combined to form a larger Id, by separating adjacent pairs with a dot (.). An Id formed in this way is called a DottedName. XE "dottedname" \b
	DottedName ::= Id [‘.’ Id]*

[Rationale: DottedName is provided for convenience, since “.” can be included in an Id using the SQSTRING syntax. DottedName is used in the grammar where “.” is considered a common character (e.g., in fully qualified type names) end rationale]
Implementation Specific (Microsoft)
Names that end with $PST followed by a hexadecimal number have a special meaning. The assembler will automatically truncate the part starting with the $PST. This is in support of compiler-controlled accessibility, see Partition I_alink=Partition_V. Also, the first release of the CLI limits the length of identifiers; see §22_21_Metedata_Logical_Format_Tables for details.

[Example: The following are simple identifiers:

A Test $Test @Foo? ?_X_ MyType`1
The following are identifiers in single quotes:

′Weird Identifier′ ′Odd\102Char′ ′Embedded\nReturn′

The following are dotted names:

System.Console ′My Project′.′My Component′.′My Name′ System.IComparable`1
end example]

5.4 Labels and lists of labels

Labels XE "label" \b are provided as a programming convenience; they represent a number that is encoded in the metadata. The value represented by a label is typically an offset in bytes from the beginning of the current method, although the precise encoding differs depending on where in the logical metadata structure or CIL stream the label occurs. For details of how labels are encoded in the metadata, see clauses 22_21_Metedata_Logical_Format_Tables through 25_24_File_Format_Extensions_to_PE; for their encoding in CIL instructions see Partition III_alink=Partition_III.

A simple label is a special name that represents an address. Syntactically, a label is equivalent to an Id. Thus, labels can be single quoted and can contain Unicode characters.

A list of labels XE "label:list of" \b is comma separated, and can be any combination of simple labels.

	LabelOrOffset ::= Id

	Labels ::= LabelOrOffset [‘,’ LabelOrOffset]*

[Note: In a real assembler the syntax for LabelOrOffset might allow the direct specification of a number rather than requiring symbolic labels. end note]
Implementation Specific (Microsoft)
The following syntax is also supported, for round-tripping purposes:

 LabelOrOffset ::= Int32 | Label
ILAsm distinguishes between two kinds of labels: code labels and data labels. Code labelsxe "label:code" \b are followed by a colon (“:”) and represent the address of an instruction to be executed. Code labels appear before an instruction and they represent the address of the instruction that immediately follows the label. A particular code label name shall not be declared more than once in a method.

In contrast to code labels, data labelsxe "label:data" \b specify the location of a piece of data and do not include the colon character. A data label shall not be used as a code label, and a code label shall not be used as a data label. A particular data label name shall not be declared more than once in a module.

	CodeLabel ::= Id ‘:’

	DataLabel ::= Id

[Example: The following defines a code label, ldstr_label, that represents the address of the ldstr instruction:

ldstr_label:
ldstr
"A label"

end example]

5.5 Lists of hex bytes

A list of bytesxe "byte list" \b consists simply of one or more hexbytes. XE "hexbyte"
	Bytes ::= HexByte [HexByte*]

5.6 Floating-point numbers

There are two different ways to specify a floating-point number:

1. As a RealNumber XE "realnumber" \b .
2. By using the keyword float32xe "float32" or float64,xe "float64" followed by an integer in parentheses, where the integer value is the binary representation of the desired floating-point number. For example, float32(1) results in the 4-byte value 1.401298E-45, while float64(1) results in the 8-byte value 4.94065645841247E-324.
	Float32 ::=

	 RealNumber

	| float32 ‘(’ Int32 ‘)’

	Float64 ::=

	 RealNumber

	| float64 ‘(’ Int64 ‘)’

[Example:

5.5
1.1e10
float64(128)
// note: this results in an 8-byte value whose bits are the same

// as those for the integer value 128.

end example]

5.7 Source line information

The metadata does not encode information about the lexical scope of variables or the mapping from source line numbers to CIL instructions. Nonetheless, it is useful to specify an assembler syntax for providing this information for use in creating alternate encodings of the information.

Implementation Specific (Microsoft)
Source line informationxe "Source line information" is stored in the PDBxe "PDB" (Portable Debugxe "Portable Debug") file associated with each module.

.linexe ".line;line" \b takes a line number, optionally followed by a column number (preceded by a colon), optionally followed by a single-quoted string that specifies the name of the file to which the line number is referring:
	ExternSourceDecl ::= .line Int32 [‘:’ Int32] [SQSTRING]

Implementation Specific (Microsoft)
For compatibility reasons, ilasm allows the following:

 ExternSourceDecl ::= … | #line Int32 QSTRING
Note that this requires the file name, and that that name be double-quoted, not single quoted as with .line.
5.8 File names

Some grammar elements require that a file namexe "file name" \b be supplied. A file name is like any other name where “.” is considered a normal constituent character. The specific syntax for file names follows the specifications of the underlying operating system.

	Filename ::=
	Clause

	 DottedName
	5.3_5.3_Identifiers

5.9 Attributes and metadata

Attributesxe "attribute" \b of types and their members attach descriptive information to their definition. The most common attributes are predefined and have a specific encoding in the metadata associated with them (§23_22_Metadata_Logical_Format:_Other_Structures). In addition, the metadata provides a way of attaching user-defined attributes to metadata, using several different encodings.

From a syntactic point of view, there are several ways for specifying attributes in ILAsm:

· Using special syntax built into ILAsm. For example, the keyword private in a ClassAttr specifies that the visibility attribute on a type shall be set to allow access only within the defining assembly.

· Using a general-purpose syntax in ILAsm. The non-terminal CustomDecl describes this grammar (§21.2.1

_20.2.1_Pseudo_Custom_Attributes).
21

_20_Custom_Attributes). For some attributes, called pseudo-custom attributes, this grammar actually results in setting special encodings within the metadata (§
· Security attributes are treated specially. There is special syntax in ILAsm that allows the XML representing security attributes to be described directly (§20). While all other attributes defined either in the standard library or by user-provided extension are encoded in the metadata using one common mechanism described in §22.10, security attributes (distinguished by the fact that they inherit, directly or indirectly from System.Security.Permissions.SecurityAttribute XE "System.Security.Permissions.SecurityAttribute" , see Partition IV_alink=Partition_IV) shall be encoded as described in §22.11_21.10_DeclSecurity_:_0x0E.

5.10 ilasm source files

An input to ilasm is a sequence of top-level declarations, defined as follows:

	ILFile ::=
	Reference

	 Decl*
	5.10_5.10_ilasm_source_files

The complete grammar for a top-level declaration is shown below. The reference subclauses contain details of the corresponding productions of this grammar. These productions begin with a name having a ‘.’ prefix. Such a name is referred to as a directive. XE "directive" \b
	Decl ::=
	Reference

	 .assembly XE ".assembly;assembly" DottedName ‘{’ AsmDecl* ‘}’
	6.2

	| .assembly extern XE ".assembly extern;assembly extern" DottedName ‘{’ AsmRefDecl* ‘}’
	6.3

	| .class XE ".class;class" ClassHeader ‘{’ ClassMember* ‘}’
	10

	| .class extern XE ".class extern;class extern" ExportAttr DottedName ‘{’ ExternClassDecl* ‘}’
	6.7

	| .corflags XE ".corflags;corflags" Int32
	6.2

	| .custom XE ".custom;custom" CustomDecl
	21

	| .data XE ".data;data" DataDecl
	16.3.1

	| .field XE ".field;field" FieldDecl
	16

	| .file XE ".file;file" [nometadata] Filename .hash ‘=’ ‘(’ Bytes ‘)’ [.entrypoint]
	6.2.3

	| .method XE ".method;method" MethodHeader ‘{’ MethodBodyItem* ‘}’
	15

	| .module XE ".module;module" [Filename]
	6.4

	| .module extern XE ".module extern;module extern" Filename
	6.5

	| .mresource XE ".mresource;mresource" [public | private] DottedName ‘{’ ManResDecl* ‘}’
	6.2.2

	| .subsystem XE ".subsystem;subsystem" Int32
	6.2

	| .vtfixup XE ".vtfixup;vtfixup" VTFixupDecl
	15.5.1

	| ExternSourceDecl
	5.7

	| SecurityDecl
	20

Implementation Specific (Microsoft)
The grammar for declarations also includes the following. These are described in a separate product specification.

	Implementation Specific (Microsoft)

	Decl ::=
	Reference

	.file alignment XE ".file alignment;file alignment" Int32
	

	| .imagebase XE ".imagebase;imagebase" Int64
	

	| .language XE ".language;language" LanguageDecl
	

	| .namespace XE ".namespace;namespace" Id
	

	| …
	

6 Assemblies, manifests and modules

Assemblies and modules are grouping constructs, each playing a different role in the CLI.

An assemblyxe "assembly" \b is a set of one or more files deployed as a unit. An assembly always contains a manifest XE "manifest" \b that specifies (§6.1):

· Version, name, culture, and security requirements for the assembly.

· Which other files, if any, belong to the assembly, along with a cryptographic hash of each file. The manifest itself resides in the metadata part of a file, and that file is always part of the assembly.

· The types defined in other files of the assembly that are to be exported from the assembly. Types defined in the same file as the manifest are exported based on attributes of the type itself.

· Optionally, a digital signature for the manifest itself, and the public key used to compute it.

A modulexe "module" \b is a single file containing executable content in the format specified here. If the module contains a manifest then it also specifies the modules (including itself) that constitute the assembly. An assembly shall contain only one manifest amongst all its constituent files. For an assembly that is to be executed (rather than simply being dynamically loaded) the manifest shall reside in the module that contains the entry point.

While some programming languages introduce the concept of a namespace XE "namespace" , the only support in the CLI for this concept is as a metadata encoding technique. Type names are always specified by their full name relative to the assembly in which they are defined.

6.1 Overview of modules, assemblies, and files

This subclause contains informative text only.

Consider the following figure:
[image: image2.png]Cesemply A assembly B

Figure 2: References to Modules and Files
Eight files are shown, each with its name written below it. The six files that each declare a module have an additional border around them, and their names begin with M. The other two files have a name beginning with F. These files can be resource files (such as bitmaps) or other files that do not contain CIL code.

Files M1 and M4 declare an assembly in addition to the module declaration, namely assemblies A and B, respectively. The assembly declaration in M1 and M4 references other modules, shown with straight lines. For example, assembly A references M2 and M3, and assembly B references M3 and M5. Thus, both assemblies reference M3.

Usually, a module belongs only to one assembly, but it is possible to share it across assemblies. When assembly A is loaded at runtime, an instance of M3 will be loaded for it. When assembly B is loaded into the same application domain, possibly simultaneously with assembly A, M3 will be shared for both assemblies. Both assemblies also reference F2, for which similar rules apply.

The module M2 references F1, shown by dotted lines. As a consequence, F1 will be loaded as part of assembly A, when A is executed. Thus, the file reference shall also appear with the assembly declaration. Similarly, M5 references another module, M6, which becomes part of B when B is executed. It follows that assembly B shall also have a module reference to M6.

End informative text

6.2 Defining an assembly XE "assembly:defining an" \b
An assembly is specified as a module that contains a manifest in the metadata; see §22.2

. The information for the manifest is created from the following portions of the grammar:

	Decl ::=
	Clause

	 .assembly DottedName ‘{’ AsmDecl* ‘}’
	6.2

	| .assembly extern DottedName ‘{’ AsmRefDecl* ‘}’
	6.3

	| .corflags Int32
	6.2

	| .file [nometadata] Filename .hash ‘=’ ‘(’ Bytes ‘)’ [.entrypoint]
	6.2.3

	| .module extern Filename
	6.5

	| .mresource [public | private] DottedName ‘{’ ManResDecl* ‘}’
	6.2.2

	| .subsystem Int32
	6.2

	| …
	

The .assembly XE ".assembly;assembly" \b directive declares the manifest and specifies to which assembly the current module belongs. A module shall contain at most one .assembly directive. The DottedName specifies the name of the assembly. [Note: The standard library assemblies are described in Partition IV. end note]_alink=Partition_IV)
[Note: Since some platforms treat names in a case-insensitive manner, two assemblies that have names that differ only in case should not be declared. end note]
The .corflags XE ".corflags;corflags" \b directive sets a field in the CLI header of the output PE file (see §25.3.3.1

). A conforming implementation of the CLI shall expect this field’s value to be 1. For backwards compatibility, the three least-significant bits are reserved. Future versions of this standard might provide definitions for values between 8 and 65,535. Experimental and non-standard uses should thus use values greater than 65,535.

The .subsystem XE ".subsystem;subsystem" \b directive is used only when the assembly is executed directly (as opposed to its being used as a library for another program). This directive specifies the kind of application environment required for the program, by storing the specified value in the PE file header (see §25.2.2

). While any 32-bit integer value can be supplied, a conforming implementation of the CLI need only respect the following two values:

· If the value is 2, the program should be run using whatever conventions are appropriate for an application that has a graphical user interface.

· If the value is 3, the program should be run using whatever conventions are appropriate for an application that has a direct console attached.

Implementation Specific (Microsoft)
Decl ::= … | .file alignment Int32 | .imagebase Int64
The .file alignment XE ".file alignment;file alignment" \b directive sets the file alignment field in the PE header of the output file. Valid values are multiples of 512. (Different sections of the PE file are aligned, on disk, at the specified value [in bytes].)

The .imagebase XE ".imagebase;imagebase" \b directive sets the imagebase field in the PE header of the output file. This value specifies the virtual address at which this PE file will be loaded into the process.

See 25.2.3.2

§
[Example:
.assembly CountDown
{ .hash algorithm 32772
 .ver 1:0:0:0
}
.file Counter.dll .hash = (BA D9 7D 77 31 1C 85 4C 26 9C 49 E7
02 BE E7 52 3A CB 17 AF)
end example]

6.2.1 Information about the assembly (AsmDecl)

The following grammar shows the information that can be specified about an assembly:
	AsmDecl ::=
	Description
	Clause

	 .custom XE ".custom;custom" CustomDecl
	Custom attributes
	21

	 .hash algorithm XE ".hash algorithm;hash algorithm" Int32
	Hash algorithm used in the .file directive
	6.2.1.1

	| .culture XE ".culture;culture" QSTRING
	Culture for which this assembly is built
	6.2.1.2

	| .publickey XE ".publickey;publickey" ‘=’ ‘(’ Bytes ‘)’
	The originator's public key.
	6.2.1.3

	| .ver XE ".ver ;ver" Int32 ‘:’ Int32 ‘:’ Int32 ‘:’ Int32
	Major version, minor version, build, and revision
	6.2.1.4

	| SecurityDecl
	Permissions needed, desired, or prohibited
	20

6.2.1.1 Hash algorithm

	AsmDecl ::= .hash algorithm XE ".hash algorithm;hash algorithm" \b Int32 | …

When an assembly consists of more than one file (see §Partition I6.2.3

), the manifest for the assembly specifies both the name and cryptographic hash of the contents of each file other than its own. The algorithm used to compute the hash can be specified, and shall be the same for all files included in the assembly. All values are reserved for future use, and conforming implementations of the CLI shall use the SHA1 (see _alink=Partition_I) hash function and shall specify this algorithm by using a value of 32772 (0x8004).

[Rationale: SHA1 was chosen as the best widely available technology at the time of standardization (see Partition I_alink=Partition_I). A single algorithm was chosen since all conforming implementations of the CLI would be required to implement all algorithms to ensure portability of executable images.end rationale]
6.2.1.2 Culture

	AsmDecl ::= .culture XE ".culture;culture" \b QSTRING | …

When present, this indicates that the assembly has been customized for a specific culture. The strings that shall be used here are those specified in Partition IV_alink=Partition_IV as acceptable with the class System.Globalization.CultureInfo XE "System.Globalization.CultureInfo" . When used for comparison between an assembly reference and an assembly definition these strings shall be compared in a case-insensitive manner. (See §23.1.3.)
Implementation Specific (Microsoft)

The product version of ilasm and ildasm use .locale XE ".locale;locale" rather than .culture.

[Note: The culture names follow the IETF RFC1766 names. The format is “<language>-<country/region>”, where <language> is a lowercase two-letter code in ISO 639-1. <country/region> is an uppercase two-letter code in ISO 3166. end note]
6.2.1.3 Originator’s public key

	AsmDecl ::= .publickey XE ".publickey;publickey" \b ‘=’ ‘(’ Bytes ‘)’ | …

The CLI metadata allows the producer of an assembly to compute a cryptographic hash of that assembly (using the SHA1 hash function) and then to encrypt it using the RSA algorithm (see Partition I_alink=Partition_I) and a public/private key pair of the producer’s choosing. The results of this (an “SHA1/RSA digital signature”) can then be stored in the metadata along with the public part of the key pair required by the RSA algorithm. The .publickey directive is used to specify the public key that was used to compute the signature. To calculate the hash, the signature is zeroed, the hash calculated, and then the result is stored into the signature.

All of the assemblies in the Standard Library (see Partition IV) use the public key 00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00. This key is known as the Standard Public Key XE "Standard Public Key" \b .

A reference to an assembly (§6.3

) captures some of this information at compile time. At runtime, the information contained in the assembly reference can be combined with the information from the manifest of the assembly located at runtime to ensure that the same private key was used to create both the assembly seen when the reference was created (compile time) and when it is resolved (runtime).

The Strong Name (SN) signing process uses standard hash and cipher algorithms for Strong name signing. An SHA1 hash over most of the PE file is generated. That hash value is RSA-signed with the SN private key. For verification purposes the public key is stored into the PE file as well as the signed hash value.

Except for the following, all portions of the PE File are hashed:

· The Authenticode Signature entry: PE files can be authenticode signed. The authenticode signature is contained in the 8-byte entry at offset 128 of the PE Header Data Directory (“Certificate Table” in §25.2.3.3) and the contents of the PE File in the range specified by this directory entry. [Note: In a conforming PE File, this entry shall be zero. end note]

· The Strong Name Blob: The 8-byte entry at offset 32 of the CLI Header (“StrongNameSignature” in §25.3.3) and the contents of the hash data contained at this RVA in the PE File. If the 8-byte entry is 0, there is no associated strong name signature.

· The PE Header Checksum: The 4-byte entry at offset 64 of the PE Header Windows NT-Specific Fields (“File Checksum” in §25.2.3.2). [Note: In a conforming PE File, this entry shall be zero. end note]

6.2.1.4 Version numbers

	AsmDecl ::= .ver XE ".ver;ver" \b Int32 ‘:’ Int32 ‘:’ Int32 ‘:’ Int32 | …

The version number of an assembly is XE "assembly:version number" \b specified as four 32-bit integers. This version number shall be captured at compile time and used as part of all references to the assembly within the compiled module.
All standardized assemblies shall have the last two 32-bit integers set to 0. This standard places no other requirement on the use of the version numbers, although individual implementers are urged to avoid setting both of the last two 32-bit integers to 0 to avoid a possible collision with future versions of this standard.

Future versions of this standard shall change one or both of the first two 32-bit integers specified for a standardized assembly if any additional functionality is added or any additional features of the VES are required to implement it. Furthermore, future versions of this standard shall change one or both of the first two 32-bit integers specified for the mscorlib assembly so that its version number can be used (if desired) to distinguish between different versions of the Execution Engine required to run programs.

[Note: A conforming implementation can ignore version numbers entirely, or it can require that they match precisely when binding a reference, or it can exhibit any other behavior deemed appropriate. By convention:

1. The first of these 32-bit integers is considered to be the major version number, and assemblies with the same name, but different major versions, are not interchangeable. This would be appropriate, for example, for a major rewrite of a product where backwards compatibility cannot be assumed.

2. The second of these 32-bit integers is considered to be the minor version number, and assemblies with the same name and major version, but different minor versions, indicate significant enhancements, but with the intention of being backwards compatible. This would be appropriate, for example, on a “point release” of a product or a fully backward compatible new version of a product.

3. The third of these 32-bit integers is considered to be the build number, and assemblies that differ only by build number are intended to represent a recompilation from the same source. This would be appropriate, for example, because of processor, platform, or compiler changes.

4. The fourth of these 32-bit integers is considered to be the revision number, and assemblies with the same name, major and minor version number, but different revisions, are intended to be fully interchangeable. This would be appropriate, for example, to fix a security hole in a previously released assembly.

end note]

6.2.2 Manifest resources

A manifest resourcexe "manifest resource" \b is simply a named item of data associated with an assembly. A manifest resource is introduced using the .mresource XE ".mresource;mresource" \b directive, which adds the manifest resource to the assembly manifest begun by a preceding .assemblyxe ".assembly;assembly" declaration.

	Decl ::=
	Clause

	 .mresource [public | private] DottedName ‘{’ ManResDecl* ‘}’
	

	| …
	5.10

If the manifest resource is declared public, it is exported from the assembly. If it is declared private, it is not exported, in which case, it is only available from within the assembly. The DottedName is the name of the resource.

	ManResDecl ::=
	Description
	Clause

	 .assembly extern XE ".assembly extern;assembly extern" DottedName
	Manifest resource is in external assembly with name DottedName.
	6.3

	| .custom XE ".custom;custom" CustomDecl
	Custom attribute.
	21

	| .file XE ".file;file" \b DottedName at Int32
	Manifest resource is in file DottedName at byte offset Int32.
	

For a resource stored in a file that is not a module (for example, an attached text file), the file shall be declared in the manifest using a separate (top-level) .file declaration (see §6.3

).
6.2.3

) and the byte offset shall be zero. A resource that is defined in another assembly is referenced using .assembly extern, which requires that the assembly has been defined in a separate (top-level) .assembly extern directive (§
6.2.3 Associating files with an assembly

Assemblies can be associated with other files (such as documentation and other files that are used during execution). The declaration .filexe ".file;file" \b is used to add a reference to such a file to the manifest of the assembly: (See §22.19

)

	Decl ::=
	Clause

	 .file [nometadata] Filename .hash ‘=’ ‘(’ Bytes ‘)’ [.entrypoint]
	

	| …
	5.10

Implementation Specific (Microsoft)

The .hash component is optional. If it is omitted, the assembler computes it automatically.
The attribute nometadataxe "nometadata" \b is specified if the file is not a module according to this specification. Files that are marked as nometadata can have any format; they are considered pure data files.

The Bytes after the .hashxe ".hash;hash" \b specify a hash value computed for the file. The VES shall recompute this hash value prior to accessing this file and if the two do not match, the behavior is unspecified. The algorithm used to calculate this hash value is specified with .hash algorithmxe ".hash algorithm;hash algorithm" (§6.2.1.1

).

If specified, the .entrypoint XE ".entrypoint;entrypoint" \b directive indicates that the entrypoint of a multi-module assembly is contained in this file.

Implementation Specific (Microsoft)
If the hash value is not specified, it will be computed automatically by the assembly linker (al) when an assembly file is created using that tool. Even though the hash value is optional in the grammar for ILAsm, it is required at runtime.

6.3 Referencing assemblies XE "assembly:referencing an" \b
	AsmRefDecl ::= .assembly extern DottedName [as DottedName] ‘{’ AsmRefDecl* ‘}’

An assembly mediates all accesses to other assemblies from the files that it contains. This is done through the metadata by requiring that the manifest for the executing assembly contain a declaration for any assembly referenced by the executing code. A top-level .assembly extern XE ".assembly extern;assembly extern" \b declaration is used for this purpose. The optional as clause provides an alias, which allows ILAsm to address external assemblies that have the same name, but differing in version, culture, etc.

The dotted name used in .assembly extern shall exactly match the name of the assembly as declared with an .assembly directive, in a case-sensitive manner. (So, even though an assembly might be stored within a file, within a file system that is case-insensitive, the names stored internally within metadata are case-sensitive, and shall match exactly.)

Implementation Specific (Microsoft)
The assembly mscorlibxe "mscorlib" contains many of the types and methods in the Base Class Library. For convenience, ilasm automatically inserts a .assembly extern mscorlib declaration if one is required.
	AsmRefDecl ::=
	Description
	Clause

	 .hash XE ".hash;hash" ‘=’ ‘(’ Bytes ‘)’
	Hash of referenced assembly
	6.2.3

	| .custom XE ".custom;custom" CustomDecl
	Custom attributes
	21

	| .culture XE ".culture;culture" QSTRING
	Culture of the referenced assembly
	6.2.1.2

	| .publickeytoken XE ".publickeytoken;publickeytoken" \b ‘=’ ‘(’ Bytes ‘)’
	The low 8 bytes of the SHA1 hash of the originator's public key.
	6.3

	| .publickey XE ".publickey;publickey" ‘=’ ‘(’ Bytes ‘)’
	The originator’s full public key
	6.2.1.3

	| .ver XE ".ver ;ver" Int32 ‘:’ Int32 ‘:’ Int32 ‘:’ Int32
	Major version, minor version, build, and revision
	6.2.1.4

These declarations are the same as those for .assembly declarations (§6.2.1

), except for the addition of .publickeytoken. This declaration is used to store the low 8 bytes of the SHA1 hash of the originator’s public key in the assembly reference, rather than the full public key.

An assembly reference can store either a full public key or an 8-byte “public key token.” Either can be used to validate that the same private key used to sign the assembly at compile time also signed the assembly used at runtime. Neither is required to be present, and while both can be stored, this is not useful.

A conforming implementation of the CLI need not perform this validation, but it is permitted to do so, and it can refuse to load an assembly for which the validation fails. A conforming implementation of the CLI can also refuse to permit access to an assembly unless the assembly reference contains either the public key or the public key token. A conforming implementation of the CLI shall make the same access decision independent of whether a public key or a token is used.

[Rationale: The full public key is cryptographically safer, but requires more storage space in the assembly reference. end rationale]
[Example:

.assembly extern MyComponents
{ .publickey = (BB AA BB EE 11 22 33 00)
 .hash = (2A 71 E9 47 F5 15 E6 07 35 E4 CB E3 B4 A1 D3 7F 7F A0 9C 24)
 .ver 2:10:2002:0
}

end example]

6.4 Declaring modules XE "module:declaring a" \b
All CIL files are modules and are referenced by a logical name carried in the metadata rather than by their file name. See §22.30
.

	Decl ::=
	Clause

	| .module XE ".module;module" \b Filename
	

	| …
	5.10

[Example:

.module CountDown.exe

end example]

Implementation Specific (Microsoft)
If the .module directive is missing, ilasm will automatically add a .module directive and set the module name to be the file name, including its extension in capital letters. e.g., if the file is called foo and compiled into an exe, the module name will become “Foo.EXE”.
Note that ilasm also generates a required GUID to uniquely identify this instance of the module, and emits that into the Mvid metadata field: see §22.29

.

6.5 Referencing modules XE "module:referencing a" \b
When an item is in the current assembly, but is part of a module other than the one containing the manifest, the defining module shall be declared in the manifest of the assembly using the .module extern XE ".module extern;module extern" \b directive. The name used in the .module extern directive of the referencing assembly shall exactly match the name used in the .module XE ".module;module" directive (§22.31

.
6.4

) of the defining module. See §
	Decl ::=
	Clause

	| .module extern Filename
	

	| …
	5.10

[Example:

.module extern Counter.dll

end example]

6.6 Declarations inside a module or assembly

Declarations inside a module or assembly are specified by the following grammar. More information on each option can be found in the corresponding clause or subclause.

	Decl ::=
	Clause

	| .class XE ".class;class" ClassHeader ‘{’ ClassMember* ‘}’
	10

	| .custom XE ".custom;custom" CustomDecl
	21

	| .data XE ".data;data" DataDecl
	16.3.1

	| .field XE ".field;field" FieldDecl
	16

	| .method XE ".method;method" MethodHeader ‘{’ MethodBodyItem* ‘}’
	15

	| ExternSourceDecl
	5.7

	| SecurityDecl
	20

	| …
	

6.7 Exported type definitions

The manifest module XE "module:manifest" , of which there can only be one per assembly, includes the .assembly directive. To export a type defined in any other module of an assembly requires an entry in the assembly’s manifest. The following grammar is used to construct such an entry in the manifest:

	Decl ::=
	Clause

	 .class extern XE ".class extern;class extern" \b ExportAttr DottedName ‘{’ ExternClassDecl* ‘}’
	

	ExternClassDecl ::=
	Clause

	.file DottedName
	21

	| .class extern DottedName
	21

	| .custom XE ".custom;custom" CustomDecl
	21

The ExportAttr value shall be either public or nested public and shall match the visibility of the type.

For example, suppose an assembly consists of two modules, A.EXE and B.DLL. A.EXE contains the manifest. A public class Foo is defined in B.DLL. In order to export it—that is, to make it visible by, and usable from, other assemblies—a .class extern directive shall be included in A.EXE. Conversely, a public class Bar defined in A.EXE does not need any .class extern directive.

[Rationale: Tools should be able to retrieve a single module, the manifest module, to determine the complete set of types defined by the assembly. Therefore, information from other modules within the assembly is replicated in the manifest module. By convention, the manifest module is also known as the assembly. end rationale]
7 Types and signatures

The metadata provides mechanisms to both define XE "type:definition of a" and reference types XE "type:reference" \b . §10 describes the metadata associated with a type definition, regardless of whether the type is an interface, class, or value type. The mechanism used to reference types is divided into two parts:

· A logical description of user-defined types that are referenced, but (typically) not defined in the current module. This is stored in a table in the metadata (§22.38).

· A signature that encodes one or more type references, along with a variety of modifiers. The grammar non-terminal Type describes an individual entry in a signature. The encoding of a signature is specified in §23.1.16

..n cn
7.1 Types XE "type" \b
The following grammar completely specifies all built-in typesxe "type:built-in" \b (including pointer types) of the CLI system. It also shows the syntax for user defined typesxe "type:user defined" \b that can be defined in the CLI system:

	Type ::=
	Description
	Clause

	 ‘!’ Int32xe "!"
	Generic parameter in a type definition, accessed by index from 0
	9.1

	| ‘!!’ Int32xe "!!"
	Generic parameter in a method definition, accessed by index from 0
	9.2

	| boolxe "bool"
	Boolean
	7.2

	| charxe "char"
	16-bit Unicode code point
	7.2

	| classxe "class" TypeReference
	User defined reference type
	7.3

	| float32xe "float32"
	32-bit floating-point number
	7.2

	| float64xe "float64"
	64-bit floating-point number
	7.2

	| int8xe "int8"
	Signed 8-bit integer
	7.2

	| int16xe "int16"
	Signed 16-bit integer
	7.2

	| int32xe "int32"
	Signed 32-bit integer
	7.2

	| int64xe "int64"
	Signed 64-bit integer
	7.2

	| methodxe "method" CallConv Type ‘*’
 ‘(’ Parameters ‘)’
	Method pointer
	14.5

	| native intxe "int:native"
	32- or 64-bit signed integer whose size is platform-specific
	7.2

	| native unsigned intxe "int:native unsigned"
	32- or 64-bit unsigned integer whose size is platform-specific
	7.2

	| object XE "object"
	See System.Object XE "System.Object" in Partition IV_alink=Partition_IV
	

	| string XE "string"
	See System.String XE "System.String" in Partition IV_alink=Partition_IV
	

	| Type ‘&’xe "&"
	Managed pointer to Type. Type shall not be a managed pointer type or typedref
	14.4

	| Type ‘*’xe "*"
	Unmanaged pointer to Type
	14.4

	| Type ‘<’ GenArgs ‘>’
	Instantiation of generic type
	9.4

	| Type ‘[’ [Bound [‘,’ Bound]*] ‘]’
	Array of Type with optional rank (number of dimensions) and bounds.
	14.1and 14.2

	| Type modopt XE "modopt" ‘(’ TypeReference ‘)’
	Custom modifier that can be ignored by the caller.
	7.1.1

	| Type modreq XE "modreq" ‘(’ TypeReference ‘)’
	Custom modifier that the caller shall understand.
	7.1.1

	| Type pinned XE "pinned"
	For local variables only. The garbage collector shall not move the referenced value.
	7.1.2

	| typedrefxe "typedref"
	Typed reference (i.e., a value of type System.TypedReference), created by mkrefany and used by refanytype or refanyval.
	7.2

	| valuetype XE "value type" TypeReference
	(Unboxed) user defined value type
	13

	| unsigned int8 XE "int8:unsigned"
	Unsigned 8-bit integer
	7.2

	| unsigned int16 XE "int16:unsigned"
	Unsigned 16-bit integer
	7.2

	| unsigned int32 XE "int32:unsigned"
	Unsigned 32-bit integer
	7.2

	| unsigned int64 XE "int64:unsigned"
	Unsigned 64-bit integer
	7.2

	| voidxe "void"
	No type. Only allowed as a return type or as part of void *
	7.2

In several situations the grammar permits the use of a slightly simpler representation for specifying types; e.g., “System.GC” can be used instead of “class System.GC”. Such representations are called type specifications: XE "type:specification" \b
	TypeSpec ::=
	Clause

	 ‘[’ [.module xe ".module;module"] DottedName ‘]’
	7.3

	| TypeReference
	7.2

	| Type
	7.1

7.1.1 modreq and modopt

Custom modifiers, defined using modreq XE "modreq" \b (“required modifier”) XE "modifier:required" \t “See modreq” and modopt XE "modopt" \b (“optional modifier”), XE "modifier:optional" \t “See modopt” are similar to custom attributes (§21

) except that modifiers are part of a signature rather than being attached to a declaration. Each modifer associates a type reference with an item in the signature.
The CLI itself shall treat required and optional modifiers in the same manner. Two signatures that differ only by the addition of a custom modifier (required or optional) shall not be considered to match. Custom modifiers have no other effect on the operation of the VES.

[Rationale: The distinction between required and optional modifiers is important to tools other than the CLI that deal with the metadata, typically compilers and program analysers. A required modifier indicates that there is a special semantics to the modified item that should not be ignored, while an optional modifier can simply be ignored.

For example, the const qualifier in the C programming language can be modelled with an optional modifier since the caller of a method that has a const-qualified parameter need not treat it in any special way. On the other hand, a parameter that shall be copy-constructed in C++ shall be marked with a required custom attribute since it is the caller who makes the copy. end rationale]
7.1.2 pinned

The signature encoding for pinned XE "pinned" \b shall appear only in signatures that describe local variables (§15.4.1.3). While a method with a pinned local variable is executing, the VES shall not relocate the object to which the local refers. That is, if the implementation of the CLI uses a garbage collector that moves objects, the collector shall not move objects that are referenced by an active pinned local variable.

[Rationale: If unmanaged pointers are used to dereference managed objects, these objects shall be pinned. This happens, for example, when a managed object is passed to a method designed to operate with unmanaged data. end rationale]
7.2 Built-in types

The CLI built-in typesxe "type:built-in" have corresponding value types defined in the Base Class Library. They shall be referenced in signatures only using their special encodings (i.e., not using the general purpose valuetype TypeReference syntax). Partition I_alink=Partition_I specifies the built-in types.

7.3 References to user-defined types (TypeReference)

User-defined types are referenced either using their full name and a resolution scope XE "resolution scope" or, if one is available in the same module, a type definition (§10).

A TypeReference is used to capture the full name and resolution scope:

	TypeReference ::=

	 [ResolutionScope] DottedName [‘/’ DottedName]*

	ResolutionScope ::=

	‘[’ .module XE ".module;module" Filename ‘]’

	| ‘[’ AssemblyRefName ‘]’

	AssemblyRefName ::=
	Clause

	 DottedName
	5.1

The following resolution scopes are specified for un-nested types:

· Current module (and, hence, assembly). This is the most common case and is the default if no resolution scope is specified. The type shall be resolved to a definition only if the definition occurs in the same module as the reference.

[Note: A type reference that refers to a type in the same module and assembly is better represented using a type definition. Where this is not possible (e.g., when referencing a nested type that has compilercontrolled accessibility) or convenient (e.g., in some one-pass compilers) a type reference is equivalent and can be used. end note]
· Different module, current assembly. The resolution scope shall be a module reference syntactically represented using the notation [.module Filename]. The type shall be resolved to a definition only if the referenced module (§6.7

) have been declared by the current assembly and hence have entries in the assembly’s manifest. Note that in this case the manifest is not physically stored with the referencing module.
6.4

) and type (§
· Different assembly. The resolution scope shall be an assembly reference syntactically represented using the notation [AssemblyRefName]. The referenced assembly shall be declared in the manifest for the current assembly (§10.1.1

).
6.7

 and §6.3

), the type shall be declared in the referenced assembly’s manifest, and the type shall be marked as exported from that assembly (§
· For nested types, the resolution scope is always the enclosing type. (See §10.6

). This is indicated syntactically by using a slash (“/”) to separate the enclosing type name from the nested type’s name.
[Example: The type System.Console defined in the base class library (found in the assembly named mscorlib):
.assembly extern mscorlib { }
.class [mscorlib]System.Console
A reference to the type named C.D in the module named x in the current assembly:
.module extern x
.class [.module x]C.D
A reference to the type named C nested inside of the type named Foo.Bar in another assembly, named MyAssembly:
.assembly extern MyAssembly { }
.class [MyAssembly]Foo.Bar/C
end example]

7.4 Native data types XE "type:native data" \b
Some implementations of the CLI will be hosted on top of existing operating systems or runtime platforms that specify data types required to perform certain functions. The metadata allows interaction with these native data types by specifying how the built-in and user-defined types of the CLI are to be marshalled XE "type:marshalling of a" \b to and from native data types. This marshalling information can be specified (using the keyword marshal XE "marshal" \b) for

· the return type of a method, indicating that a native data type is actually returned and shall be marshalled back into the specified CLI data type

· a parameter to a method, indicating that the CLI data type provided by the caller shall be marshalled into the specified native data type. (If the parameter is passed by reference, the updated value shall be marshalled back from the native data type into the CLI data type when the call is completed.)

· a field of a user-defined type, indicating that any attempt to pass the object in which it occurs, to platform methods shall make a copy of the object, replacing the field by the specified native data type. (If the object is passed by reference, then the updated value shall be marshalled back when the call is completed.)

The following table lists all native types supported by the CLI, and provides a description for each of them. (A more complete description can be found in Partition IV_alink=Partition_IV in the definition of the enum System.Runtime.Interopservices.UnmanagedType XE "System.Runtime.Interopservices.UnmanagedType" , which provides the actual values used to encode these types.) All encoding values in the range 0–63, inclusive, are reserved for backward compatibility with existing implementations of the CLI. Values in the range 64–127 are reserved for future use in this and related Standards.

	NativeType ::=
	Description
	Name in the class library enum type UnmanagedType

	‘[’ ‘]’ XE "array:native" \b
	Native array. Type and size are determined at runtime from the actual marshaled array.
	LPArray

	| boolxe "bool" \b
	Boolean. 4-byte integer value where any non-zero value represents TRUE, and 0 represents FALSE.
	Bool

	| float32xe "float32" \b
	32-bit floating-point number.
	R4

	| float64xe "float64" \b
	64-bit floating-point number.
	R8

	| [unsigned] intxe "unsigned int" \b xe "int" \b
	Signed or unsigned integer, sized to hold a pointer on the platform
	SysUInt or SysInt

	| [unsigned] int8xe "unsigned int8" \b xe "int8" \b
	Signed or unsigned 8-bit integer
	U1 or I1

	| [unsigned] int16xe "unsigned int16" \b xe "int16" \b
	Signed or unsigned 16-bit integer
	U2 or I2

	| [unsigned] int32xe "unsigned int32" \b xe "int32" \b
	Signed or unsigned 32-bit integer
	U4 or I4

	| [unsigned] int64xe "unsigned int64" \b xe "int64" \b
	Signed or unsigned 64-bit integer
	U8 or I8

	| lpstrxe "lpstr" \b
	A pointer to a null-terminated array of ANSI characters. The code page is implementation-specific.
	LPStr

	| lpwstrxe "lpwstr" \b
	A pointer to a null-terminated array of Unicode characters. The character encoding is implementation-specific.
	LPWStr

	| methodxe "method" \b
	A function pointer.
	FunctionPtr

	| NativeType ‘[’ ‘]’
	Array of NativeType. The length is determined at runtime by the size of the actual marshaled array.
	LPArray

	| NativeType ‘[’ Int32 ‘]’
	Array of NativeType of length Int32.
	LPArray

	| NativeType
‘[’ ‘+’ Int32 ‘]’
	Array of NativeType with runtime supplied element size. The Int32 specifies a parameter to the current method (counting from parameter number 0) that, at runtime, will contain the size of an element of the array in bytes. Can only be applied to methods, not fields.

Implementation-specific (Microsoft)

In the case of the Int32, counting is done from parameter number 1 if the signature has the PreserveSig bit set.
	LPArray

	| NativeType
‘[’ Int32 ‘+’ Int32 ‘]’
	Array of NativeType with runtime supplied element size. The first Int32 specifies the number of elements in the array. The second Int32 specifies which parameter to the current method (counting from parameter number 0) will specify the additional number of elements in the array. Can only be applied to methods, not fields
Implementation-specific (Microsoft)

In the case of the second Int32, counting is done from parameter number 1 if the signature has the PreserveSig bit set.
	LPArray

Implementation-specific (Microsoft)

The Microsoft implementation supports a richer set of types to describe marshalling between Windows native types and COM. These additional options are listed in the following table:

	Implementation-specific (Microsoft)

	NativeType ::=
	Description
	Name in the class library enum type UnmanagedType

	| as anyxe "as any" \b
	Determines the type of an object at runtime and marshals the Object as that type.
	AsAny

	| byvalstrxe "byvalstr" \b
	A string in a fixed length buffer.
	VBByRefStr

	| custom xe "custom" \b ‘(’ QSTRING,
 QSTRING ‘)’
	Custom marshaler. The 1st string is the name of the marshalling class, using the string conventions of Reflection.Emit to specify the assembly and/or module. The 2nd is an arbitrary string passed to the marshaller at runtime to identify the form of marshalling required.
	CustomMarshaler

	| fixed arrayxe "fixed array" \b [Int32]
	A fixed size array of length Int32 bytes
	ByValArray

	| fixed sysstringxe "fixed sysstring" \b
[Int32]
	A fixed size system string of length Int32. This can only be applied to fields, and a separate attribute specifies the encoding of the string.
	ByValTStr

	| lpstructxe "lpstruct" \b
	A pointer to a C-style structure. Used to marshal managed formatted types.
	LPStruct

	| lptstr xe "lpstruct" \b
	A pointer to a null-terminated array of platform characters (ANSI or Unicode). The code page and character encoding are implementation-specific.
	LPTStr

	| structxe "struct" \b
	A C-style structure, used to marshal managed formatted types.
	Struct

[Example:

.method int32 M1(int32 marshal(int32), bool[] marshal(bool[5]))

Method M1 takes two arguments: an int32, and an array of 5 bools.
.method int32 M2(int32 marshal(int32), bool[] marshal(bool[+1]))

Method M2 takes two arguments: an int32, and an array of bools: the number of elements in that array is given by the value of the first parameter.
.method int32 M3(int32 marshal(int32), bool[] marshal(bool[7+1]))

Method M3 takes two arguments: an int32, and an array of bools: the number of elements in that array is given as 7 plus the value of the first parameter. end example]

8 Visibility, accessibility and hiding

Partition I_alink=Partition_I specifies visibility and accessibility. In addition to these attributes, the metadata stores information about method name hiding XE "hiding" \b . Hiding controls which method names inherited from a base type are available for compile-time name binding.

8.1 Visibility of top-level types and accessibility of nested types

Visibilityxe "visibility" is attached only to top-level types, and there are only two possibilities: visible to types within the same assembly, or visible to types regardless of assembly. For nested types (i.e., types that are members of another type) the nested type has an accessibility XE "accessibility" that further refines the set of methods that can reference the type. A nested type can have any of the seven accessibility modes (see Partition I_alink=Partition_I), but has no direct visibility attribute of its own, using the visibility of its enclosing type instead.

Because the visibility of a top-level type controls the visibility of the names of all of its members, a nested type cannot be more visible than the type in which it is nested. That is, if the enclosing type is visible only within an assembly then a nested type with public accessibility is still only available within that assembly. By contrast, a nested type that has assembly accessibility is restricted to use within the assembly even if the enclosing type is visible outside the assembly.

To make the encoding of all types consistent and compact, the visibility of a top-level type and the accessibility of a nested type are encoded using the same mechanism in the logical model of §23.1.15

.

8.2 Accessibility

Accessibility is encoded directly in the metadata (see §22.26

 for an example).
8.3 Hiding

Hidingxe "hiding" is a compile-time concept that applies to individual methods of a type. The CTS specifies two mechanisms for hiding, specified by a single bit:

· hide-by-name, meaning that the introduction of a name in a given type hides all inherited members of the same kind with the same name.
· hide-by-name-and-sig, meaning that the introduction of a name in a given type hides any inherited member of the same kind, but with precisely the same type (in the case of nested types and fields) or signature (in the case of methods, properties, and events).

There is no runtime support for hiding. A conforming implementation of the CLI treats all references as though the names were marked hide-by-name-and-sig. Compilers that desire the effect of hide-by-name can do so by marking method definitions with the newslot XE "newslot" attribute (§15.4.2.3
) and correctly choosing the type used to resolve a method reference (§15.1.3

).

9 Generics XE "generics" \b
As mentioned in Partition I, generics allows a whole family of types and methods to be defined using a pattern, which includes placeholders called generic parameters. These generic parameters are replaced, as required, by specific types, to instantiate whichever member of the family is actually required. For example, class List<T>{}, represents a whole family of possible Lists; List<string>, List<int> and List<Button> are three possible instantiations; however, as we’ll see below, the CLS-compliant names of these types are really class List`1<T>{}, List`1<string>, List`1<int>, and List`1<Button>.
A generic type consists of a name followed by a <…>-delimited list of generic parameters, as in C<T>. Two or more generic types shall not be defined with the same name, but different numbers of generic parameters, in the same scope. However, to allow such overloading on generic arity at the source language level, CLS Rule 43 is defined to map generic type names to unique CIL names. That Rule states that the CLS-compliant name of a type C having one or more generic parameters, shall have a suffix of the form `n, where n is a decimal integer constant (without leading zeros) representing the number of generic parameters that C has. For example: the types C, C<T>, and C<K,V> have CLS-compliant names of C, C`1<T>, and C`2<K,V>, respectively. [Note: The names of all standard library types are CLS-compliant; e.g., System.Collections.Generic.IEnumerable`1<T>. end note]
Before generics is discussed in detail, here are the definitions of some new terms:
· public class List`1<T> {} is a generic type definition.

· <T> is a generic parameter list, and T is a generic parameter.

· List`1<T> is a generic type; it is sometimes termed a generic type, or open generic type because it has at least one generic parameter. This partition will use the term open type.
· List`1<int> is a closed generic type because it has no unbound generic parameters. (It is sometimes called an instantiated generic type or a generic type instantiation). This partition will use the term closed type.
· Note that generics includes generic types which are neither strictly open nor strictly closed; e.g., the base class B, in: .public class D`1<V> extends B`2<!0,int32> {}, given .public class B`2<T,U> {}.
· If a distinction need be made between generic types and ordinary types, the latter are referred to as non-generic types.

· <int> is a generic argument list, and int is a generic argument.

· This standard maintains the distinction between generic parameters and generic arguments. If at all possible, use the phrase “int is the type used for generic parameter T” when speaking of List`1<int>. (In Reflection, this is sometimes referred to as “T is bound to int”)

· “(C1, …, Cn) T” is a generic parameter constraint on the generic parameter T.
[Note: Conside the following definition:

class C`2<(I1,I2) S, (Base,I3) T> { … }

This denotes a class called C, with two generic parameters, S and T. S is constrained to implement two interfaces, I1 and I2. T is constrained to derive from the class Base, and also to implement the interface I3. end note]
Within a generic type definition, its generic parameters are referred to by their index. Generic parameter zero is referred to as !0, generic parameter one as !1, and so on. Similarly, within the body of a generic method definition, its generic parameters are referred to by their index; generic parameter zero is referred to as !!0, generic parameter one as !!1, and so on.

This block contains only informative text

A class definition for a stack might be denoted Stack<T>, where T is a generic parameter. In general, fields and methods of the Stack class will use the generic parameter T in their definition. For example, Stack might be defined as follows:

.assembly extern mscorlib {}

.assembly Stack {}

.class public Stack`1<([mscorlib]System.Object) T> extends [mscorlib]System.Object {

 .field private !0[] data

 .field private int32 top

 .method public specialname rtspecialname instance void .ctor() {

 .maxstack 8

 ldarg.0

 call instance void [mscorlib]System.Object::.ctor()

 ldarg.0

 ldc.i4.s 100

 newarr !0

 stfld !0[] class Stack`1<!0>::data

 ldarg.0

 ldc.i4.m1

 stfld int32 class Stack`1<!0>::top

 ret

 }

 .method public hidebysig instance void Push(!0 t) {

 .maxstack 4

 .locals init ([0] int32)

 ldarg.0

 ldfld !0[] class Stack`1<!0>::data

 ldarg.0

 dup

 ldfld int32 class Stack`1<!0>::top

 ldc.i4.1

 add

 dup

 stloc.0

 stfld int32 class Stack`1<!0>::top

 ldloc.0

 ldarg.1

 stelem !0

 ret

 }

 .method public hidebysig instance !0 Pop() {

 .maxstack 4

 .locals init ([0] !0, [1] int32)

 ldarg.0

 ldfld !0[] class Stack`1<!0>::data

 ldarg.0

 dup

 ldfld int32 class Stack`1<!0>::top

 dup

 stloc.1

 ldc.i4.1

 sub

 stfld int32 class Stack`1<!0>::top

 ldloc.1

 ldelem !0

 stloc.0

 ldloc.0

 ret

 }

}

For simplicity, this example omits overflow and underflow checking.
An example of using the Stack class, is as follows:

.class App extends [mscorlib]System.Object {
 .method private static void Main() {
 .entrypoint
 .maxstack 2
 .locals init ([0] class Stack`1<int32>)
 newobj instance void class Stack`1<int32>::.ctor()
 stloc.0
 ldloc.0
 ldc.i4.1
 callvirt instance void class Stack`1<int32>::Push(!0)
 ldloc.0
 ldc.i4.2
 callvirt instance void class Stack`1<int32>::Push(!0)

 ldloc.0
 callvirt instance !0 class Stack`1<int32>::Pop()
 call void [mscorlib]System.Console::WriteLine(int32)

 ldloc.0
 callvirt instance !0 class Stack`1<int32>::Pop()
 call void [mscorlib]System.Console::WriteLine(int32)
 ret
 }
 .method public specialname rtspecialname instance void .ctor() {
 .maxstack 8
 ldarg.0
 call instance void [mscorlib]System.Object::.ctor()
 ret
 }
End informative text

9.1 Generic type definitions

A generic type definition XE "generic type definition" \b is one that includes generic parameters. Each such generic parameter can have a name and an optional set of constraints—types with which generic arguments shall be assignment-compatible. Optional variance notation is also permitted (§10.1.7). (For an explanation of the ! and !! notation used below, see §9.4.) The generic parameter is in scope in the declarations of:
· its constraints (e.g., .class … C`1<(class IComparable`1<!0>) T>)
· any base class from which the type-under-definition derives (e.g., .class … MultiSet`1<T> extends class Set`1<!0[]>)
· any interfaces that the type-under-definition implements (e.g., .class … Hashtable`2<K,D> implements class IDictionary`2<!0,!1>)
· all members (instance and static fields, methods, constructors, properties and events) except nested classes. [Note: C# allows generic parameters from an enclosing class to be used in a nested class, but adds any required extra generic parameters to the nested class definition in metadata. end note]
A generic type definition can include static, instance, and virtual methods.
Generic type definitions are subject to the following restrictions:
· A generic parameter, on its own, cannot be used to specify the base class, or any implemented interfaces. So, for example, .class … G`1<T> extends !0 is invalid. However, it is valid for the base class, or interfaces, to use that generic parameter when nested within another generic type. For example, .class … G`1<T> extends class H`1<!0> and .class … G`1<T> extends class B`2<!0,int32> are valid.
[Rationale: This permits checking that generic types are valid at definition time rather than at instantiation time. e.g., in .class … G`1<T> extends !0, we do not know what methods would override what others because no information is available about the base class; indeed, we do not even know whether T is a class: it might be an array or an interface. Similarly, for .class … C`2<(!1)T,U> where we are in the same situation of knowing nothing about the base class/interface definition. end rationale]
· Varargs methods cannot be members of generic types
[Rationale: Implementing this feature would take considerable effort. Since varargs has very limited use among languages targetting the CLI, it was decided to exclude varargs methods from generic types. end rationale]
· When generic parameters are ignored, there shall be no cycles in the inheritance/interface hierarchy. To be precise, define a graph whose nodes are possibly-generic (but open) classes and interfaces, and whose edges are the following:

· If a (possibly-generic) class or interface D extends or implements a class or interface B, then add an edge from D to B.
· If a (possibly-generic) class or interface D extends or implements an instantiated class or interface B<type-1, …, type-n>, then add an edge from D to B.
· The graph is valid if it contains no cycles.

[Note: This algorithm is a natural generalization of the rules for non-generic types. See Partition I, §8.9.9 end note]
9.2 Generics and recursive inheritance graphs

[Rationale: Although inheritance graphs cannot be directly cyclic, instantiations given in parent classes or interfaces may introduce either direct or indirect cyclic dependencies, some of which are allowed (e.g., C : IComparable<C>), and some of which are disallowed (e.g., class A<T> : B<A<A<T>>> given class B<U>). end rationale]

Each type definition shall generate a finite instantiation closure. An instantiation closure is defined as follows:

1. Create a set containing a single generic type definition.

2. Form the closure of this set by adding all generic types referenced in the type signatures of base classes and implemented interfaces of all types in the set. Include nested instantiations in this set, so a referenced type Stack<List<T>> actually counts as both List<T> and Stack<List<T>>.
3. Construct a graph:

· Whose nodes are the formal type parameters of types in the set. Use alpha-renaming as needed to avoid name clashes.

· If T appears as the actual type argument to be substituted for U in some referenced type D<…, U, …> add a non-expanding (->) edge from T to U.

· If T appears somewhere inside (but not as) the actual type argument to be substituted for U in referenced type D<…, U, …> add an expanding (=>) edge from T to U.
An expanding-cycle is a cycle in the instantiation closure that contains at least one expanding-edge (=>). The instantiation-closure of the system is finite if and only if the graph as constructed above contains no expanding-cycles.

[Example:
class B<U>
class A<T> : B<A<A<T>>>

generates the edges (using => for expanding-edges and -> for non-expanding-edges)

T -> T (generated by referenced type A<T>)
T => T (generated by referenced type A<A<T>>)
T => U (generated by referenced type B<A<A<T>>>)

This graph does contain an expanding-cycle, so the instantiation closure is infinite. end example]
[Example:
class B<U>
class A<T> : B<A<T>>
generates the edges

T -> T (generated by referenced type A<T>)
T => U (generated by referenced type B<A<T>>)

This graph does not contain an expanding-cycle, so the instantiation closure is finite. end example]
[Example:
class P<T>
class C<U,V> : P<D<V,U>>
class D<W,X> : P<C<W,X>>

generates the edges

U -> X V -> W U => T V => T (generated by referenced type D<V,U> and P<D<V,U>>)
W -> U X -> V W => T W => T (generated by referenced type C<W,X> and P<C<W,X>>)

This graph contains non-expanding-cycles (e.g. U -> X -> V -> W -> U), but no expanding-cycle, so the instantiation closure is finite. end example]
9.3 Generic method definitions

A generic method definition XE "generic method definition" \b is one that includes a generic parameter list. A generic method can be defined within a non-generic type; or within a generic type, in which case the method’s generic parameter(s) shall be additional to the generic parameter(s) of the owner. As with generic type definitions, each generic parameter on a generic method definition has a name and an optional set of constraints.

Generic methods can be static, instance, or virtual. Class or instance constructors (.cctor, or .ctor, respectively) shall not be generic.

The method generic parameters are in scope in the signature and body of the method, and in the generic parameter constraints. [Note: The signature includes the method return type. So, in the example:

.method … !!0 M`1<T>() { … }
the !!0 is in scope—it’s the generic parameter of M`1<T> even though it preceeds that parameter in the declaration.. end note]

Generic instance XE "generic instance" \b (virtual and non-virtual) methods can be defined as members of generic types, in which case the generic parameters of both the generic type and the generic method are in scope in the method signature and body, and in constraints on method generic parameters.
9.4 Instantiating generic types

GenArgs is used to represent a generic argument list:

	GenArgs ::=

	 Type [‘,’ Type]* [‘,’]*

We say that a type is closed XE "type:closed" \b if it contains no generic parameters; otherwise, it is open. XE "type:open" \b
A given generic type definition can be instantiated with generic arguments to produce an instantiated type. XE "type:instantiated" \b
[Example: Given suitable definitions for the generic class MyList and value type Pair, we could instantiate them as follows:
newobj instance void class MyList`1<int32>::.ctor()
initobj valuetype Pair`2<int32, valuetype Pair<string,int32>>

end example]
[Example:

ldtoken !0

// !0 = generic parameter 0 in generic type definition
castclass class List`1<!1>
// !1 = generic parameter 1 in generic type definition
box !!1

// !!1 = generic parameter 1 in generic method definition

end example]

The number of generic arguments in an instantiation shall match the number of generic parameters specified in the type or method definition.
The CLI does not support partial instantiation of generic types. And generic types shall not appear uninstantiated anywhere in metadata signature blobs.

The following kinds of type cannot be used as arguments in instantiations (of generic types or methods):

· Byref types (e.g., System.Generic.Collection.List`1<string&> is invalid)

· Value types that contain fields that can point into the CIL evaluation stack (e.g., List<System.RuntimeArgumentHandle>)

· void (e.g., List<System.Void> is invalid)

Unmanaged pointer types (e.g., int32*) can be used as generic arguments to generic types and methods.

[Rationale: Byrefs types cannot be used as generic arguments because some, indeed most, instantiations would be invalid. For example, since byrefs are not allowed as field types or as method return types, in the definition of List`1<string&>, one could not declare a field of type !0, nor a method that returned a type of !0. end rationale]
Objects of instantiated types shall carry sufficient information to recover at runtime their exact type (including the types and number of their generic arguments). [Rationale: This is required to correctly implement casting and instance-of testing, as well as in reflection capabilities (System.Object::GetType). end rationale]

9.5 Generics variance
The CLI supports covariance and contravariance of generic parameters, but only in the signatures of interfaces and delegate classes.

The symbol “+” is used in the syntax of §10.1.7 to denote a covariant generic parameter, while “-” is used to denote a contravariant generic parameter
This block contains only informative text

Suppose we have a generic interface, which is covariant in its one generic parameter; e.g., IA`1<+T>. Then all instantiations satisfy IA`1<GenArgB> := IA`1<GenArgA>, so long as GenArgB := GenArgA using the notion from assignment compatibility. So, for example, an instance of type IA`1<string> can be assigned to a local of type type IA`1<object>.

Generic contravariance operates in the opposite sense: supposing that we have a contravariant interface IB`1<-T>, then IB`1<GenArgB> := IB`1<GenArgA>, so long as GenArgA := GenArgB.

[Example: (The syntax used is illustrative of a high-level language.)

// Covariant parameters can be used as result types
interface IEnumerator<+T> {

T Current { get; }

bool MoveNext();
}
// Covariant parameters can be used in covariant result types
interface IEnumerable<+T> {

IEnumerator<T> GetEnumerator();
}

// Contravariant parameters can be used as argument types
interface IComparer<-T> {

bool Compare(T x, T y);
}
// Contravariant parameters can be used in contravariant interface types
interface IKeyComparer<-T> : IComparer<T> {

bool Equals(T x, T y);

int GetHashCode(T obj);
}
// A contravariant delegate type
delegate void EventHandler<-T>(T arg);
// No annotation indicates non-variance. Non-variant parameters can be used anywhere.
// The following type shall be non-variant because T appears in as a method argument as
// well as in a covariant interface type
interface ICollection<T> : IEnumerable<T> {

void CopyTo(T[] array, int index);

int Count { get; }
}
end example]

End informative text

9.6 Assignment compatibility of instantiated types

· Assignment compatibility is defined in Partition I.
[Example:

Assuming Employee := Manager,

IEnumerable<Manager> eManager = ...
IEnumerable<Employee> eEmployee = eManager;

// Covariance
IComparer<object> objComp = ...
IComparer<string> strComp = objComp;

// Contravariance
EventHandler<Employee> employeeHandler = ...
EventHandler<Manager> managerHandler = employeeHandler;
// Contravariance
end example]

 [Example: Given the following:
interface IConverter<-T,+U> {
 U Convert(T x);
}
IConverter<string, object> := IConverter<object, string>
Given the following:
delegate U Function<-T,+U>(T arg);
Function<string, object> := Function<object, string>. end example]

[Example:

IComparer<object> objComp = ...
// Contravariance and interface inheritance
IKeyComparer<string> strKeyComp = objComp;

IEnumerable<string[]> strArrEnum = …
// Covariance on IEnumerable and covariance on arrays
IEnumerable<object[]> objArrEnum = strArrEnum;
IEnumerable<string>[] strEnumArr = ...
// Covariance on IEnumerable and covariance on arrays
IEnumerable<object>[] objEnumArr = strEnumArr;
IComparer<object[]> objArrComp = ...
// Contravariance on IComparer and covariance on arrays
IComparer<string[]> strArrComp = objArrComp;
IComparer<object>[] objCompArr = ...
// Contravariance on IComparer and covariance on arrays
IComparer<string>[] strCompArr = objCompArr;
end example]

9.7 Validity of member signatures

To achieve type safety, it is necessary to impose additional requirements on the well-formedness of signatures of members of covariant and contravariant generic types.

This block contains only informative text
· Covariant parameters can only appear in “producer,” “reader,” or “getter” positions in the type definition; i.e., in
· result types of methods

· inherited interfaces

· Contravariant parameters can only appear in “consumer,” “writer,” or “setter” positions in the type definition; i.e., in
· argument types of methods

· NonVariant parameters can appear anywhere.

End informative text

We now define formally what it means for a co/contravariant generic type definition to be valid.

Generic type definition: A generic type definition G<var_1 T_1, …, var_n T_n> is valid if G is an interface or delegate type, and each of the following holds, given S = <var_1 T_1, …, var_n T_n>, where var_n is +, -, or nothing:

· Every instance method and virtual method declaration is valid with respect to S
· Every inherited interface declaration is valid with respect to S
· There are no restrictions on static members, instance constructors, or on the type’s own generic parameter constraints.
Given the annotated generic parameters S = <var_1 T_1, …, var_n T_n>, we define what it means for various components of the type definition to be valid with respect to S. We define a negation operation on annotations, written –S, to mean “flip negatives to positives, and positives to negatives”.

Think of

· “valid with respect to S” as “behaves covariantly”

· “valid with respect to –S” as “behaves contravariantly”

· “valid with respect to S and to –S” as “behaves non-variantly”.

Note that the last of these has the effect of prohibiting covariant and contravariant parameters from a type; i.e., all generic parameters appearing shall be non-variant.

Methods. A method signature t meth(t_1,…,t_n) is valid with respect to S if

· its result type signature t is valid with respect to S; and
· each argument type signature t_i is valid with respect to –S.
· each method generic parameter constraint type t_j is valid with respect to –S.
[Note: In other words, the result behaves covariantly and the arguments behave contravariantly. Constraints on generic parameters also behave contravariantly. end note]
Type signatures. A type signature t is valid with respect to S if it is

· a non-generic type (e.g., an ordinary class or value type)

· a generic parameter T_i for which var_i is + or none (i.e., it is a generic parameter that is marked covariant or non-variant)

· an array type u[] and u is valid with respect to S; i.e., array types behave covariantly

· a closed generic type G<t_1,…,t_n> for which each

· t_i is valid with respect to S, if the i’th parameter of G is declared covariant

· t_i is valid with respect to –S, if the i’th parameter of G is declared contravariant

· t_i is valid with respect to S and with respect to –S, if the i’th parameter of G is declared non-variant.

9.8 Signatures and binding

Members (fields and methods) of a generic type are referenced in CIL instructions using a metadata token, which specifies an entry in the MemberRef table (§22.25). Abstractly, the reference consists of two parts:

1. The type in which the member is declared, in this case, an instantiation of the generic type definition. For example: IComparer`1<String>.

2. The name and generic (uninstantiated) signature of the member. For example: int32 Compare(!0,!0).

It is possible for distinct members to have identical types when instantiated, but which can be distinguished by MemberRef.

[Example:

.class public C`2<S,T> {
 .field string f
 .field !0 f
 .method instance void m(!0 x) {...}
 .method instance void m(!1 x) {...}
 .method instance void m(string x) {...}
}

The closed type C`2<string,string> is valid: it has three methods called m, all with the same parameter type; and two fields called f with the same type. They are all distinguished through the MemberRef encoding described above:

string C`2<string, string>::f
!0 C<string, string>::f
void C`2<string, string>::m(!0)
void C`2<string, string>::m(!1)
void C`2<string, string>::m(string)

The way in which a source language might resolve this kind of overloading is left to each individual language. For example, many might disallow such overloads.
end example]
9.9 Inheritance and overriding

Member inheritance is defined in Partition I_alink=Partition_I, in “Member Inheritance”. (Overriding and hiding are also defined in that partition, in “Hiding, overriding, and layout”.) This definition is extended, in an obvious manner, in the presence of generics. Specifically, in order to determine whether a member hides (for static or instance members) or overrides (for virtual methods) a member from a base class or interface, simply substitute each generic parameter with its generic argument, and compare the resulting member signatures. [Example: The following illustrates this point:

Suppose the following definitions of a base class B, and a derived class D.
.class B
{ .method public virtual void V(int32 i) { … } }
.class D extends B
{ .method public virtual void V(int32 i) { … } }
In class D, D.V overrides the inherited method B.V, because their names and signatures match.
How does this simple example extend in the presence of generics, where class D derives from a generic instantiation? Consider this example:
.class B`1<T>
{ .method public virtual void V(!0) { … } }

.class D extends B`1<int32>
{ .method public virtual void V(int32) { … } }

.class E extends B`1<string>
{ .method public virtual void V(int32) { … } }
Class D derives from B<int32>. And class B<int32> defines the method:

 public virtual void V(int32 t) { … }
where we have simply substituted B’s generic parameter T, with the specific generic argument int32. This matches the method D.V (same name and signature). Thus, for the same reasons as in the non-generic example above, it’s clear that D.V overrides the inherited method B.V.

Contrast this with class E, which derives from B<string>. In this case, substituting B’s T with string, we see that B.V has this signature:
 public virtual void V(string t) { … }

This signature differs from method E.V, which therefore does not override the base class’s B.V method.

end example]
Type definitions are invalid if, after substituting base class generic arguments, two methods result in the same name and signature (including return type). The following illustrates this point:
[Example:

.class B`1<T>
{ .method public virtual void V(!0 t) { … }
 .method public virtual void V(string x) { … }
}
.class D extends B`1<string> { } // Invalid
Class D is invalid, because it will inherit from B<string> two methods with identical signatures:
void V(string)
However, the following version of D is valid:
.class D extends B`1<string>
{ .method public virtual void V(string t)
{ … }
 .method public virtual void W(string t)
 { …
 .override method instance void class B`1<string>::V(!0)
 …
 }
}

end example]

When overriding generic methods (that is, methods with their own generic parameters) the number of generic parameters shall match exactly those of the overridden method. If an overridden generic method has one or more constraints on its generic arguments then:

· The overriding method can have constraints only on the same generic arguments;

· Any such constraint on a generic argument specified by the overriding method shall be no more restrictive than the constraint specified by the overridden method for the same generic argument;

 [Note: Within the body of an overriding method, only constraints directly specified in its signature apply. When a method is invoked, it’s the constraints associated with the metadata token in the call or callvirt instruction that are enforced. end note]
9.10 Explicit method overrides
A type, be it generic or non-generic, can implement particular virtual methods (whether the method was introduced in an interface or base class) using an explicit override. (See §10.3.2 and §15.1.4.)
The rules governing overrides are extended, in the presence of generics, as follows:

· If the implementing method is part of a non-generic type or a closed generic type, then the declaring method shall be part of a base class of that type or an interface implemented by that type. [Example:
.class interface I`1<T>
{ .method public abstract virtual void M(!0) {}
}

.class C implements class I`1<string>
{ .override method instance void class I`1<string>::M(!0) with

method instance void class C::MInC(string)
 .method virtual void MInC(string s)
 { ldstr "I.M"
 call void [mscorlib]System.Console::WriteLine(string)
 ret
 }
}
end example]

· If the implementing method is generic, then the declared method shall also be generic and shall have the same number of method generic parameters.
Neither the implementing method nor the declared method shall be an instantiated generic method. This means that an instantiated generic method cannot be used to implement an interface method, and that it is not possible to provide a special method for instantiating a generic method with specific generic parameters.
[Example: Given the following
 .class interface I
{ .method public abstract virtual void M<T>(!!0) {}
 .method public abstract virtual void N() {}
}
neither of the following .override statements is allowed
.class C implements class I`1<string>
{ .override class I::M<string> with instance void class C::MInC(string)
 .override class I::N with instance void class C::MyFn<string>
 .method virtual void MInC(string s) { … }
 .method virtual void MyFn<T>() { … }
}
end example]
9.11 Constraints on generic parameters XE "constraint" \b
A generic parameter declared on a generic class or generic method can be constrained by one or more types (for encoding, see GenericParamConstraint table in §22.21) and by one or more special constraints (§10.1.7). Generic parameters can be instantiated only with generic arguments that are assignment compatible (when boxed) with each of the declared constraints and that satisfy all specified special constraints.
Generic parameter constraints shall have at least the same visibility as the generic type definition or generic method definition itself.
[Note: There are no other restrictions on generic parameter constraints. In particular, the following uses are valid: Constraints on generic parameters of generic classes can make recursive reference to the generic parameters, and even to the class itself.

.class public Set`1<(class IComparable<!0>) T> { … }
// can only be instantiated by a derived class!
.class public C`1<(class C<!0>) T> {}
.class public D extends C`1<class D> { … }
Constraints on generic parameters of generic methods can make recursive reference to the generic parameters of both the generic method and its enclosing class (if generic). The constraints can also reference the enclosing class itself.
.class public A`1<T> {
 .method public void M<(class IDictionary<!0,!!0>) U>() {}
}

Generic parameter constraints can be generic parameters or non-generic types such as arrays.
.class public List`1<T> {
 // The constraint on U is T itself
 .method public void AddRange<(!0) U>(class IEnumerable`1<!!0> items) { … }
}

 end note]
Generic parameters can have multiple constraints: to inherit from at most one base class (if none is specified, the CLI defaults to inheriting from System.Object); and to implement zero or more interfaces. (The syntax for using constraints with a class or method is defined in §10.1.7.) [Example:

The following declaration shows a generic class OrderedSet<T>, in which the generic parameter T is constrained to inherit both from the class Employee, and to implement the interface IComparable<T>:

.class OrderedSet`1<(Employee, class [mscorlib]System.IComparable`1<!0>) T> { … }

end example]
[Note: Constraints on a generic parameter only restrict the types that the generic parameter may be instantiated with. Verification (see Partition III

). end note]Partition III

) or the callvirt instruction is prefixed with the constrained. prefix instruction (see Partition III

) requires that a field, property or method that a generic parameter is known to provide through meeting a constraint, cannot be directly accessed/called via the generic parameter unless it is first boxed (see
This block contains only informative text
9.12 References to members of generic types
CIL instructions that reference type members are generalized to permit reference to members of instantiated types.
The number of generic arguments specified in the reference shall match the number specified in the definition of the type.

CIL instructions that reference methods are generalized to permit reference to instantiated generic methods.
End informative text

10 Defining types XE "type:definition of a" \b
Types (i.e., classes, value types, and interfaces) can be defined at the top-level of a module:

	Decl ::=

	 .class XE ".class;class" \b ClassHeader ‘{’ ClassMember* ‘}’

	| …

The logical metadata table created by this declaration is specified in §22.37

.

[Rationale: For historical reasons, many of the syntactic categories used for defining types incorrectly use “class” instead of “type” in their name. All classes are types, but “types” is a broader term encompassing value types, and interfaces as well. end rationale]
10.1 Type header (ClassHeader)

A type header consists of

· any number of type attributes,
· optional generic parameters

· a name (an Id),
· a base type (or base class type), which defaults to [mscorlib]System.Object XE "System.Object" , and
· an optional list of interfaces whose contract this type and all its descendent types shall satisfy.
	ClassHeader ::=

	 ClassAttr* Id [‘<’ GenPars ‘>’] [extends TypeSpec [implements TypeSpec] [‘,’ TypeSpec]*]

The optional generic parameters are used when defining a generic type (§10.1.7).

The extends XE "extends" \b keyword specifies the base type XE "type:base" \b of a type. A type shall extend from exactly one other type. If no type is specified, ilasm will add an extends clause to make the type inherit from System.Object.

The implements XE "implements" \b keyword specifies the interfaces XE "interface" of a type. By listing an interface here, a type declares that all of its concrete implementations will support the contract of that interface, including providing implementations of any virtual methods the interface declares. See also §12

.
11

 and §
[Example: This code declares the class CounterTextBox, which extends the class System.Windows.Forms.TextBox in the assembly System.Windows.Forms, and implements the interface CountDisplay in the module Counter of the current assembly. The attributes private, auto and autochar are described in the following subclauses.

.class private auto autochar CounterTextBox
 extends [System.Windows.Forms]System.Windows.Forms.TextBox
 implements [.module Counter]CountDisplay
{ // body of the class
}

end example]

A type can have any number of custom attributes attached. Custom attributes are attached as described in §attribute:pre-defined" \b 21

. The other (predefined) attributes of a type can be grouped into attributes that specify visibility, type layout information, type semantics information, inheritance rules, interoperation information, and information on special handling. The following subclauses provide additional information on each group of predefined attributes.

	ClassAttr ::=
	Description
	Clause

	 abstract XE "abstract"
	Type is abstract.
	10.1.4

	| ansi XE "ansi"
	Marshal strings to platform as ANSI.
	10.1.5

	| auto XE "auto"
	Layout of fields is provided automatically.
	10.1.2

	| autochar XE "autochar"
	Marshal strings to platform as ANSI or Unicode (platform-specific).
	10.1.5

	| beforefieldinit XE "beforefieldinit"
	Need not initialize the type before a static method is called.
	10.1.6

	| explicit XE "explicit"
	Layout of fields is provided explicitly.
	10.1.2

	| interface XE "interface"
	Declares an interface.
	10.1.3

	| nested assembly XE "nested assembly"
	Assembly accessibility for nested type.
	10.1.1

	| nested famandassem XE "nested famandassem"
	Family and assembly accessibility for nested type.
	10.1.1

	| nested family XE "nested family"
	Family accessibility for nested type.
	10.1.1

	| nested famorassem XE "nested famorassem"
	Family or assembly accessibility for nested type.
	10.1.1

	| nested private XE "nested private"
	Private accessibility for nested type.
	10.1.1

	| nested public XE "nested public"
	Public accessibility for nested type.
	10.1.1

	| private XE "private"
	Private visibility of top-level type.
	10.1.1

	| public XE "public"
	Public visibility of top-level type.
	10.1.1

	| rtspecialname XE "rtspecialname"
	Special treatment by runtime.
	10.1.6

	| sealed XE "sealed"
	The type cannot be derived from.
	10.1.4

	| sequential XE "sequential"
	Layout of fields is sequential.
	10.1.2

	| serializable XE "serializable"
	Reserved (to indicate this type can be serialized).
	10.1.6

	| specialname XE "specialname"
	Might get special treatment by tools.
	10.1.6

	| unicode XE "unicode"
	Marshal strings to platform as Unicode.
	10.1.5

Implementation-specific (Microsoft)
The above grammar also includes

 ClassAttr ::= import XE "import" \b
to indicate that the type is imported from a COM type library.
10.1.1 Visibility and accessibility attributes XE "attribute:visibility" \b

 XE "attribute:accessibility" \b
	ClassAttr ::= …

	| nested assembly XE "nested assembly" \b

	| nested famandassem XE "nested famandassem" \b

	| nested family XE "nested family" \b

	| nested famorassem XE "nested famorassem" \b

	| nested private XE "nested private" \b

	| nested public XE "nested public" \b

	| private XE "private" \b

	| public XE "public" \b

See Partition I_alink=Partition_I. A type that is not nested inside another type shall have exactly one visibility (private or public) and shall not have an accessiblity. Nested types shall have no visibility, but instead shall have exactly one of the accessibility attributes nested assembly, nested famandassem, nested family, nested famorassem, nested private, or nested public. The default visibility XE "visibility:default" \b for top-level types is private. The default accessibility XE "accessibility:default" \b for nested types is nested private.

10.1.2 Type layout attributes XE "attribute:type layout" \b
	ClassAttr ::= …

	| auto XE "auto" \b

	| explicit XE "explicit" \b

	| sequential XE "sequential" \b

The type layout specifies how the fields of an instance of a type are arranged. A given type shall have only one layout attribute specified. By convention, ilasm supplies auto XE "layout:default" \b if no layout attribute is specified. The layout attributes are:
auto: The layout shall be done by the CLI, with no user-supplied constraints.
explicit: The layout of the fields is explicitly provided (§10.7
). However, a generic type shall not have explicit layout.
sequential: The CLI shall lay out the fields in sequential order, based on the order of the fields in the logical metadata table (§22.15).

[Rationale: The default auto layout should provide the best layout for the platform on which the code is executing. sequential layout is intended to instruct the CLI to match layout rules commonly followed by languages like C and C++ on an individual platform, where this is possible while still guaranteeing verifiable layout. explicit layout allows the CIL generator to specify the precise layout semantics. end rationale]
10.1.3 Type semantics attributes XE "attribute:type semantics" \b
	ClassAttr ::= …

	| interface XE "interface" \b

The type semantic attributes specify whether an interface, class, or value type shall be defined. The interface attribute specifies an interface. If this attribute is not present and the definition extends (directly or indirectly) System.ValueType, and the definition is not for System.Enum, a value type shall be defined (§11

).
13

). Otherwise, a class shall be defined (§
[Example:

.class interface public abstract auto ansi ’System.IComparable’ { … }
System.IComparable is an interface because the interface attribute is present.
.class public sequential ansi serializable sealed beforefieldinit
 ’System.Double’ extends System.ValueType implements System.IComparable,
 … { … }
System.Double directly extends System.ValueType; System.Double is not the type System.Enum; so System.Double is a value type.
.class public abstract auto ansi serializable beforefieldinit ’System.Enum’
 extends System.ValueType implements System.IComparable, … { … }
Although System.Enum directly extends System.ValueType, System.Enum is not a value type, so it is a class.
.class public auto ansi serializable beforefieldinit ’System.Random’
 extends System.Object { … }
System.Random is a class because it is not an interface or a value type.

end example]

Note that the runtime size of a value type shall not exceed 1 MByte (0x100000 bytes)

Implementation-specific (Microsoft)

The current implementation allows 0x3F0000 bytes, but might be reduced in future.
10.1.4 Inheritance attributes XE "attribute:inheritance" \b
	ClassAttr ::= …

	| abstract XE "abstract" \b

	| sealed XE "sealed" \b

Attributes that specify special semantics are abstract and sealed. These attributes can be used together.

abstract specifies that this type XE "type:abstract" \b shall not be instantiated. If a type contains abstract methods, that type shall be declared as an abstract type.

sealed specifies that a type shall not have derived classes. All value types shall be sealed.

[Rationale: Virtual methods of sealed types are effectively instance methods, since they cannot be overridden. Framework authors should use sealed classes sparingly since they do not provide a convenient building block for user extensibility. Sealed classes can be necessary when the implementation of a set of virtual methods for a single class (typically multiple interfaces) becomes interdependent or depends critically on implementation details not visible to potential derived classes.

A type that is both abstract and sealed should have only static members, and serves as what some languages call a “namespace” or “static class”. end rationale]
10.1.5 Interoperation attributes XE "attribute:interoperation" \b
	ClassAttr ::= …

	| ansi XE "ansi" \b

	| autochar XE "autochar" \b

	| unicode XE "unicode" \b

These attributes are for interoperation with unmanaged code. They specify the default behavior to be used when calling a method (static, instance, or virtual) on the class, that has an argument or return type of System.String XE "System.String" and does not itself specify marshalling behavior. Only one value shall be specified for any type, and the default value is ansi. The interoperation attributes are:
ansi specifies that marshalling shall be to and from ANSI strings.
autochar specifies marshalling behavior (either ANSI or Unicode), depending on the platform on which the CLI is running.

unicode specifies that marshalling shall be to and from Unicode strings.
In addition to these three attributes, §23.1.15

 specifies an additional set of bit patterns (CustomFormatClass and CustomStringFormatMask), which have no standardized meaning. If these bits are set, but an implementation has no support for them, a System.NotSupportedException is thrown.

10.1.6 Special handling attributes XE "attribute:special handling" \b
	ClassAttr ::= …

	| beforefieldinit XE "beforefieldinit" \b

	| rtspecialname XE "rtspecialname" \b

	| serializable XE "serializable" \b

	| specialname XE "specialname" \b

These attributes can be combined in any way.

beforefieldinit instructs the CLI that it need not initialize the type before a static method is called. See §10.5.3

.

rtspecialname indicates that the name of this item has special significance to the CLI. There are no currently defined special type names; this is for future use. Any item marked rtspecialname shall also be marked specialname.
serializable Reserved for future use, to indicate that the fields of the type are to be serialized XE "serialization" into a data stream (should such support be provided by the implementation).
Implementation-specific (Microsoft)

Microsoft’s implementation supports serialization. See Partition IV_alink=Partition_IV.
specialname indicates that the name of this item can have special significance to tools other than the CLI. See, for example, Partition I_alink=Partition_I .

[Rationale: If an item is treated specially by the CLI, then tools should also be made aware of that. The converse is not true. end rationale]
10.1.7 Generic parameters (GenPars) XE "generic parameter" \b
Generic parameters are included when defining a generic type.
	GenPars ::=

	 GenPar [‘,’ GenPars]

The GenPar non-terminal has the following production:

	GenPar::=

	 [[GenParAttribs]* [‘(’ [GenConstraints] ‘)’] Id

	GenParAttribs::=

	 ‘+’

	| ‘-’

	| class

	| valuetype

	| .ctor

+ denotes a covariant generic parameter (§9.5
).

- denotes a contravariant generic parameter (§9.5

).
class is a special-purpose constraint that constrains Id to being a reference type. [Note: This includes type parameters which are themselves constrained to be reference types through a class or base type constraint. end note]
valuetype is a special-purpose constraint that constrains Id to being a value type, except that that type shall not be System.Nullable<T> or any concrete closed type of System.Nullable<T>. [Note: This includes type parameters which are themselves constrained to be value types. end note]
.ctor is a special-purpose constraint that constrains Id to being a concrete reference type (i.e., not abstract) that has a public constructor taking no arguments (the default constructor), or to being a value type. [Note: This includes type parameters which are, themselves, constrained either to be concrete reference types, or to being a value type. end note]
class and valuetype shall not both be specified for the same Id.

[Example:

.class C< + class .ctor (class System.IComparable<!0>) T > { … }

This declares a generic class C<T>, which has a covariant generic parameter named T. T is constrained such that it must implement System.IComparable<T>, and must be a concrete class with a public default constructor. end example]

Finally, the GenConstraints non-terminal has the following production:

	GenConstraints ::=

	 Type [‘,’ GenConstraints]

There shall be no duplicates of Id in the GenPars production.
[Example: Given appropriate definitions for interfaces I1 and I2, and for class Base, the following code defines a class Dict that has two generic parameters, K and V, where K is constrained to implement both interfaces I1 and I2, and V is constrained to derive from class Base:
.class Dict`2<(I1,I2)K, (Base)V> { … }
end example]
The following table shows the valid combinations of type and special constraints for a representative set of types. The first set of rows (Type Constraint System.Object) applies either when no base class constraint is specified or when the base class constraint is System.Object. The symbol  means “set”, the symbol  means “not set”, and the symbol * means “either set or not set” or “don’t care”.
	Type Constraint
	Special Constraint
	Meaning

	
	class
	valuetype
	.ctor
	

	(System.Object)
	
	
	
	Any type

	
	
	
	
	Any reference type

	
	
	
	
	Any reference type having a default constructor

	
	
	
	*
	Any value type except System.Nullable<T>

	
	
	
	
	Any type with a public default constructor

	
	
	
	*
	Invalid

	System.ValueType
	
	
	
	Any value type including System.Nullable<T>

	
	
	
	*
	Any value type except System.Nullable<T>

	
	
	
	
	Any value type and System.ValueType, and System.Enum

	
	
	
	
	System.ValueType and System.Enum only

	
	
	
	
	Not meaningful: Cannot be instantiated (no instantiable reference type can derived from System.ValueType)

	
	
	
	*
	Invalid

	System.Enum
	
	
	
	Any enum type

	
	
	
	*
	

	
	
	
	
	Any enum type and System.Enum

	
	
	
	
	System.Enum only

	
	
	
	
	Not meaningful: Cannot be instantiated (no instantiable reference type can be derived from System.Enum)

	
	
	
	*
	Invalid

	System.INullableValue
	
	
	
	Any System.Nullable<T> or other type implementing interface

	
	
	
	
	Any System.Nullable<T> or other type implementing interface with default constructor

	
	
	
	
	Any reference type implementing System.INullableValue (note: this excludes System.Nullable<T>)

	
	
	
	
	Any reference type implementing System.INullableValue with a default constructor (note: this excludes System.Nullable<T>)

	
	
	
	*
	Any valuetype implementing System.INullableValue (note: this includes System.Nullable<T>)

	
	
	
	*
	Invalid

	System.Exception (an example of any non-special reference Type)
	
	
	
	System.Exception, or any class derived from System.Exception

	
	
	
	
	Any System.Exception with a public default constructor

	
	
	
	
	System.Exception, or any class derived from System.Exception. This is exactly the same result as if the class constraint was not specified

	
	
	
	
	Any Exception with a public default constructor. This is exactly the same result as if the class constraint was not specified

	
	
	
	*
	Not meaningful: Cannot be instantiated (a value type cannot be derived from a reference type)

	
	
	
	*
	Invalid

	System.Delegate
	
	
	
	System.Delegate, or any class derived from System.Delegate

	
	
	
	
	Not meaningful: Cannot be instantiated (there is no default constructor)

	
	
	
	
	System.Delegate, or any class derived from System.Delegate

	
	
	
	
	Any Delegate with a public .ctor. Invalid for known delegates (System.Delegate)

	
	
	
	*
	Not meaningful: Cannot be instantiated (a value type cannot be derived from a reference type)

	
	
	
	*
	Invalid

	System.Array
	
	
	
	Any array

	
	*
	
	
	Not meaningful: Cannot be instantiated (no default constructor)

	
	
	
	
	Any array

	
	
	
	*
	Not meaningful: Cannot be instantiated (a value type cannot be derived from a reference type)

	
	
	
	*
	Invalid

[Example: The following instantiations are allowed or disallowed, based on the constraint. In all of these instances, the declaration itself is allowed. Items marked Invalid indicate where the attempt to instantiate the specified type fails verification, while those marked Valid do not.

.class public auto ansi beforefieldinit Bar`1<valuetype T>

Valid
ldtoken

class Bar`1<int32>
Invalid
ldtoken

class Bar`1<class [mscorlib]System.Exception>
Invalid
ldtoken

class Bar`1<Nullable`1<int32>>
Invalid
ldtoken

class Bar`1<class [mscorlib]System.ValueType>
.class public auto ansi beforefieldinit 'Bar`1'<class T>

Invalid
ldtoken

class Bar`1<int32>
Valid
ldtoken

class Bar`1<class [mscorlib]System.Exception>
Invalid
ldtoken

class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>
Valid
ldtoken

class Bar`1<class [mscorlib]System.ValueType>
.class public auto ansi beforefieldinit Bar`1<(class

[mscorlib]System.ValueType) T>

Valid
ldtoken

class Bar`1<int32>
Invalid
ldtoken

class Bar`1<class [mscorlib]System.Exception>
Valid
ldtoken

class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>
Valid
ldtoken

class Bar`1<class [mscorlib]System.ValueType>
.class public auto ansi beforefieldinit Bar`1<class (int32)> T>

Invalid
ldtoken

class Bar`1<int32>
Invalid
ldtoken

class Bar`1<class [mscorlib]System.Exception>
Invalid
ldtoken

class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>
Invalid
ldtoken

class Bar`1<class [mscorlib]System.ValueType>

Note: This type cannot be instantiated as no reference type can extend int32
.class public auto ansi beforefieldinit Bar`1<valuetype

(class [mscorlib]System.Exception)> T>

Invalid
ldtoken

class Bar`1<int32>
Invalid
ldtoken

class Bar`1<class [mscorlib]System.Exception>
Invalid
ldtoken

class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>
Invalid
ldtoken

class Bar`1<class [mscorlib]System.ValueType>
Note: This type cannot be instantiated as no value type can extend System.Exception
.class public auto ansi beforefieldinit Bar`1<.ctor (class Foo) T>
where Foo has no public .ctor, but FooBar, which derives from Foo, has a public .ctor:
Invalid
ldtoken

class Bar`1<class Foo>
Valid
ldtoken

class Bar`1<class FooBar>
end example]
10.2 Body of a type definition

A type can contain any number of further declarations. The directives .event, .field, .method, and .property are used to declare members of a type. The directive .class inside a type declaration is used to create a nested type, which is discussed in further detail in §10.6

.

	ClassMember ::=
	Description
	Clause

	 .class XE ".class;class" ClassHeader ‘{’ ClassMember* ‘}’
	Defines a nested type.
	10.6

	| .custom XE ".custom;custom" CustomDecl
	Custom attribute.
	21

	| .data XE ".data;data" DataDecl
	Defines static data associated with the type.
	16.3

	| .event XE ".event;event" EventHeader ‘{’ EventMember* ‘}’
	Declares an event.
	18

	| .field XE ".field;field" FieldDecl
	Declares a field belonging to the type.
	16

	| .method XE ".method;method" MethodHeader ‘{’ MethodBodyItem* ‘}’
	Declares a method of the type.
	15

	| .override XE ".override;override" TypeSpec ‘::’ MethodName with CallConv Type TypeSpec ‘::’ MethodName ‘(’ Parameters ‘)’
	Specifies that the first method is overridden by the definition of the second method.
	10.3.2

	| .pack XE ".pack;pack" Int32
	Used for explicit layout of fields.
	10.7

	| .param typexe ".param type;param type" ‘[’ Int32 ‘]’
	Specifies a type parameter for a generic type; for use in associating a custom attribute with that type parameter.
	15.4.1.5

	| .property XE ".property;property" PropHeader ‘{’ PropMember* ‘}’
	Declares a property of the type.
	17

	| .size XE ".size;size" Int32
	Used for explicit layout of fields.
	10.7

	| ExternSourceDecl
	Source line information. XE ".line;line"
	5.7

	| SecurityDecl
	Declarative security permissions. XE ".capability;capability"
	20

10.3 Introducing and overriding virtual methods
A virtual method of a base type is overridden by providing a direct implementation of the method (using a method definition, see §15.4.2.315.4

) and not specifying it to be newslot (§
). An existing method body can also be used to implement a given virtual declaration using the .overridexe ".override;override" directive (§10.3.2).

10.3.1 Introducing a virtual method

A virtual method XE "method:virtual" is introduced in the inheritance hierarchy by defining a virtual method (§newslot" 15.4

). The definition can be marked newslot to always create a new virtual method for the defining class and any classes derived from it:

· If the definition is marked newslot, the definition always creates a new virtual method, even if a base class provides a matching virtual method. A reference to the virtual method via the class containing the method definition, or via a class derived from that class, refers to the new definition (unless hidden by a newslot definition in a derived class). Any reference to the virtual method not via the class containing the method definition, nor via its derived classes, refers to the original definition.

· If the definition is not marked newslot, the definition creates a new virtual method only if there is not virtual method of the same name and signature inherited from a base class.

It follows that when a virtual method is marked newslot, its introduction will not affect any existing references to matching virtual methods in its base classes.

10.3.2 The .override directive

The .override XE ".override;override" \b directive specifies that a virtual method shall be implemented (overridden), in this type, by a virtual method with a different name, but with the same signature. This directive can be used to provide an implementation for a virtual method inherited from a base class, or a virtual method specified in an interface implemented by this type. The .override directive specifies a Method Implementation XE "method implementation" (MethodImpl) in the metadata (§15.1.4

).

	ClassMember ::=
	Clause

	 .override TypeSpec ‘::’ MethodName with CallConv Type TypeSpec ‘::’ MethodName ‘(’ Parameters ‘)’
	

	 .override method CallConv Type TypeSpec ‘::’ MethodName GenArity ‘(’ Parameters ‘)’ with method CallConv Type TypeSpec ‘::’ MethodName GenArity ‘(’ Parameters ‘)’
	

	| …
	10.2

 XE "dottedname" \b
	GenArity ::= [‘<’ ‘[’ Int32 ‘]’ ‘>’]

Int32 is the number of generic parameters.

The first TypeSpec::MethodName pair specifies the virtual method that is being overridden, and shall be either an inherited virtual method or a virtual method on an interface that the current type implements. The remaining information specifies the virtual method that provides the implementation.

While the syntax specified here (as well as the actual metadata format (§22.27

)) allows any virtual method to be used to provide an implementation, a conforming program shall provide a virtual method actually implemented directly on the type containing the .override directive.

[Rationale: The metadata is designed to be more expressive than can be expected of all implementations of the VES. end rationale]
[Example: The following shows a typical use of the .override directive. A method implementation is provided for a method declared in an interface (see §12

).

.class interface I
{ .method public virtual abstract void M() cil managed {}
}

.class C implements I
{ .method virtual public void M2()
 { // body of M2
 }
 .override I::M with instance void C::M2()
}

The .override directive specifies that the C::M2 body shall provide the implementation of be used to implement I::M on objects of class C.

end example]

10.3.3 Accessibility and overriding XE "accessibility:overriding and" \b
If the strict flag (§23.1.10

) is specified then only accessible virtual methods can be overridden.
If a type overrides an inherited method through means other than a MethodImpl, it can widen, but it shall not narrow, the accessibility of that method. As a principle, if a client of a type is allowed to access a method of that type, then it should also be able to access that method (identified by name and signature) in any derived type. Table 7.1 specifies narrow and widen in this context—a “Yes” denotes that the derived class can apply that accessibility, a “No” denotes it is invalid.

If a type overrides an inherited method via a MethodImpl, it can widen or narrow the accessibility of that method.

Table 7.1: Valid Widening of Access to a Virtual Method

	Derived class\Base type Accessibility
	Compiler-controlled
	private
	family
	assembly
	famandassem
	famorassem
	public

	Compiler-controlled
	See note 3
	No
	No
	No
	No
	No
	No

	private
	See note 3
	Yes
	No
	No
	No
	No
	No

	family
	See note 3
	Yes
	Yes
	No
	Yes
	See note 1
	No

	assembly
	See note 3
	Yes
	No
	See note 2
	See note 2
	No
	No

	famandassem
	See note 3
	Yes
	No
	No
	See note 2
	No
	No

	famorassem
	See note 3
	Yes
	Yes
	See note 2
	Yes
	Yes
	No

	public
	See note 3
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

1 Yes, provided both are in different assemblies; otherwise, No.

2 Yes, provided both are in the same assembly; otherwise, No.

Implementation-specific (Microsoft)
2 Yes, provided both are in the same assembly or friend assembly.

3 Yes, provided both are in the same module; otherwise, No.

[Note: A method can be overridden even if it might not be accessed by the derived class.

If a method has assembly accessibility, then it shall have public accessibility if it is being overridden by a method in a different assembly. A similar rule applies to famandassem, where also famorassem is allowed outside the assembly. In both cases assembly or famandassem, respectively, can be used inside the same assembly. end note]
A special rule applies to famorassem, as shown in the table. This is the only case where the accessibility is apparently narrowed by the derived class. A famorassem method can be overridden with family accessibility by a type in another assembly.

[Rationale: Because there is no way to specify “family or specific other assembly” it is not possible to specify that the accessibility should be unchanged. To avoid narrowing access, it would be necessary to specify an accessibility of public, which would force widening of access even when it is not desired. As a compromise, the minor narrowing of “family” alone is permitted. end rationale]
10.4 Method implementation requirements

A type (concrete or abstract) can provide

· implementations for instance, static, and virtual methods that it introduces

· implementations for methods declared in interfaces that it has specified it will implement, or that its base type has specified it will implement

· alternative implementations for virtual methods inherited from its base class
· implementations for virtual methods inherited from an abstract base type that did not provide an implementation

A concrete (i.e., non-abstract) type XE "type:concrete" \b shall provide, either directly or by inheritance, an implementation for

· all methods declared by the type itself

· all virtual methods of interfaces implemented by the type

· all virtual methods that the type inherits from its base type

10.5 Special members

There are three special members XE "member:special" \b , all of which are methods that can be defined as part of a type: instance constructors, instance finalizers, and type initializers.

10.5.1 Instance constructor

An instance constructorxe "constructor:instance" initializes an instance of a type, and is called when an instance of a type is created by the newobj instruction (see Partition III_alink=Partition_III). An instance constructor shall be an instance (not static or virtual) method, it shall be named .ctorxe “.ctor;ctor”, and marked instance XE "instance" , rtspecialname XE "rtspecialname" , and specialname XE "specialname" (§“initonly”15.4.2.6

). An instance constructor can have parameters, but shall not return a value. An instance constructor cannot take generic type parameters. An instance constructor can be overloaded (i.e., a type can have several instance constructors). Each instance constructor for a type shall have a unique signature. Unlike other methods, instance constructors can write into fields of the type that are marked with the initonly attribute (§16.1.2

).

[Example: The following shows the definition of an instance constructor that does not take any parameters:

.class X {
 .method public rtspecialname specialname instance void .ctor() cil managed
 { .maxstack 1
 // call super constructor
 ldarg.0

// load this pointer
 call instance void [mscorlib]System.Object::.ctor()
 // do other initialization work
 ret
 }
}

end example]

10.5.2 Instance finalizer

The behavior of finalizers XE "finalizer" is specified in Partition I_alink=Partition_I. The finalize method for a particular type is specified by overriding the virtual method Finalize in System.Object XE "System.Object.Finalize" .
10.5.3 Type initializer

A type (class, interface, or value type) can contain a special method called a type initializerxe "type initializer", which is used to initialize the type itself. This method shall be static, take no parameters, return no value, be marked with rtspecialname XE "rtspecialname" and specialname XE "specialname" (§;cctor" \b 15.4.2.6

), and be named .cctorxe "constructor:class" \b .
Like instance constructors, type initializers can write into static fields of their type that are marked with the initonlyxe "initonly" attribute (§16.1.2

).

[Example: The following shows the definition of a type initializer:

.class public EngineeringData extends [mscorlib]System.Object
{
.field private static initonly float64[] coefficient
.method private specialname rtspecialname static void .cctor() cil managed
 {
 .maxstack 1
 // allocate array of 4 Double
 ldc.i4.4
 newarr [mscorlib]System.Double
 // point initonly field to new array
 stsfld float64[] EngineeringData::coefficient
 // code to initialize array elements goes here
 ret
 }
}
end example]

[Note: Type initializers are often simple methods that initialize the type’s static fields from stored constants or via simple computations. There are, however, no limitations on what code is permitted in a type initializer. end note]
10.5.3.1 Type initialization guarantees

The CLI shall provide the following guarantees regarding type initialization (but see also §10.5.3.3

):
10.5.3.2

 and §
3. As to when type initializers are executed is specified in Partition I._alink=Partition_I
4. A type initializer shall be executed exactly once for any given type, unless explicitly called by user code.
5. No methods other than those called directly or indirectly from the type initializer are able to access members of a type before its initializer completes execution.

10.5.3.2 Relaxed guarantees

A type can be marked with the attribute beforefieldinit XE "beforefieldinit" (§10.1.6
) to indicate that the guarantees specified in §10.5.3.1

 are not necessarily required. In particular, the final requirement above need not be provided: the type initializer need not be executed before a static method is called or referenced.

[Rationale: When code can be executed in multiple application domains it becomes particularly expensive to ensure this final guarantee. At the same time, examination of large bodies of managed code have shown that this final guarantee is rarely required, since type initializers are almost always simple methods for initializing static fields. Leaving it up to the CIL generator (and hence, possibly, to the programmer) to decide whether this guarantee is required therefore provides efficiency when it is desired at the cost of consistency guarantees. end rationale]
10.5.3.3 Races and deadlocks

xe "race"

xe "deadlock"In addition to the type initialization guarantees specified in §10.5.3.1

, the CLI shall ensure two further guarantees for code that is called from a type initializer:

6. Static variables of a type are in a known state prior to any access whatsoever.

7. Type initialization alone shall not create a deadlock unless some code called from a type initializer (directly or indirectly) explicitly invokes blocking operations.

[Rationale: Consider the following two class definitions:

.class public A extends [mscorlib]System.Object
{ .field static public class A a
 .field static public class B b
 .method public static rtspecialname specialname void .cctor ()
 { ldnull

// b=null
 stsfld class B A::b
 ldsfld class A B::a
// a=B.a
 stsfld class A A::a
 ret
 }
}

.class public B extends [mscorlib]System.Object
{ .field static public class A a
 .field static public class B b
 .method public static rtspecialname specialname void .cctor ()
 { ldnull

// a=null
 stsfld class A B::a
 ldsfld class B A::b
// b=A.b
 stsfld class B B::b
 ret
 }
}

After loading these two classes, an attempt to reference any of the static fields causes a problem, since the type initializer for each of A and B requires that the type initializer of the other be invoked first. Requiring that no access to a type be permitted until its initializer has completed would create a deadlock situation. Instead, the CLI provides a weaker guarantee: the initializer will have started to run, but it need not have completed. But this alone would allow the full uninitialized state of a type to be visible, which would make it difficult to guarantee repeatable results.

There are similar, but more complex, problems when type initialization takes place in a multi-threaded system. In these cases, for example, two separate threads might start attempting to access static variables of separate types (A and B) and then each would have to wait for the other to complete initialization.

A rough outline of an algorithm to ensure points 1 and 2 above is as follows:

1. At class load-time (hence prior to initialization time) store zero or null into all static fields of the type.

2. If the type is initialized, you are done.

2.1. If the type is not yet initialized, try to take an initialization lock.

2.2. If successful, record this thread as responsible for initializing the type and proceed to step 2.3.

2.2.1. If not successful, see whether this thread or any thread waiting for this thread to complete already holds the lock.

2.2.2. If so, return since blocking would create a deadlock. This thread will now see an incompletely initialized state for the type, but no deadlock will arise.

2.2.3 If not, block until the type is initialized then return.

2.3 Initialize the base class type and then all interfaces implemented by this type.

2.4 Execute the type initialization code for this type.

2.5 Mark the type as initialized, release the initialization lock, awaken any threads waiting for this type to be initialized, and return.

end rationale]
10.6 Nested types

Nested typesxe "type:nested" are specified in Partition I_alink=Partition_I. For information about the logical tables associated with nested types, see §22.32.

[Note: A nested type is not associated with an instance of its enclosing type. The nested type has its own base type, and can be instantiated independently of its enclosing type. This means that the instance members of the enclosing type are not accessible using the this pointer of the nested type.

A nested type can access any members of its enclosing type, including private members, as long as those members are static or the nested type has a reference to an instance of the enclosing type. Thus, by using nested types, a type can give access to its private members to another type.

On the other hand, the enclosing type cannot access any private or family members of the nested type. Only members with assembly, famorassem, or public accessibility can be accessed by the enclosing type. end note]
[Example: The following shows a class declared inside another class. Each class declares a field. The nested class can access both fields, while the enclosing class does not have access to the enclosed class’s field b.

.class public auto ansi X
{ .field static private int32 a
 .class auto ansi nested public Y
 { .field static private int32 b
 // ...
 }
}
end example]

10.7 Controlling instance layout XE "layout" \b

The CLI supports both sequentialxe "layout:sequential" and explicitxe "layout:explicit" layout control, see § 22.1810.1.2

. For explicit layout it is also necessary to specify the precise layout of an instance; see also § and §22.16.

	FieldDecl ::=

	 [‘[’ Int32 ‘]’] FieldAttr* Type Id

The optional int32 specified in brackets at the beginning of the declaration specifies the byte offset from the beginning of the instance of the type. (For a given type t, this beginning refers to the start of the set of members explicitly defined in type t, excluding all members defined in any types from which type t directly or indirectly inherits.) This form of explicit layout control shall not be used with global fields specified using the at notation §16.3.2
).

Offset values shall be non-negative. It is possible to overlap fields in this way, though offsets occupied by an object reference shall not overlap with offsets occupied by a built-in value type or a part of another object reference. While one object reference can completely overlap another, this is unverifiable.
Fields can be accessed using pointer arithmetic and ldind to load the field indirectly or stind to store the field indirectly (see Partition III). See §22.16 and §22.18 for encoding of this information. For explicit layout, every field shall be assigned an offset.

The .pack xe ".pack;pack" \b directive specifies that fields should be placed within the runtime object at byte addresses which are a multiple of the specified number, or at natural alignment for that field type, whichever is smaller. For example, .pack 2 would allow 32-bit-wide fields to be started on even addresses, whereas without any .pack directive, they would be naturally aligned; that is, placed on addresses that are a multiple of 4. The integer following .pack shall be one of the following: 0, 1, 2, 4, 8, 16, 32, 64, or 128. (A value of zero indicates that the pack size used should match the default for the current platform.) The .pack directive shall not be supplied for any type with explicit layout control.

The .size directive indicates a minimum size, and is intended to allow for padding. Therefore, the amount of memory allocated is the maximum of the size calculated from the layout and the .size directive. Note that if this directive applies to a value type, then the size shall be less than 1 MByte.

[Note: Metadata that controls instance layout is not a “hint,” it is an integral part of the VES that shall be supported by all conforming implementations of the CLI. end note]
[Example: The following class uses sequential layout of its fields:

.class sequential public SequentialClass
{ .field public int32 a

// store at offset 0 bytes
 .field public int32 b

// store at offset 4 bytes
}

The following class uses explicit layout of its fields:

.class explicit public ExplicitClass
{ .field [0] public int32 a
// store at offset 0 bytes
 .field [6] public int32 b
// store at offset 6 bytes
}

The following value type uses .pack to pack its fields together:

.class value sealed public MyClass extends [mscorlib]System.ValueType
{ .pack 2
 .field public int8 a
// store at offset 0 bytes
 .field public int32 b
// store at offset 2 bytes (not 4)
}
The following class specifies a contiguous block of 16 bytes:

.class public BlobClass
{ .size 16
}

end example]

10.8 Global fields and methods

xe "field:global"

xe "method:global"In addition to types with static members, many languages have the notion of data and methods that are not part of a type at all. These are referred to as global fields and methods.

The simplest way to understand global fields and methods in the CLI is to imagine that they are simply members of an invisible abstract public class. In fact, the CLI defines such a special class, named <Module>, XE "<Module>;Module" \b that does not have a base type and does not implement any interfaces. (This class is a top-level class; i.e., it is not nested.)The only noticeable difference is in how definitions of this special class are treated when multiple modules are combined together, as is done by a class loader. This process is known as metadata merging XE "metadata merging" \b .

For an ordinary type, if the metadata merges two definitions of the same type, it simply discards one definition on the assumption they are equivalent, and that any anomaly will be discovered when the type is used. For the special class that holds global members, however, members are unioned across all modules at merge time. If the same name appears to be defined for cross-module use in multiple modules then there is an error. In detail:

· If no member of the same kind (field or method), name, and signature exists, then add this member to the output class.

· If there are duplicates and no more than one has an accessibility other than compilercontrolled, then add them all to the output class.

· If there are duplicates and two or more have an accessibility other than compilercontrolled, an error has occurred.

[Note: Strictly speaking, the CLI does not support global statics, even though global fields and methods might be thought of as such. All global fields and methods in a module are owned by the manufactured class "<Module>". However, each module has its own "<Module>" class. There's no way to even refer, early-bound, to such a global field or method in another module. (You can, however, "reach" them, late-bound, via Reflection.) end note]

11 Semantics of classes

Classes, as specified in Partition I_alink=Partition_I, define types in an inheritance hierarchy. A class (except for the built-in class System.Object and the special class <Module>) shall declare exactly one base class. A class shall declare zero or more interfaces that it implements (§10.1.4

) shall not be instantiated. A class can define fields (static or instance), methods (static, instance, or virtual), events, properties, and nested types (classes, value types, or interfaces).
12

). A concrete class can be instantiated to create an object, but an abstract class (§
Instances of a class (i.e., objects) are created only by explicitly using the newobj instruction (see Partition III_alink=Partition_III). When a variable or field that has a class as its type is created (for example, by calling a method that has a local variable of a class type), the value shall initially be null XE "null" \b , a special value that := with all class types even though it is not an instance of any particular class.

12 Semantics of interfaces

Interfaces,xe "interface" as specified in Partition I_alink=Partition_I, each define a contract that other types can implement. Interfaces can have static fields and methods, but they shall not have instance fields or methods. Interfaces can define virtual methods, but only if those methods are abstract (see Partition I_alink=Partition_I and §15.4.2.4

).

[Rationale: Interfaces cannot define instance fields for the same reason that the CLI does not support multiple inheritance of base types: in the presence of dynamic loading of data types there is no known implementation technique that is both efficient when used and has no cost when not used. By contrast, providing static fields and methods need not affect the layout of instances and therefore does not raise these issues. end rationale]
Interfaces can be nested inside any type (interface, class, or value type).

12.1 Implementing interfaces

Classes and value types shall implement zero or more interfaces. Implementing an interface implies that all concrete instances of the class or value type shall provide an implementation for each abstract virtual method declared in the interface. In order to implement an interface, a class or value type shall either explicitly declare that it does so (using the implements XE "implements" attribute in its type definition, see §10.1

) or shall be derived from a base class that implements the interface.

[Note: An abstract class (since it cannot be instantiated) need not provide implementations of the virtual methods of interfaces it implements, but any concrete class derived from it shall provide the implementation.

Merely providing implementations for all of the abstract methods of an interface is not sufficient to have a type implement that interface. Conceptually, this represents the fact that an interface represents a contract that can have more requirements than are captured in the set of abstract methods. From an implementation point of view, this allows the layout of types to be constrained only by those interfaces that are explicitly declared. end note]
Interfaces shall declare that they require the implementation of zero or more other interfaces. If one interface, A, declares that it requires the implementation of another interface, B, then A implicitly declares that it requires the implementation of all interfaces required by B. If a class or value type declares that it implements A, then all concrete instances shall provide implementations of the virtual methods declared in A and all of the interfaces A requires. [Note: The class need not explicitly declare that it implements the interfaces required by A. end note]
[Example: The following class implements the interface IStartStopEventSource defined in the module Counter.

.class private auto autochar StartStopButton
 extends [System.Windows.Forms]System.Windows.Forms.Button
 implements [.module Counter]IstartStopEventSource
{ // body of class
}
end example]

12.2 Implementing virtual methods on interfaces

Classes that implement an interface (§12.1

) are required to provide implementations for the abstract virtual methods defined by that interface. There are three mechanisms for providing this implementation:

· Directly specifying an implementation, using the same name and signature as appears in the interface.
· Inheritance of an existing implementation from the base type.
· Use of an explicit MethodImpl XE "MethodImpl" (§15.1.4

).

The VES shall use the following algorithm to determine the appropriate implementation of an interface's virtual abstract methods:
· If the base class implements the interface, start with the same virtual methods that it provides; otherwise, create an interface that has empty slots for all virtual functions.

· If this class explicitly specifies that it implements the interface (i.e., the interfaces that appear in this class’s InterfaceImpl table, §22.23

)
· If the class defines any public virtual newslot methods whose name and signature match a virtual method on the interface, then use these new virtual methods to implement the corresponding interface method.

· If there are any virtual methods in the interface that still have empty slots, see if there are any public virtual methods, but not public virtual newslot methods, available on this class (directly or inherited) having the same name and signature, then use these to implement the corresponding methods on the interface.
· Apply all MethodImpls that are specified for this class, thereby placing explicitly specified virtual methods into the interface in preference to those inherited or chosen by name matching.

· If the current class is not abstract and there are any interface methods that still have empty slots, then the program is invalid.

[Rationale: Interfaces can be thought of as specifying, primarily, a set of virtual methods that shall be implemented by any class that implements the interface. The class specifies a mapping from its own virtual methods to those of the interface. Thus it is virtual methods, not specific implementations of those methods that are associated with interfaces. Overriding a virtual method on a class with a specific implementation will thus affect not only the virtual method named in the class but also any interface virtual methods to which that same virtual method has been mapped. end rationale]
13 Semantics of value types

In contrast to reference types, value typesxe "type:value" (see Partition I_alink=Partition_I) are not accessed by using a reference, but are stored directly in the location of that type.

[Rationale: Value types are used to describe the type of small data items. They can be compared to struct (as opposed to pointers to struct) types in C++. Compared to reference types, value types are accessed faster since there is no additional indirection involved. As elements of arrays they do not require allocating memory for the pointers as well as for the data itself. Typical value types are complex numbers, geometric points, and dates. end rationale]
Like other types, value types can have fields (static or instance), methods (static, instance, or virtual), properties, events, and nested types. A value of some value type can be converted into an instance of a corresponding reference type (its boxed form, a class automatically created for this purpose by the VES when a value type is defined) by a process called boxing XE "boxing" \b . A boxed value type can be converted back into its value type representation, the unboxed form, by a process called unboxing XE "unboxing" \b . Value types shall be sealed, and they shall have a base type of either System.ValueType or System.Enum (see Partition IV_alink=Partition_IV). Value types shall implement zero or more interfaces, but this has meaning only in their boxed form (§13.3
).

Unboxed value types are not considered subtypes of another type and it is not valid to use the isinstxe isinst instruction (see Partition III_alink=Partition_III) on unboxed value types. The isinst instruction can be used for boxed value types, however. Unboxed value types shall not be assigned the value null and they shall not be compared to null.

Value types support layout control in the same way as do reference types (§10.7). This is especially important when values are imported from native code.

Since ValueTypes represent direct layout of data, recursive struct definitions such as (in C#) struct S {S x; S y;} are not permitted. A struct shall have an acyclic finite flattening graph:

For a value type S, define the flattening graph G of S to be the smallest directed graph such that:

· S is in G.

· Whenever T is in G and T has an instance field of value type X then X is in G and there is an edge from T to X.

· Whenever T is in G and T has a static field of value type Y then Y is in G.

[Example:
class C<U> { }

struct S1<V> {
 S1<V> x;
}

struct S2<V> {
 static S2<V> x;
}

struct S3<V> {
 static S3<C<V>> x;
}

struct S4<V> {
 S4<C<V>>[] x;
}

Struct type S1 has a finite but cyclic flattening graph and is invalid; S2 has a finite acyclic flattening graph and is valid; S3 has an infinite acyclic flattening graph and is invalid; S4 has a finite acyclic flattening graph and is valid because field S4<C<V>>.x has reference type, not value type.
The C<U> type is not strictly necessary for the examples, but if it were not used, it might be unclear whether something like the following
 struct S3<V> {
 static S3<S3<V>> x;
 }

is problematic due to the inner or the outer occurrence of S3<...> in the field type. end example]

13.1 Referencing value types

The unboxed form of a value type shall be referred to by using the valuetype keyword followed by a type reference. The boxed form of a value type shall be referred to by using the boxed keyword followed by a type reference.

	ValueTypeReference ::=

	 boxed TypeReference

	| valuetype TypeReference

Implementation-specific (Microsoft)
For historical reasons value class XE "value class" \b can be used instead of valuetype although the latter is preferred. V1 of the CLI does not support direct references to boxed value types; they should be treated as object instead.

13.2 Initializing value types

Like classes, value types can have both instance constructors (§10.5.3

). Unlike classes, whose fields are automatically initialized to null, the following rules constitute the only guarantee about the initilization of (unboxed) value types:
10.5.1

) and type initializers (§
· Static variables shall be initialized to zero when a type is loaded (§10.5.3.3

), hence statics whose type is a value type are zero-initialized when the type is loaded.

· Local variables shall be initialized to zero if the localsinit XE "localsinit flag" bit in the method header (§25.4.4

) is set.

· Arrays shall be zero-initialized.

· Instances of classes (i.e., objects) shall be zero-initialized prior to calling their instance constructor.

[Rationale: Guaranteeing automatic initialization of unboxed value types is both difficult and expensive, especially on platforms that support thread-local storage and that allow threads to be created outside of the CLI and then passed to the CLI for management. end rationale]
[Note: Boxed value types are classes and follow the rules for classes. end note]
The instruction initobj XE "initobj" (see Partition III_alink=Partition_III) performs zero-initialization under program control. If a value type has a constructor, an instance of its unboxed type can be created as is done with classes. The newobj XE "newobj" instruction (see Partition III_alink=Partition_III) is used along with the initializer and its parameters to allocate and initialize the instance. The instance of the value type will be allocated on the stack. The Base Class Library provides the method System.Array.Initialize XE "System.Array.Initialize" (see Partition IV_alink=Partition_IV) to zero all instances in an array of unboxed value types.

[Example: The following code declares and initializes three value type variables. The first variable is zero-initialized, the second is initialized by calling an instance constructor, and the third by creating the object on the stack and storing it into the local.

.assembly Test { }
.assembly extern System.Drawing {
 .ver 1:0:3102:0
 .publickeytoken = (b03f5f7f11d50a3a)
}
.method public static void Start()
{ .maxstack 3
 .entrypoint
 .locals init (valuetype [System.Drawing]System.Drawing.Size Zero,
 valuetype [System.Drawing]System.Drawing.Size Init,
 valuetype [System.Drawing]System.Drawing.Size Store)
 // Zero initialize the local named Zero
 ldloca Zero // load address of local variable
 initobj valuetype [System.Drawing]System.Drawing.Size
 // Call the initializer on the local named Init
 ldloca Init // load address of local variable
 ldc.i4 425 // load argument 1 (width)
 ldc.i4 300 // load argument 2 (height)
 call instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32)
 // Create a new instance on the stack and store into Store. Note that
 // stobj is used here – but one could equally well use stloc, stfld, etc.
 ldloca Store
 ldc.i4 425 // load argument 1 (width)
 ldc.i4 300 // load argument 2 (height)
 newobj instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32)
 stobj valuetype [System.Drawing]System.Drawing.Size
 ret
}
end example]

13.3 Methods of value types

Value types can have static, instance and virtual methods. Static methods of value types are defined and called the same way as static methods of class types. As with classes, both instance and virtual methods of a boxed or unboxed value type can be called using the callxe "call" instruction. The callvirtxe callvirt instruction shall not be used with unboxed value types (see Partition I), but it can be used on boxed value types.

Instance and virtual methods of classes shall be coded to expect a reference to an instance of the class as the this pointer. By contrast, instance and virtual methods of value types shall be coded to expect a managed pointer (see Partition I_alink=Partition_I) to an unboxed instance of the value type. The CLI shall convert a boxed value type into a managed pointer to the unboxed value type when a boxed value type is passed as the this pointer to a virtual method whose implementation is provided by the unboxed value type.

[Note: This operation is the same as unboxing the instance, since the unbox XE "unbox" instruction (see Partition III_alink=Partition_III) is defined to return a managed pointer to the value type that shares memory with the original boxed instance.

The following diagrams are intended to help the reader understand the relationship between the boxed and unboxed representations of a value type.

[image: image3.png]Heay

Heap or [T

19] potncer

ol

Box

|

[image: image4.png]o or
c

end note]

[Rationale: An important use of instance methods on value types is to change internal state of the instance. This cannot be done if an instance of the unboxed value type is used for the this pointer, since it would be operating on a copy of the value, not the original value: unboxed value types are copied when they are passed as arguments.

Virtual methods are used to allow multiple types to share implementation code, and this requires that all classes that implement the virtual method share a common representation defined by the class that first introduces the method. Since value types can (and in the Base Class Library do) implement interfaces and virtual methods defined on System.Object, it is important that the virtual method be callable using a boxed value type so it can be manipulated as would any other type that implements the interface. This leads to the requirement that the EE automatically unbox value types on virtual calls. end rationale]
Table 1: Type of this given the CIL instruction and the declaring type of instance method.

	
	Value Type (Boxed or Unboxed)
	Interface
	Object Type

	call
	managed pointer to value type
	invalid
	object reference

	callvirt
	managed pointer to value type
	object reference
	object reference

[Example: The following converts an integer of the value type int32 into a string. Recall that int32 corresponds to the unboxed value type System.Int32 defined in the Base Class Library. Suppose the integer is declared as:

.locals init (int32 x)
Then the call is made as shown below:

ldloca x

// load managed pointer to local variable
call instance string valuetype [mscorlib]System.Int32::ToString()
However, if System.Object (a class) is used as the type reference rather than System.Int32 (a value type), the value of x shall be boxed before the call is made and the code becomes:

ldloc x
box valuetype [mscorlib]System.Int32
callvirt instance string [mscorlib]System.Object::ToString()
end example]

14 Semantics of special types

Special types are those that are referenced from CIL, but for which no definition is supplied: the VES supplies the definitions automatically based on information available from the reference.

14.1 Vectors

	Type ::= …

	 | Type ‘[’ ‘]’

Vectors XE "vector" \b are single-dimension arrays XE "array:single-dimensional" with a zero lower bound. They have direct support in CIL instructions (newarr XE "newarr" , ldelem XE "ldelem" , stelem XE "stelem" , and ldelema XE "ldelema" , see Partition III_alink=Partition_III). The CIL Framework also provides methods that deal with multidimensional arrays XE "array:multi-dimensional" and single-dimension arrays with a non-zero lower bound (§14.2

). Two vectors have the same type if their element types are the same, regardless of their actual upper bounds.

Vectors have a fixed size and element type, determined when they are created. All CIL instructions shall respect these values. That is, they shall reliably detect attempts to do the following: index beyond the end of the vector, store the incorrect type of data into an element of a vector, and take the address of elements of a vector with an incorrect data type. See Partition III_alink=Partition_III.

[Example: Declare a vector of Strings:

.field string[] errorStrings

Declare a vector of function pointers:

.field method instance void*(int32) [] myVec

Create a vector of 4 strings, and store it into the field errorStrings. The 4 strings lie at errorStrings[0] through errorStrings[3]:

ldc.i4.4
newarr string
stfld string[] CountDownForm::errorStrings

Store the string "First" into errorStrings[0]:

ldfld string[] CountDownForm::errorStrings
ldc.i4.0
ldstr "First"
stelem

end example]

Vectors are subtypes of System.Array XE "System.Array" , an abstract class pre-defined by the CLI. It provides several methods that can be applied to all vectors. See Partition IV_alink=Partition_IV.

14.2 Arrays

While vectors (§Partition IV14.1

) have direct support through CIL instructions, all other arrays are supported by the VES by creating subtypes of the abstract class System.Array (see _alink=Partition_IV)

	Type ::= …

	 | Type ‘[’ [Bound [‘,’ Bound]*] ‘]’

The rankxe "array:rank of" \b of an array is the number of dimensions. The CLI does not support arrays with rank 0. The type of an array (other than a vector) shall be determined by the type of its elements and the number of dimensions.

	Bound ::=
	Description

	 ‘...’
	Lower and upper bounds unspecified. In the case of multi-dimensional arrays, the ellipsis can be omitted

	| Int32
	Zero lower bound, Int32 upper bound

	| Int32 ‘...’
	Lower bound only specified

	| Int32 ‘...’ Int32
	Both bounds specified

The class that the VES creates for arrays contains several methods whose implementation is supplied by the VES:
· A constructor that takes a sequence of int32 arguments, one for each dimension of the array, that specify the number of elements in each dimension beginning with the first dimension. A lower bound of zero is assumed.
· A constructor that takes twice as many int32 arguments as there are dimensions of the array. These arguments occur in pairs—one pair per dimension—with the first argument of each pair specifying the lower bound for that dimension, and the second argument specifying the total number of elements in that dimension. Note that vectors are not created with this constructor, since a zero lower bound is assumed for vectors.
· A Get method that takes a sequence of int32 arguments, one for each dimension of the array, and returns a value whose type is the element type of the array. This method is used to access a specific element of the array where the arguments specify the index into each dimension, beginning with the first, of the element to be returned.

· A Set method that takes a sequence of int32 arguments, one for each dimension of the array, followed by a value whose type is the element type of the array. The return type of Set is void. This method is used to set a specific element of the array where the arguments specify the index into each dimension, beginning with the first, of the element to be set and the final argument specifies the value to be stored into the target element.

· An Address method that takes a sequence of int32 arguments, one for each dimension of the array, and has a return type that is a managed pointer to the array’s element type. This method is used to return a managed pointer to a specific element of the array where the arguments specify the index into each dimension, beginning with the first, of the element whose address is to be returned.
[Example: The following creates an array, MyArray, of strings with two dimensions, with indexes 5…10 and 3…7. It then stores the string "One" into MyArray[5, 3], retrieves it and prints it out. Then it computes the address of MyArray[5, 4], stores "Test" into it, retrieves it, and prints it out.

.assembly Test { }
.assembly extern mscorlib { }
.method public static void Start()
{ .maxstack 5
 .entrypoint
 .locals (class [mscorlib]System.String[,] myArray)
 ldc.i4.5
// load lower bound for dim 1
 ldc.i4.6
// load (upper bound - lower bound + 1) for dim 1
 ldc.i4.3
// load lower bound for dim 2
 ldc.i4.5
// load (upper bound - lower bound + 1) for dim 2
 newobj instance void string[,]::.ctor(int32, int32, int32, int32)
 stloc myArray
 ldloc myArray
 ldc.i4.5
 ldc.i4.3
 ldstr "One"
 call instance void string[,]::Set(int32, int32, string)
 ldloc myArray
 ldc.i4.5
 ldc.i4.3
 call instance string string[,]::Get(int32, int32)
 call void [mscorlib]System.Console::WriteLine(string)
 ldloc myArray
 ldc.i4.5
 ldc.i4.4
 call instance string & string[,]::Address(int32, int32)
 ldstr "Test"
 stind.ref
 ldloc myArray
 ldc.i4.5
 ldc.i4.4
 call instance string string[,]::Get(int32, int32)
 call void [mscorlib]System.Console::WriteLine(string)
 ret
}
end example]

The following text is informative

Whilst the elements of multi-dimensional arrays can be thought of as laid out in contiguous memory, arrays of arrays are different – each dimension (except the last) holds an array reference. The following picture illustrates the difference:

[image: image5.png]

[image: image6.png]AL

b

O

On the left is a [6, 10] rectangular array. On the right is not one, but a total of five arrays. The vertical array is an array of arrays, and references the four horizontal arrays. Note how the first and second elements of the vertical array both reference the same horizontal array.

Note that all dimensions of a multi-dimensional array shall have the same size. But in an array of arrays, it is possible to reference arrays of different sizes. For example, the figure on the right shows the vertical array referencing arrays of lengths 8, 8, 3, null (i.e., no array), 6 and 1, respectively.

There is no special support for these so-called jagged arrays XE "array:jagged" in either the CIL instruction set or the VES. They are simply vectors whose elements reference other (recursively) jagged arrays.

End of informative text

14.3 Enums

An enum XE "enum" \b (short for enumeration XE "enumeration" \t "See enum") defines a set of symbols that all have the same type. A type shall be an enum if and only if it has an immediate base type of System.Enumxe "System.Enum". Since System.Enum itself has an immediate base type of System.ValueTypexe "System.ValueType", (see Partition IV_alink=Partition_IV) enums are value types (§enum:underlying type" \b 13

) The symbols of an enum are represented by an underlying integer type: one of { bool, char, int8, unsigned int8, int16, unsigned int16, int32, unsigned int32, int64, unsigned int64, native int, unsigned native int }

[Note: Unlike Pascal, the CLI does not provide a guarantee that values of the enum type are integers corresponding to one of the symbols. In fact, the CLS (see Partition I_alink=Partition_I, CLS) defines a convention for using enums to represent bit flags which can be combined to form integral value that are not named by the enum type itself. end note]
Enums obey additional restrictions beyond those on other value types. Enums shall contain only fields as members (they shall not even define type initializers or instance constructors); they shall not implement any interfaces; they shall have auto field layout (§16.110.1.2

); they shall have exactly one instance field and it shall be of the underlying type of the enum; all other fields shall be static and literal (§
); and they shall not be initialized with the initobj instruction.

[Rationale: These restrictions allow a very efficient implementation of enums. end rationale]

The single, required, instance field stores the value of an instance of the enum. The static literal fields of an enum declare the mapping of the symbols of the enum to the underlying values. All of these fields shall have the type of the enum and shall have field init metadata that assigns them a value (§16.2

).

For binding purposes (e.g., for locating a method definition from the method reference used to call it) enums shall be distinct from their underlying type. For all other purposes, including verification and execution of code, an unboxed enum freely interconverts with its underlying type. Enums can be boxed (§13

) to a corresponding boxed instance type, but this type is not the same as the boxed type of the underlying type, so boxing does not lose the original type of the enum.

[Example: Declare an enum type and then create a local variable of that type. Store a constant of the underlying type into the enum (showing automatic coersion from the underlying type to the enum type). Load the enum back and print it as the underlying type (showing automatic coersion back). Finally, load the address of the enum and extract the contents of the instance field and print that out as well.

.assembly Test { }
.assembly extern mscorlib { }
.class sealed public ErrorCodes extends [mscorlib]System.Enum
{ .field public unsigned int8 MyValue
 .field public static literal valuetype ErrorCodes no_error = int8(0)
 .field public static literal valuetype ErrorCodes format_error = int8(1)
 .field public static literal valuetype ErrorCodes overflow_error = int8(2)
 .field public static literal valuetype ErrorCodes nonpositive_error = int8(3)
}
.method public static void Start()
{ .maxstack 5
 .entrypoint
 .locals init (valuetype ErrorCodes errorCode)
 ldc.i4.1 // load 1 (= format_error)
 stloc errorCode // store in local, note conversion to enum
 ldloc errorCode
 call void [mscorlib]System.Console::WriteLine(int32)
 ldloca errorCode // address of enum
 ldfld unsigned int8 valuetype ErrorCodes::MyValue
 call void [mscorlib]System.Console::WriteLine(int32)
 ret
}
end example]

14.4 Pointer types

	Type ::= …
	Clause

	 | Type ‘&’
	14.4.2

	 | Type ‘*’
	14.4.1 REF _Ref502981198 \r \h * MERGEFORMAT
14.4.1

A pointer type XE "type:pointer" \b

 XE "pointer" \b shall be defined by specifying a signature that includes the type of the location at which it points. A pointer can be managed XE "pointer:managed" \b (reported to the CLI garbage collector, denoted by &, see §pointer:unmanaged" \b 14.4.2

) or unmanaged (not reported, denoted by *, see §14.4.1

)

Pointers can contain the address of a field (of an object or value type) or of an element of an array. Pointers differ from object references in that they do not point to an entire type instance, but, rather, to the interior of an instance. The CLI provides two type-safe operations on pointers:

· Loading the value from the location referenced by the pointer.
· Storing an assignment-compatible value into the location referenced by the pointer.
For pointers into the same array or object (see Partition I_alink=Partition_I) the following arithmetic operations are supported: XE "pointer arithmetic" \b
· Adding an integer value to a pointer (where that value is interpreted as a number of bytes), which results in a pointer of the same kind

· Subtracting an integer value from a pointer (where that value is interpreted as a number of bytes), which results in a pointer of the same kind. Note that subtracting a pointer from an integer value is not permitted.

· Two pointers, regardless of kind, can be subtracted from one another, producing an integer value that specifies the number of bytes between the addresses they reference.

The following is informative text

Pointers are compatible with unsigned int32 on 32-bit architectures, and with unsigned int64 on 64-bit architectures. They are best considered as unsigned int, whose size varies depending upon the runtime machine architecture.

The CIL instruction set (see Partition III_alink=Partition_III
) contains instructions to compute addressesxe "address" of fields, local variables, arguments, and elements of vectors:

	Instruction
	Description

	ldargaxe "ldarga"
	Load address of argument

	ldelemaxe "ldelema"
	Load address of vector element

	ldfldaxe "ldflda"
	Load address of field

	ldlocaxe "ldloca"
	Load address of local variable

	ldsfldaxe "ldsflda"
	Load address of static field

Once a pointer is loaded onto the stack, the ldindxe "ldind" class of instructions can be used to load the data item to which it points. Similarly, the stind XE "stind" family of instructions can be used to store data into the location.
Note that the CLI will throw an InvalidOperationException XE "InvalidOperationException" for an ldflda instruction if the address is not within the current application domain. This situation arises typically only from the use of objects with a base type of System.MarshalByRefObject XE "System.MarshalByRefObject" (see Partition IV_alink=Partition_IV
).

14.4.1 Unmanaged pointers

Unmanaged pointers XE "pointer:unmanaged" (*) are the traditional pointers used in languages like C and C++. There are no restrictions on their use, although, for the most part, they result in code that cannot be verified. While it is perfectly valid to mark locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how they are treated by the VES), it is often better to mark them as unmanaged pointers to a specific type of data. This is done by using *in a signature for a return value, local variable, or an argument, or by using a pointer type for a field or array element.

· Unmanaged pointers are not reported to the garbage collector and can be used in any way that an integer can be used.

· Verifiable code cannot dereference unmanaged pointers.

· Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This is safe only if one of the following is true:

a. The unmanaged pointer refers to memory that is not in memory used by the CLI for storing instances of objects (“garbage-collected memory” or “managed memory”).

b. The unmanaged pointer contains the address of a field within an object.

c. The unmanaged pointer contains the address of an element within an array.

d. The unmanaged pointer contains the address where the element following the last element in an array would be located.
Implementation Specific (Microsoft)
PEverify will show an error when declaring an unmanaged pointer. The rational is if a dereferenced pointer cannot be used, it is not valuable. This also insures that any API that uses pointers cannot be verifiable.

14.4.2 Managed pointers

Managed pointersxe "pointer:managed" (&) can point to an instance of a value type, a field of an object, a field of a value type, an element of an array, or the address where an element just past the end of an array would be stored (for pointer indexes into managed arrays). Managed pointers cannot be null, and they shall be reported to the garbage collector even if they do not point to managed memory.

Managed pointers are specified by using & in a signature for a return value, local variable or an argument, or by using a byref type for a field or array element.

· Managed pointers can be passed as arguments, stored in local variables, and returned as values.

· If a parameter is passed by reference, the corresponding argument is a managed pointer.

· Managed pointers cannot be stored in static variables, array elements, or fields of objects or value types.

· Managed pointers are not interchangeable with object references.

· A managed pointer cannot point to another managed pointer, but it can point to an object reference or a value type.

· A managed pointer can point to a local variable, or a method argument

· Managed pointers that do not point to managed memory can be converted (using conv.u XE "conv.u" or conv.ovf.u XE "conv.ovf.u") into unmanaged pointers, but this is not verifiable.
· Unverified code that erroneously converts a managed pointer into an unmanaged pointer can seriously compromise the integrity of the CLI. See Partition III_alink=Partition_III
 (Managed Pointers) for more details.

End informative text

14.5 Method pointers

	Type ::= …

	 | method CallConv Type ‘*’ ‘(’ Parameters ‘)’

Variables of type method pointer XE "pointer:method" \b shall store the address of the entry point to a method with compatible signature. A pointer to a static or instance method is obtained with the ldftnxe “ldftn” instruction, while a pointer to a virtual method is obtained with the ldvirtftnxe “ldvirtftn” instruction. A method can be called by using a method pointer with the calli XE "calli" instruction. See Partition III_alink=Partition_III
 for the specification of these instructions.

[Note: Like other pointers, method pointers are compatible with unsigned int64 on 64-bit architectures, and with unsigned int32 and on 32-bit architectures. The preferred usage, however, is unsigned native int, which works on both 32- and 64-bit architectures. end note]
[Example: Call a method using a pointer. The method MakeDecision::Decide returns a method pointer to either AddOne or Negate, alternating on each call. The main program calls MakeDecision::Decide three times, and after each call uses a calli instruction to call the method specified. The output printed is "-1 2 –1" indicating successful alternating calls.

.assembly Test { }
.assembly extern mscorlib { }
.method public static int32 AddOne(int32 Input)
{ .maxstack 5
 ldarg Input
 ldc.i4.1
 add
 ret
}
.method public static int32 Negate(int32 Input)
{ .maxstack 5
 ldarg Input
 neg
 ret
}
.class value sealed public MakeDecision extends

[mscorlib]System.ValueType
{ .field static bool Oscillate
 .method public static method int32 *(int32) Decide()
 { ldsfld bool valuetype MakeDecision::Oscillate
 dup
 not
 stsfld bool valuetype MakeDecision::Oscillate
 brfalse NegateIt
 ldftn int32 AddOne(int32)
 ret
NegateIt:
 ldftn int32 Negate(int32)
 ret
 }
}
.method public static void Start()
{ .maxstack 2
 .entrypoint

 ldc.i4.1
 call method int32 *(int32) valuetype MakeDecision::Decide()
 calli int32(int32)
 call void [mscorlib]System.Console::WriteLine(int32)
 ldc.i4.1
 call method int32 *(int32) valuetype MakeDecision::Decide()
 calli int32(int32)
 call void [mscorlib]System.Console::WriteLine(int32)
 ldc.i4.1
 call method int32 *(int32) valuetype MakeDecision::Decide()
 calli int32(int32)
 call void [mscorlib]System.Console::WriteLine(int32)
 ret
}
end example]

14.6 Delegates

Delegatesxe "delegate" \b (see Partition I_alink=Partition_I
) are the object-oriented equivalent of function pointers. Unlike function pointers, delegates are object-oriented, type-safe, and secure. Delegates are reference types, and are declared in the form of classes. Delegates shall have a base type of System.Delegate XE "System.Delegate" (see Partition IV_alink=Partition_IV
).

Implementation-Specific (Microsoft)

Delegates have an immediate base type of System.MulticastDelegate XE "System.MulticastDelegate" , which, in turn, has an immediate base type of System.Delegate. (This is an extension, permitted by Partition IV.)
Delegates shall be declared sealed, and the only members a delegate shall have are either the first two or all four methods as specified here. These methods shall be declared runtimexe "runtime" and managed XE "managed" (§Partition IV15.4.3

). They shall not have a body, since that body shall be created automatically by the VES. Other methods available on delegates are inherited from the class System.Delegate in the Base Class Library (see _alink=Partition_IV
). The delegate methods are:
· The instance constructor (named .ctor and marked specialname and rtspecialname, see §System.Object" 10.5.1

) shall take exactly two parameters, the first having type System.Object, and the second having type System.IntPtr XE "System.IntPtr" . When actually called (via a newobj XE "newobj" instruction, see Partition III_alink=Partition_III
), the first argument shall be an instance of the class (or one of its derived classes) that defines the target method, and the second argument shall be a method pointer to the method to be called.

· The Invoke XE "Invoke" method shall be virtual and its signature constrains the target method to which it can be bound; see §14.6.1

. The verifier treats calls to the Invoke method on a delegate just like it treats calls to any other method.
· The BeginInvoke XE "BeginInvoke" method (§System.IAsyncResult" 14.6.3.1

), if present, shall be virtual and have a signature related to, but not the same as, that of the Invoke method. There are two differences in the signature. First, the return type shall be System.IAsyncResult (see Partition IV_alink=Partition_IV
). Second, there shall be two additional parameters that follow those of Invoke: the first of type System.AsyncCallbackxe "System.AsyncCallback" and the second of type System.Object XE "System.Object" .

· The EndInvoke XE "EndInvoke" \b method (§System.IAsyncResult" 14.6.3

) shall be virtual and have the same return type as the Invoke method. It shall take as parameters exactly those parameters of Invoke that are managed pointers, in the same order they occur in the signature for Invoke. In addition, there shall be an additional parameter of type System.IAsyncResult.

Unless stated otherwise, a standard delegate type shall provide the two optional asynchronous methods, BeginInvoke and EndInvoke.

[Example: The following declares a Delegate used to call functions that take a single integer and return nothing. It provides all four methods so it can be called either synchronously or asynchronously. Because no parameters are passed by reference (i.e., as managed pointers) there are no additional arguments to EndInvoke.

.assembly Test { }
.assembly extern mscorlib { }
.class private sealed StartStopEventHandler extends [mscorlib]System.Delegate
 { .method public specialname rtspecialname instance void .ctor(object Instance,
 native int Method) runtime managed {}
 .method public virtual void Invoke(int32 action) runtime managed {}
 .method public virtual class [mscorlib]System.IAsyncResult
 BeginInvoke(int32 action, class [mscorlib]System.AsyncCallback callback,
 object Instance) runtime managed {}
 .method public virtual void EndInvoke(class
 [mscorlib]System.IAsyncResult result) runtime managed {}
}
end example]

As with any class, an instance is created XE "delegate:creation" \b using the newobj XE "newobj" instruction in conjunction with the instance constructor. The first argument to the constructor shall be the object on which the method is to be called, or it shall be null if the method is a static method. The second argument shall be a method pointer to a method on the corresponding class and with a signature that matches that of the delegate class being instantiated.

Implementation-Specific (Microsoft)

The Microsoft implementation of the CLI allows the programmer to add more methods to a delegate, on the condition that they provide an implementation for those methods (i.e., they cannot be marked runtime). Note that such use makes the resulting assembly non-portable.

14.6.1 Delegate signature compatibility

Delegates can only be bound to target methods where the signatures of the delegate and the target method are compatible. Compatibility is determined by examining the parameter types, return type and calling convention. (Custom modifiers are not considered significant and do not impact compatibility.)
For a delegate and target method to be compatible, the calling conventions shall match exactly.

For a delegate and target method to be compatible, the parameter types shall be compatible per the following rules:
Use D and T to denote the types of parameters to a delegate and a target method (respectively), use D := T to indicate that the types of the parameters are compatible, use D != T to indicate the types of the parameters are incompatible, use D[] to indicate an array of type D, and for instantiation D of generic type G<V> use VD to indicate the type parameter used for V.

1. [:= is reflexive] For all parameter types D, D := D.

2. [:= is transitive] For all parameter types D, T and U, if D := U and U := T then D := T.

3. D := T if T is the base class of D or an interface implemented by D and D is not a value type (includes primitives, pointers, function pointers)

4. D := T if D and T are both interfaces and the implementation of D requires the implementation of T.

5. D[] := T[] if D := T and the arrays are either both vectors (zero-based, rank one) or neither is a vector and both have the same rank.

6. If D and T are method pointers, then D := T if the signatures (parameter types, return types, calling convention, custom modifiers) are compatible per these rules.

7. D := T if D and T are instantiations of the generic type G<+V> and VD is a subtype of VT.

8. D := T if D and T are instantiations of the generic type G<-V> and VT is a subtype of VD.

9. D := T if D and T are instantiations of the generic type G<V> and VD == VT.

10. Otherwise, D != T.
For a delegate and target method to be compatible, the return type shall be compatible per the following rules: Use D and T to denote the return type of a delegate and a target method (respectively), use D := T to indicate that the return types are compatible, use D !:= T to indicate that the return types are incompatible, use D[] to indicate an array of type D, and for instantiation D of generic type G<V> use VD to indicate the type parameter used for V.

1. [:= is reflexive] For all return types D, D := D.

2. [:= is transitive] For all return types D, T and U, if D := U and U := T then D := U.

3. D := T if D is the base class of T or an interface implemented by T and T is not a value type (includes primitives, pointers, function pointers)

4. D := T if D and T are both interfaces and the implementation of T requires the implementation of D.

5. D[] := T[] if D := T and the arrays are either both vectors (zero-based, rank one) or neither is a vector and both have the same rank.

6. If D and T are method pointers, then D := T if the signatures (parameter types, return types, calling convention, custom modifiers) are compatible per these rules.

7. D := T if D and T are instantiations of the generic type G<+V> and VT is a subtype of VD.
8. D := T if D and T are instantiations of the generic type G<-V> and VD is a subtype of VT.
9. D := T if D and T are instantiations of the generic type G<V> and VD == VT.
10. Otherwise D != T.
14.6.2 Synchronous calls to delegates

xe " delegate call:synchronous " \b The synchronous mode of calling delegates corresponds to regular method calls and is performed by calling the virtual method named Invoke on the delegate. The delegate itself is the first argument to this call (it serves as the this pointer), followed by the other arguments as specified in the signature. When this call is made, the caller shall block until the called method returns. The called method shall be executed on the same thread as the caller.

[Example: Continuing the previous example, define a class Test that declares a method, onStartStop, appropriate for use as the target for the delegate.

.class public Test
{ .field public int32 MyData
 .method public void onStartStop(int32 action)
 { ret // put your code here
 }
 .method public specialname rtspecialname
 instance void .ctor(int32 Data)
 { ret // call base class constructor, store state, etc.
 }
}
Then define a main program. This one constructs an instance of Test and then a delegate that targets the onStartStop method of that instance. Finally, call the delegate.

.method public static void Start()
{ .maxstack 3
 .entrypoint
 .locals (class StartStopEventHandler DelegateOne,
 class Test InstanceOne)
 // Create instance of Test class
 ldc.i4.1
 newobj instance void Test::.ctor(int32)
 stloc InstanceOne

 // Create delegate to onStartStop method of that class
 ldloc InstanceOne
 ldftn instance void Test::onStartStop(int32)
 newobj void StartStopEventHandler::.ctor(object, native int)
 stloc DelegateOne

 // Invoke the delegate, passing 100 as an argument
 ldloc DelegateOne
 ldc.i4 100
 callvirt instance void StartStopEventHandler::Invoke(int32)
 ret
}

Note that the example above creates a delegate to a non-virtual function. If onStartStop had been a virtual function, use the following code sequence instead:
ldloc InstanceOne
dup
ldvirtftn instance void Test::onStartStop(int32)
newobj void StartStopEventHandler::.ctor(object, native int)
stloc DelegateOne
// Invoke the delegate, passing 100 as an argument
ldloc DelegateOne

end example]

[Note: The code sequence above shall use dup – not ldloc InstanceOne twice. The dup code sequence is easily recognized as type-safe, whereas alternatives would require more complex analysis. Verifiability of code is discussed in Partition III_alink=Partition_III
 end note]
14.6.3 Asynchronous calls to delegates

xe " delegate call:asynchronous " \b In the asynchronous mode, the call is dispatched, and the caller shall continue execution without waiting for the method to return. The called method shall be executed on a separate thread.

To call delegates asynchronously, the BeginInvoke XE "BeginInvoke" and EndInvoke XE "EndInvoke" methods are used.

Note: if the caller thread terminates before the callee completes, the callee thread is unaffected. The callee thread continues execution and terminates silently

Note: the callee can throw exceptions. Any unhandled exception propagates to the caller via the EndInvoke method.

14.6.3.1 The BeginInvoke XE "BeginInvoke" \b method

An asynchronous call to a delegate shall begin by making a virtual call to the BeginInvoke method. BeginInvoke is similar to the Invoke method (§14.6.1

), but has two differences:

· It has two additional parameters, appended to the list, of type System.AsyncCallbackxe "System.AsyncCallback", and System.Object.xe "System.Object"
· The return type of the method is System.IAsyncResult XE "System.IAsyncResult" .
Although the BeginInvoke method therefore includes parameters that represent return values, these values are not updated by this method. The results instead are obtained from the EndInvoke method (see below).

Unlike a synchronous call, an asynchronous call shall provide a way for the caller to determine when the call has been completed. The CLI provides two such mechanisms. The first is through the result returned from the call. This object, an instance of the interface System.IAsyncResult, can be used to wait for the result to be computed, it can be queried for the current status of the method call, and it contains the System.Object value that was passed to the call to BeginInvoke. See Partition IV_alink=Partition_IV
.

The second mechanism is through the System.AsyncCallback delegate passed to BeginInvoke. The VES shall call this delegate when the value is computed or an exception has been raised indicating that the result will not be available. The value passed to this callback is the same value passed to the call to BeginInvoke. A value of null can be passed for System.AsyncCallback to indicate that the VES need not provide the callback.

[Rationale: This model supports both a polling approach (by checking the status of the returned System.IAsyncResult) and an event-driven approach (by supplying a System.AsyncCallback) to asynchronous calls. end rationale]
A synchronous call returns information both through its return value and through output parameters. Output parameters are represented in the CLI as parameters with managed pointer type. Both the returned value and the values of the output parameters are not available until the VES signals that the asynchronous call has completed successfully. They are retrieved by calling the EndInvoke method on the delegate that began the asynchronous call.

14.6.3.2 The EndInvoke XE "EndInvoke" \b method

The EndInvoke method can be called at any time after BeginInvoke. It shall suspend the thread that calls it until the asynchronous call completes. If the call completes successfully, EndInvoke will return the value that would have been returned had the call been made synchronously, and its managed pointer arguments will point to values that would have been returned to the out parameters of the synchronous call.

EndInvoke requires as parameters the value returned by the originating call to BeginInvoke (so that different calls to the same delegate can be distinguished, since they can execute concurrently) as well as any managed pointers that were passed as arguments (so their return values can be provided).

15 Defining, referencing, and calling methods

Methods can be defined at the global level (outside of any type):

	Decl ::= …

	 | .methodxe ".method;method" MethodHeader ‘{’ MethodBodyItem* ‘}’

as well as inside a type:

	ClassMember ::= …

	 | .method MethodHeader ‘{’ MethodBodyItem* ‘}’

15.1 Method descriptors XE "method descriptor" \b
There are four constructs in ILAsm connected with methods. These correspond with different metadata constructs, as described in §23.

15.1.1 Method declarations XE "method declaration" \b
A MethodDecl XE "MethodDecl" \t "See method declaration" , or method declaration, supplies the method name and signature (parameter and return types), but not its body. That is, a method declaration provides a MethodHeader but no MethodBodyItems. These are used at call sites to specify the call target (call XE "call" or callvirt XE "callvirt" instructions, see Partition III_alink=Partition_III
) or to declare an abstract method. A MethodDecl has no direct logical couterpart in the metadata; it can be either a Method or a MethodRef.

15.1.2 Method definitions XE "method definition" \b
A Method XE "Method" \t "See method definition" , or method definition, supplies the method name, attributes, signature, and body. That is, a method definition provides a MethodHeader as well as one or more MethodBodyItems. The body includes the method's CIL instructions, exception handlers, local variable information, and additional runtime or custom metadata about the method. See §10

.

15.1.3 Method references XE "method reference" \b
A MethodRef XE "MethodRef" \t "See method reference" , or method reference, is a reference to a method. It is used when a method is called and that method’s definition lies in another module or assembly. A MethodRef shall be resolved by the VES into a Method before the method is called at runtime. If a matching Method cannot be found, the VES shall throw a System.MissingMethodException XE "System.MissingMethodException" . See §22.25.

15.1.4 Method implementations XE "method implementation" \b
A MethodImpl XE "MethodDecl" \t "See method implementation" , or method implementation, supplies the executable body for an existing virtual method. It associates a Method (representing the body) with a MethodDecl or Method (representing the virtual method). A MethodImpl is used to provide an implementation for an inherited virtual method or a virtual method from an interface when the default mechanism (matching by name and signature) would not provide the correct result. See §22.27

.

15.2 Static, instance, and virtual methods

Static methodsxe "method:static" \b are methods that are associated with a type, not with its instances.

Instance methodsxe "method:instance" \b are associated with an instance of a type: within the body of an instance method it is possible to reference the particular instance on which the method is operating (via the this pointer). It follows that instance methods shall only be defined in classes or value types, but not in interfaces or outside of a type (i.e., globally). However, notice

8. Instance methods on classes (including boxed value types), have a this pointer that is by default an object reference to the class on which the method is defined.
9. Instance methods on (unboxed) value types, have a this pointer that is by default a managed pointer to an instance of the type on which the method is defined.
10. There is a special encoding (denoted by the syntactic item explicit XE "explicit" in the calling convention, see §15.3

) to specify the type of the this pointer, overriding the default values specified here.
11. The this pointer can be null.
Virtual methodsxe "method:virtual" \b are associated with an instance of a type in much the same way as for instance methods. However, unlike instance methods, it is possible to call a virtual method in such a way that the implementation of the method shall be chosen at runtime by the VES depending upon the type of object used for the this pointer. The particular Method that implements a virtual method is determined dynamically at runtime (a virtual call) when invoked via the callvirt XE "callvirt" instruction; whilst the binding is decided at compile time when invoked via the call XE "call" instruction (see Partition III_alink=Partition_III
).

With virtual calls (only), the notion of inheritance becomes important. A derived class can override a virtual method inherited from its base classes, providing a new implementation of the method. The method attribute newslotxe "newslot" specifies that the CLI shall not override the virtual method definition of the base type, but shall treat the new definition as an independent virtual method definition.

Abstract virtual methods (which shall only be defined in abstract classes or interfaces) shall be called only with a callvirt instruction. Similarly, the address of an abstract virtual method shall be computed with the ldvirtftn XE "ldvirtftn" instruction, and the ldftn XE "ldftn" instruction shall not be used.

[Rationale: With a concrete virtual method there is always an implementation available from the class that contains the definition, thus there is no need at runtime to have an instance of a class available. Abstract virtual methods, however, receive their implementation only from a subtype or a class that implements the appropriate interface, hence an instance of a class that actually implements the method is required. end rationale]
15.3 Calling convention

	CallConv ::= [instance [explicit]] [CallKind]

A calling conventionxe "calling convention" \b specifies how a method expects its arguments to be passed from the caller to the called method. It consists of two parts: the first deals with the existence and type of the this pointer, while the second relates to the mechanism for transporting the arguments.

If the attribute instance XE "instance" \b is present, it indicates that a this pointer shall be passed to the method. This attribute shall be used for both instance and virtual methods.

Implementation-specific (Microsoft)
For simplicity, the assembler automatically sets or clears the instance bit in the calling convention for a method definition based on the method attributes static and virtual. In a method reference, however, the instance bit shall be specified directly since the information about static or virtual is not captured in a reference.

Normally, a parameter list (which always follows the calling convention) does not provide information about the type of the this pointer, since this can be deduced from other information. When the combination instance explicit XE "instance explicit" \b is specified, however, the first type in the subsequent parameter list specifies the type of the this pointer and subsequent entries specify the types of the parameters themselves.

	CallKind ::=

	 default

	| unmanaged cdecl

	| unmanaged fastcall

	| unmanaged stdcall

	| unmanaged thiscall

	| vararg

Managed code shall have only the defaultxe "default" or varargxe "vararg" calling kind. default shall be used in all cases except when a method accepts an arbitrary number of arguments, in which case vararg shall be used.

When dealing with methods implemented outside the CLI it is important to be able to specify the calling convention required. For this reason there are 16 possible encodings of the calling kind. Two are used for the managed calling kinds. Four are reserved with defined meaning across many platforms, as follows:

· unmanaged cdeclxe "unmanaged cdecl" is the calling convention used by Standard C

· unmanaged stdcallxe "unmanaged stdcall" specifies a standard C++ call

· unmanaged fastcallxe "unmanaged fastcall" is a special optimized C++ calling convention

· unmanaged thiscallxe "unmanaged thiscall" is a C++ call that passes a this pointer to the method

Four more are reserved for existing calling conventions, but their use is not maximally portable. Four more are reserved for future standardization, and two are available for non-standard experimental use.

(In this context, "portable" means a feature that is available on all conforming implementations of the CLI.)

15.4 Defining methods XE "method:definition"
	MethodHeader ::=

	 MethAttr* [CallConv] Type

 [marshal XE "marshal" ‘(’ [NativeType] ‘)’]

 MethodName [‘<’ GenPars‘>’] ‘(’ Parameters ‘)’ ImplAttr*

Implementation-specific (Microsoft)
The implementation permits [ParamAttr*] between [CallConv] and Type.
The method head (see also §10

) consists of

· the calling convention (CallConv, see §15.3

)

· any number of predefined method attributes (MethAttr, see §15.4.1.5

)

· a return type with optional attributes

· optional marshalling information (§7.4)

· a method name

· optional generic parameters (when defining generic methods, see §10.1.7)

· a signature

· and any number of implementation attributes (ImplAttr, see §15.4.3

)

Methods that do not have a return value shall use void XE "void" as the return type.

	MethodName ::=

	 .cctor XE ".cctor;cctor"

	| .ctor XE ".ctor;ctor"

	| DottedName

Method names are either simple names or the special names used for instance constructors and type initializers.

	Parameters ::= [Param [‘,’ Param]*]

	Param ::=

	 ...

	| [ParamAttr*] Type [marshal XE "marshal" ‘(’ [NativeType] ‘)’] [Id]

The Id, if present, is the name of the parameter. A parameter can be referenced either by using its name or the zero-based index of the parameter. In CIL instructions it is always encoded using the zero-based index (the name is for ease of use in ILAsm).

Note that, in contrast to calling a varargxe "vararg" method, the definition of a varargxe "vararg" method does not include any ellipsis (“…”)
	ParamAttr ::=

	 ‘[’ in ‘]’ XE "[in];in" \b

	| ‘[’ opt ‘]’ XE "[opt];opt" \b

	| ‘[’ out ‘]’ XE "[out];out" \b

Implementation-specific (Microsoft)
The implementation provides a fourth option for ParamAttr, namely, an Int32. This integer is a 16-bit set of flags, whose meaning is unspecified.
The parameter attributes shall be attached to the parameters (§22.33

) and hence are not part of a method signature.

[Note: Unlike parameter attributes, custom modifiers (modopt XE "modopt" and modreq XE "modreq") are part of the signature. Thus, modifiers form part of the method’s contract while parameter attributes do not. end note]
in and out shall only be attached to parameters of pointer (managed or unmanaged) type. They specify whether the parameter is intended to supply input to the method, return a value from the method, or both. If neither is specified in is assumed. The CLI itself does not enforce the semantics of these bits, although they can be used to optimize performance, especially in scenarios where the call site and the method are in different application domains, processes, or computers.

opt specifies that this parameter is intended to be optional from an end-user point of view. The value to be supplied is stored using the .param XE ".param;param" syntax (§15.4.1.4).

15.4.1 Method body

The method body XE "method body" \b shall contain the instructions of a program. However, it can also contain labels, additional syntactic forms and many directives that provide additional information to ilasm and are helpful in the compilation of methods of some languages.

	MethodBodyItem ::=
	Description
	Clause

	 .custom xe ".custom;custom"CustomDecl
	Definition of custom attributes.
	21

	| .data xe ".data;data"DataDecl
	Emits data to the data section
	16.3

	| .emitbyte xe ".emitbyte;emitbyte"Int32
	Emits an unsigned byte to the code section of the method.
	15.4.1.1

	| .entrypointxe ".entrypoint;entrypoint"
	Specifies that this method is the entry point to the application (only one such method is allowed).
	15.4.1.2

	| .localsxe ".locals ;locals" [initxe "init"]
 ‘(’ LocalsSignature ‘)’
	Defines a set of local variables for this method.
	15.4.1.3

	| .maxstackxe ".maxstack;maxstack" Int32
	The int32 specifies the maximum number of elements on the evaluation stack during the execution of the method.
	15.4.1

	| .override xe ".override;override"TypeSpec ‘::’ MethodName
	Use current method as the implementation for the method specified.
	10.3.2

	| .override method xe ".override method;override method"CallConv Type TypeSpec ‘::’ MethodName GenArity ‘(’ Parameters ‘)’
	Use current method as the implementation for the method specified.
	10.3.2

	| .paramxe ".param;param" ‘[’ Int32 ‘]’ [‘=’ FieldInit]
	Store a constant FieldInit value for parameter Int32
	15.4.1.4

	| .param typexe ".param type;param type" ‘[’ Int32 ‘]’
	Specifies a type parameter for a generic method
	15.4.1.5

	| ExternSourceDeclxe ".line;line"

xe "#line;line"
	.line or #line
	5.7

	| Instr
	An instruction
	Partition VI
_alink=Partition_V

	| Id ‘:’ xe "label:code"
	A label
	5.4

	| ScopeBlock
	Lexical scope of local variables
	15.4.4

	| SecurityDecl
	.permission XE ".permission;permission" or .permissionset XE ".permissionset;permissionset"
	20

	| SEHBlock
	An exception block
	19

15.4.1.1 The .emitbyte directive
	MethodBodyItem ::= …

	 | .emitbytexe ".emitbyte;emitbyte" \b Int32

This directive causes an unsigned 8-bit value to be emitted directly into the CIL stream of the method, at the point at which the directive appears.

[Note: The .emitbyte directive is used for generating tests. It is not required in generating regular programs. end note]
15.4.1.2 The .entrypoint directive
	MethodBodyItem ::= …

	 | .entrypoint XE ".entrypoint;entrypoint" \b

The .entrypoint directive marks the current method, which shall be static, as the entry point XE "method:entry point" \b to an application. The VES shall call this method to start the application. An executable shall have exactly one entry point method. This entry point method can be a global method or it can appear inside a type. (The effect of the directive is to place the metadata token for this method into the CLI header of the PE file)

The entry point method shall either accept no arguments or a vector of strings. If it accepts a vector of strings, the strings shall represent the arguments to the executable, with index 0 containing the first argument. The mechanism for specifying these arguments is platform-specific and is not specified here.

The return type of the entry point method shall be void, int32, or unsigned int32. If an int32 or unsigned int32 is returned, the executable can return an exit code to the host environment. A value of 0 shall indicate that the application terminated ordinarily.

The accessibility of the entry point method shall not prevent its use in starting execution. Once started the VES shall treat the entry point as it would any other method.

The entry point method cannot be defined in a generic class.

 [Example: The following prints the first argument and returns successfully to the operating system:

.method public static int32 MyEntry(string[] s) cil managed
{ .entrypoint
 .maxstack 2
 ldarg.0

// load and print the first argument
 ldc.i4.0
 ldelem.ref
 call void [mscorlib]System.Console::WriteLine(string)
 ldc.i4.0

// return success
 ret
}
end example]

15.4.1.3 The .locals directive
The .locals XE ".locals;locals" \b statement declares one or more local variables (see Partition I_alink=Partition_I
) for the current method.
	MethodBodyItem ::= …

	 | .locals [init] ‘(’ LocalsSignature ‘)’

	LocalsSignature ::= Local [‘,’ Local]*

	Local ::= Type [Id]

If present, the Id is the name of the corresponding local variable.

If initxe "init" is specified, the variables are initialized to their default values according to their type: reference types are initialized to null and value types are zeroed out.

[Note: Verifiable methods shall include the init keyword. See Partition III_alink=Partition_III
. end note]
Implementation-specific (Microsoft)
ilasm allows nested local variable scopes to be provided and allows locals in nested scopes to share the same location as those in the outer scope. The information about local names, scoping, and overlapping of scoped locals is persisted to the PDB (debugger symbol) file rather than the PE file itself.

Local ::= [‘[’ Int32 ‘]’] Type [Id]
The integer in brackets that precedes the Type, if present, specifies the local number (starting with 0) being described. This allows nested locals to reuse the same location as a local in the outer scope. It is not valid to overlap two local variables unless they have the same type. When no explicit index is specified, the next unused index is chosen. That is, two locals never share an index unless the index is given explicitly.

If init is used, all local variables will be initialized to their default values, even variables in another .locals directive in the same method, which does not have the init directive.

[Example: The following declares 4 local variables, each of which is to be initialized to its default value:

.locals init (int32 i, int32 j, float32 f, int64[] vect)
end example]

15.4.1.4 The .param directive
	MethodBodyItem ::= …

	 | .paramxe ".param;param" \b ‘[’ Int32 ‘]’ [‘=’ FieldInit]

This directive stores in the metadata a constant value associated with method parameter number Int32, see §22.9

. While the CLI requires that a value be supplied for the parameter, some tools can use the presence of this attribute to indicate that the tool rather than the user is intended to supply the value of the parameter. Unlike CIL instructions, .param uses index 0 to specify the return value of the method, index 1 to specify the first parameter of the method, index 2 to specify the second parameter of the method, and so on.

[Note: The CLI attaches no semantic whatsoever to these values—it is entirely up to compilers to implement any semantic they wish (e.g., so-called default argument values). end note]
15.4.1.5 The .param type directive

	MethodBodyItem ::= …

	 | .param typexe ".param type;param type" \b ‘[’ Int32 ‘]’

This directive allows type parameters for a generic type or method to be specified. Int32 is the 1-based ordinal of the type or method parameter to which the directive applies. [Note: This directive is used in conjunction with a .custom directive to associate a custom attribute with a type parameter. end note]
When a .param type directive is used within class scope, it refers to a type parameter of that class. When the directive is used within method scope inside a class definition, it refers to a type parameter of that method. Otherwise, the program is ill-formed.
[Example:
.class public G<T,U> {
 .param type [1]

// refers to T
 .custom instance void TypeParamAttribute::.ctor() = (01 00 ...)
 .method public void Foo<M>(!!0 m) {
 .param type [1]
// refers to M
 .custom instance void AnotherTypeParamAttribute::.ctor() = (01 00 ...)
 …
 }
 …
}
end example]

15.4.2 Predefined attributes on methods XE "method:predefined attributes for a"
	MethAttr ::=
	Description
	Clause

	 abstract XE "abstract"
	The method is abstract (shall also be virtual).
	15.4.2.4

	| assembly XE "assembly"
	Assembly accessibility
	15.4.2.1

	| compilercontrolled XE "compilercontrolled"
	Compiler-controlled accessibility.
	15.4.2.1

	| famandassem XE "famandassem"
	Family and Assembly accessibility
	15.4.2.1

	| family XE "family"
	Family accessibility
	15.4.2.1

	| famorassem XE "famorassem"
	Family or Assembly accessibility
	15.4.2.1

	| final XE "final"
	This virtual method cannot be overridden by derived classes.
	15.4.2.2

	| hidebysig XE "hidebysig"
	Hide by signature. Ignored by the runtime.
	15.4.2.2

	| newslot XE "newslot"
	Specifies that this method shall get a new slot in the virtual method table.
	15.4.2.3

	| pinvokeimpl XE "pinvokeimpl" ‘(’
 QSTRING [as QSTRING]
 PinvAttr* ‘)’
	Method is actually implemented in native code on the underlying platform
	15.4.2.5

	| private XE "private"
	Private accessibility
	15.4.2.1

	| public XE "public"
	Public accessibility.
	15.4.2.1

	| rtspecialname XE "rtspecialname"
	The method name needs to be treated in a special way by the runtime.
	15.4.2.6

	| specialname XE "specialname"
	The method name needs to be treated in a special way by some tool.
	15.4.2.6

	| static XE "static"
	Method is static.
	15.4.2.2

	| virtual XE "virtual"
	Method is virtual.
	15.4.2.2

	| strict
	Check accessibility on override
	15.4.2.2

Implementation-specific (Microsoft)
The following syntax is supported:

 MethAttr ::= … | unmanagedexp | reqsecobj

unmanagedexp XE "unmanagedexp" \b indicates that the method is exported to unmanaged code using COM interop; reqsecobj XE "reqsecobj" \b indicates that the method calls another method with security attributes.

Note that ilasm does not recognize the compilercontrolled keyword. Instead, use privatescope XE "privatescope" .

The following combinations of predefined attributes are invalid:

· static combined with any of final, newslot, or virtual
· abstract combined with any of final or pinvokeimpl
· compilercontrolled combined with any of final, rtspecialname, specialname, or virtual
15.4.2.1 Accessibility information

	MethAttr ::= …

	| assembly

	| compilercontrolled

	| famandassem

	| family

	| famorassem

	| private

	| public

Only one of these attributes shall be applied to a given method. See Partition I_alink=Partition_I
.

15.4.2.2 Method contract attributes

	MethAttr ::= …

	| final

	| hidebysig

	| static

	| virtual

	| strict

These attributes can be combined, except a method shall not be both static and virtual; only virtual methods shall be final or strict; and abstract methods shall not be final.

final methods shall not be overridden by derived classes of this type.

hidebysig is supplied for the use of tools and is ignored by the VES. It specifies that the declared method hides all methods of the base class types that have a matching method signature; when omitted, the method should hide all methods of the same name, regardless of the signature.

[Rationale: Some languages (such as C++) use a hide-by-name semantics while others (such as C#, Java™) use a hide-by-name-and-signature semantics. end rationale]
static and virtual are described in §15.2.

strict virtual methods can only be overridden if they are also accessible. See §23.1.10.
15.4.2.3 Overriding behavior

	MethAttr ::= …

	 | newslot

newslot shall only be used with virtual methods. See 10.3

.

15.4.2.4 Method attributes

	MethAttr ::= …

	 | abstract

abstract shall only be used with virtual methods that are not final. It specifies that an implementation of the method is not provided but shall be provided by a derived class. abstract methods shall only appear in abstract types (§10.1.4

).

15.4.2.5 Interoperation attributes

	MethAttr ::= …

	 | pinvokeimpl ‘(’ QSTRING [as QSTRING] PinvAttr* ‘)’

See §22.20

.
15.5.2

and §
15.4.2.6 Special handling attributes

	MethAttr ::= …

	 | rtspecialname

	 | specialname

The attribute rtspecialname specifies that the method name shall be treated in a special way by the runtime. Examples of special names are .ctor XE ".ctor;ctor" (object constructor) and .cctor XE ".cctor;cctor" (type initializer).

specialname indicates that the name of this method has special meaning to some tools.

15.4.3 Implementation attributes of methods XE "method:implementation attributes for a"
	ImplAttr ::=
	Description
	Clause

	 cil XE "cil"
	The method contains standard CIL code.
	15.4.3.1

	| forwardref XE "forwardref"
	The body of this method is not specified with this declaration.
	15.4.3.3

	| internalcall XE "internalcall"
	Denotes the method body is provided by the CLI itself
	15.4.3.3

	| managed XE "managed"
	The method is a managed method.
	15.4.3.2

	| native XE "native"
	The method contains native code.
	15.4.3.1

	| noinlining XE "noinlining"
	The runtime shall not expand the method inline.
	15.4.3.3

	| runtime XE "runtime"
	The body of the method is not defined, but is produced by the runtime.
	15.4.3.1

	| synchronized XE "synchronized"
	The method shall be executed in a single threaded fashion.
	15.4.3.3

	| unmanaged XE "unmanaged"
	Specifies that the method is unmanaged.
	15.4.3.2

Implementation-specific (Microsoft)
The following syntax is accepted:

ImplAttr ::= … | preservesig

preservesig XE "preservesig" \b specifies the method signature is mangled to return HRESULT, with the return value as a parameter.

15.4.3.1 Code implementation attributes

	ImplAttr ::= …

	 | cil

	 | native

	 | runtime

These attributes are mutually exclusive; they specify the type of code the method contains.

cil specifies that the method body consists of cil code. Unless the method is declared abstract, the body of the method shall be provided if cil is used.

native specifies that a method was implemented using native code, tied to a specific processor for which it was generated. native methods shall not have a body but instead refer to a native method that declares the body. Typically, the PInvoke XE "PInvoke" \t “See platform invoke” XE “platform invoke” functionality (§15.5.2

) of the CLI is used to refer to a native method.

runtime specifies that the implementation of the method is automatically provided by the runtime and is primarily used for the methods of delegates (§14.6).

15.4.3.2 Managed or unmanaged

	ImplAttr ::= …

	 | managed

	 | unmanaged

These shall not be combined. Methods implemented using CIL are managed. unmanaged is used primarily with PInvoke XE “platform invoke” (§15.5.2

).

15.4.3.3 Implementation information

	ImplAttr ::= …

	 | forwardref

	 | internalcall

	 | noinlining

	 | synchronized

These attributes can be combined.

forwardref specifies that the body of the method is provided elsewhere. This attribute shall not be present when an assembly is loaded by the VES. It is used for tools (like a static linker) that will combine separately compiled modules and resolve the forward reference.

internalcall specifies that the method body is provided by this CLI (and is typically used by low-level methods in a system library). It shall not be applied to methods that are intended for use across implementations of the CLI.

Implementation-specific (Microsoft)
internalcall allows the lowest level parts of the Base Class Library to wrap unmanaged code built into the CLI.

noinlining specifies that the body of this method should not be included into the code of any caller methods, by a CIL-to-native-code compiler; it shall be kept as a separate routine.

[Rationale: specifying that a method not be inlined ensures that it remains 'visible' for debugging (e.g., displaying stack traces) and profiling. It also provides a mechanism for the programmer to override the default heuristics a CIL-to-native-code compiler uses for inlining. end rationale]
synchronized specifies that the whole body of the method shall be single-threaded. If this method is an instance or virtual method, a lock on the object shall be obtained before the method is entered. If this method is a static method, a lock on the closed type shall be obtained before the method is entered. If a lock cannot be obtained, the requesting thread shall not proceed until it is granted the lock. This can cause deadlocks. The lock is released when the method exits, either through a normal return or an exception. Exiting a synchronized method using a tail. XE "tail." call shall be implemented as though the tail. had not been specified. noinlining specifies that the runtime shall not inline this method. Inlining refers to the process of replacing the call instruction with the body of the called method. This can be done by the runtime for optimization purposes.

15.4.4 Scope blocks

	 ScopeBlock ::= ‘{’ MethodBodyItem* ‘}’

A ScopeBlockxe "scope block" is used to group elements of a method body together. For example, it is used to designate the code sequence that constitutes the body of an exception handler.

Implementation-specific (Microsoft)
Scope blocks are syntactic sugar and primarily serve for readability and debugging purposes.

 ScopeBlock ::= ‘{’ MethodBodyItem* ‘}’
A scope block defines the scope in which a local variable is accessible by its name. Scope blocks might be nested, such that a reference of a local variable will first be resolved in the innermost scope block, then at the next level, and so on until the top-most level of the method, is reached. A declaration in an inner scope block hides declarations in the outer layers.

If duplicate declarations are used, the reference will be resolved to the first occurrence. Even though correct CIL, duplicate declarations are not recommended.

Scoping does not affect the lifetime of a local variable. All local variables are created (and if specified initialized) when the method is entered. They stay alive until the execution of the method is completed.

The scoping does not affect the accessibility of a local variable by its zero based index. All local variables are accessible from anywhere within the method by their index.

The index is assigned to a local variable in the order of declaration. Scoping is ignored for indexing purposes. Thus, each local variable is assigned the next available index starting at the top of the method. This behavior can be altered by specifying an explicit index, as described by a LocalsSignature as shown in §15.4.1.3.

15.4.5 vararg methods XE "method:vararg" \b
varargxe "vararg" methods accept a variable number of arguments. They shall use the vararg calling convention (§15.3

).

At each call site, a method reference shall be used to describe the types of the fixed and variable arguments that are passed. The fixed part of the argument list shall be separated from the additional arguments with an ellipsis (see Partition I_alink=Partition_I
). [Note: The method reference is represented by either a MethodRef (§22.25) or MethodDef (§22.26). A MethodRef might be needed even if the method is defined in the same assembly, because the MethodDef only describes the fixed part of the argument list. If the call site does not pass any additional arguments, then it can use the MethodDef for vararg methods defined in the same assembly. end note]
The vararg arguments shall be accessed by obtaining a handle to the argument list using the CIL instruction arglistxe "arglist" (see Partition III_alink=Partition_III
). The handle can be used to create an instance of the value type System.ArgIteratorxe "System.ArgIterator" which provides a type-safe mechanism for accessing the arguments (see Partition IV_alink=Partition_IV
).

[Example: The following example shows how a vararg method is declared and how the first vararg argument is accessed, assuming that at least one additional argument was passed to the method:

.method public static vararg void MyMethod(int32 required) {
 .maxstack 3
 .locals init (valuetype [mscorlib]System.ArgIterator it, int32 x)
 ldloca
it

// initialize the iterator
 initobj
 valuetype [mscorlib]System.ArgIterator
 ldloca
it
 arglist

// obtain the argument handle
 call
instance void [mscorlib]System.ArgIterator::.ctor(valuetype
 [mscorlib]System.RuntimeArgumentHandle)
// call constructor of iterator
 /* argument value will be stored in x when retrieved, so load
 address of x */
 ldloca
x
 ldloca
it
 // retrieve the argument, the argument for required does not matter
 call
instance typedref [mscorlib]System.ArgIterator::GetNextArg()
 call
object [mscorlib]System.TypedReference::ToObject(typedref)
/* retrieve the
 object */
 castclass [mscorlib]System.Int32

// cast and unbox
 unbox
int32
 cpobj
int32

// copy the value into x
 // first vararg argument is stored in x
 ret
}
end example]

15.5 Unmanaged methods XE "method:unmanaged" \b
In addition to supporting managed code and managed data, the CLI provides facilities for accessing pre-existing native code from the underlying platform, known as unmanaged code. XE "code:unmanaged" These facilities are, by necessity, platform-specific and hence are only partially specified here.

This Standard specifies:

· A mechanism in the file format for providing function pointers to managed code that can be called from unmanaged code (§15.5.1

).

· A mechanism for marking certain method definitions as being implemented in unmanaged code (called platform invoke XE "platform invoke" , see §15.5.2

).

· A mechanism for marking call sites used with method pointers to indicate that the call is to an unmanaged method (§15.5.3
).

· A small set of pre-defined data types that can be passed (marshaled) using these mechanisms on all implementations of the CLI (§15.5.5

). The set of types is extensible through the use of custom attributes and modifiers, but these extensions are platform-specific.

15.5.1 Method transition thunks XE "method transition thunk" \b XE "thunk"
[Note: As this mechanism is not part of the Kernel Profile, it might not be present in all conforming implementations of the CLI. See Partition IV_alink=Partition_IV
. end note]
In order to call managed code from unmanaged code, some platforms require a specific transition sequence to be performed. In addition, some platforms require that the representation of data types be converted (data marshaling XE "data marshaling"). Both of these problems are solved by the .vtfixupxe ".vtfixup;vtfixup" directive. This directive can appear several times, but only at the top level of a CIL assembly file, as shown by the following grammar:

	Decl ::=
	Clause

	 .vtfixup VTFixupDecl XE "cil"
	

	| … XE "forwardref"
	5.10

The .vtfixup directive declares that at a certain memory location there is a table that contains metadata tokens referring to methods that shall be converted into method pointers. The CLI will do this conversion automatically when the file containing the .vtfixup directive is loaded into memory for execution. The declaration specifies the number of entries in the table, the kind of method pointer that is required, the width of an entry in the table, and the location of the table:

	VTFixupDecl ::=

	 [Int32] VTFixupAttr* at DataLabel

	VTFixupAttr ::=

	 fromunmanaged

	| int32

	| int64

The attributes int32 XE "int32" \b and int64 XE "int64" \b are mutually exclusive, with int32 being the default. These attributes specify the width of each slot in the table. Each slot contains a 32-bit metadata token (zero-padded if the table has 64-bit slots), and the CLI converts it into a method pointer of the same width as the slot.

If fromunmanagedxe "fromunmanaged" \b is specified, the CLI will generate a thunk that will convert the unmanaged method call to a managed call, call the method, and return the result to the unmanaged environment. The thunk will also perform data marshalling in the platform-specific manner described for platform invoke.

Implementation-specific (Microsoft)
The following syntax is also supported:

 VTFixupAttr ::= … | retainappdomain

retainappdomain indicates that the generated unmanaged-to-managed thunk will ensure method calls execute in the same application domain that the caller thread was last in, or in the default domain if this is the first time the caller thread has entered managed code.

The ILAsm syntax does not specify a mechanism for creating the table of tokens, but a compiler can simply emit the tokens as byte literals into a block specified using the .data XE ".data;data" directive.

15.5.2 Platform invoke XE "platform invoke" \b
Methods defined in native code can be invoked using the platform invoke (also know as PInvoke or p/invoke) functionality of the CLI. Platform invoke will switch from managed to unmanaged state and back, and also handle necessary data marshalling. Methods that need to be called using PInvoke are marked as pinvokeimplxe "pinvokeimpl". In addition, the methods shall have the implementation attributes nativexe "native" and unmanagedxe "unmanaged" (§15.4.2.4

).

	MethAttr ::=
	Description
	Clause

	 pinvokeimpl ‘(’ QSTRING [as QSTRING] PinvAttr* ‘)’
	Implemented in native code
	

	| …
	
	15.4.1.5

The first quoted string is a platform-specific description indicating where the implementation of the method is located (for example, on Microsoft Windows™ this would be the name of the DLL that implements the method). The second (optional) string is the name of the method as it exists on that platform, since the platform can use name-mangling rules that force the name as it appears to a managed program to differ from the name as seen in the native implementation (this is common, for example, when the native code is generated by a C++ compiler).

Only static methods, defined at global scope (i.e., outside of any type), can be marked pinvokeimpl. A method declared with pinvokeimpl shall not have a body specified as part of the definition.

	PinvAttr ::=
	Description (platform-specific, suggestion only)

	 ansixe "ansi"
	ANSI character set.

	| autocharxe "autochar"
	Determine character set automatically.

	| cdeclxe "cdecl"
	Standard C style call

	| fastcallxe "fastcall"
	C style fastcall.

	| stdcallxe "stdcall"
	Standard C++ style call.

	| thiscallxe "thiscall"
	The method accepts an implicit this pointer.

	| unicodexe "unicode"
	Unicode character set.

	| platformapixe "platformapi"
	Use call convention appropriate to target platform.

Implementation-specific (Microsoft)

platformapi is not recognized by ilasm. Instead use winapi XE "winapi" .

The attributes ansi, autochar, and unicode are mutually exclusive. They govern how strings will be marshaled for calls to this method: ansi indicates that the native code will receive (and possibly return) a platform-specific representation that corresponds to a string encoded in the ANSI character set (typically this would match the representation of a C or C++ string constant); autochar indicates a platform-specific representation that is “natural” for the underlying platform; and unicode indicates a platform-specific representation that corresponds to a string encoded for use with Unicode methods on that platform.

The attributes cdecl, fastcall, stdcall, thiscall, and platformapi are mutually exclusive. They are platform-specific and specify the calling conventions for native code.

Implementation-specific (Microsoft)

In addition, the Microsoft implementation of the CLI on Microsoft Windows™ supports the following attributes:

lasterr XE "lasterr" \b to indicate that the native method supports C style last error querying.

nomangle XE "nomangle" \b to indicate that the name in the DLL should be used precisely as specified, rather than attempting to add A (for ascii) or W (widechar) to find platform-specific variants based on the type of string marshalling requested.

[Example: The following shows the declaration of the method MessageBeep located in the Microsoft Windows™ DLL user32.dll:

.method public static pinvokeimpl("user32.dll" stdcall) int8
 MessageBeep(unsigned int32) native unmanaged {}
end example]

15.5.3 Method calls via function pointers

Unmanaged methods can also be called via function pointers. There is no difference between calling managed or unmanaged methods with pointers. However, the unmanaged method needs to be declared with pinvokeimpl as described in §14.5

.15.5.2

. Calling managed methods with function pointers is described in §
15.5.4 COM interop

Implementation-specific (Microsoft)

Unmanaged COMxe "unmanaged COM" operates primarily by publishing uniquely identified interfaces and then sharing them between implementers (traditionally called “servers”) and users (traditionally called “clients”) of a given interface. It supports a rich set of types for use across the interface, and the interface itself can supply named constants and static methods, but it does not supply instance fields, instance methods, or virtual methods.

The CLI provides mechanisms useful to both implementers and users of existing classical COM interfaces. The goal is to permit programmers to deal with managed data types (thus eliminating the need for explicit memory management) while at the same time allowing interoperability with existing unmanaged servers and clients. COM Interop does not support the use of global functions (i.e., methods that are not part of a managed type), static functions, or parameterized constructors.

Given an existing classical COM interface definition as a type library, the tlbimp tool produces a file that contains the metadata describing that interface. The types it exposes in the metadata are managed counterparts of the unmanaged types in the original interface.

Implementers of an existing classical COM interface can import the metadata produced by tlbimp and then write managed types that provide the implementation of the methods required by that interface. The metadata specifies the use of managed data types in many places, and the CLI provides automatic marshaling (i.e., copying with reformatting) of data between the managed and unmanaged data types.

Implementers of a new service can simply write a managed program whose publicly visible types adhere to a simple set of rules. They can then run the tlbexpxe "tlbexp" tool to produce a type library for classical COM users. This set of rules guarantees that the data types exposed to the classical COM user are unmanaged types that can be marshaled automatically by the CLI.

Implementers need to run the RegAsmxe "RegAsm" tool to register their implementation with classical COM for location and activation purposes – if they wish to expose managed services to unmanaged code

Users of existing classical COM interfaces simply import the metadata produced by tlbimpxe "tlbimp". They can then reference the (managed) types defined there and the CLI uses the assembly mechanism and activation information to locate and instantiate instances of objects implementing the interface. Their code is the same whether the implementation of the interfaces is provided using classical COM (unmanaged) code or the CLI (managed) code: the interfaces they see use managed data types, and hence do not need explicit memory management.
For some existing classical COM interfaces, the CLI provides an implementation of the interface. In some cases the EE allows the user to specify all or parts of the implementation; for others it provides the entire implementation.

15.5.5 Data type marshaling XE "marshaling" \b
While data type marshaling is necessarily platform-specific, this Standard specifies a minimum set of data types that shall be supported by all conforming implementations of the CLI. Additional data types can be supported in a platform-specific manner, using custom attributes and/or custom modifiers to specify any special handling required on the particular implementation.

The following data types shall be marshaled by all conforming implementations of the CLI; the native data type to which they conform is implementation-specific:

· All integer data types (int8, int16, unsigned int8, bool, char, etc.) including the native integer types.

· Enumerations, as their underlying data type.

· All floating-point data types (float32 and float64), if they are supported by the CLI implementation for managed code.

· The type string.

· Unmanaged pointers to any of the above types.

In addition, the following types shall be supported for marshaling from managed code to unmanaged code, but need not be supported in the reverse direction (i.e., as return types when calling unmanaged methods or as parameters when calling from unmanaged methods into managed methods):
· One-dimensional zero-based arrays of any of the above

· Delegates (the mechanism for calling from unmanaged code into a delegate is platform-specific; it should not be assumed that marshaling a delegate will produce a function pointer that can be used directly from unmanaged code).
Finally, the type System.Runtime.InteropServices.GCHandle XE "System.Runtime.InteropServices.GCHandle" can be used to marshal an object to unmanaged code. The unmanaged code receives a platform-specific data type that can be used as an “opaque handle” XE "handle:opaque" to a specific object. See Partition IV_alink=Partition_IV
.

15.5.6 Managed native calling conventions (x86)

Implementation Specific (Microsoft)

This subclause is intended for an advanced audience. It describes the details of a native method call from managed code on the x86 architecture. The information provided in this subclause can be important for optimization purposes. This subclause is not important for the further understanding of the CLI and can be skipped.

There are two managed native calling conventions used on the x86. They are described here for completeness and because knowledge of these conventions allows an unsafe mechanism for bypassing the overhead of a managed to unmanaged code transition.
Methods of generic types, or generic methods, can share code between various instantiations. A certain category of such methods receive a hidden argument as the last argument. This argument can be used by the shared code to access instantiation-specific values.

15.5.6.1 Standard 80x86 calling convention

Implementation Specific (Microsoft)

The standard native calling convention is a variation on the fastcall convention used by VC. It differs primarily in the order in which arguments are pushed on the stack.

The only values that can be passed in registers are managed and unmanaged pointers, object references, and the built-in integer types int8, unsigned int8, int16, unsigned int16, int32, unsigned it32, native int, native unsigned int, and enums and value types with only one primitive-type field. Enums are passed as their underlying type. All floating-point values and 8-byte integer values are passed on the stack. When the return type is a value type that cannot be passed in a register, the caller shall create a buffer to hold the result and pass the address of this buffer as a hidden parameter.

Arguments are passed in left-to-right order, starting with the this pointer (for instance and virtual methods), followed by the return buffer pointer if needed, followed by the user-specified argument values. The first of these that can be placed in a register is put into ECX, the next in EDX, and all subsequent ones are passed on the stack.

The return value is handled as follows:

1) Floating-point values are returned on the top of the hardware FP stack.

2) Integers up to 32 bits long are returned in EAX.

3) 64-bit integers are passed with EAX holding the least significant 32 bits and EDX holding the most significant 32 bits.

4) All other cases require the use of a return buffer, through which the value is returned.

In addition, there is a guarantee that if a return buffer is used a value is stored there only upon ordinary exit from the method. The buffer is not allowed to be used for temporary storage within the method and its contents will be unaltered if an exception occurs while executing the method.

[Example:

static System.Int32 f(int32 x)
The incoming argument (x) is placed in ECX; the return value is in EAX

static float64 f(int32 x, int32 y, int32 z)
x is passed in ECX, y in EDX, z on the top of stack; the return value is on the top of the floating-point (FP) stack

static float64 f(int32 x, float64 y, int32 z)
x is passed in ECX, y on the top of the stack (not FP stack), z in EDX; the return value is on the top of the FP stack

virtual float64 f(int32 x, int64 y, int64 z)
this is passed in ECX, x in EDX, y pushed on the stack, then z pushed on the stack (hence z is top of the stack); the return value is on the top of the FP stack

virtual int64 f(int32 x, float64 y, float64 z)
this is passed in ECX, x in EDX, y pushed on the stack, then z pushed on the stack (hence z is on top of the stack); the return value is in EDX/EAX

virtual [mscorlib]System.Guid f(int32 x, float64 y, float64 z)

Since System.Guid is a value type the this pointer is passed in ECX, a pointer to the return buffer is passed in EDX, x is pushed, then y, and then z (hence z is on top the of stack); the return value is stored in the return buffer. end example]

15.5.6.2 Vararg x86 calling convention

Implementation Specific (Microsoft)

All user-specified arguments are passed on the stack, pushed in left-to-right order. Following the last argument (hence on top of the stack upon entry to the method body) a special opaque “handle to argument type data” is passed which provides information about the types of the arguments that have been pushed. The caller is responsible for popping off the arguments.
As with the standard calling convention, the this pointer and a return buffer (if either is needed) are passed in ECX and/or EDX.

Values are returned in the same way as for the standard calling convention.

15.5.6.3 Fast calls to unmanaged code

Implementation Specific (Microsoft)

Transitions from managed to unmanaged code require a small amount of overhead to allow exceptions and garbage collection to correctly determine the execution context. On an x86 processor, under the best circumstances, these transitions take approximately 5 instructions per call/return from managed to unmanaged code. In addition, any method that includes calls with transitions incurs an 8 instruction overhead spread across the calling method’s prolog and epilog.

This overhead can become a factor in performance of certain applications. For use in unverifiable code only, there is a mechanism to call from managed code to unmanaged code without the overhead of a transition. A “fast native call” is accomplished by the use of a calli instruction which indicates that the destination is managed even though the code address to which it refers is unmanaged. This can be arranged, for example, by initializing a variable of type function pointer in unmanaged code.

Clearly, this mechanism shall be tightly constrained since the transition is essential if there is any possibility of a garbage collection or exception occurring while in the unmanaged code. The following restrictions apply to the use of this mechanism:

1) The unmanaged code shall follow one of the two managed calling conventions (regular and vararg) that are specified below. In V1, only the regular calling convention is supported for fast native calls.

2) The unmanaged code shall not execute for any extended time, since garbage collection cannot begin while executing this code. It is wise to keep this under 100 instructions under all control flow paths.

3) The unmanaged code shall not throw an exception (managed or unmanaged), including access violations, etc. Page faults are not considered an exception for this purpose.

4) The unmanaged code shall not call back into managed code.

5) The unmanaged code shall not trigger a garbage collection (this usually follows from the restriction on calling back to managed code).

6) The unmanaged code shall not block. That is, it shall not call any OS-provided routine that might block the thread (synchronous I/O, explicitly acquiring locks, etc.) Again, page faults are not a problem for this purpose.

7) The managed code that calls the unmanaged method shall not have a long, tight loop in which it makes the call. The total time for the loop to execute should remain under 100 instructions or the loop should include at least one call to a managed method. More technically, the method including the call shall produce “fully interruptible native code.” In future versions, there can be a way to indicate this as a requirement on a method.

Restrictions 2 through 6 apply not only to the unmanaged code called directly, but to anything it can call.

16 Defining and referencing fields

Fields XE "field" \b are typed memory locations that store the data of a program. The CLI allows the declaration of both instance XE "field:instance" \b and static fields. XE "field:static" \b While static fields are associated with a type, and are shared across all instances of that type, instance fields are associated with a particular instance of that type. Once instantiated, an instance has its own copy of each instance field.

The CLI also supports global fields, XE "field:global" \b which are fields declared outside of any type definition. Global fields shall be static.

A field is defined by the .fieldxe ".field;field" directive: (§22.15

)

	Field ::= .field FieldDecl

	FieldDecl ::=

	 [‘[’ Int32 ‘]’] FieldAttr* Type Id [‘=’ FieldInit | at DataLabel]

The FieldDecl has the following parts:

· An optional integer specifying the byte offset of the field within an instance (§10.7
). If present, the type containing this field shall have the explicit XE "explicit" layout attribute. An offset shall not be supplied for global or static fields.

· Any number of field attributes (§16.2
).
· Type.
· Name.
· Optionally, either a FieldInit clause (§5.4

) clause.16.2

) or a DataLabel (§
Global fields shall have a data label XE "label:data" associated with them. This specifies where, in the PE file, the data for that field is located. Static fields of a type can, but need not, be assigned a data label.

[Example:

.field private class [.module Counter.dll]Counter counter
.field public static initonly int32 pointCount
.field private int32 xOrigin
.field public static int32 count at D_0001B040
end example]

16.1 Attributes of fields

Attributesxe "attribute:field" of a field specify information about accessibility, contract information, interoperation attributes, as well as information on special handling.

The following subclauses contain additional information on each group of predefined attributes of a field.

	FieldAttr ::=
	Description
	Clause

	 assembly XE "assembly"
	Assembly accessibility.
	16.1.1

	| famandassem XE "famandassem"
	Family and Assembly accessibility.
	16.1.1

	| family XE "family"
	Family accessibility.
	16.1.1

	| famorassem XE "famorassem"
	Family or Assembly accessibility.
	16.1.1

	| initonly XE "initonly"
	Marks a constant field.
	16.1.2

	| literal XE "literal"
	Specifies metadata field. No memory is allocated at runtime for this field.
	16.1.2

	| marshal XE "marshal" ‘(’ NativeType ‘)’
	Marshaling information.
	16.1.3

	| notserialized XE "notserialized"
	Reserved (indicates this field is not to be serialized).
	16.1.2

	| private XE "private"
	Private accessibility.
	16.1.1

	| compilercontrolled XE "compilercontrolled"
	Compiler controlled accessibility.
	16.1.1

	| public XE "public"
	Public accessibility.
	16.1.1

	| rtspecialname XE "rtspecialname"
	Special treatment by runtime.
	16.1.4

	| specialname XE "specialname"
	Special name for other tools.
	16.1.4

	| static XE "static"
	Static field.
	16.1.2

16.1.1 Accessibility information

The accessibility attributes are assembly, famandassem, family, famorassem, private, compilercontrolled, and public. These attributes are mutually exclusive.

Accessibility attributes are described in §8.2

.

16.1.2 Field contract attributesxe "attribute:field contract"
Field contract attributes are initonly, literal, static and notserialized. These attributes can be combined; however, only static fields shall be literal. The default is an instance field that can be serialized.

static specifies that the field is associated with the type itself rather than with an instance of the type. Static fields can be accessed without having an instance of a type, e.g., by static methods. As a consequence, within an application domain, a static field is shared between all instances of a type, and any modification of this field will affect all instances. If static is not specified, an instance field is created.

initonly marks fields which are constant after they are initialized. These fields shall only be mutated inside a constructor. If the field is a static field, then it shall be mutated only inside the type initializer of the type in which it was declared. If it is an instance field, then it shall be mutated only in one of the instance constructors of the type in which it was defined. It shall not be mutated in any other method or in any other constructor, including constructors of derived classes.

[Note: The use of ldflda or ldsflda on an initonly field makes code unverifiable. In unverifiable code, the VES need not check whether initonly fields are mutated outside the constructors. The VES need not report any errors if a method changes the value of a constant. However, such code is not valid. end note]
Implementation Specific (Microsoft)

notserialized specifies that this field is not serialized when an instance of this type is serialized (§10.1.6
). It has no meaning on global or static fields, or if the type does not have the serializable attribute.

literal specifies that this field represents a constant value; such fields shall be assigned a value. In contrast to initonly fields, literal fields do not exist at runtime. There is no memory allocated for them. literal fields become part of the metadata, but cannot be accessed by the code. literal fields are assigned a value by using the FieldInit syntax (§16.2

).

[Note: It is the responsibility of tools generating CIL to replace source code references to the literal with its actual value. Hence changing the value of a literal requires recompilation of any code that references the literal. Literal values are, thus, not version-resilient. end note]
16.1.3 Interoperation attributesxe "attribute:interoperation"
There is one attribute for interoperation with pre-existing native applications; it is platform-specific and shall not be used in code intended to run on multiple implementations of the CLI. The attribute is marshal and specifies that the field’s contents should be converted to and from a specified native data type when passed to unmanaged code. Every conforming implementation of the CLI will have default marshaling rules as well as restrictions on what automatic conversions can be specified using the marshal attribute. See also §15.5.5

.
[Note: Marshaling of user-defined types is not required of all implementations of the CLI. It is specified in this standard so that implementations which choose to provide it will allow control over its behavior in a consistent manner. While this is not sufficient to guarantee portability of code that uses this feature, it does increase the likelihood that such code will be portable. end note]
16.1.4 Other attributes

The attribute rtspecialname indicates that the field name shall be treated in a special way by the runtime.

[Rationale: There are currently no field names that are required to be marked with rtspecialname. It is provided for extensions, future standardization, and to increase consistency between the declaration of fields and methods (instance and type initializer methods shall be marked with this attribute). end rationale]
The attribute specialname indicates that the field name has special meaning to tools other than the runtime, typically because it marks a name that has meaning for the CLS (see Partition I_alink=Partition_I
).

16.2 Field init metadata

The FieldInit metadata can optionally be added to a field declaration. The use of this feature shall not be combined with a data label.

The FieldInit information is stored in metadata and this information can be queried from metadata. But the CLI does not use this information to automatically initialize the corresponding fields. The field initializer is typically used with literal fields (§22.9

.16.1.2

) or parameters with default values. See §
The following table lists the options for a field initializer. Note that while both the type and the field initializer are stored in metadata there is no requirement that they match. (Any importing compiler is responsible for coercing the stored value to the target field type). The description column in the table below provides additional information.

	FieldInit ::=
	Description

	 bool ‘(’ true | false ‘)’
	Boolean value, encoded as true or false

	| bytearrayxe "bytearray" ‘(’ Bytes ‘)’
	String of bytes, stored without conversion. Can be padded with one zero byte to make the total byte-count an even number

	| char ‘(’ Int32 ‘)’
	16-bit unsigned integer (Unicode character)

	| float32xe "float32" ‘(’ Float64 ‘)’
	32-bit floating-point number, with the floating-point number specified in parentheses.

	| float32 ‘(’ Int32 ‘)’
	Int32 is binary representation of float

	| float64xe "float64" ‘(’ Float64 ‘)’
	64-bit floating-point number, with the floating-point number specified in parentheses.

	| float64 ‘(’ Int64 ‘)’
	Int64 is binary representation of double

	| [unsigned] int8xe "int8" ‘(’ Int32 ‘)’
	8-bit integer with the value specified in parentheses.

	| [unsigned] int16xe "int16" ‘(’ Int32 ‘)’
	16-bit integer with the value specified in parentheses.

	| [unsigned] int32xe "int32" ‘(’ Int32 ‘)’
	32-bit integer with the value specified in parentheses.

	| [unsigned] int64xe "int64" ‘(’ Int64 ‘)’
	64-bit integer with the value specified in parentheses.

	| QSTRING
	String. QSTRING is stored as Unicode

	| nullref
	Null object reference

Implementation Specific (Microsoft)

ilasm does not recognize the optional unsigned modifier before the int8, int16, int32 or int64 keywords

[Example: The following shows a typical use of this:

.field public static literal valuetype ErrorCodes no_error = int8(0)
The field named no_error is a literal of type ErrorCodes (a value type) for which no memory is allocated. Tools and compilers can look up the value and detect that it is intended to be an 8-bit signed integer whose value is 0. end example]

16.3 Embedding data in a PE file

There are several ways to declare a data field that is stored in a PE file. In all cases, the .dataxe ".data;data" \b directive is used.

Data can be embedded in a PE file by using the .data directive at the top-level.

	Decl ::=
	Clause

	 .data DataDecl
	

	| …
	6.6

Data can also be declared as part of a type:

	ClassMember ::=
	Clause

	 .data DataDecl
	

	| …
	10.2

Yet another alternative is to declare data inside a method:

	MethodBodyItem ::=
	Clause

	 .data DataDecl
	

	| …
	15.4.1

16.3.1 Data declaration

A .data directive contains an optional data label XE "label:data" and the body which defines the actual data. A data label shall be used if the data is to be accessed by the code.

	DataDecl ::= [DataLabel ‘=’] DdBody

The body consists either of one data item or a list of data items in braces. A list of data items is similar to an array.

	DdBody ::=

	 DdItem

	| ‘{’ DdItemList ‘}’

A list of items consists of any number of items:

	DdItemList ::= DdItem [‘,’ DdItemList]

The list can be used to declare multiple data items associated with one label. The items will be laid out in the order declared. The first data item is accessible directly through the label. To access the other items, pointer arithmetic is used, adding the size of each data item to get to the next one in the list. The use of pointer arithmetic will make the application non-verifiable. (Each data item shall have a DataLabel if it is to be referenced afterwards; missing a DataLabel is useful in order to insert alignment padding between data items)

A data item declares the type of the data and provides the data in parentheses. If a list of data items contains items of the same type and initial value, the grammar below can be used as a short cut for some of the types: the number of times the item shall be replicated is put in brackets after the declaration.

	DdItem ::=
	Description

	 ‘&’ ‘(’ Id ‘)’
	Address of label

	| bytearray ‘(’ Bytes ‘)’
	Array of bytes

	| char ‘*’ ‘(’ QSTRING ‘)’
	Array of (Unicode) characters

	| float32 [‘(’ Float64 ‘)’] [‘[’ Int32 ‘]’]
	32-bit floating-point number, can be replicated

	| float64 [‘(’ Float64 ‘)’] [‘[’ Int32 ‘]’]
	64-bit floating-point number, can be replicated

	| int8 [‘(’ Int32 ‘)’] [‘[’ Int32 ‘]’]
	8-bit integer, can be replicated

	| int16 [‘(’ Int32 ‘)’] [‘[’ Int32 ‘]’]
	16-bit integer, can be replicated

	| int32 [‘(’ Int32 ‘)’] [‘[’ Int32 ‘]’]
	32-bit integer, can be replicated

	| int64 [‘(’ Int64 ‘)’] [‘[’ Int32 ‘]’]
	64-bit integer, can be replicated

[Example:

The following declares a 32-bit signed integer with value 123:

.data theInt = int32(123)
The following declares 10 replications of an 8-bit unsigned integer with value 3:

.data theBytes = int8 (3) [10]
end example]

16.3.2 Accessing data from the PE file

The data stored in a PE File using the .data directive can be accessed through a static variable, either global or a member of a type, declared at a particular position of the data:

	FieldDecl ::= FieldAttr* Type Id at DataLabel

The data is then accessed by a program as it would access any other static variable, using instructions such as ldsfld, ldsflda, and so on (see Partition III_alink=Partition_III
).

The ability to access data from within the PE File can be subject to platform-specific rules, typically related to section access permissions within the PE File format itself.

[Example: The following accesses the data declared in the example of §16.3.1

. First a static variable needs to be declared for the data, e.g., a global static variable:

.field public static int32 myInt at theInt

Then the static variable can be used to load the data:

ldsfld int32 myInt
// data on stack

end example]

16.3.3 Unmanaged thread-local storage

Implementation Specific (Microsoft)
Each PE file has a particular section whose initial contents are copied whenever a new thread is created. This section is called unmanaged thread local storage. The Microsoft implementation of ilasm allows the creation of this unmanaged thread local storage by extending the data declaration to include an option attribute, tls XE "tls" \b :

 DataDecl ::= [tls] [DataLabel ‘=’] DdBody
xe "thread local storage:unmanaged"The CLI provides two mechanisms for dealing with thread-local storage (tls): an unmanaged mechanism and a managed mechanism. The unmanaged mechanism has a number of restrictions which are carried forward directly from the underlying platform into the CLI. For example, the amount of thread local storage is determined when the PE file is loaded and cannot be expanded. The amount is computed based on the static dependencies of the PE file, DLLs that are loaded as a program executes cannot create their own thread local storage through this mechanism. The managed mechanism, which does not have these restrictions, is part of the Base Class Library.

For unmanaged tls there is a particular native code sequence that can be used to locate the start of this section for the current thread. The CLI respects this mechanism. That is, when a reference is made to a static variable with a fixed RVA in the PE file and that RVA is in the thread-local section of the PE, the native code generated from the CIL will use the thread-local access sequence.

This has two important consequences:

A static variable with a specified RVA shall reside entirely in a single section of the PE file. The RVA specifies where the data begins and the type of the variable specifies how large the data area is.

When a new thread is created it is only the data from the PE file that is used to initialize the new copy of the variable. There is no opportunity to run the type initializer. For this reason it is probably wise to restrict the use of unmanaged thread local storage to the primitive numeric types and value types with explicit layout that have a fixed initial value and no type initializer.

16.4 Initialization of non-literal static data XE "static data:initialization of" \b
This subclause and its subclauses contain only informative text.

Many languages that support static data provide for a means to initialize that data before the program begins execution. There are three common mechanisms for doing this, and each is supported in the CLI.

16.4.1 Data known at link time

When the correct value to be stored into the static data is known at the time the program is linked (or compiled for those languages with no linker step), the actual value can be stored directly into the PE file, typically into the data area (§16.3

). References to the variable are made directly to the location where this data has been placed in memory, using the OS-supplied fix-up mechanism to adjust any references to this area if the file loads at an address other than the one assumed by the linker.

In the CLI, this technique can be used directly if the static variable has one of the primitive numeric types or is a value type with explicit type layout and no embedded references to managed objects. In this case the data is laid out in the data area as usual and the static variable is assigned a particular RVA (i.e., offset from the start of the PE file) by using a data label with the field declaration (using the at syntax).

This mechanism, however, does not interact well with the CLI notion of an application domain (see Partition I_alink=Partition_I
). An application domain is intended to isolate two applications running in the same OS process from one another by guaranteeing that they have no shared data. Since the PE file is shared across the entire process, any data accessed via this mechanism is visible to all application domains in the process, thus violating the application domain isolation boundary.

16.5 Data known at load time

When the correct value is not known until the PE file is loaded (for example, if it contains values computed based on the load addresses of several PE files) it can be possible to supply arbitrary code to run as the PE file is loaded, but this mechanism is platform-specific and might not be available in all conforming implementations of the CLI.

Implementation Specific (Microsoft)
While this mechanism is available in the CLI, its use is strongly discouraged. The code runs under the process-wide loader lock, and the restrictions imposed by the underlying operating system make this a fragile mechanism. The details are provided in §25.3.3.3

.

16.5.1 Data known at run time

When the correct value cannot be determined until type layout is computed, the user shall supply code as part of a type initializer to initialize the static data. The guarantees about type initialization are covered in §10.5.3.1

. As will be explained below, global statics are modeled in the CLI as though they belonged to a type, so the same guarantees apply to both global and type statics.

Because the layout of managed types need not occur until a type is first referenced, it is not possible to statically initialize managed types by simply laying out the data in the PE file. Instead, there is a type initialization process that proceeds in the following steps:

12. All static variables are zeroed.

13. The user-supplied type initialization procedure, if any, is invoked as described in §10.5.3

.

Within a type initialization procedure there are several techniques:

· Generate explicit code that stores constants into the appropriate fields of the static variables. For small data structures this can be efficient, but it requires that the initializer be converted to native code, which can prove to be both a code space and an execution time problem.

· Box value types. When the static variable is simply a boxed version of a primitive numeric type or a value type with explicit layout, introduce an additional static variable with known RVA that holds the unboxed instance and then simply use the box XE "boxing" instruction to create the boxed copy.

· Create a managed array from a static native array of data. This can be done by marshaling the native array to a managed array. The specific marshaler to be used depends on the native array. e.g., it can be a safearray.

· Default initialize a managed array of a value type. The Base Class Library provides a method that zeroes the storage for every element of an array of unboxed value types (System.Runtime.CompilerServices.InitializeArray XE "System.Runtime.CompilerServices.InitializeArray")

Implementation Specific (Microsoft)

Use Base Class Library deserialization. The Base Class Library provides serialization and deserialization services. These services can be found in the System.Runtime.Serialization XE "System.Runtime.Serialization" namespace. An object can be converted to a serialized form, stored in the data section and accessed using a static variable with known RVA of type unsigned int8[]. The corresponding deserialization mechanism can then be used in the type initializer.

End informative text

17 Defining properties XE "property" \b
xe "property:declaration"A Property is declared by the using the .propertyxe ".property;property" \b directive. Properties shall only be declared inside of types (i.e., global properties are not supported).
	ClassMember ::=

	 .property PropHeader ‘{’ PropMember* ‘}’

See §22.35

 for how property information is stored in metadata.
22.34

 and §
	PropHeader ::=

	 [specialname][rtspecialname] CallConv Type Id ‘(’ Parameters ‘)’

The .property directive specifies a calling convention (§specialname" 15.3

), type, name, and parameters in parentheses. specialname marks the property as special to other tools, while rtspecialname XE "rtspecialname" marks the property as special to the CLI. The signature for the property (i.e., the PropHeader production) shall match the signature of the property's .get method (see below)

[Rationale: There are currently no property names that are required to be marked with rtspecialname. It is provided for extensions, future standardization, and to increase consistency between the declaration of properties and methods (instance and type initializer methods shall be marked with this attribute). end rationale]
While the CLI places no constraints on the methods that make up a property, the CLS (see Partition I_alink=Partition_I
) specifies a set of consistency constraints.

A property can contain any number of methods in its body. The following table shows how these methods are identified, and provides short descriptions of each kind of item:

	PropMember ::=
	Description
	Clause

	| .custom XE ".custom;custom" CustomDecl
	Custom attribute.
	21

	| .get XE ".get;get" \b CallConv Type [TypeSpec ‘::’] MethodName ‘(’ Parameters ‘)’
	Specifies the getter for the property.
	

	| .other XE ".other;other" \b CallConv Type [TypeSpec ‘::’] MethodName ‘(’ Parameters ‘)’
	Specifies a method for the property other than the getter or setter.
	

	| .set XE ".set;set" \b CallConv Type [TypeSpec ‘::’] MethodName ‘(’ Parameters ‘)’
	Specifies the setter for the property.
	

	| ExternSourceDecl
	.line or #line
	5.7

.get specifies the getter for this property. XE "property:getter" \b The TypeSpec defaults to the current type. Only one getter can be specified for a property. To be CLS-compliant, the definition of getter shall be marked specialname.

.set specifies the setter XE "property:setter" \b for this property. The TypeSpec defaults to the current type. Only one setter can be specified for a property. To be CLS-compliant, the definition of setter shall be marked specialname.

.other is used to specify any other methods that this property comprises.

In addition, custom attributes (§21

) or source line declarations can be specified.

[Example: This shows the declaration of the property called count.

.class public auto autochar MyCount extends [mscorlib]System.Object {
 .method virtual hidebysig public specialname instance int32 get_Count() {
 // body of getter
 }

 .method virtual hidebysig public specialname instance void set_Count(
 int32 newCount) {
 // body of setter
 }

 .method virtual hidebysig public instance void reset_Count() {
 // body of refresh method
 }

 // the declaration of the property
 .property int32 Count() {
 .get instance int32 MyCount::get_Count()
 .set instance void MyCount::set_Count(int32)
 .other instance void MyCount::reset_Count()
 }
}
end example]

18 Defining events XE "event" \b
xe "event:declaration" \b Events are declared inside types, using the .event XE ".event;event" \b directive; there are no global events.

	ClassMember ::=
	Clause

	 .event EventHeader ‘{’ EventMember* ‘}’
	

	| …
	9

See §22.11

22.13

 and §
	EventHeader ::=

	 [specialname] [rtspecialname] [TypeSpec] Id

In typical usage, the TypeSpec (if present) identifies a delegate whose signature matches the arguments passed to the event’s fire method.

The event head can contain the keywords specialname XE "specialname" or rtspecialname XE "rtspecialname" . specialname marks the name of the property for other tools, while rtspecialname marks the name of the event as special for the runtime.

[Rationale: There are currently no event names that are required to be marked with rtspecialname. It is provided for extensions, future standardization, and to increase consistency between the declaration of events and methods (instance and type initializer methods shall be marked with this attribute). end rationale]
	EventMember ::=
	Description
	Clause

	 .addon XE ".addon;addon" CallConv Type [TypeSpec ‘::’] MethodName ‘(’ Parameters ‘)’
	Add method for event.
	

	| .custom XE ".custom;custom" CustomDecl
	Custom attribute.
	21

	| .fire XE ".fire;fire" CallConv Type [TypeSpec ‘::’] MethodName ‘(’ Parameters ‘)’
	Fire method for event.
	

	| .other XE ".other;other" CallConv Type [TypeSpec ‘::’] MethodName ‘(’ Parameters ‘)’
	Other method.
	

	| .removeon XE ".removeon;removeon" CallConv Type [TypeSpec ‘::’] MethodName ‘(’ Parameters ‘)’
	Remove method for event.
	

	| ExternSourceDecl
	.line or #line
	5.7

The .addon directive specifies the add method, XE "event:adder" \b and the TypeSpec defaults to the same type as the event. The CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the add method be marked with specialname.

The .removeon directive specifies the remove method, XE "event:remover" \b and the TypeSpec defaults to the same type as the event. The CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the remove method be marked with specialname.

The .fire directive specifies the fire method, XE "event:fire" \b and the TypeSpec defaults to the same type as the event. The CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the fire method be marked with specialname.

An event can contain any number of other methods specified with the .other directive. From the point of view of the CLI, these methods are only associated with each other through the event. If they have special semantics, this needs to be documented by the implementer.

Events can also have custom attributes (§21

) associated with them and they can declare source line information.

[Example: This shows the declaration of an event, its corresponding delegate, and typical implementations of the add, remove, and fire method of the event. The event and the methods are declared in a class called Counter.

// the delegate
.class private sealed auto autochar TimeUpEventHandler extends
 [mscorlib]System.Delegate {
 .method public hidebysig specialname rtspecialname instance void .ctor(object
 'object', native int 'method') runtime managed {}
 .method public hidebysig virtual instance void Invoke() runtime managed {}
 .method public hidebysig newslot virtual instance class
 [mscorlib]System.IAsyncResult BeginInvoke(class
 mscorlib]System.AsyncCallback callback, object 'object') runtime managed {}
 .method public hidebysig newslot virtual instance void EndInvoke(class
 [mscorlib]System.IAsyncResult result) runtime managed {}
}

// the class that declares the event
.class public auto autochar Counter extends [mscorlib]System.Object {
 // field to store the handlers, initialized to null
 .field private class TimeUpEventHandler timeUpEventHandler
 // the event declaration
 .event TimeUpEventHandler startStopEvent {
 .addon instance void Counter::add_TimeUp(class TimeUpEventHandler 'handler')
 .removeon instance void Counter::remove_TimeUp(class TimeUpEventHandler 'handler')
 .fire instance void Counter::fire_TimeUpEvent()
 }
 // the add method, combines the handler with existing delegates
 .method public hidebysig virtual specialname instance void add_TimeUp(class
 TimeUpEventHandler 'handler') {
 .maxstack 4
 ldarg.0
 dup
 ldfld
class TimeUpEventHandler Counter::TimeUpEventHandler
 ldarg
'handler'
 call
class[mscorlib]System.Delegate
 [mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate, class
 [mscorlib]System.Delegate)
 castclass TimeUpEventHandler
 stfld
class TimeUpEventHandler Counter::timeUpEventHandler
 ret
 }
 // the remove method, removes the handler from the delegate
 .method virtual public specialname void remove_TimeUp(class TimeUpEventHandler
 'handler') {
 .maxstack 4
 ldarg.0
 dup
 ldfld
class TimeUpEventHandler Counter::timeUpEventHandler

 ldarg
'handler'
 call
class[mscorlib]System.Delegate
 [mscorlib]System.Delegate::Remove(class
 [mscorlib]System.Delegate, class [mscorlib]System.Delegate)
 castclass TimeUpEventHandler
 stfld
class TimeUpEventHandler Counter::timeUpEventHandler
 ret
 }
 // the fire method
 .method virtual family specialname void fire_TimeUpEvent() {
 .maxstack 3
 ldarg.0
 ldfld
class TimeUpEventHandler Counter::timeUpEventHandler
 callvirt instance void TimeUpEventHandler::Invoke()
 ret
 }
}
// end of class Counter

end example]

19 Exception handling

 XE "exception handling" \b In the CLI, a method can define a range of CIL instructions XE "instruction:protected" \b that are said to be protected. This is called a try block XE "try block" \b . It can then associate one or more handlers XE "handler" \b with that try block. If an exception occurs during execution anywhere within the try block, an exception object is created that describes the problem. The CLI then takes over, transferring control from the point at which the exception was thrown, to the block of code that is willing to handle that exception. See Partition I_alink=Partition_I
.

No two handlers (fault, filter, catch, or finally) can have the same starting address. When an exception occurs it is necessary to convert the execution address to the correct most lexically nested try block in which the exception occurred.
	SEHBlock ::=

	 TryBlock SEHClause [SEHClause*]

The next few subclauses expand upon this simple description, by describing the five kinds of code block that take part in exception processing: try XE "try" , catch XE "catch" , filter XE "filter" , finally XE "finally" , and fault XE "fault" . (Note that there are restrictions upon how many, and what kinds of SEHClause a given TryBlock can have; see Partition I_alink=Partition_I
 for details.)
The remaining syntax items are described in detail below; they are collected here for reference.

	TryBlock ::=
	Description

	.try Label to Label
	Protect region from first label to prior to second

	| .try ScopeBlock
	ScopeBlock is protected

	SEHClause ::=
	Description

	 catch TypeReference HandlerBlock
	Catch all objects of the specified type

	| fault HandlerBlock
	Handle all exceptions but not normal exit

	| filter Label HandlerBlock
	Enter handler only if filter succeeds

	| finally HandlerBlock
	Handle all exceptions and normal exit

	HandlerBlock::=
	Description

	handler Label to Label
	Handler range is from first label to prior to second

	| ScopeBlock
	 ScopeBlock is the handler block

19.1 Protected blocks XE "block:protected" \b
A try, or protected, or guarded, block is declared with the .tryxe ".try;try" \b directive.

	TryBlock ::=
	Descriptions

	.try Label to Label
	Protect region from first label to prior to second.

	| .try ScopeBlock
	ScopeBlock is protected

In the first case, the protected block is delimited by two labels. The first label is the first instruction to be protected, while the second label is the instruction just beyond the last one to be protected. Both labels shall be defined prior to this point.

The second case uses a scope block (§15.4.4

) after the .try directive—the instructions within that scope are the ones to be protected.

19.2 Handler blocks XE "block:handler" \b
	HandlerBlock ::=
	Description

	| handler XE "handler" \b Label to Label
	Handler range is from first label to prior to second

	| ScopeBlock
	ScopeBlock is the handler block

In the first case, the labels enclose the instructions of the handler block, the first label being the first instruction of the handler while the second is the instruction immediately after the handler. In the second case, the handler block is just a scope block.

Implementation Specific (Microsoft)
ilasm requires labels used to specify any exceptions blocks to be defined beforehand in the source. ilasm supports the following additional syntax for use in round-tripping:

HandlerBlock ::= handler Int32 to Int32
19.3 Catch blocks XE "block:catch" \b
A catch block is declared using the catchxe "catch" \b keyword. This specifies the type of exception object the clause is designed to handle, and the handler code itself.

	SEHClause ::=

	 catch TypeReference HandlerBlock

[Example:

.try {

…

// protected instructions

leave
exitSEH

// normal exit
} catch [mscorlib]System.FormatException {

…

// handle the exception

pop

// pop the exception object

leave
exitSEH

// leave catch handler
}
exitSEH:

// continue here

end example]

19.4 Filter blocks XE "block:filter" \b
A filter block is declared using the filterxe "filter" \b keyword.

	SEHClause ::= …

	| filter Label HandlerBlock

	| filter Scope HandlerBlock

The filter code begins at the specified label and ends at the first instruction of the handler block. (Note that the CLI demands that the filter block shall immediately precede, within the CIL stream, its corresponding handler block.)

[Example:

.method public static void m () {
 .try {
 …

// protected instructions
 leave
exitSEH
// normal exit
 }
 filter {
 …

// decide whether to handle
 pop

// pop exception object
 ldc.i4.1

// EXCEPTION_EXECUTE_HANDLER
 endfilter

// return answer to CLI
 }

 {
 …

// handle the exception
 pop

// pop the exception object
 leave
exitSEH
// leave filter handler
 }
exitSEH:
 …
}
end example]

19.5 Finally blocks XE "block:finally" \b
A finally block is declared using the finallyxe "finally" keyword. This specifies the handler code, with this grammar:

	SEHClause ::= …

	| finally HandlerBlock

The last possible CIL instruction that can be executed in a finally handler shall be endfinallyxe "endfinally".

[Example:

.try {

…

// protected instructions

leave exitTry

// shall use leave
} finally {

…

// finally handler

endfinally
}
exitTry:

// back to normal

19.6 Fault handlers XE "block:fault" \b
end example]

A fault block is declared using the faultxe "fault" keyword. This specifies the handler code, with this grammar:

	SEHClause ::= …

	| fault HandlerBlock

The last possible CIL instruction that can be executed in a fault handler shall be endfaultxe "endfault".

[Example:

.method public static void m() {
 startTry:

…

// protected instructions

leave
exitSEH
// shall use leave
 endTry:

startFault:

…

// fault handler instructions

endfault

endFault:

.try startTry to endTry fault handler startFault to endFault
exitSEH:

// back to normal
}
end example]

20 Declarative security XE "security:declarative" \b
Many languages that target the CLI use attribute syntax to attach declarative security attributes to items in the metadata. This information is actually converted by the compiler into an XML-based representation that is stored in the metadata, see §22.11

. By contrast, ilasm requires the conversion information to be represented in its input.

	SecurityDecl ::=

	 .permissionset SecAction = ‘(’ Bytes ‘)’

	| .permission SecAction TypeReference ‘(’ NameValPairs ‘)’

	NameValPairs ::= NameValPair [‘,’ NameValPair]*

	NameValPair ::= SQSTRING ‘=’ SQSTRING

In .permissionxe ".permission;permission", TypeReference specifies the permission class and NameValPairs specifies the settings. See §22.11

In .permissionsetxe ".permissionset;permissionset" the bytes specify the encoded version of the security settings:

	SecAction ::=
	Description

	 assert XE "assert"
	Assert permission so that callers do not need it.

	| demand XE "demand"
	Demand permission of all callers.

	| deny XE "deny"
	Deny permission so checks will fail.

	| inheritcheck XE "inheritcheck"
	Demand permission of a derived class.

	| linkcheck XE "linkcheck"
	Demand permission of caller.

	| permitonly XE "permitonly"
	Reduce permissions so check will fail.

	| reqopt XE "reqopt"
	Request optional additional permissions.

	| reqrefuse XE "reqrefuse"
	Refuse to be granted these permissions.

	| request XE "request"
	Hint that permission might be required.

Implementation Specific (Microsoft)

The following security action is Microsoft-specific. A conforming implementation of the CLI can ignore this security action if present in an assembly

	Implementation Specific (Microsoft)

	SecAction ::=
	Description

	| prejitgrant XE "prejitgrant" \b
	Persisted denied set at prejit time.

21 Custom attributes

Custom attributesxe "attribute:custom" add user-defined annotations to the metadata. Custom attributes allow an instance of a type to be stored with any element of the metadata. This mechanism can be used to store application-specific information at compile time, and to access it either at runtime or when another tool reads the metadata. While any user-defined type can be used as an attribute, CLS compliance requires that attributes will be instances of types whose base class is System.Attributexe "System.Attribute". The CLI predefines some attribute types and uses them to control runtime behavior. Some languages predefine attribute types to represent language features not directly represented in the CTS. Users or other tools are welcome to define and use additional attribute types.

Custom attributes are declared using the directive .customxe ".custom;custom" \b , followed by the method declaration for a type constructor, optionally followed by a Bytes in parentheses:

	CustomDecl ::=

	 Ctor [‘=’ ‘(’ Bytes ‘)’]

The Ctor item represents a method declaration (§.ctor;ctor" 15.4

), specific for the case where the method's name is .ctor. [Example:
.custom instance void myAttribute::.ctor(bool, bool) = (01 00 00 01 00 00)

end example]

Custom attributes can be attached to any item in metadata, except a custom attribute itself. Commonly, custom attributes are attached to assemblies, modules, classes, interfaces, value types, methods, fields, properties, generic parameters, and events (the custom attribute is attached to the immediately preceding declaration)

The Bytes item is not required if the constructor takes no arguments. In such cases, all that matters is the presence of the custom attribute.

If the constructor takes parameters, their values shall be specified in the Bytes item. The format for this ‘blob’ is defined in §23.3

.

[Example: The following shows a class that is marked with the attribute called System.CLSCompliantAttribute and a method that is marked with the attribute called System.ObsoleteAttribute.

.class public MyClass extends [mscorlib]System.Object
{ .custom instance void [mscorlib]System.CLSCompliantAttribute::.ctor(bool) =
 (01 00 01 00 00)
 .method public static void CalculateTotals() cil managed
{ .custom instance void [mscorlib]System.ObsoleteAttribute::.ctor() =
 (01 00 00 00)
 ret
}
end example]

21.1 CLS conventions: custom attribute usage

CLS imposes certain conventions upon the use of custom attributes in order to improve cross-language operation. See Partition I_alink=Partition_I
 for details.

21.2 Attributes used by the CLI

There are two kinds of custom attributes, called genuine custom attributes, and pseudo custom attributes. Custom attributes and pseudo custom attributes are treated differently, at the time they are defined, as follows:

· A custom attribute XE "attribute:genuine custom" \b is stored directly into the metadata; the‘blob’ which holds its defining data is stored as-is. That ‘blob’ can be retrieved later.

· A pseudo custom attribute XE "attribute:pseudo custom" \b is recognized because its name is one of a short list. Rather than store its ‘blob’ directly in metadata, that ‘blob’ is parsed, and the information it contains is used to set bits and/or fields within metadata tables. The ‘blob’ is then discarded; it cannot be retrieved later.

Pseudo custom attributes therefore serve to capture user directives, using the same familiar syntax the compiler provides for genuine custom attributes, but these user directives are then stored into the more space-efficient form of metadata tables. Tables are also faster to check at runtime than are genuine custom attributes.

Many custom attributes are invented by higher layers of software. They are stored and returned by the CLI, without its knowing or caring what they ‘mean’. But all pseudo custom attributes, plus a collection of genuine custom attributes, are of special interest to compilers and to the CLI. An example of such custom attributes is System.Reflection.DefaultMemberAttribute XE "System.Reflection.DefaultMemberAttribute" . This is stored in metadata as a genuine custom attribute ‘blob’, but reflection uses this custom attribute when called to invoke the default member (property) for a type.

The following subclauses list all of the pseudo custom attributes and distinguished custom attributes, where distinguished means that the CLI and/or compilers pay direct attention to them, and their behavior is affected in some way.

In order to prevent name collisions into the future, all custom attributes in the System namespace are reserved for standardization.

21.2.1 Pseudo custom attributes

xe "attribute:pseudo custom"The following table lists the CLI pseudo custom attributes. (Not all of these attributes are specified in this Standard, but all of their names are reserved and shall not be used for other purposes. For details on these attributes, see the documentation for the corresponding class in Partition IV_alink=Partition_IV
.) They are defined in the namespaces System.Reflection, System.Runtime.CompilerServices, and System.Runtime.InteropServices namespaces.
	Attribute
	Description

	AssemblyAlgorithmIDAttribute XE " System.Reflection.AssemblyAlgorithmIDAttribute"
	Records the ID of the hash algorithm used (reserved only)

	AssemblyFlagsAttribute XE " System.Reflection.AssemblyFlagsAttribute"
	Records the flags for this assembly (reserved only)

	DllImportAttribute XE " System.Runtime.InteropServices.DllImportAttribute"
	Provides information about code implemented within an unmanaged library

	FieldOffsetAttribute XE " System.Runtime.InteropServices.FieldOffsetAttribute"
	Specifies the byte offset of fields within their enclosing class or value type

	InAttribute XE " System.Runtime.InteropServices.InAttribute"
	Indicates that a method parameter is an [in] argument

	MarshalAsAttribute XE " System.Runtime.InteropServices.MarshalAsAttribute"
	Specifies how a data item should be marshalled between managed and unmanaged code (see §23.4

).

	MethodImplAttribute XE " System.Runtime.CompilerServices.MethodImplAttribute"
	Specifies details of how a method is implemented

	OutAttribute XE " System.Runtime.InteropServices.OutAttribute"
	Indicates that a method parameter is an [out] argument

	StructLayoutAttribute XE " System.Runtime.InteropServices.StructLayoutAttribute"
	Allows the caller to control how the fields of a class or value type are laid out in managed memory

These attributes affect bits and fields in metadata, as follows:

AssemblyAlgorithmIDAttribute: sets the Assembly.HashAlgId field.
AssemblyFlagsAttribute: sets the Assembly.Flags field.
DllImportAttribute: sets the Method.Flags.PinvokeImpl bit for the attributed method; also, adds a new row into the ImplMap table (setting MappingFlags, MemberForwarded, ImportName and ImportScope columns).
FieldOffsetAttribute: sets the FieldLayout.OffSet value for the attributed field.
InAttribute: sets the Param.Flags.In bit for the attributed parameter.
MarshalAsAttribute: sets the Field.Flags.HasFieldMarshal bit for the attributed field (or the Param.Flags.HasFieldMarshal bit for the attributed parameter); also enters a new row into the FieldMarshal table for both Parent and NativeType columns.

MethodImplAttribute: sets the Method.ImplFlags field of the attributed method.
OutAttribute: sets the Param.Flags.Out bit for the attributed parameter.
StructLayoutAttribute: sets the TypeDef.Flags.LayoutMask sub-field for the attributed type, and, optionally, the TypeDef.Flags.StringFormatMask sub-field, the ClassLayout.PackingSize,and ClassLayout.ClassSize fields for that type.

Implementation Specific (Microsoft)
Use of the following pseudo custom attributes renders the assembly that contains them non-portable; a conforming implementation of the CLI can reject such an assembly when it is loaded, or throw an exception at runtime if any attempt is made to access the metadata items set by those attributes.

	Implementation Specific (Microsoft)

	Attribute
	Description

	ComImportAttribute XE " System.Runtime.InteropServices.ComImportAttribute"
	Provides information about native code reached as a COM component

	OptionalAttribute XE " System.Runtime.InteropServices.OptionalAttribute"
	Marks a method parameter as optional

	NonSerializedAttribute XE "System.NonSerializedAttribute"
	Indicates that a field should not be serialized

	PreserveSigAttribute XE " System.Runtime.InteropServices.PreserveSigAttribute"
	Specifies HRESULT or retval signature transformation

	SerializableAttribute XE " System.SerializableAttribute"
	Indicates that a type can be serialized

Implementation Specific (Microsoft)

The pseudo custom attributes above affect bits and fields in metadata, as follows:

ComImportAttribute: sets the TypeDef.Flags.Import bit for the attributed type.
OptionalAttribute: sets the Param.Flags.Optional bit for the attributed parameter.
NonSerializedAttribute: sets the Field.Flags.NotSerialized bit for the attributed field.
PreserveSigAttribute: sets the Method.ImplFlags.PreserveSig bit of the attributed method.
SerializableAttribute: sets the TypeDef.Flags.Serializable bit for the attributed type.
21.2.2 Custom attributes defined by the CLS

xe "attribute:custom:CLS-defined" The CLS specifies certain Custom Attributes and requires that conformant languages support them. These attributes are located under System.

	Attribute
	Description

	AttributeUsageAttribute XE "System.AttributeUsageAttribute"
	Used to specify how an attribute is intended to be used.

	ObsoleteAttribute XE "System.ObsoleteAttribute"
	Indicates that an element is not to be used.

	CLSCompliantAttribute XE "System.CLSCompliantAttribute"
	Indicates whether or not an element is declared to be CLS compliant through an instance field on the attribute object.

21.2.3 Custom attributes for CIL-to-native-code compiler and debuggerxe "attribute:custom:CIL-to-native Code"
Implementation Specific (Microsoft)

The following custom attributes control the runtime behavior of a CIL-to-native-code compiler and a runtime debugger; they are defined in the System.Diagnostics namespace. Their use renders the assembly that contains them non-portable; a conforming implementation of the CLI can reject such an assembly when it is loaded, or throw an exception at runtime if any attempt is made to access those attributes.
	Implementation Specific (Microsoft)

	Attribute
	Description

	DebuggableAttribute XE "System.Diagnostics.DebuggableAttribute"
	Controls a CIL-to-native-code compiler to produce code that is easier to debug

	DebuggerHiddenAttribute XE "System.Diagnostics.DebuggerHiddenAttribute"
	Specifies a debugger should step over the attributed method or property

	DebuggerStepThroughAttribute XE "System.Diagnostics.DebuggerStepThroughAttribute"
	Specifies a debugger should step through the attributed method or property (it might step into a method called by this one)

21.2.4 Custom attributes for remotingxe "attribute:custom:remoting"
Implementation Specific (Microsoft)

The following custom attributes are used to control the behavior of remoting; they are defined in the System.Runtime.Remoting namespace. Their use renders the assembly that contains them non-portable; a conforming implementation of the CLI can reject such an assembly when it is loaded, or throw an exception at runtime if any attempt is made to access those custom attributes.
	Implementation Specific (Microsoft)

	Attribute
	Description

	ContextAttribute XE "System.Runtime.Remoting.ContextAttribute"
	Root for all context attributes.

	OneWayAttribute XE "System.Runtime.Remoting.Messaging.OneWayAttribute"
	Marks a method as “fire and forget”

	SynchronizationAttribute XE "System.EnterpriseServices.SynchronizationAttribute"
	Specifies the synchronization options for a class

	ThreadAffinityAttribute XE "ThreadAffinityAttribute"
	Refinement of Synchronized Context.

21.2.5 Custom attributes for security

Implementation Specific (Microsoft)

The following custom attributes affect the security checks performed upon method invocations at runtime. They are defined in the System.Security namespace.

	Implementation Specific (Microsoft)

	Attribute
	Description

	DynamicSecurityMethodAttribute XE "System.Security.DynamicSecurityMethodAttribute"
	Indicates to the CLI that the method requires space to be allocated for a security object

	SuppressUnmanagedCodeSecurityAttribute XE "System.Security.SuppressUnmanagedCodeSecurityAttribute"
	Indicates the target method, implemented as unmanaged code, should skip per-call checks

Implementation Specific (Microsoft)

The following custom attributes are defined in the System.Security and System.Security.Permissions namespaces. Note that these are all base classes; the actual instances of security attributes found in assemblies will be sub-classes of these.

	Implementation Specific (Microsoft)

	Attribute
	Description

	SiteIdentityPermissionAttribute XE "System.Security.DynamicSecurityMethodAttribute"
	Custom attribute class for declarative security with SiteIdentityPermission.

	StrongNameIdentityPermissionAttribute XE "System.Security.Permissions.StrongNameIdentityPermissionAttribute"
	Custom attribute class for declarative security with StrongNameIdentityPermission.

The following custom attributes are defined in the System.Net and System.Security.Permissions namespaces. Note that these are all base classes; the actual instances of security attributes found in assemblies will be sub-classes of these.

	Attribute
	Description

	CodeAccessSecurityAttribute XE "System.Security.Permissions.CodeAccessSecurityAttribute"
	This is the base attribute class for declarative security using custom attributes.

	DnsPermissionAttribute XE "System.Net.DnsPermissionAttribute"
	Custom attribute class for declarative security with DnsPermission

	EnvironmentPermissionAttribute XE "System.Security.Permissions.EnvironmentPermissionAttribute"
	Custom attribute class for declarative security with EnvironmentPermission.

	FileIOPermissionAttribute XE "System.Security.Permissions.FileIOPermissionAttribute"
	Custom attribute class for declarative security with FileIOPermission.

	ReflectionPermissionAttribute XE "System.Security.Permissions.ReflectionPermissionAttribute"
	Custom attribute class for declarative security with ReflectionPermission.

	SecurityAttribute XE "System.Security.Permissions.ecurityAttribute"
	This is the base attribute class for declarative security from which CodeAccessSecurityAttribute is derived.

	SecurityPermissionAttribute XE "System.Security.Permissions.SecurityPermissionAttribute"
	Indicates whether the attributed method can affect security settings

	SocketPermissionAttribute XE "System.Net.SocketPermissionAttribute"
	Custom attribute class for declarative security with SocketPermission.

	WebPermissionAttribute XE "System.Net.WebPermissionAttribute"
	Custom attribute class for declarative security with WebPermission.

Note that any other security-related custom attributes (i.e., any custom attributes that derive from System.Security.Permissions.SecurityAttribute) included into an assembly, can cause a conforming implementaion of the CLI to reject such an assembly when it is loaded, or throw an exception at runtime if any attempt is made to access those security-related custom attributes. (This statement holds true for any custom attributes that cannot be resolved; security-related custom attributes are just one particular case)

Implementation Specific (Microsoft)

The following security-related custom attributes are defined in the System.Security.Permissions namespace. Their use renders the assembly that contains them non-portable; a conforming implementation of the CLI can reject such an assembly when it is loaded, or throw an exception at runtime if any attempt is made to access those custom attributes.

	Implementation Specific (Microsoft)

	Attribute
	Description

	RegistryPermissionAttribute XE "System.Security.Permissions.RegistryPermissionAttribute"
	Indicates whether the attributed method can access the Registry

	UIPermissionAttribute XE "System.Security.Permissions.UIPermissionAttribute"
	Custom attribute class for declarative security with UIPermission.

	ZoneIdentityPermissionAttribute XE "System.Security.Permissions.ZoneIdentityPermissionAttribute"
	Custom attribute class for declarative security with ZoneIdentityPermission.

21.2.6 Custom attributes for TLS

xe "attribute:custom:thread local storage"A custom attribute that denotes a TLS (thread-local storage, see §16.3.3
) field is defined in the System namespace.
	Attribute
	Description

	ThreadStaticAttribute XE "System.ThreadStaticAttribute"
	Provides for type member fields that are relative for the thread.

21.2.7 Pseudo custom attributes for the assembly linker

Implementation Specific (Microsoft)

xe "attribute:custom:assembly linker"The following pseudo custom attributes are used by the al tool to transfer information between modules and assemblies (they are temporarily attached to a TypeRef to a class called AssemblyAttributesGoHere XE "AssemblyAttributesGoHere") then merged by al and attached to the assembly. These attributes are defined in the System.Reflection namespace. Their use renders the assembly that contains them non-portable; a conforming implementation of the CLI can reject such an assembly when it is loaded, or throw an exception at runtime if any attempt is made to access those Pseudo Custom Attributes.

	Implementation Specific (Microsoft)

	Attribute
	Description

	AssemblyCultureAttribute XE "System.Reflection.AssemblyCultureAttribute"
	Specifies which culture an assembly supports

	AssemblyVersionAttribute XE "System.Reflection.AssemblyVersionAttribute"
	String holding version of assembly (in the format major.minor.build.revision)

Implementation Specific (Microsoft)

The pseudo custom attributes above affect bits and fields in metadata, as follows:

AssemblyCultureAttribute: sets the Assembly.Culture field

AssemblyVersionAttribute: sets the Assembly.MajorVersion, MinorVersion, BuildNumber and RevisionNumber
21.2.8 Custom attributes provided for interoperation with unmanaged codexe "attribute:custom:interop with unmanaged code"
Implementation Specific (Microsoft)

The following custom attributes are used to control the interoperation with COM 1.x and classical COM. These attributes are located in the namespace System.Runtime.InteropServices. More information can also be found in the Partition IV_alink=Partition_IV
. Their use renders the assembly that contains them non-portable; a conforming implementation of the CLI can reject such an assembly when it is loaded, or throw an exception at runtime if any attempt is made to access those custom attributes.

	Implementation Specific (Microsoft)

	Attribute
	Description

	ClassInterfaceAttribute XE "System.Runtime.InteropServices.ClassInterfaceAttribute"
	Specifies how the class is exported to COM (as DispInterface, as a Dual Interface, or not at all)

	ComAliasNameAttribute XE "System.Runtime.InteropServices.ComAliasNameAttribute"
	Applied to a parameter or field to indicate the COM alias for the parameter or field type.

	ComConversionLossAttribute XE "System.Runtime.InteropServices.ComConversionLossAttribute"
	Indicates that information was lost about a class or interface when it was imported from a type library to an assembly

	ComEmulateAttribute XE "ComEmulateAttribute"
	Used on a type to indicate that it is an emulator type for a different type.

	ComRegisterFunctionAttribute XE "System.Runtime.InteropServices.ComRegisterFunctionAttribute"
	Used on a method to indicate that the method should be called when the assembly is registered for use from COM.

	ComSourceInterfacesAttribute XE "System.Runtime.InteropServices.ComSourceInterfacesAttribute"
	Identifies the list of interfaces that are sources of events for the type.

	ComUnregisterFunctionAttribute XE "System.Runtime.InteropServices.ComUnregisterFunctionAttribute"
	Used on a method to indicate that the method should be called when the assembly is unregistered for use from COM.

	ComVisibleAttribute XE "System.Runtime.InteropServices.ComVisibleAttribute"
	Can be applied to an individual type or to an entire assembly to control COM visibility.

	DispIdAttribute XE "System.Runtime.InteropServices.DispIdAttribute"
	Custom attribute to specify the COM DISPID of a Method or Field.

	GuidAttribute XE "System.Runtime.InteropServices.GuidAttribute"
	Used to supply the GUID of a type, interface or an entire type library.

	HasDefaultInterfaceAttribute XE "HasDefaultInterfaceAttribute"
	Used to specify that a class has a COM default interface.

	IdispatchImplAttribute XE "System.Runtime.InteropServices.IdispatchImplAttribute"
	Indicates which IDispatch implementation the CLI uses when exposing dual interfaces and dispinterfaces to COM

	ImportedFromTypeLibAttribute XE "System.Runtime.InteropServices.ImportedFromTypeLibAttribute"
	Custom attribute to specify that a module is imported from a COM type library.

	InterfaceTypeAttribute XE "System.Runtime.InteropServices.InterfaceTypeAttribute"
	Indicates whether a managed interface is dual, IDispatch or IUnknown when exposed to COM

	NoComRegistrationAttribute XE "NoComRegistrationAttribute"
	Used to indicate that an otherwise public, COM-creatable type should not be registered for use form COM applications.

	NoIDispatchAttribute XE "NoIDispatchAttribute"
	This attribute is used to control how the class responds to queries for an IDispatch Interface.

	ProgIdAttribute XE "System.Runtime.InteropServices.ProgIdAttribute"
	Custom attribute that allows the user to specify the prog ID of a class.

	TypeLibFuncAttribute XE "System.Runtime.InteropServices.TypeLibFuncAttribute"
	Contains the FUNCFLAGS that were originally imported for this function from the COM type library.

	TypeLibTypeAttribute XE "System.Runtime.InteropServices.TypeLibTypeAttribute"
	Contains the TYPEFLAGS that were originally imported for this type from the COM type library.

	TypeLibVarAttribute XE "System.Runtime.InteropServices.TypeLibVarAttribute"
	Contains the VARFLAGS that were originally imported for this variable from the COM type library.

21.2.9 Custom attributes, various

The following custom attributes control various aspects of the CLI:

	Attribute
	Namespace
	Description

	ConditionalAttribute XE "System.Diagnostics.ConditionalAttribute"
	System.Diagnostics
	Used to mark methods as callable, based on some compile-time condition. If the condition is false, the method will not be called

	DecimalConstantAttribute XE " System.Runtime.CompilerServices.DecimalConstantAttribute"
	System.Runtime.CompilerServices
	Stores the value of a decimal constant in metadata

	DefaultMemberAttribute XE "System.Reflection.DefaultMemberAttribute"
	System.Reflection
	Defines the member of a type that is the default member used by reflection’s InvokeMember.

	FaultModeAttribute XE " System.Runtime.CompilerServices.FaultModeAttribute "
	System.Runtime.CompilerServices
	Indicates whether exceptions from instruction checks are precise or imprecise.

	FlagsAttribute XE "System.FlagsAttribute"
	System
	Custom attribute indicating an enumeration should be treated as a bitfield; that is, a set of flags

	IndexerNameAttribute XE "System.Runtime.CompilerServices.IndexerNameAttribute"
	System.Runtime.CompilerServices
	Indicates the name by which a property having one or more parameters will be known in programming languages that do not support such a facility directly

	ParamArrayAttribute XE "System.ParamArrayAttribute"
	System
	Indicates that the method will allow a variable number of arguments in its invocation

22 Metadata logical format: tables

This clause defines the structures that describe metadata, and how they are cross-indexed. This corresponds to how metadata is laid out, after being read into memory from a PE file. (For a description of metadata layout inside the PE file itself, see §24

)

Metadata is stored in two kinds of structure: tables XE "table" \b (arrays of records) and heaps. XE "heap" \b There are four heaps in any module: String, XE "heap:String" Blob, XE "heap:Blob" Userstring, XE "heap:UserString" and Guid. XE "heap:Guid" The first three are byte arrays (so valid indexes into these heaps might be 0, 23, 25, 39, etc). The Guid heap is an array of GUIDs, XE "GUID" each 16 bytes wide. Its first element is numbered 1, its second 2, and so on.

Each entry in each column of each table is either a constant or an index.

Constants are either literal values (e.g., ALG_SID_SHA1 = 4, stored in the HashAlgId column of the Assembly table), or, more commonly, bitmasks. Most bitmasks (they are almost all called Flags) are 2 bytes wide (e.g., the Flags column in the Field table), but there are a few that are 4 bytes (e.g., the Flags column in the TypeDef table).
Each index is either 2 or 4 bytes wide. The index points into the same or another table, or into one of the four heaps. The size of each index column in a table is only made 4 bytes if it needs to be for that particular module. So, if a particular column indexes a table, or tables, whose highest row number fits in a 2-byte value, the indexer column need only be 2 bytes wide. Conversely, for tables containing 64K or more rows, an indexer of that table will be 4 bytes wide.

Indexes to tables begin at 1, so index 1 means the first row in any given metadata table. (An index value of zero denotes that it does not index a row at all; that is, it behaves like a null reference.)
There are two kinds of columns that index a metadata table. (For details of the physical representation of these tables, see §24.2.6):

· Simple – such a column indexes one, and only one, table. For example, the FieldList column in the TypeDef table always indexes the Field table. So all values in that column are simple integers, giving the row number in the target table

· Coded – such a column indexes any of several tables. For example, the Extends column in the TypeDef table can index into the TypeDef or TypeRef table. A few bits of that index value are reserved to define which table it targets. For the most part, this specification talks of index values after being decoded into row numbers within the target table. However, the specification includes a description of these coded indexes in the section that describes the physical layout of Metadata (§24

).

Metadata preserves name strings, as created by a compiler or code generator, unchanged. Essentially, it treats each string as an opaque blob. XE "blob" \b In particular, it preserves case. The CLI imposes no limit on the length of names stored in metadata and subsequently processed by the CLI

Implementation Specific (Microsoft)

For the first release, strings are limited in length. Depending on its purpose, a string can be no larger than MAX_CLASS_NAME (defined as 1024) or MAX_PATH_NAME (defined as 260). These values refer to the maximum number of bytes that the string, after being converted into UTF8 format, can occupy; that includes a terminating null character. It is intended that this limitation be removed in a future release. Within this partition, the above restrictions are abbreviated to the phrase: “… is limited to MAX_CLASS_NAME” or “… is limited to MAX_PATH_NAME”.
Matching AssemblyRefs and ModuleRefs to their corresponding Assembly and Module shall be performed case-blind (see Partition I_alink=Partition_I
). However, all other name matches (type, field, method, property, event) shall be exact – so that this level of resolution is the same across all platforms, whether their OS is case-sensitive or not.

Tables are given both a name (e.g., "Assembly") and a number (e.g., 0x20). The number for each table is listed immediately with its title in the following subclauses. The table numbers indicate the order in which their corresponding table shall appear in the PE file, and there is a set of bits (§24.2.6) saying whether a given table exists or not. The number of a table is the position within that set of bits.
A few of the tables represent extensions to regular CLI files. Specifically, ENCLog and ENCMap, which occur in temporary images, generated during "Edit and Continue" or "incremental compilation" scenarios, whilst debugging. Both table types are reserved for future use.

References to the methods or fields of a type are stored together in a metadata table called the MemberRef table. However, sometimes, for clearer explanation, this standard distinguishes between these two kinds of reference, calling them “MethodRef” and “FieldRef”.

Certain tables are required to be sorted by a primary key, as follows:

	Table
	Primary Key Column

	ClassLayout
	Parent

	Constant
	Parent

	CustomAttribute
	Parent

	DeclSecurity
	Parent

	FieldLayout
	Field

	FieldMarshal
	Parent

	FieldRVA
	Field

	GenericParam
	Owner

	GenericParamConstraint
	Owner

	ImplMap
	MemberForwarded

	InterfaceImpl
	Class

	MethodImpl
	Class

	MethodSemantics
	Association

	NestedClass
	NestedClass

Furthermore, the InterfaceImpl table is sorted using the Interface column as a secondary key, and the GenericParam table is sorted using the Number column as a secondary key.
Finally, the TypeDef table has a special ordering constraint: the definition of an enclosing class shall precede the definition of all classes it encloses.

Metadata items (records in the metadata tables) are addressed by metadata tokens. Uncoded metadata tokens are 4-byte unsigned integers, which contain the metadata table index in the most significant byte and a 1-based record index in the three least-significant bytes. Metadata tables and their respective indexes are described in §22.2 and later subclauses.

Coded metadata tokens also contain table and record indexes, but in a different format. For details on the encoding, see §24.2.6.
22.1 Metadata validation rules

This contains informative text only

The subclauses that follow describe the schema for each kind of metadata table, and explain the detailed rules that guarantee metadata emitted into any PE file is valid. Checking that metadata is valid ensures that later processing (such as checking the CIL instruction stream for type safety, building method tables, CIL-to-native-code compilation, and data marshalling) will not cause the CLI to crash or behave in an insecure fashion.

In addition, some of the rules are used to check compliance with the CLS requirements (see Partition I_alink=Partition_I
) even though these are not related to valid Metadata. These are marked with a trailing [CLS] tag.

The rules for valid metadata refer to an individual module. A module XE "module" \b is any collection of metadata that could typically be saved to a disk file. This includes the output of compilers and linkers, or the output of script compilers (where the metadata is often held only in memory, but never actually saved to a file on disk).

The rules address intra-module validation only. As such, software that checks conformance with this standard need not resolve references or walk type hierarchies defined in other modules. However, even if two modules, A and B, analyzed separately, contain only valid metadata, they can still be in error when viewed together (e.g., a call from Module A, to a method defined in module B, might specify a call site signature that does not match the signatures defined for that method in B).
All checks are categorized as ERROR, WARNING, or CLS.

· An ERROR XE "ERROR tag" \b check reports something that might cause a CLI to crash or hang, it might run but produce wrong answers; or it might be entirely benign. Conforming implementations of the CLI can exist that will not accept metadata that violates an ERROR rule, and therefore such metadata is invalid and is not portable.

· A WARNING XE "WARNING tag" \b check reports something, not actually wrong, but possibly a slip on the part of the compiler. Normally, it indicates a case where a compiler could have encoded the same information in a more compact fashion or where the metadata represents a construct that can have no actual use at runtime. All conforming implementations shall support metadata that violate only WARNING rules; hence such metadata is both valid and portable.

· A CLS XE "CLS tag" \b check reports lack of compliance with the Common Language Specification (see Partition I_alink=Partition_I
). Such metadata is both valid and portable, but programming languages might exist that cannot process it, even though all conforming implementations of the CLI support the constructs.

Validation rules fall into the following broad categories:

· Number of Rows: A few tables are allowed only one row (e.g., Module table). Most have no such restriction.

· Unique Rows: No table shall contain duplicate rows, where “duplicate” is defined in terms of its key column, or combination of columns.
· Valid Indexes: Columns which are indexes shall point somewhere sensible, as follows:

· Every index into the String, Blob, or Userstring heaps shall point into that heap, neither before its start (offset 0), nor after its end.
· Every index into the Guid heap shall lie between 1 and the maximum element number in this module, inclusive.
· Every index (row number) into another metadata table shall lie between 0 and that table’s row count + 1 (for some tables, the index can point just past the end of any target table, meaning it indexes nothing).
· Valid Bitmasks: Columns which are bitmasks shall have only valid permutations of bits set.
· Valid RVAs: There are restrictions upon fields and methods that are assigned RVAs (Relative Virtual Addresses, which are byte offsets, expressed from the address at which the corresponding PE file is loaded into memory).
Note that some of the rules listed below really don’t say anything—for example, some rules state that a particular table is allowed zero or more rows—in which case, there is no way that the check can fail. This is done simply for completeness, to record that such details have indeed been addressed, rather than overlooked.

End informative text

The CLI imposes no limit on the length of names stored in metadata, and subsequently processed by a CLI implementation.

22.2 Assembly : 0x20 XE "metadata table:Assembly" \b
The Assembly table has the following columns:

· HashAlgId (a 4-byte constant of type AssemblyHashAlgorithm, §23.1.1

)

· MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants)

· Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2

)

· PublicKey (an index into the Blob heap)

· Name (an index into the String heap)

· Culture (an index into the String heap)

The Assembly table is defined using the .assembly directive (§6.2

.)6.2.1

). (For an example, see §6.2

); its columns are obtained from the respective .hash algorithm, .ver, .publickey, and .culture (§
This contains informative text only

14. The Assembly table shall contain zero or one row [ERROR]

15. HashAlgId shall be one of the specified values [ERROR]

Implementation Specific (Microsoft)

The Microsoft implementation treats this as a WARNING rather than an error, using numbers based on the Crypto APIs. This means that the Microsoft implementation can handle additional algorithms based on the constants of type ALG_CLASS_HASH in WinCrypt.h as well as those dynamically discovered at runtime.

16. MajorVersion, MinorVersion, BuildNumber, and RevisionNumber can each have any value

17. Flags shall have only those values set that are specified [ERROR]

18. PublicKey can be null or non-null

19. Name shall index a non-empty string in the String heap [ERROR]

20. The string indexed by Name can be of unlimited length

21. Culture can be null or non-null

22. If Culture is non-null, it shall index a single string from the list specified (§23.1.3) [ERROR]

[Note: Name is a simple name (e.g., “Foo”, with no drive letter, no path, and no file extension); on POSIX-compliant systems, Name contains no colon, no forward-slash, no backslash, and no period. end note]
End informative text

22.3 AssemblyOS : 0x22 XE "metadata table:AssemblyOS" \b
The AssemblyOS table has the following columns:

· OSPlatformID (a 4-byte constant)

· OSMajorVersion (a 4-byte constant)

· OSMinorVersion (a 4-byte constant)

This record should not be emitted into any PE file. However, if present in a PE file, it shall be treated as if all its fields were zero. It shall be ignored by the CLI.

22.4 AssemblyProcessor : 0x21 XE "metadata table:AssemblyProcessor" \b
The AssemblyProcessor table has the following column:

· Processor (a 4-byte constant)

This record should not be emitted into any PE file. However, if present in a PE file, it should be treated as if its field were zero. It should be ignored by the CLI.

22.5 AssemblyRef : 0x23 XE "metadata table:AssemblyRef" \b
The AssemblyRef table has the following columns:

· MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants)

· Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2

)

· PublicKeyOrToken (an index into the Blob heap, indicating the public key or token that identifies the author of this Assembly)

· Name (an index into the String heap)

· Culture (an index into the String heap)

· HashValue (an index into the Blob heap)
The table is defined by the .assembly extern directive (§6.3

.)6.3

). Its columns are filled using directives similar to those of the Assembly table except for the PublicKeyOrToken column, which is defined using the .publickeytoken directive. (For an example, see §
This contains informative text only

23. MajorVersion, MinorVersion, BuildNumber, and RevisionNumber can each have any value

24. Flags shall have only one bit set, the PublicKey bit (§23.1.2

). All other bits shall be zero. [ERROR]

25. PublicKeyOrToken can be null, or non-null (note that the Flags.PublicKey bit specifies whether the 'blob' is a full public key, or the short hashed token)

26. If non-null, then PublicKeyOrToken shall index a valid offset in the Blob heap [ERROR]

27. Name shall index a non-empty string, in the String heap (there is no limit to its length) [ERROR]

28. Culture can be null or non-null.
29. If non-null, it shall index a single string from the list specified (§23.1.3) [ERROR]

30. HashValue can be null or non-null

31. If non-null, then HashValue shall index a non-empty 'blob' in the Blob heap [ERROR]

32. The AssemblyRef table shall contain no duplicates (where duplicate rows are deemd to be those having the same MajorVersion, MinorVersion, BuildNumber, RevisionNumber, PublicKeyOrToken, Name, and Culture) [WARNING]

[Note: Name is a simple name (e.g., “Foo”, with no drive letter, no path, and no file extension); on POSIX-compliant systems Name contains no colon, no forward-slash, no backslash, and no period. end note]
End informative text

22.6 AssemblyRefOS : 0x25 XE "metadata table:AssemblyRefOS" \b
The AssemblyRefOS table has the following columns:

· OSPlatformId (a 4-byte constant)

· OSMajorVersion (a 4-byte constant)

· OSMinorVersion (a 4-byte constant)

· AssemblyRef (an index into the AssemblyRef table)

These records should not be emitted into any PE file. However, if present in a PE file, they should be treated as-if their fields were zero. They should be ignored by the CLI.

22.7 AssemblyRefProcessor : 0x24 XE "metadata table:AssemblyRefProcessor" \b
The AssemblyRefProcessor table has the following columns:

· Processor (a 4-byte constant)

· AssemblyRef (an index into the AssemblyRef table)

These records should not be emitted into any PE file. However, if present in a PE file, they should be treated as-if their fields were zero. They should be ignored by the CLI.

22.8 ClassLayout : 0x0F XE "metadata table:ClassLayout" \b
The ClassLayout table is used to define how the fields of a class or value type shall be laid out by the CLI. (Normally, the CLI is free to reorder and/or insert gaps between the fields defined for a class or value type.)

[Rationale: This feature is used to lay out a managed value type in exactly the same way as an unmanaged C struct, allowing a managed value type to be handed to unmanaged code, which then accesses the fields exactly as if that block of memory had been laid out by unmanaged code. end rationale]
The information held in the ClassLayout table depends upon the Flags value for {AutoLayout, SequentialLayout, ExplicitLayout} in the owner class or value type.

A type has layou XE "type layout" \b t if it is marked SequentialLayout or ExplicitLayout. If any type within an inheritance chain has layout, then so shall all its base classes, up to the one that descends immediately from System.ValueType (if it exists in the type’s hierarchy); otherwise, from System.Object.
This contains informative text only

Layout cannot begin part way down the chain. But it is valid to stop “having layout” at any point down the chain.

For example, in the diagrams below, Class A derives from System.Object; class B derives from A; class C derives from B. System.Object has no layout. But A, B and C are all defined with layout, and that is valid.

[image: image7.png]Valid

Valid

System Object (no layout)

System Object (no layout)

G (no layout)

The situation with classes E, F, and G is similar. G has no layout, and this too is valid. The following picture shows two invalid setups:

[image: image8.png]Invalid

System Object (no layout)

System Object (no layout)

i

H (o layout)

L (no layout)

R S

On the left, the “chain with layout” does not start at the ‘highest’ class. And on the right, there is a ‘hole’ in the “chain with layout”

Layout information for a class or value type is held in two tables (ClassLayout and FieldLayout), as shown in the following diagram:

[image: image9.png]Myclass

TypeDat Table

Clastayout Table

FieldLayout Table

Field Table

In this example, row 3 of the ClassLayout table points to row 2 in the TypeDef table (the definition for a Class, called “MyClass”). Rows 4–6 of the FieldLayout table point to corresponding rows in the Field table. This illustrates how the CLI stores the explicit offsets for the three fields that are defined in “MyClass” (there is always one row in the FieldLayout table for each field in the owning class or value type) So, the ClassLayout table acts as an extension to those rows of the TypeDef table that have layout info; since many classes do not have layout info, overall, this design saves space.
End informative text

The ClassLayout table has the following columns:

· PackingSize (a 2-byte constant)

· ClassSize (a 4-byte constant)

· Parent (an index into the TypeDef table)

The rows of the ClassLayout table are defined by placing .pack and .size directives on the body of the type declaration in which this type is declared (§10.710.2

). When either of these directives is omitted, its corresponding value is zero. (See §
.)
ClassSize of zero does not mean the class has zero size. It means that no .size directive was specified at definition time, in which case, the actual size is calculated from the field types, taking account of packing size (default or specified) and natural alignment on the target, runtime platform.

This contains informative text only

33. A ClassLayout table can contain zero or more rows

34. Parent shall index a valid row in the TypeDef table, corresponding to a Class or ValueType (but not to an Interface) [ERROR]

35. The Class or ValueType indexed by Parent shall be SequentialLayout or ExplicitLayout (§23.1.15

). (That is, AutoLayout types shall not own any rows in the ClassLayout table.) [ERROR]

36. If Parent indexes a SequentialLayout type, then:

· PackingSize shall be one of {0, 1, 2, 4, 8, 16, 32, 64, 128}. (0 means use the default pack size for the platform on which the application is running.) [ERROR]
· If Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 bytes). [ERROR]
Implementation Specific (Microsoft)

The current implementation of desktop CLI allows 0x3F0000 bytes, but that might be reduced in the future.
37. If Parent indexes an ExplicitLayout type, then

· if Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 bytes) [ERROR]
Implementation Specific (Microsoft)

The current implementation allows 0x3F0000 bytes, but this might be reduced in the future.
· PackingSize shall be 0. (It makes no sense to provide explicit offsets for each field, as well as a packing size.) [ERROR]
38. Note that an ExplicitLayout type might result in a verifiable type, provided the layout does not create a type whose fields overlap.

39. Layout along the length of an inheritance chain shall follow the rules specified above (starting at ‘highest’ Type, with no ‘holes’, etc.) [ERROR]

End informative text

22.9 Constant : 0x0B XE "metadata table:Constant" \b
The Constant table is used to store compile-time, constant values for fields, parameters, and properties.

The Constant table has the following columns:

· Type (a 1-byte constant, followed by a 1-byte padding zero); see §16.2

) is ELEMENT_TYPE_CLASS with a Value of a 4-byte zero. Unlike uses of ELEMENT_TYPE_CLASS in signatures, this one is not followed by a type token.23.1.16

 . The encoding of Type for the nullref value for FieldInit in ilasm (§
· Parent (an index into the Param, Field, or Property table; more precisely, a HasConstant (§24.2.6) coded index)
· Value (an index into the Blob heap)

Note that Constant information does not directly influence runtime behavior, although it is visible via Reflection (and hence can be used to implement functionality such as that provided by System.Enum.ToString XE "System.Enum.ToString"). Compilers inspect this information, at compile time, when importing metadata, but the value of the constant itself, if used, becomes embedded into the CIL stream the compiler emits. There are no CIL instructions to access the Constant table at runtime.

A row in the Constant table for a parent is created whenever a compile-time value is specified for that parent. (For an example, see §16.2

.)
This contains informative text only

40. Type shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, or ELEMENT_TYPE_STRING; or ELEMENT_TYPE_CLASS with a Value of zero (§23.1.16
) [ERROR]

41. Type shall not be any of: ELEMENT_TYPE_I1, ELEMENT_TYPE_U2, ELEMENT_TYPE_U4, or ELEMENT_TYPE_U8 (§23.1.16
) [CLS]

42. Parent shall index a valid row in the Field, Property, or Param table. [ERROR]

43. There shall be no duplicate rows, based upon Parent [ERROR]

44. Type shall match exactly the declared type of the Param, Field, or Property identified by Parent (in the case where the parent is an enum, it shall match exactly the underlying type of that enum). [CLS]
End informative text

22.10 CustomAttribute : 0x0C XE "metadata table:CustomAttribute" \b
The CustomAttribute table has the following columns:

· Parent (an index into any metadata table, except the CustomAttribute table itself; more precisely, a HasCustomAttribute (§24.2.6) coded index)
· Type (an index into the MethodDef or MemberRef table; more precisely, a CustomAttributeType (§24.2.6) coded index)
· Value (an index into the Blob heap)

The CustomAttribute table stores data that can be used to instantiate a Custom Attribute (more precisely, an object of the specified Custom Attribute class) at runtime. The column called Type is slightly misleading—it actually indexes a constructor method—the owner of that constructor method is the Type of the Custom Attribute.

A row in the CustomAttribute table for a parent is created by the .custom attribute, which gives the value of the Type column and optionally that of the Value column (§21

).
This contains informative text only

All binary values are stored in little-endian format (except for PackedLen items, which are used only as a count for the number of bytes to follow in a UTF8 string).
45. No CustomAttribute is required; that is, Value is permitted to be null.
46. Parent can be an index into any metadata table, except the CustomAttribute table itself [ERROR]

47. Type shall index a valid row in the Method or MethodRef table. That row shall be a constructor method (for the class of which this information forms an instance) [ERROR]

48. Value can be null or non-null.
49. If Value is non-null, it shall index a 'blob' in the Blob heap [ERROR]

50. The following rules apply to the overall structure of the Value 'blob' (§23.3

):

· Prolog shall be 0x0001 [ERROR]

· There shall be as many occurrences of FixedArg as are declared in the Constructor method [ERROR]

· NumNamed can be zero or more

· There shall be exactly NumNamed occurrences of NamedArg [ERROR]

· Each NamedArg shall be accessible by the caller [ERROR]

· If NumNamed = 0 then there shall be no further items in the CustomAttrib [ERROR]

51. The following rules apply to the structure of FixedArg (§23.3

):

· If this item is not for a vector (a single-dimension array with lower bound of 0), then there shall be exactly one Elem [ERROR]

· If this item is for a vector, then:

· NumElem shall be 1 or more [ERROR]

· This shall be followed by NumElem occurrences of Elem [ERROR]

52. The following rules apply to the structure of Elem (§23.3

):

· If this is a simple type or an enum (see §23.3

 for how this is defined), then Elem consists simply of its value [ERROR]

· If this is a string or a Type, then Elem consists of a SerString – PackedLen count of bytes, followed by the UTF8 characters [ERROR]

· If this is a boxed simple value type (bool, char, float32, float64, int8, int16, int32, int64, unsigned int8, unsigned int16, unsigned int32, or unsigned int64), then Elem consists of the corresponding type denoter (ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, or ELEMENT_TYPE_R8), followed by its value. [ERROR]

53. The following rules apply to the structure of NamedArg (§23.3

):

· The single byte FIELD (0x53) or PROPERTY (0x54) [ERROR]

· The type of the Field or Property is one of ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, ELEMENT_TYPE_STRING, or the constant 0x50 (for an argument of type System.Type) [ERROR]
· The name of the Field or Property, respectively with the previous item, as a SerString – PackedLen count of bytes, followed by the UTF8 characters of the name [ERROR]

· A FixedArg (see above) [ERROR]

End informative text

22.11 DeclSecurity : 0x0E XE "metadata table:DeclSecurity" \b
Security attributes, which derive from System.Security.Permissions.SecurityAttribute (see Partition IV_alink=Partition_IV
), can be attached to a TypeDef, a Method, or an Assembly. All constructors of this class shall take a System.Security.Permissions.SecurityAction value as their first parameter, describing what should be done with the permission on the type, method or assembly to which it is attached. Code access security attributes, which derive from System.Security.Permissions. CodeAccessSecurityAttribute, can have any of the security actions.

These different security actions are encoded in the DeclSecurity table as a 2-byte enum (see below). All security custom attributes for a given security action on a method, type, or assembly shall be gathered together, and one System.Security.PermissionSet instance shall be created, stored in the Blob heap, and referenced from the DeclSecurity table.

[Note: The general flow from a compiler’s point of view is as follows. The user specifies a custom attribute through some language-specific syntax that encodes a call to the attribute’s constructor. If the attribute’s type is derived (directly or indirectly) from System.Security.Permissions.SecurityAttribute then it is a security custom attribute and requires special treatment, as follows (other custom attributes are handled by simply recording the constructor in the metadata as described in §22.10

). The attribute object is constructed, and provides a method (CreatePermission) to convert it into a security permission object (an object derived from System.Security.Permission). All the permission objects attached to a given metadata item with the same security action are combined together into a System.Security.PermissionSet. This permission set is converted into a form that is ready to be stored in XML using its ToXML method to create a System.Security.SecurityElement. Finally, the XML that is required for the metadata is created using the ToString method on the security element. end note]
The DeclSecurity table has the following columns:

· Action (a 2-byte value)

· Parent (an index into the TypeDef, MethodDef, or Assembly table; more precisely, a HasDeclSecurity (§24.2.6) coded index)
· PermissionSet (an index into the Blob heap)

Action is a 2-byte representation of Security Actions (see System.Security.SecurityAction in Partition IV_alink=Partition_IV
). The values 0–0xFF are reserved for future standards use. Values 0x20–0x7F and 0x100–0x07FF are for uses where the action can be ignored if it is not understood or supported. Values 0x80–0xFF and 0x0800–0xFFFF are for uses where the action shall be implemented for secure operation; in implementations where the action is not available, no access to the assembly, type, or method shall be permitted.

	Security Action
	Note
	Explanation of behavior
	Valid Scope

	Assert
	1
	Without further checks, satisfy Demand for the specified permission.
	Method, Type

	Demand
	1
	Check that all callers in the call chain have been granted specified permission, throw SecurityException (see Partition IV_alink=Partition_IV
) on failure.
	Method, Type

	Deny
	1
	Without further checks refuse Demand for the specified permission.
	Method, Type

	InheritanceDemand
	1
	The specified permission shall be granted in order to inherit from class or override virtual method.
	Method, Type

	LinkDemand
	1
	Check that the immediate caller has been granted the specified permission; throw SecurityException (see Partition IV_alink=Partition_IV
) on failure.
	Method, Type

	NonCasDemand
	2
	Check that the current assembly has been granted the specified permission; throw SecurityException (see Partition IV_alink=Partition_IV
) otherwise.
	Method, Type

	NonCasLinkDemand
	2
	Check that the immediate caller has been granted the specified permission; throw SecurityException (see Partition IV_alink=Partition_IV
) otherwise.
	Method, Type

	PrejitGrant
	
	Reserved for implementation-specific use.
	Assembly

	PermitOnly
	1
	Without further checks, refuse Demand for all permissions other than those specified.
	Method, Type

	RequestMinimum
	
	Specify the minimum permissions required to run.
	Assembly

	RequestOptional
	
	Specify the optional permissions to grant.
	Assembly

	RequestRefuse
	
	Specify the permissions not to be granted.
	Assembly

Note 1: The specified attribute shall derive from System.Security.Permissions.CodeAccess-SecurityAttribute
Note 2: The attribute shall derive from System.Security.Permissions.SecurityAttribute, but shall not derive from System.Security.Permissions.CodeAccessSecurityAttribute
Parent is a metadata token that identifies the Method, Type, or Assembly on which security custom attributes encoded in PermissionSet was defined.

PermissionSet is a 'blob' having the following format:
· A byte containing a period (.).

· A compressed int32 containing the number of attributes encoded in the blob.

· An array of attributes each containing the following:
· A String, which is the fully-qualified type name of the attribute. (Strings are encoded as a compressed int to indicate the size followed by an array of UTF8 characters.)

· A set of properties, encoded as the named arguments to a custom attribute would be (as in §23.3, beginning with NumNamed).
The permission set contains the permissions that were requested with an Action on a specific Method, Type, or Assembly (see Parent). In other words, the blob will contain an encoding of all the attributes on the Parent with that particular Action.
[Note: The first edition of this standard specified an XML encoding of a permission set. Implementations should continue supporting this encoding for backward compatibility. end note]

The rows of the DeclSecurity table are filled by attaching a .permission or .permissionset directive that specifies the Action and PermissionSet on a parent assembly (§10.2

).
6.6

) or parent type or method (§
This contains informative text only

54. Action shall have only those values set that are specified [ERROR]

55. Parent shall be one of TypeDef, MethodDef, or Assembly. That is, it shall index a valid row in the TypeDef table, the MethodDef table, or the Assembly table. [ERROR]

56. If Parent indexes a row in the TypeDef table, that row should not define an Interface. The security system ignores any such parent; compilers should not emit such permissions sets. [WARNING]

57. If Parent indexes a TypeDef, then its TypeDef.Flags.HasSecurity bit shall be set [ERROR]

58. If Parent indexes a MethodDef, then its MethodDef.Flags.HasSecurity bit shall be set [ERROR]

59. PermissionSet shall index a 'blob' in the Blob heap [ERROR]

60. The format of the 'blob' indexed by PermissionSet shall represent a valid, encoded CLI object graph. (The encoded form of all standardized permissions is specified in Partition IV_alink=Partition_IV
.) [ERROR]

End informative text

22.12 EventMap : 0x12 XE "metadata table:EventMap" \b
The EventMap table has the following columns:

· Parent (an index into the TypeDef table)

· EventList (an index into the Event table). It marks the first of a contiguous run of Events owned by this Type. That run continues to the smaller of:

· the last row of the Event table

· the next run of Events, found by inspecting the EventList of the next row in the EventMap table

Note that EventMap info does not directly influence runtime behavior; what counts is the information stored for each method that the event comprises.
The EventMap and Event tables result from putting the .event directive on a class (§18).
This contains informative text only

61. EventMap table can contain zero or more rows

62. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the start of its event list) [ERROR]

63. There shall be no duplicate rows, based upon EventList (different classes cannot share rows in the Event table) [ERROR]

End informative text

22.13 Event : 0x14 XE "metadata table:Event" \b
Events are treated within metadata much like Properties; that is, as a way to associate a collection of methods defined on a given class. There are two required methods (add_ and remove_) plus an optional one (raise_); others are permitted. All of the methods gathered together as an Event shall be defined on the class.

The association between a row in the TypeDef table and the collection of methods that make up a given Event is held in three separate tables (exactly analogous to the approach used for Properties), as follows:
[image: image10.png]MyClass

add_DocChanged
remove_DocChanged
a6 _TimedOut

remove_TimedOut

TypeDef Table

Eventhap Table

MethodSematics Tabie.

Event Table

DocChanged
Timedout

Row 3 of the EventMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing row 4 of the Event table on the right (the row for an Event called DocChanged). This setup establishes that MyClass has an Event called DocChanged. But what methods in the MethodDef table are gathered together as ‘belonging’ to event DocChanged? That association is contained in the MethodSemantics table – its row 2 indexes event DocChanged to the right, and row 2 in the MethodDef table to the left (a method called add_DocChanged). Also, row 3 of the MethodSemantics table indexes DocChanged to the right, and row 3 in the MethodDef table to the left (a method called remove_DocChanged). As the shading suggests, MyClass has another event, called TimedOut, with two methods, add_TimedOut and remove_TimedOut.
Event tables do a little more than group together existing rows from other tables. The Event table has columns for EventFlags, Name (e.g., DocChanged and TimedOut in the example here), and EventType. In addition, the MethodSemantics table has a column to record whether the method it indexes is an add_, a remove_, a raise_, or other function.

The Event table has the following columns:

· EventFlags (a 2-byte bitmask of type EventAttributes, §23.1.4

)

· Name (an index into the String heap)

· EventType (an index into a TypeDef, a TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef (§24.2.6) coded index) (This corresponds to the Type of the Event; it is not the Type that owns this event.)
Note that Event information does not directly influence runtime behavior; what counts is the information stored for each method that the event comprises.

The EventMap and Event tables result from putting the .event directive on a class (§18).

This contains informative text only

64. The Event table can contain zero or more rows

65. Each row shall have one, and only one, owner row in the EventMap table [ERROR]

66. EventFlags shall have only those values set that are specified (all combinations valid) [ERROR]

67. Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME.
68. The Name string shall be a valid CLS identifier [CLS]

69. EventType can be null or non-null

70. If EventType is non-null, then it shall index a valid row in the TypeDef or TypeRef table [ERROR]

71. If EventType is non-null, then the row in the TypeDef, TypeRef, or TypeSpec table that it indexes shall be a Class (not an Interface or a ValueType) [ERROR]

72. For each row, there shall be one add_ and one remove_ row in the MethodSemantics table [ERROR]

73. For each row, there can be zero or one raise_ row, as well as zero or more other rows in the MethodSemantics table [ERROR]

74. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based upon Name [ERROR]

75. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS conflicting-identifier-rules [CLS]

End informative text

22.14 ExportedType : 0x27 XE "metadata table:ExportedType" \b
The ExportedType table holds a row for each type, defined within other modules of this Assembly; that is exported out of this Assembly. In essence, it stores TypeDef row numbers of all types that are marked public in other modules that this Assembly comprises.

The actual target row in a TypeDef table is given by the combination of TypeDefId (in effect, row number) and Implementation (in effect, the module that holds the target TypeDef table). Note that this is the only occurrence in metadata of foreign tokens; XE "token:foreign" \b that is, token values that have a meaning in another module. (A regular token XE "token:regular" \b value is an index into a table in the current module)
The full name of the type need not be stored directly. Instead, it can be split into two parts at any included “.” (although typically this is done at the last “.” in the full name). The part preceding the “.” is stored as the TypeNamespace and that following the “.” is stored as the TypeName. If there is no “.” in the full name, then the TypeNamespace shall be the index of the empty string.

The ExportedType table has the following columns:

· Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15

)

· TypeDefId (a 4-byte index into a TypeDef table of another module in this Assembly). This column is used as a hint only. If the entry in the target TypeDef table matches the TypeName and TypeNamespace entries in this table, resolution has succeeded. But if there is a mismatch, the CLI shall fall back to a search of the target TypeDef table

· TypeName (an index into the String heap)

· TypeNamespace (an index into the String heap)

· Implementation. This is an index (more precisely, an Implementation (§24.2.6) coded index) into either of the following tables:

· File table, where that entry says which module in the current assembly holds the TypeDef
· ExportedType table, where that entry is the enclosing Type of the current nested Type

The rows in the ExportedType table are the result of the .class extern directive (§6.7

).

This contains informative text only

 The term “FullName” refers to the string created as follows: if the TypeNamespace is null, then use the TypeName, otherwise use the concatenation of Typenamespace, “.”, and TypeName.

76. The ExportedType table can contain zero or more rows

77. There shall be no entries in the ExportedType table for Types that are defined in the current module—just for Types defined in other modules within the Assembly [ERROR]

78. Flags shall have only those values set that are specified [ERROR]

79. If Implementation indexes the File table, then Flags.VisibilityMask shall be public (§23.1.15

) [ERROR]

80. If Implementation indexes the ExportedType table, then Flags.VisibilityMask shall be NestedPublic (§23.1.15

) [ERROR]

81. If non-null, TypeDefId should index a valid row in a TypeDef table in a module somewhere within this Assembly (but not this module), and the row so indexed should have its Flags.Public = 1 (§23.1.15

) [WARNING]

82. TypeName shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME

83. TypeNamespace can be null, or non-null

84. If TypeNamespace is non-null, then it shall index a non-empty string in the String heap [ERROR]
Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME. Also, the FullName (concatenated TypeNamespace + "." + TypeName) shall be less than MAX_CLASS_NAME.
85. FullName shall be a valid CLS identifier [CLS]

86. If this is a nested Type, then TypeNamespace should be null, and TypeName should represent the unmangled, simple name of the nested Type [ERROR]

87. Implementation shall be a valid index into either of the following: [ERROR]

· the File table; that file shall hold a definition of the target Type in its TypeDef table
· a different row in the current ExportedType table—this identifies the enclosing Type of the current, nested Type

88. FullName shall match exactly the corresponding FullName for the row in the TypeDef table indexed by TypeDefId [ERROR]

89. Ignoring nested Types, there shall be no duplicate rows, based upon FullName [ERROR]

90. For nested Types, there shall be no duplicate rows, based upon TypeName and enclosing Type [ERROR]

91. The complete list of Types exported from the current Assembly is given as the catenation of the ExportedType table with all public Types in the current TypeDef table, where “public” means a Flags.VisibilityMask of either Public or NestedPublic. There shall be no duplicate rows, in this concatenated table, based upon FullName (add Enclosing Type into the duplicates check if this is a nested Type) [ERROR]

End informative text

22.15 Field : 0x04 XE "metadata table:Field" \b
The Field table has the following columns:

· Flags (a 2-byte bitmask of type FieldAttributes, §23.1.5

)

· Name (an index into the String heap)

· Signature (an index into the Blob heap)

Conceptually, each row in the Field table is owned by one, and only one, row in the TypeDef table. However, the owner of any row in the Field table is not stored anywhere in the Field table itself. There is merely a ‘forward-pointer’ from each row in the TypeDef table (the FieldList column), as shown in the following illustration.

[image: image11.png](i

TypeDef Table

Field Table

f

FialdList Column.

The TypeDef table has rows 1–4. The first row in the TypeDef table corresponds to a pseudo type, inserted automatically by the CLI. It is used to denote those rows in the Field table corresponding to global variables. The Field table has rows 1–6. Type 1 (pseudo type for ‘module’) owns rows 1 and 2 in the Field table. Type 2 owns no rows in the Field table, even though its FieldList indexes row 3 in the Field table. Type 3 owns rows 3–5 in the Field table. Type 4 owns row 6 in the Field table. So, in the Field table, rows 1 and 2 belong to Type 1 (global variables); rows 3–5 belong to Type 3; row 6 belongs to Type 4.

Each row in the Field table results from a top-level .field directive (§14.5

.)10.2

). (For an example, see §5.10

), or a .field directive inside a Type (§
This contains informative text only

92. The Field table can contain zero or more rows

93. Each row shall have one, and only one, owner row in the TypeDef table [ERROR]

94. The owner row in the TypeDef table shall not be an Interface [CLS]

95. Flags shall have only those values set that are specified [ERROR]

96. The FieldAccessMask subfield of Flags shall contain precisely one of CompilerControlled, Private, FamANDAssem, Assembly, Family, FamORAssem, or Public (§23.1.5

) [ERROR]

97. Flags can set either or neither of Literal or InitOnly, but not both (§23.1.5

) [ERROR]

98. If Flags.Literal = 1 then Flags.Static shall also be 1 (§23.1.5

) [ERROR]

99. If Flags.RTSpecialName = 1, then Flags.SpecialName shall also be 1 (§23.1.5

) [ERROR]

100. If Flags.HasFieldMarshal = 1, then this row shall ‘own’ exactly one row in the FieldMarshal table (§23.1.5

) [ERROR]

101. If Flags.HasDefault = 1, then this row shall ‘own’ exactly one row in the Constant table (§23.1.5

) [ERROR]

102. If Flags.HasFieldRVA = 1, then this row shall ‘own’ exactly one row in the Field’s RVA table (§23.1.5

) [ERROR]

103. Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME

104. The Name string shall be a valid CLS identifier [CLS]

105. Signature shall index a valid field signature in the Blob heap [ERROR]

106. If Flags.CompilerControlled = 1 (§23.1.5

), then this row is ignored completely in duplicate checking.

107. If the owner of this field is the internally-generated type called <Module>, XE "<Module>;Module" it denotes that this field is defined at module scope (commonly called a global variable). In this case:

· Flags.Static shall be 1 [ERROR]

· Flags.MemberAccessMask subfield shall be one of Public, CompilerControlled, or Private (§23.1.5

) [ERROR]

· module-scope fields are not allowed [CLS]

108. There shall be no duplicate rows in the Field table, based upon owner+Name+Signature (where owner is the owning row in the TypeDef table, as described above) (Note however that if Flags.CompilerControlled = 1, then this row is completely excluded from duplicate checking) [ERROR]

109. There shall be no duplicate rows in the Field table, based upon owner+Name, where Name fields are compared using CLS conflicting-identifier-rules. So, for example,"int i" and "float i" would be considered CLS duplicates. (Note however that if Flags.CompilerControlled = 1, then this row is completely excluded from duplicate checking, as noted above) [CLS]

110. If this is a field of an Enum, and Name string = "value__" then:

e. RTSpecialName shall be 1 [ERROR]

f. owner row in TypeDef table shall derive directly from System.Enum [ERROR]

g. the owner row in TypeDef table shall have no other instance fields [CLS]

h. its Signature shall be one of ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_I4, or ELEMENT_TYPE_I8 (§23.1.16

): [CLS]

111. its Signature shall be an integral type. [ERROR]
End informative text

22.16 FieldLayout : 0x10 XE "metadata table:FieldLayout" \b
The FieldLayout table has the following columns:

· Offset (a 4-byte constant)

· Field (an index into the Field table)

Note that each Field in any Type is defined by its Signature. When a Type instance (i.e., an object) is laid out by the CLI, each Field is one of four kinds:

· Scalar: for any member of built-in type, such as int32. The size of the field is given by the size of that intrinsic, which varies between 1 and 8 bytes
· ObjectRef: for ELEMENT_TYPE_CLASS, ELEMENT_TYPE_STRING, ELEMENT_TYPE_OBJECT, ELEMENT_TYPE_ARRAY, ELEMENT_TYPE_SZARRAY
· Pointer: for ELEMENT_TYPE_PTR, ELEMENT_TYPE_FNPTR
· ValueType: for ELEMENT_TYPE_VALUETYPE. The instance of that ValueType is actually laid out in this object, so the size of the field is the size of that ValueType
Note that metadata specifying explicit structure layout can be valid for use on one platform but not on another, since some of the rules specified here are dependent on platform-specific alignment rules.

A row in the FieldLayout table is created if the .field directive for the parent field has specified a field offset (§16).

This contains informative text only

112. A FieldLayout table can contain zero or more or rows

113. The Type whose Fields are described by each row of the FieldLayout table shall have Flags.ExplicitLayout (§23.1.15

) set [ERROR]

114. Offset shall be zero or more [ERROR]

115. Field shall index a valid row in the Field table [ERROR]

116. Flags.Static for the row in the Field table indexed by Field shall be non-static (i.e., zero 0) [ERROR]

117. Among the rows owned by a given Type there shall be no duplicates, based upon Field. That is, a given Field of a Type cannot be given two offsets. [ERROR]
118. Each Field of kind ObjectRef shall be naturally aligned within the Type [ERROR]

119. Among the rows owned by a given Type it is perfectly valid for several rows to have the same value of Offset. ObjectRef and a valuetype cannot have the same offset [ERROR]

120. Every Field of an ExplicitLayout Type shall be given an offset; that is, it shall have a row in the FieldLayout table [ERROR]

Implementation Specific (Microsoft)

Note that the rules above specify whether metadata is valid or invalid. However, there is a finer distinction that can be drawn—what layouts permit type-safe access by code? For example, a class that overlaps two ValueTypes constitutes valid metadata, but accesses to that class can result in code that is not provably type-safe. At runtime, it is the Class loader that will perform these type-safety checks. Version 1 takes a simple approach—if the type has any explicit layout, it is not type-safe. [This might be refined in future versions.]

End informative text

22.17 FieldMarshal : 0x0D XE "metadata table:FieldMarshal" \b
The FieldMarshal table has two columns. It ‘links’ an existing row in the Field or Param table, to information in the Blob heap that defines how that field or parameter (which, as usual, covers the method return, as parameter number 0) shall be marshalled when calling to or from unmanaged code via PInvoke dispatch.

Note that FieldMarshal information is used only by code paths that arbitrate operation with unmanaged code. In order to execute such paths, the caller, on most platforms, would be installed with elevated security permission. Once it invokes unmanaged code, it lies outside the regime that the CLI can check—it is simply trusted not to violate the type system.

The FieldMarshal table has the following columns:

· Parent (an index into Field or Param table; more precisely, a HasFieldMarshal (§24.2.6) coded index)
· NativeType (an index into the Blob heap)

For the detailed format of the 'blob', see §23.4

A row in the FieldMarshal table is created if the .field directive for the parent field has specified a marshal attribute (§16.1).

This contains informative text only

121. A FieldMarshal table can contain zero or more rows

122. Parent shall index a valid row in the Field or Param table (Parent values are encoded to say which of these two tables each refers to) [ERROR]

123. NativeType shall index a non-null 'blob' in the Blob heap [ERROR]

124. No two rows shall point to the same parent. In other words, after the Parent values have been decoded to determine whether they refer to the Field or the Param table, no two rows can point to the same row in the Field table or in the Param table [ERROR]

125. The following checks apply to the MarshalSpec 'blob' (§23.4

):

i. NativeIntrinsic shall be exactly one of the constant values in its production (§23.4) [ERROR]

j. If ARRAY, then ArrayElemType shall be exactly one of the constant values in its production [ERROR]

k. If ARRAY, then ParamNum can be zero

l. If ARRAY, then ParamNum cannot be < 0 [ERROR]

m. If ARRAY, and ParamNum > 0, then Parent shall point to a row in the Param table, not in the Field table [ERROR]

n. If ARRAY, and ParamNum > 0, then ParamNum cannot exceed the number of parameters supplied to the MethodDef (or MethodRef if a VARARG call) of which the parent Param is a member [ERROR]

o. If ARRAY, then ElemMult shall be >= 1 [ERROR]

p. If ARRAY and ElemMult != 1 issue a warning, because it is probably a mistake [WARNING]

q. If ARRAY and ParamNum = 0, then NumElem shall be >= 1 [ERROR]

r. If ARRAY and ParamNum != 0 and NumElem != 0 then issue a warning, because it is probably a mistake [WARNING]

Implementation Specific (Microsoft)

The following rules apply to Microsoft-specific features:

a. If CUSTOMMARSHALLER, then Guid shall be an in-place, counted-UTF8 string, that represents a string format GUID. Its length, when expanded from UTF8, shall be exactly 38 characters, to include leading { and trailing } [ERROR]

b. If CUSTOMMARSHALLER, then UnmanagedType shall be a non-empty, counted-UTF8 string [ERROR]

c. If CUSTOMMARSHALLER, then ManagedType shall be a non-empty, counted-UTF8 string, that represents the fully-qualified namespace+"."+name of a Class or ValueType defined somewhere within the current Assembly [ERROR]

d. If CUSTOMMARSHALLER, then the Cookie shall be a counted-UTF8 string - its size can legitimately be zero [ERROR]

e. If SAFEARRAY, then SafeArrayElemType shall be exactly one of the constant values in its production [ERROR]

f. If NativeIntrinsic has the value BYVALSTR, then Parent shall point to a row in the Field table, not the Param table [ERROR]

g. If FIXEDARRAY, then Parent shall point to a row in the Field table, not the Param table [ERROR]

h. If FIXEDARRAY, then NumElem shall be 1 or more [ERROR]

i. If FIXEDARRAY, then ArrayElemType shall be exactly one of the constant values in its production [ERROR]

End informative text

22.18 FieldRVA : 0x1D XE "metadata table:FieldRVA" \b
The FieldRVA table has the following columns:

· RVA (a 4-byte constant)

· Field (an index into Field table)

Conceptually, each row in the FieldRVA table is an extension to exactly one row in the Field table, and records the RVA (Relative Virtual Address) within the image file at which this field’s initial value is stored.

A row in the FieldRVA table is created for each static parent field that has specified the optional data label §16.3

).
16

). The RVA column is the relative virtual address of the data in the PE file (§
This contains informative text only

126. RVA shall be non-zero [ERROR]

127. RVA shall point into the current module’s data area (not its metadata area) [ERROR]

128. Field shall index a valid row in the Field table [ERROR]

129. Any field with an RVA shall be a ValueType (not a Class or an Interface). Moreover, it shall not have any private fields (and likewise for any of its fields that are themselves ValueTypes). (If any of these conditions were breached, code could overlay that global static and access its private fields.) Moreover, no fields of that ValueType can be Object References (into the GC heap) [ERROR]

130. So long as two RVA-based fields comply with the previous conditions, the ranges of memory spanned by the two ValueTypes can overlap, with no further constraints. This is not actually an additional rule; it simply clarifies the position with regard to overlapped RVA-based fields

End informative text

22.19 File : 0x26 XE "metadata table:File" \b
The File table has the following columns:

· Flags (a 4-byte bitmask of type FileAttributes, §23.1.6

)

· Name (an index into the String heap)

· HashValue (an index into the Blob heap)

The rows of the File table result from .file directives in an Assembly (§6.2.3

)

This contains informative text only

131. Flags shall have only those values set that are specified (all combinations valid) [ERROR]

132. Name shall index a non-empty string in the String heap. It shall be in the format <filename>.<extension> (e.g., “foo.dll”, but not “c:\utils\foo.dll”) [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_PATH_NAME
Also, the following values for Name are invalid (since these represent device, rather than file, names):

S [N] [[C]*] where:
S ::= con | aux | lpt | prn | null | com (case-blind)
N ::= a number 0 .. 9
C ::= $ | :

[] denotes optional, * denotes Kleene closure, | denotes alternatives [ERROR]

The CLI also checks dynamically against opening a device, which can be assigned an arbitrary name by the user

133. HashValue shall index a non-empty 'blob' in the Blob heap [ERROR]

134. There shall be no duplicate rows; that is, rows with the same Name value [ERROR]

135. If this module contains a row in the Assembly table (that is, if this module “holds the manifest”) then there shall not be any row in the File table for this module; i.e., no self-reference [ERROR]

136. If the File table is empty, then this, by definition, is a single-file assembly. In this case, the ExportedType table should be empty [WARNING]

End informative text

22.20 GenericParam : 0x2A XE "metadata table:GenericParam" \b
The GenericParam table has the following columns:

· Number (the 2-byte index of the generic parameter, numbered left-to-right, from zero)

· Flags (a 2-byte bitmask of type GenericParamAttributes, §23.1.7

)

· Owner (an index into the TypeDef or MethodDef table, specifying the Type or Method to which this generic parameter applies; more precisely, a TypeOrMethodDef (§24.2.6) coded index)
· Name (a non-null index into the String heap, giving the name for the generic parameter. This is purely descriptive and is used only by source language compilers and by Reflection)

The GenericParam table stores the generic parameters used in generic type definitions and generic method definitions. These generic parameters can be constrained (i.e., generic arguments shall extend some class and/or implement certain interfaces) or unconstrained. (Such constraints are stored in the GenericParamConstraint table.)
Conceptually, each row in the GenericParam table is owned by one, and only one, row in either the TypeDef or MethodDef tables.
[Example:
.class Dict`2<([mscorlib]System.IComparable) K, V>
The generic parameter K of class Dict is constrained to implement System.IComparable.
.method static void ReverseArray<T>(!!0[] 'array')

There is no constraint on the generic parameter T of the generic method ReverseArray.

end example]
This contains informative text only

1. GenericParam table can contain zero or more rows
2. Each row shall have one, and only one, owner row in the TypeDef or MethodDef table (i.e., no row sharing) [ERROR]
3. Every generic type shall own one row in the GenericParam table for each of its generic parameters [ERROR]
4. Every generic method shall own one row in the GenericParam table for each of its generic parameters [ERROR]
Flags:

· Can hold the value Covariant or Contravariant, but only if the owner row corresponds to a generic interface, or a generic delegate class. [ERROR]
· Otherwise, shall hold the value NonVariant (i.e., where the owner is a non delegate class, a value-type, or a generic method) [ERROR]
If Flags == Covariant then the corresponding generic parameter can appear in a type definition only as [ERROR]:

· The result type of a method

· A generic parameter to an inherited interface

If Flags == Contravariant then the corresponding generic parameter can appear in a type definition only as the argument to a method [ERROR]

Number shall have a value >= 0 and < the number of generic parameters in owner type or method. [ERROR]

Successive rows of the GenericParam table that are owned by the same method shall be ordered by increasing Number value; there shall be no gaps in the Number sequence [ERROR]

Name shall be non-null and index a string in the String heap [ERROR]

[Rationale: Otherwise, Reflection output is not fully usable. end rationale]
There shall be no duplicate rows based upon Owner+Name [ERROR] [Rationale: Otherwise, code using Reflection cannot disambiguate the different generic parameters. end rationale]
There shall be no duplicate rows based upon Owner+Number [ERROR]

End informative text

22.21 GenericParamConstraint : 0x2C XE "metadata table:GenericParamConstraint" \b
The GenericParamConstraint table has the following columns:

· Owner (an index into the GenericParam table, specifying to which generic parameter this row refers)

· Constraint (an index into the TypeDef, TypeRef, or TypeSpec tables, specifying from which class this generic parameter is constrained to derive; or which interface this generic parameter is constrained to implement; more precisely, a TypeDefOrRef (§24.2.6) coded index)
The GenericParamConstraint table records the constraints for each generic parameter. Each generic parameter can be constrained to derive from zero or one class. Each generic parameter can be constrained to implement zero or more interfaces.
Conceptually, each row in the GenericParamConstraint table is ‘owned’ by a row in the GenericParam table.

All rows in the GenericParamConstraint table for a given Owner shall refer to distinct constraints.

Note that if Constraint is a TypeRef to System.ValueType, then it means the constraint type shall be System.ValueType, or one of its sub types. However, since System.ValueType itself is a reference type, this particular mechanism does not guarantee that the type is a non-reference type.

This contains informative text only

1. The GenericParamConstraint table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the GenericParam table (i.e., no row sharing) [ERROR]
3. Each row in the GenericParam table shall ‘own’ a separate row in the GenericParamConstraint table for each constraint that generic parameter has [ERROR]
4. All of the rows in the GenericParamConstraint table that are owned by a given row in the GenericParam table shall form a contiguous range (of rows) [ERROR]
5. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or one row in the GenericParamConstraint table corresponding to a class constraint. [ERROR]
6. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or more rows in the GenericParamConstraint table corresponding to an interface constraint. [ERROR]
7. There shall be no duplicate rows based upon Owner+Constraint [ERROR]
8. Constraint shall not reference System.Void. [ERROR]
End informative text

22.22 ImplMap : 0x1C XE "metadata table:ImplMap" \b
The ImplMap table holds information about unmanaged methods that can be reached from managed code, using PInvoke dispatch.

Each row of the ImplMap table associates a row in the MethodDef table (MemberForwarded) with the name of a routine (ImportName) in some unmanaged DLL (ImportScope).

[Note: A typical example would be: associate the managed Method stored in row N of the Method table (so MemberForwarded would have the value N) with the routine called “GetEnvironmentVariable” (the string indexed by ImportName) in the DLL called “kernel32” (the string in the ModuleRef table indexed by ImportScope). The CLI intercepts calls to managed Method number N, and instead forwards them as calls to the unmanaged routine called “GetEnvironmentVariable” in “kernel32.dll” (including marshalling any arguments, as required)

The CLI does not support this mechanism to access fields that are exported from a DLL, only methods. end note]
The ImplMap table has the following columns:

· MappingFlags (a 2-byte bitmask of type PInvokeAttributes, §23.1.7

)

· MemberForwarded (an index into the Field or MethodDef table; more precisely, a MemberForwarded (§24.2.6) coded index). However, it only ever indexes the MethodDef table, since Field export is not supported.

· ImportName (an index into the String heap)

· ImportScope (an index into the ModuleRef table)

A row is entered in the ImplMap table for each parent Method (§15.5) that is defined with a .pinvokeimpl interoperation attribute specifying the MappingFlags, ImportName, and ImportScope.

This contains informative text only

1. ImplMap can contain zero or more rows

2. MappingFlags shall have only those values set that are specified [ERROR]

3. MemberForwarded shall index a valid row in the MethodDef table [ERROR]

4. The MappingFlags.CharSetMask (§23.1.7

) in the row of the MethodDef table indexed by MemberForwarded shall have at most one of the following bits set: CharSetAnsi, CharSetUnicode, or CharSetAuto (if none is set, the default is CharSetNotSpec) [ERROR]

Implementation Specific (Microsoft)

The MappingFlags.CallConvMask in the row of the Method table indexed by MemberForwarded shall have at most one of the following values: CallConvWinapi, CallConvCdecl, CallConvStdcall. It cannot have the value CallConvFastcall or CallConvThiscall. [ERROR]

5. ImportName shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME
6. ImportScope shall index a valid row in the ModuleRef table [ERROR]

7. The row indexed in the MethodDef table by MemberForwarded shall have its Flags.PinvokeImpl = 1, and Flags.Static = 1 [ERROR]

End informative text

22.23 InterfaceImpl : 0x09 XE "metadata table:InterfaceImpl" \b
The InterfaceImpl table has the following columns:

· Class (an index into the TypeDef table)

· Interface (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef (§24.2.6) coded index)
The InterfaceImpl table records the interfaces a type implements explicitly. Conceptually, each row in the InterfaceImpl table indicates that Class implements Interface.

This contains informative text only

1. The InterfaceImpl table can contain zero or more rows

2. Class shall be non-null [ERROR]

Implementation Specific (Microsoft)

If Class = null this row should be treated as if it does not exist. In incremental compilation scenarios, this is used to mark a class as being deleted, without physically deleting its metadata.

3. If Class is non-null, then:

s. Class shall index a valid row in the TypeDef table [ERROR]

t. Interface shall index a valid row in the TypeDef or TypeRef table [ERROR]

u. The row in the TypeDef, TypeRef, or TypeSpec table indexed by Interface shall be an interface (Flags.Interface = 1), not a Class or ValueType [ERROR]

4. There should be no duplicates in the InterfaceImpl table, based upon non-null Class and Interface values [WARNING]

5. There can be many rows with the same value for Class (since a class can implement many interfaces)

6. There can be many rows with the same value for Interface (since many classes can implement the same interface)

End informative text

22.24 ManifestResource : 0x28 XE "metadata table:ManifestResource" \b
The ManifestResource table has the following columns:

· Offset (a 4-byte constant)

· Flags (a 4-byte bitmask of type ManifestResourceAttributes, §23.1.9

)

· Name (an index into the String heap)

· Implementation (an index into a File table, a AssemblyRef table, or null; more precisely, an Implementation (§24.2.6) coded index)
The Offset specifies the byte offset within the referenced file at which this resource record begins. The Implementation specifies which file holds this resource. The rows in the table result from .mresource directives on the Assembly (§6.2.2

).

This contains informative text only

1. The ManifestResource table can contain zero or more rows

2. Offset shall be a valid offset into the target file, starting from the Resource entry in the CLI header [ERROR]

3. Flags shall have only those values set that are specified [ERROR]

4. The VisibilityMask (§23.1.9

) subfield of Flags shall be one of Public or Private [ERROR]

5. Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME.
6. Implementation can be null or non-null (if null, it means the resource is stored in the current file)

7. If Implementation is null, then Offset shall be a valid offset in the current file, starting from the Resource entry in the CLI header [ERROR]

8. If Implementation is non-null, then it shall index a valid row in the File or AssemblyRef table [ERROR]

9. There shall be no duplicate rows, based upon Name [ERROR]

10. If the resource is an index into the File table, Offset shall be zero [ERROR]

End informative text

22.25 MemberRef : 0x0A XE "metadata table:MemberRef" \b
The MemberRef table combines two sorts of references, to Methods and to Fields of a class, known as ‘MethodRef’ and ‘FieldRef’, respectively. The MemberRef table has the following columns:

· Class (an index into the MethodDef, ModuleRef,TypeDef, TypeRef, or TypeSpec tables; more precisely, a MemberRefParent (§24.2.6) coded index)
· Name (an index into the String heap)

· Signature (an index into the Blob heap)

An entry is made into the MemberRef table whenever a reference is made in the CIL code to a method or field which is defined in another module or assembly. (Also, an entry is made for a call to a method with a VARARG signature, even when it is defined in the same module as the call site.)

This contains informative text only

1. Class shall be one of the following: [ERROR]

v. a TypeRef token, if the class that defines the member is defined in another module. (Note that it is unusual, but valid, to use a TypeRef token when the member is defined in this same module, in which case, its TypeDef token can be used instead.)

w. a ModuleRef token, if the member is defined, in another module of the same assembly, as a global function or variable.
x. a MethodDef token, when used to supply a call-site signature for a vararg method that is defined in this module. The Name shall match the Name in the corresponding MethodDef row. The Signature shall match the Signature in the target method definition [ERROR]

y. a TypeSpec token, if the member is a member of a generic type

2. Class shall not be null (as this would indicate an unresolved reference to a global function or variable) [ERROR]

3. Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME

4. The Name string shall be a valid CLS identifier [CLS]

5. Signature shall index a valid field or method signature in the Blob heap. In particular, it shall embed exactly one of the following ‘calling conventions’: [ERROR]

z. DEFAULT (0x0)

aa. VARARG (0x5)

ab. FIELD (0x6)

ac. GENERIC (0x10)
Implementation Specific (Microsoft)

The above names are defined in the file inc\CorHdr.h as part of the SDK using the prefix IMAGE_CEE_CS_CALLCONV_

6. The MemberRef table shall contain no duplicates, where duplicate rows have the same Class, Name, and Signature [WARNING]

7. Signature shall not have the VARARG (0x5) calling convention [CLS]

8. There shall be no duplicate rows, where Name fields are compared using CLS conflicting-identifier-rules. (In particular, note that the return type and whether parameters are marked ELEMENT_TYPE_BYREF (§23.1.16

) are ignored in the CLS. For example, .method int32 M()and .method float64 M() result in duplicate rows by CLS rules. Similarly, .method void N(int32 i)and .method void N(int32& i)also result in duplicate rows by CLS rules.) [CLS]

Implementation Specific (Microsoft)

Name shall not be of the form _VtblGapSequenceNumber<_CountOfSlots>—such methods are dummies, used to pad entries in the vtable that CLI generates for COM interop. Such methods cannot be called from managed or unmanaged code [ERROR]
9. If Class and Name resolve to a field, then that field shall not have a value of CompilerControlled (§23.1.5

) in its Flags.FieldAccessMask subfield [ERROR]

10. If Class and Name resolve to a method, then that method shall not have a value of CompilerControlled in its Flags.MemberAccessMask (§23.1.10

) subfield [ERROR]

11. The type containing the definition of a MemberRef shall be a TypeSpec representing an instantiated type.
End informative text

22.26 MethodDef : 0x06 XE "metadata table:MethodDef" \b
The MethodDef table has the following columns:

· RVA (a 4-byte constant)

· ImplFlags (a 2-byte bitmask of type MethodImplAttributes, §23.1.10

)

· Flags (a 2-byte bitmask of type MethodAttributes, §23.1.10

)

· Name (an index into the String heap)

· Signature (an index into the Blob heap)

· ParamList (an index into the Param table). It marks the first of a contiguous run of Parameters owned by this method. The run continues to the smaller of:

· the last row of the Param table

· the next run of Parameters, found by inspecting the ParamList of the next row in the MethodDef table

Conceptually, every row in the MethodDef table is owned by one, and only one, row in the TypeDef table.

The rows in the MethodDef table result from .method directives (§25.4

)
15

). The RVA column is computed when the image for the PE file is emitted and points to the COR_ILMETHOD structure for the body of the method (§
[Note: If Signature is GENERIC (0x10), the generic arguments are described in the GenericParam table (§22.20). end note]

This contains informative text only

1. The MethodDef table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the TypeDef table [ERROR]

3. ImplFlags shall have only those values set that are specified [ERROR]

4. Flags shall have only those values set that are specified [ERROR]

5. If Name is .ctor and the method is marked SpecialName, there shall not be a row in the GenericParam table which has this MethodDef as its owner. [ERROR]
6. The MemberAccessMask (§23.1.10

) subfield of Flags shall contain precisely one of CompilerControlled, Private, FamANDAssem, Assem, Family, FamORAssem, or Public [ERROR]

7. The following combined bit settings in Flags are invalid [ERROR]

ad. Static | Final
ae. Static | Virtual
af. Static | NewSlot
ag. Final
 | Abstract
ah. Abstract | PinvokeImpl
ai. CompilerControlled | SpecialName
aj. CompilerControlled | RTSpecialName
8. An abstract method shall be virtual. So, if Flags.Abstract = 1 then Flags.Virtual shall also be 1 [ERROR]

9. If Flags.RTSpecialName = 1 then Flags.SpecialName shall also be 1 [ERROR]

Implementation Specific (Microsoft)

An abstract method cannot have ForwardRef (§23.1.11

) set, and vice versa. So:

if Flags.Abstract = 1 then ImplFlags.ForwardRef shall be 0 [ERROR]

if ImplFlags.ForwardRef = 1 then Flags.Abstract shall be 0 [ERROR]

The ForwardRef bit shall be set only in an OBJ file (used by managed extensions for C++). By the time a method executes, its ForwardRef shall be 0. [ERROR]

10. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true: [ERROR]

· this Method owns at least row in the DeclSecurity table

· this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute
11. If this Method owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall be 1 [ERROR]

12. If this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then Flags.HasSecurity shall be 1 [ERROR]

13. A Method can have a custom attribute called DynamicSecurityMethodAttribute, but this has no effect whatsoever upon the value of its Flags.HasSecurity
14. Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME

15. Interfaces cannot have instance constructors. So, if this Method is owned by an Interface, then its Name cannot be .ctor [ERROR]

16. Interfaces can only own virtual methods (not static or instance methods). So, if this Method is owned by an Interface, Flags.Static shall be clear [ERROR]

17. The Name string shall be a valid CLS identifier (unless Flags.RTSpecialName is set - for example, .cctor is valid) [CLS]

18. Signature shall index a valid method signature in the Blob heap [ERROR]

19. If Flags.CompilerControlled = 1, then this row is ignored completely in duplicate checking

20. If the owner of this method is the internally-generated type called <Module>, XE "<Module>;Module" it denotes that this method is defined at module scope. [Note: In C++, the method is called global and can be referenced only within its compiland, from its point of declaration forwards. end note] In this case:

ak. Flags.Static shall be 1 [ERROR]

al. Flags.Abstract shall be 0 [ERROR]

am. Flags.Virtual shall be 0 [ERROR]

an. Flags.MemberAccessMask subfield shall be one of CompilerControlled, Public, or Private [ERROR]

ao. module-scope methods are not allowed [CLS]

21. It makes no sense for ValueTypes, which have no identity, to have synchronized methods (unless they are boxed). So, if the owner of this method is a ValueType then the method cannot be synchronized. That is, ImplFlags.Synchronized shall be 0 [ERROR]

22. There shall be no duplicate rows in the MethodDef table, based upon owner + Name + Signature (where owner is the owning row in the TypeDef table). (Note that the Signature encodes whether or not the method is generic, and for generic methods, it encodes the number of generic parameters.) (Note, however, that if Flags.CompilerControlled = 1, then this row is excluded from duplicate checking) [ERROR]

23. There shall be no duplicate rows in the MethodDef table, based upon owner + Name + Signature, where Name fields are compared using CLS conflicting-identifier-rules; also, the Type defined in the signatures shall be different. So, for example, "int i" and "float i" would be considered CLS duplicates; also, the return type of the method is ignored (Note, however, that if Flags.CompilerControlled = 1, this row is excluded from duplicate checking as explained above.) [CLS]

24. If Final, NewSlot, or Strict are set in Flags, then Flags.Virtual shall also be set [ERROR]

25. If Flags.PInvokeImpl is set, then Flags.Virtual shall be 0 [ERROR]

26. If Flags.Abstract != 1 then exactly one of the following shall also be true: [ERROR]

· RVA != 0

· Flags.PInvokeImpl = 1

· ImplFlags.Runtime = 1

Implementation Specific (Microsoft)

There is an additional mutually exclusive possibility related to COM Interop: the owner of this method is marked Import = 1

27. If the method is CompilerControlled, then the RVA shall be non-zero or marked with PinvokeImpl = 1 [ERROR]

28. Signature shall have exactly one of the following managed calling conventions [ERROR]

ap. DEFAULT (0x0)

aq. VARARG (0x5)
ar. GENERIC (0x10)

Implementation Specific (Microsoft)

The above names are defined in the file inc\CorHdr.h as part of the SDK, using a prefix of “IMAGE_CEE_CS_CALLCONV_”

29. Signature shall have the calling convention DEFAULT (0x0) or GENERIC (0x10). [CLS]

30. Signature: If and only if the method is not Static then the calling convention byte in Signature has its HASTHIS (0x20) bit set [ERROR]

31. Signature: If the method is static, then the HASTHIS (0x20) bit in the calling convention shall be 0 [ERROR]

32. If EXPLICITTHIS (0x40) in the signature is set, then HASTHIS (0x20) shall also be set (note that if EXPLICITTHIS is set, then the code is not verifiable) [ERROR]

33. The EXPLICITTHIS (0x40) bit can be set only in signatures for function pointers: signatures whose MethodDefSig is preceded by FNPTR (0x1B) [ERROR]

34. If RVA = 0, then either: [ERROR]

· Flags.Abstract = 1, or

· ImplFlags.Runtime = 1, or

· Flags.PinvokeImpl = 1, or

Implementation Specific (Microsoft)

There are two additional mutually exclusive possibilities:

ImplFlags.InternalCall = 1, or

owner row in TypeDef table has Flags.Import = 1

35. If RVA != 0, then: [ERROR]

as. Flags.Abstract shall be 0, and

at. ImplFlags.CodeTypeMask shall have exactly one of the following values: Native, CIL, or Runtime, and

au. RVA shall point into the CIL code stream in this file

Implementation Specific (Microsoft)

There are two additional requirements:

ImplFlags.InternalCall = 0, and

the owner row in TypeDef table has Flags.tdImport = 0

36. If Flags.PinvokeImpl = 1 then [ERROR]

· RVA = 0 and the method owns a row in the ImplMap table

Implementation Specific (Microsoft)

For IJW thunks there is an additional possibility, where the method is actually a managed method in the current module:

RVA != 0 and the method does not own a row in the ImplMap table and the method signature includes a custom modifier that specifies the native calling convention

37. If Flags.RTSpecialName = 1 then Name shall be one of: [ERROR]

av. .ctor (an object constructor method)

aw. .cctor (a class constructor method)

Implementation Specific (Microsoft)

For COM Interop, an additional class of method names are permitted:

 VtblGap<SequenceNumber><CountOfSlots>
where <SequenceNumber> and <CountOfSlots> are decimal numbers

38. Conversely, if Name is any of the above special names then Flags.RTSpecialName shall be set [ERROR]

39. If Name = .ctor (an object constructor method) then:

ax. return type in Signature shall be ELEMENT_TYPE_VOID (§23.1.16

) [ERROR]
ay. Flags.Static shall be 0 [ERROR]

az. Flags.Abstract shall be 0 [ERROR]
ba. Flags.Virtual shall be 0 [ERROR]

bb. ‘Owner’ type shall be a valid Class or ValueType (not <Module> XE "<Module>;Module" and not an Interface) in the TypeDef table [ERROR]

bc. there can be zero or more .ctors for any given ‘owner’

40. If Name = .cctor (a class constructor method) then:

bd. the return type in Signature shall be ELEMENT_TYPE_VOID (§23.1.16

) [ERROR]
be. Signature shall have DEFAULT (0x0) for its calling convention [ERROR]

bf. there shall be no parameters supplied in Signature [ERROR]

bg. Flags.Static shall be set [ERROR]

bh. Flags.Virtual shall be clear [ERROR]

bi. Flags.Abstract shall be clear [ERROR]

41. Among the set of methods owned by any given row in the TypeDef table there can only be 0 or 1 methods named .cctor [ERROR]

End informative text

22.27 MethodImpl : 0x19 XE "metadata table:MethodImpl" \b
MethodImpl tables let a compiler override the default inheritance rules provided by the CLI. Their original use was to allow a class C, that inherited method M from both interfaces I and J, to provide implementations for both methods (rather than have only one slot for M in its vtable). However, MethodImpls can be used for other reasons too, limited only by the compiler writer’s ingenuity within the constraints defined in the Validation rules below.

In the example above, Class specifies C, MethodDeclaration specifies I::M, MethodBody specifies the method which provides the implementation for I::M (either a method body within C, or a method body implemented by a base class of C).
The MethodImpl table has the following columns:

· Class (an index into the TypeDef table)

· MethodBody (an index into the MethodDef or MemberRef table; more precisely, a MethodDefOrRef (§24.2.6) coded index)
· MethodDeclaration (an index into the MethodDef or MemberRef table; more precisely, a MethodDefOrRef (§24.2.6) coded index)
ILAsm uses the .override directive to specify the rows of the MethodImpl table (§15.4.1

).
10.3.2

 and §
This contains informative text only

1. The MethodImpl table can contain zero or more rows

2. Class shall index a valid row in the TypeDef table [ERROR]

3. MethodBody shall index a valid row in the MethodDef or MethodRef table [ERROR]

4. The method indexed by MethodDeclaration shall have Flags.Virtual set [ERROR]

5. The owner Type of the method indexed by MethodDeclaration shall not have Flags.Sealed = 0 [ERROR]

6. The method indexed by MethodBody shall be a member of Class or some base class of Class (MethodImpls do not allow compilers to ‘hook’ arbitrary method bodies) [ERROR]

7. The method indexed by MethodBody shall be virtual [ERROR]

8. The method indexed by MethodBody shall have its Method.RVA != 0 (cannot be an unmanaged method reached via PInvoke, for example) [ERROR]

9. MethodDeclaration shall index a method in the ancestor chain of Class (reached via its Extends chain) or in the interface tree of Class (reached via its InterfaceImpl entries) [ERROR]

10. The method indexed by MethodDeclaration shall not be final (its Flags.Final shall be 0) [ERROR]

11. If MethodDeclaration has the Strict flag set, the method indexed by MethodDeclaration shall be accessible to Class. [ERROR]

12. The method signature defined by MethodBody shall match those defined by MethodDeclaration [ERROR]

13. There shall be no duplicate rows, based upon Class+MethodDeclaration [ERROR]

End informative text

22.28 MethodSemantics : 0x18 XE "metadata table:MethodSemantics" \b
The MethodSemantics table has the following columns:

· Semantics (a 2-byte bitmask of type MethodSemanticsAttributes, §23.1.12)

· Method (an index into the MethodDef table)

· Association (an index into the Event or Property table; more precisely, a HasSemantics (§24.2.6) coded index)

The rows of the MethodSemantics table are filled by .property (§1817

) and .event directives (§). (See §22.13

 for more information.)
This contains informative text only

1. MethodSemantics table can contain zero or more rows

2. Semantics shall have only those values set that are specified [ERROR]

3. Method shall index a valid row in the MethodDef table, and that row shall be for a method defined on the same class as the Property or Event this row describes [ERROR]

4. All methods for a given Property or Event shall have the same accessibility (ie the MemberAccessMask subfield of their Flags row) and cannot be CompilerControlled [CLS]

5. Semantics: constrained as follows:

· If this row is for a Property, then exactly one of Setter, Getter, or Other shall be set [ERROR]

· If this row is for an Event, then exactly one of AddOn, RemoveOn, Fire, or Other shall be set [ERROR]

6. If this row is for an Event, and its Semantics is Addon or RemoveOn, then the row in the MethodDef table indexed by Method shall take a Delegate as a parameter, and return void [ERROR]

7. If this row is for an Event, and its Semantics is Fire, then the row indexed in the MethodDef table by Method can return any type

Implementation Specific (Microsoft)

The return type of the Fire method shall be void

8. For each property, there shall be a setter, or a getter, or both [CLS]

9. Any getter method for a property whose Name is xxx shall be called get_xxx [CLS]

10. Any setter method for a property whose Name is xxx shall be called set_xxx [CLS]

11. If a property provides both getter and setter methods, then these methods shall have the same value in the Flags.MemberAccessMask subfield [CLS]

12. If a property provides both getter and setter methods, then these methods shall have the same value for their Method.Flags.Virtual [CLS]

13. Any getter and setter methods shall have Method.Flags.SpecialName = 1 [CLS]

14. Any getter method shall have a return type which matches the signature indexed by the Property.Type field [CLS]

15. The last parameter for any setter method shall have a type which matches the signature indexed by the Property.Type field [CLS]

16. Any setter method shall have return type ELEMENT_TYPE_VOID (§23.1.16

) in Method.Signature [CLS]

17. If the property is indexed, the indexes for getter and setter shall agree in number and type [CLS]

18. Any AddOn method for an event whose Name is xxx shall have the signature: void add_xxx (<DelegateType> handler) [CLS]

19. Any RemoveOn method for an event whose Name is xxx shall have the signature: void remove_xxx(<DelegateType> handler) [CLS]

20. Any Fire method for an event whose Name is xxx shall have the signature: void raise_xxx(Event e) [CLS]

End informative text

22.29 MethodSpec : 0x2B XE "metadata table:MethodSpec" \b
The MethodSpec table has the following columns:

· Method (an index into the MethodDef or MethodRef table, specifying to which generic method this row refers; that is, which generic method this row is an instantiation of; more precisely, a MethodDefOrRef (§24.2.6) coded index)
· Instantiation (an index into the Blob heap (§23.2.15), holding the signature of this instantiation)
The MethodSpec table records the signature of an instantiated generic method.
Each unique instantiation of a generic method (i.e., a combination of Method and Instantiation) shall be represented by a single row in the table.
This contains informative text only

1. The MethodSpec table can contain zero or more rows

2. One or more rows can refer to the same row in the MethodDef or MethodRef table. (There can be multiple instantiations of the same generic method.)

3. The signature stored at Instantiation shall be a valid instantiation of the signature of the generic method stored at Method [ERROR]

4. There shall be no duplicate rows based upon Method+Instantiation [ERROR]

End informative text

22.30 Module : 0x00 XE "metadata table:Module" \b
The Module table has the following columns:

· Generation (a 2-byte value, reserved, shall be zero)
· Name (an index into the String heap)

· Mvid (an index into the Guid heap; simply a Guid used to distinguish between two versions of the same module)

· EncId (an index into the Guid heap; reserved, shall be zero)

· EncBaseId (an index into the Guid heap; reserved, shall be zero)

The Mvid column shall index a unique GUID in the GUID heap (§24.2.5

) that identifies this instance of the module. The Mvid can be ignored on read by conforming implementations of the CLI. The Mvid should be newly generated for every module, using the algorithm specified in ISO/IEC 11578:1996 (Annex A) or another compatible algorithm.

[Note: The term GUID stands for Globally Unique IDentifier, a 16-byte long number typically displayed using its hexadecimal encoding. A GUID can be generated by several well-known algorithms including those used for UUIDs (Universally Unique IDentifiers) in RPC and CORBA, as well as CLSIDs, GUIDs, and IIDs in COM. end note]
[Rationale: While the VES itself makes no use of the Mvid, other tools (such as debuggers, which are outside the scope of this standard) rely on the fact that the Mvid almost always differs from one module to another. end rationale]
The Generation, EncId, and EncBaseId columns can be written as zero, and can be ignored by conforming implementations of the CLI. The rows in the Module table result from .module directives in the Assembly (§6.4

).

This contains informative text only

1. The Module table shall contain one and only one row [ERROR]

2. Name shall index a non-empty string. This string should match exactly any corresponding ModuleRef.Name string that resolves to this module. [ERROR]

Implementation Specific (Microsoft)

Name is limited to MAX_PATH_NAME
The format of Name is <file name>.<file extension> with no path or drive letter; on POSIX-compliant systems Name contains no colon, no forward-slash, no backslash.

3. Mvid shall index a non-null GUID in the Guid heap [ERROR]

End informative text

22.31 ModuleRef : 0x1A XE "metadata table:ModuleRef" \b
The ModuleRef table has the following column:

· Name (an index into the String heap)

The rows in the ModuleRef table result from .module extern directives in the Assembly (§6.5

).

This contains informative text only

1. Name shall index a non-empty string in the String heap. This string shall enable the CLI to locate the target module (typically, it might name the file used to hold the module) [ERROR]

Implementation Specific (Microsoft)

Name is limited to MAX_PATH_NAME

The format of Name is <filename>.<extension> (eg, “Foo.DLL” - no drive letter, no path); on POSIX-compliant systems Name contains no colon, no forward-slash, no backslash.

2. There should be no duplicate rows [WARNING]

3. Name should match an entry in the Name column of the File table. Moreover, that entry shall enable the CLI to locate the target module (typically it might name the file used to hold the module) [ERROR]

End informative text

22.32 NestedClass : 0x29 XE "metadata table:NestedClass" \b
The NestedClass table has the following columns:

· NestedClass (an index into the TypeDef table)

· EnclosingClass (an index into the TypeDef table)

NestedClass is defined as lexically ‘inside’ the text of its enclosing Type.

This contains informative text only

The NestedClass table records which Type definitions are nested within which other Type definition. In a typical high-level language, the nested class is defined as lexically ‘inside’ the text of its enclosing Type

1. The NestedClass table can contain zero or more rows

2. NestedClass shall index a valid row in the TypeDef table [ERROR]

3. EnclosingClass shall index a valid row in the TypeDef table (note particularly, it is not allowed to index the TypeRef table) [ERROR]

4. There should be no duplicate rows (ie same values for NestedClass and EnclosingClass) [WARNING]

5. A given Type can only be nested by one encloser. So, there cannot be two rows with the same value for NestedClass, but different value for EnclosingClass [ERROR]

6. A given Type can ‘own’ several different nested Types, so it is perfectly valid to have two or more rows with the same value for EnclosingClass but different values for NestedClass
End informative text

22.33 Param : 0x08 XE "metadata table:Param" \b
The Param table has the following columns:

· Flags (a 2-byte bitmask of type ParamAttributes, §23.1.13

)

· Sequence (a 2-byte constant)

· Name (an index into the String heap)

Conceptually, every row in the Param table is owned by one, and only one, row in the MethodDef table

The rows in the Param table result from the parameters in a method declaration (§15.4.1

).
15.4

), or from a .param attribute attached to a method (§
This contains informative text only

1. Param table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the MethodDef table [ERROR]

3. Flags shall have only those values set that are specified (all combinations valid) [ERROR]

4. Sequence shall have a value >= 0 and <= number of parameters in owner method. A Sequence value of 0 refers to the owner method’s return type; its parameters are then numbered from 1 onwards [ERROR]

5. Successive rows of the Param table that are owned by the same method shall be ordered by increasing Sequence value - although gaps in the sequence are allowed [WARNING]

6. If Flags.HasDefault = 1 then this row shall own exactly one row in the Constant table [ERROR]

7. If Flags.HasDefault = 0, then there shall be no rows in the Constant table owned by this row [ERROR]

8. parameters cannot be given default values, so Flags.HasDefault shall be 0 [CLS]

9. if Flags.FieldMarshal = 1 then this row shall own exactly one row in the FieldMarshal table [ERROR]

10. Name can be null or non-null

11. If Name is non-null, then it shall index a non-empty string in the String heap [WARNING]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME
End informative text

22.34 Property : 0x17 XE "metadata table:Property" \b
Properties within metadata are best viewed as a means to gather together collections of methods defined on a class, give them a name, and not much else. The methods are typically get_ and set_ methods, already defined on the class, and inserted like any other methods into the MethodDef table. The association is held together by three separate tables, as shown below:

[image: image12.png]MyClass

get_Foo
sel_Foo
getBar

set Bar

TypeDef Table

PropertyMap Tatie.

MethodDef Table

MethodSemantcs Table

Property Table

Row 3 of the PropertyMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing row 4 of the Property table on the right – the row for a property called Foo. This setup establishes that MyClass has a property called Foo. But what methods in the MethodDef table are gathered together as ‘belonging’ to property Foo? That association is contained in the MethodSemantics table – its row 2 indexes property Foo to the right, and row 2 in the MethodDef table to the left (a method called get_Foo). Also, row 3 of the MethodSemantics table indexes Foo to the right, and row 3 in the MethodDef table to the left (a method called set_Foo). As the shading suggests, MyClass has another property, called Bar, with two methods, get_Bar and set_Bar.

Property tables do a little more than group together existing rows from other tables. The Property table has columns for Flags, Name (eg Foo and Bar in the example here) and Type. In addition, the MethodSemantics table has a column to record whether the method it points at is a set_, a get_ or other.

[Note: The CLS (see Partition I_alink=Partition_I
) refers to instance, virtual, and static properties. The signature of a property (from the Type column) can be used to distinguish a static property, since instance and virtual properties will have the “HASTHIS” bit set in the signature (§23.2.1

) while a static property will not. The distinction between an instance and a virtual property depends on the signature of the getter and setter methods, which the CLS requires to be either both virtual or both instance. end note]
The Property (0x17) table has the following columns:

· Flags (a 2-byte bitmask of type PropertyAttributes, §23.1.14

)

· Name (an index into the String heap)

· Type (an index into the Blob heap) (The name of this column is misleading. It does not index a TypeDef or TypeRef table—instead it indexes the signature in the Blob heap of the Property)

This contains informative text only

1. Property table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the PropertyMap table (as described above) [ERROR]

3. PropFlags shall have only those values set that are specified (all combinations valid) [ERROR]

4. Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME
5. The Name string shall be a valid CLS identifier [CLS]

6. Type shall index a non-null signature in the Blob heap [ERROR]

7. The signature indexed by Type shall be a valid signature for a property (ie, low nibble of leading byte is 0x8). Apart from this leading byte, the signature is the same as the property’s get_ method [ERROR]

8. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based upon Name+Type [ERROR]

9. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS conflicting-identifier-rules (in particular, properties cannot be overloaded by their Type – a class cannot have two properties, "int Foo" and "String Foo", for example) [CLS]

End informative text

22.35 PropertyMap : 0x15 XE "metadata table:PropertyMap" \b
The PropertyMap table has the following columns:

· Parent (an index into the TypeDef table)

· PropertyList (an index into the Property table). It marks the first of a contiguous run of Properties owned by Parent. The run continues to the smaller of:

· the last row of the Property table

· the next run of Properties, found by inspecting the PropertyList of the next row in this PropertyMap table

The PropertyMap and Property tables result from putting the .property directive on a class (§17

).

This contains informative text only

1. PropertyMap table can contain zero or more rows

2. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the start of its property list) [ERROR]

3. There shall be no duplicate rows, based upon PropertyList (different classes cannot share rows in the Property table) [ERROR]

End informative text

22.36 StandAloneSig : 0x11 XE "metadata table:StandAloneSig" \b
Signatures are stored in the metadata Blob heap. In most cases, they are indexed by a column in some table—Field.Signature, Method.Signature, MemberRef.Signature, etc. However, there are two cases that require a metadata token for a signature that is not indexed by any metadata table. The StandAloneSig table fulfils this need. It has just one column, which points to a Signature in the Blob heap.

The signature shall describe either:

· a method – code generators create a row in the StandAloneSig table for each occurrence of a calli CIL instruction. That row indexes the call-site signature for the function pointer operand of the calli instruction

· local variables – code generators create one row in the StandAloneSig table for each method, to describe all of its local variables. The .locals directive (§15.4.1) in ILAsm generates a row in the StandAloneSig table.

TheStandAloneSig table has the following column:

· Signature (an index into the Blob heap)

[Example:

// On encountering the calli instruction, ilasm generates a signature
// in the blob heap (DEFAULT, ParamCount = 1, RetType = int32, Param1 = int32),
// indexed by the StandAloneSig table:
.assembly Test {}
.method static int32 AddTen(int32)
{ ldarg.0
 ldc.i4 10
 add
 ret
}
.class Test
{ .method static void main()
 { .entrypoint
 ldc.i4.1
 ldftn int32 AddTen(int32)
 calli int32(int32)
 pop
 ret
 }
}
end example]

This contains informative text only

1. The StandAloneSig table can contain zero or more rows

2. Signature shall index a valid signature in the Blob heap [ERROR]

3. The signature 'blob' indexed by Signature shall be a valid METHOD or LOCALS signature [ERROR]

4. Duplicate rows are allowed

End informative text

22.37 TypeDef : 0x02 XE "metadata table:TypeDef" \b
The TypeDef table has the following columns:

· Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15

)

· TypeName (an index into the String heap)

· TypeNamespace (an index into the String heap)

· Extends (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef (§24.2.6) coded index)
· FieldList (an index into the Field table; it marks the first of a contiguous run of Fields owned by this Type). The run continues to the smaller of:

· the last row of the Field table

· the next run of Fields, found by inspecting the FieldList of the next row in this TypeDef table

· MethodList (an index into the MethodDef table; it marks the first of a continguous run of Methods owned by this Type). The run continues to the smaller of:

· the last row of the MethodDef table

· the next run of Methods, found by inspecting the MethodList of the next row in this TypeDef table

The first row of the TypeDef table represents the pseudo class that acts as parent for functions and variables defined at module scope.

Note that any type shall be one, and only one, of

· Class (Flags.Interface = 0, and derives ultimately from System.Object)

· Interface (Flags.Interface = 1)

· Value type, derived ultimately from System.ValueType
For any given type, there are two separate and distinct chains of pointers to other types (the pointers are actually implemented as indexes into metadata tables). The two chains are:

· Extension chain – defined via the Extends column of the TypeDef table. Typically, a derived Class extends a base Class (always one, and only one, base Class)

· Interface chains – defined via the InterfaceImpl table. Typically, a Class implements zero, one or more Interfaces

These two chains (extension and interface) are always kept separate in metadata. The Extends chain represents one-to-one relations—that is, one Class extends (or ‘derives from’) exactly one other Class (called its immediate base class). The Interface chains can represent one-to-many relations—that is, one Class might well implement two or more Interfaces.

An interface can also implement one or more other interfaces—metadata stores those links via the InterfaceImpl table (the nomenclature is a little inappropriate here—there is no “implementation” involved; perhaps a clearer name might have been Interface table, or InterfaceInherit table)

Another slightly specialized type is a nested type which is declared in ILAsm as lexically nested within an enclosing type declaration. Whether a type is nested can be determined by the value of its Flags.Visibility sub-field – it shall be one of the set {NestedPublic, NestedPrivate, NestedFamily, NestedAssembly, NestedFamANDAssem, NestedFamORAssem}.

If a type is generic, its parameters are defined in the GenericParam table (§22.20). Entries in the GenericParam table reference entries in the TypeDef table; there is no reference from the TypeDef table to the GenericParam table.

This contains informative text only

The roots of the inheritance hierarchies look like this:

[image: image13.png]—

Iterface.

Iterface.

Class

l

ValueType

Enum,

There is one system-defined root, System.Object. All Classes and ValueTypes shall derive, ultimately, from System.Object; Classes can derive from other Classes (through a single, non-looping chain) to any depth required. This Extends inheritance chain is shown with heavy arrows.

(See below for details of the System.Delegate Class)

Interfaces do not inherit from one another; however, they can have zero or more required interfaces, which shall be implemented. The Interface requirement chain is shown as light, dashed arrows. This includes links between Interfaces and Classes/ValueTypes – where the latter are said to implement that interface or interfaces.

Regular ValueTypes (i.e., excluding Enums – see later) are defined as deriving directly from System.ValueType. Regular ValueTypes cannot be derived to a depth of more than one. (Another way to state this is that user-defined ValueTypes shall be sealed.) User-defined Enums shall derive directly from System.Enum. Enums cannot be derived to a depth of more than one below System.Enum. (Another way to state this is that user-defined Enums shall be sealed.) System.Enum derives directly from System.ValueType.

User-defined delegates derive from System.Delegate. Delegates cannot be derived to a depth of more than one.

Implementation-Specific (Microsoft)

The hierarchy below System.Delegate is as follows:

[image: image14.png]System Delegate

\

System MulicasiDelegate

}

Vaicasorogme |]

User-defined delegates derive directly from System.MulticastDelegate.

For the directives to declare types see §9

.

1. A TypeDef table can contain one or more rows.

2. Flags:

bj. Flags shall have only those values set that are specified [ERROR]

bk. can set 0 or 1 of SequentialLayout and ExplicitLayout (if none set, then defaults to AutoLayout) [ERROR]

bl. can set 0 or 1 of UnicodeClass and AutoClass (if none set, then defaults to AnsiClass) [ERROR]

Implementation Specific (Microsoft)

if RTSpecialName is set, then this Type is regarded as deleted (used in Edit&Continue and incremental compilation scenarios) Perform no checks on this Type or any of its members (the information is not physically deleted; it is just ‘flagged’ as logically deleted) Note: this situation can only be seen on in-memory metadata—it is not persisted to disk, and therefore irrelevant to checks done by an offline tool
if Import is set (denotes a Type defined via the TlbImp tool), then all the methods owned by this Type shall have their Method.RVA = 0 [ERROR]

bm. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true: [ERROR]

· this Type owns at least one row in the DeclSecurity table

· this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute
bn. If this Type owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall be 1 [ERROR]

bo. If this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then Flags.HasSecurity shall be 1 [ERROR]

bp. Note that it is valid for an Interface to have HasSecurity set. However, the security system ignores any permission requests attached to that Interface

3. Name shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME
4. The TypeName string shall be a valid CLS identifier [CLS]

5. TypeNamespace can be null or non-null

6. If non-null, then TypeNamespace shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME. Also, the concatenated TypeNamespace + "." + TypeName shall be less than MAX_CLASS_NAME
7. If non-null, TypeNamespace’s string shall be a valid CLS Identifier [CLS]

8. Every Class (with the exception of System.Object and the special class <Module>) shall extend one, and only one, other Class - so Extends for a Class shall be non-null [ERROR]

9. System.Object shall have an Extends value of null [ERROR]

10. System.ValueType shall have an Extends value of System.Object [ERROR]

11. With the exception of System.Object and the special class <Module>, for any Class, Extends shall index a valid row in the TypeDef, TypeRef, or TypeSpec table, where valid means 1 <= row <= rowcount. In addition, that row itself shall be a Class (not an Interface or ValueType) In addition, that base Class shall not be sealed (its Flags.Sealed shall be 0) [ERROR]

12. A Class cannot extend itself, or any of its children (i.e., its derived Classes), since this would introduce loops in the hierarchy tree [ERROR] (For generic types, see §9.1 and §9.2.)
13. An Interface never extends another Type - so Extends shall be null (Interfaces do implement other Interfaces, but recall that this relationship is captured via the InterfaceImpl table, rather than the Extends column) [ERROR]

14. FieldList can be null or non-null

15. A Class or Interface can ‘own’ zero or more fields

16. A ValueType shall have a non-zero size - either by defining at least one field, or by providing a non-zero ClassSize [ERROR]

17. If FieldList is non-null, it shall index a valid row in the Field table, where valid means 1 <= row <= rowcount+1 [ERROR]

18. MethodList can be null or non-null

19. A Type can ‘own’ zero or more methods

20. The runtime size of a ValueType shall not exceed 1 MByte (0x100000 bytes) [ERROR]

Implementation Specific (Microsoft)

Current implementation actually allows 0x3F0000 bytes, but might be reduced in future

21. If MethodList is non-null, it shall index a valid row in the MethodDef table, where valid means 1 <= row <= rowcount+1 [ERROR]

22. A Class which has one or more abstract methods cannot be instantiated, and shall have Flags.Abstract = 1. Note that the methods owned by the class include all of those inherited from its base class and interfaces it implements, plus those defined via its MethodList. (The CLI shall analyze class definitions at runtime; if it finds a class to have one or more abstract methods, but has Flags.Abstract = 0, it will throw an exception) [ERROR]

23. An Interface shall have Flags.Abstract = 1 [ERROR]

24. It is valid for an abstract Type to have a constructor method (ie, a method named .ctor)

25. Any non-abstract Type (ie Flags.Abstract = 0) shall provide an implementation (body) for every method its contract requires. Its methods can be inherited from its base class, from the interfaces it implements, or defined by itself. The implementations can be inherited from its base class, or defined by itself [ERROR]

26. An Interface (Flags.Interface = 1) can own static fields (Field.Static = 1) but cannot own instance fields (Field.Static = 0) [ERROR]

27. An Interface cannot be sealed (if Flags.Interface = 1, then Flags.Sealed shall be 0) [ERROR]

28. All of the methods owned by an Interface (Flags.Interface = 1) shall be abstract (Flags.Abstract = 1) [ERROR]

29. There shall be no duplicate rows in the TypeDef table, based on TypeNamespace+TypeName (unless this is a nested type - see below) [ERROR]

30. If this is a nested type, there shall be no duplicate row in the TypeDef table, based upon TypeNamespace+TypeName+OwnerRowInNestedClassTable [ERROR]

31. There shall be no duplicate rows, where TypeNamespace+TypeName fields are compared using CLS conflicting-identifier-rules (unless this is a nested type - see below) [CLS]

32. If this is a nested type, there shall be no duplicate rows, based upon TypeNamespace+TypeName+OwnerRowInNestedClassTable and where TypeNamespace+TypeName fields are compared using CLS conflicting-identifier-rules [CLS]

33. If Extends = System.Enum (i.e., type is a user-defined Enum) then:

bq. shall be sealed (Sealed = 1) [ERROR]

br. shall not have any methods of its own (MethodList chain shall be zero length) [ERROR]

bs. shall not implement any interfaces (no entries in InterfaceImpl table for this type) [ERROR]

bt. shall not have any properties [ERROR]

bu. shall not have any events [ERROR]

bv. any static fields shall be literal (have Flags.Literal = 1) [ERROR]

bw. shall have one or more static, literal fields, each of which has the type of the Enum [CLS]

bx. shall be exactly one instance field, of built-in integer type [ERROR]
by. the Name string of the instance field shall be "value__", the field shall be marked RTSpecialName, and that field shall have one of the CLS integer types [CLS]
bz. shall not have any static fields unless they are literal [ERROR]

34. A Nested type (defined above) shall own exactly one row in the NestedClass table, where ‘owns’ means a row in that NestedClass table whose NestedClass column holds the TypeDef token for this type definition [ERROR]

35. A ValueType shall be sealed [ERROR]

End informative text

22.38 TypeRef : 0x01 XE "metadata table:TypeRef" \b
The TypeRef table has the following columns:

· ResolutionScope (an index into a Module, ModuleRef, AssemblyRef or TypeRef table, or null; more precisely, a ResolutionScope (§24.2.6) coded index)
· TypeName (an index into the String heap)

· TypeNamespace (an index into the String heap)

This contains informative text only

1. ResolutionScope shall be exactly one of:

ca. null - in this case, there shall be a row in the ExportedType table for this Type - its Implementation field shall contain a File token or an AssemblyRef token that says where the type is defined [ERROR]

cb. a TypeRef token, if this is a nested type (which can be determined by, for example, inspecting the Flags column in its TypeDef table - the accessibility subfield is one of the tdNestedXXX set) [ERROR]

cc. a ModuleRef token, if the target type is defined in another module within the same Assembly as this one [ERROR]

cd. a Module token, if the target type is defined in the current module - this should not occur in a CLI (“compressed metadata”) module [WARNING]

ce. an AssemblyRef token, if the target type is defined in a different Assembly from the current module [ERROR]

2. TypeName shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME
3. TypeNamespace can be null, or non-null

4. If non-null, TypeNamespace shall index a non-empty string in the String heap [ERROR]

Implementation Specific (Microsoft)

This string is limited to MAX_CLASS_NAME. Also, the concatenated TypeNamespace + "." + TypeName shall be less than MAX_CLASS_NAME
5. The TypeName string shall be a valid CLS identifier [CLS]

6. There shall be no duplicate rows, where a duplicate has the same ResolutionScope, TypeName and TypeNamespace [ERROR]

7. There shall be no duplicate rows, where TypeName and TypeNamespace fields are compared using CLS conflicting-identifier-rules [CLS]

End informative text

22.39 TypeSpec : 0x1B XE "metadata table:TypeSpec" \b
The TypeSpec table has just one column, which indexes the specification of a Type, stored in the Blob heap. This provides a metadata token for that Type (rather than simply an index into the Blob heap). This is required, typically, for array operations, such as creating, or calling methods on the array class.

The TypeSpec table has the following column:

· Signature (index into the Blob heap, where the blob is formatted as specified in §23.2.14

)

Note that TypeSpec tokens can be used with any of the CIL instructions that take a TypeDef or TypeRef token; specifically, castclass, cpobj, initobj, isinst, ldelema, ldobj, mkrefany, newarr, refanyval, sizeof, stobj, box, and unbox.
This contains informative text only

1. The TypeSpec table can contain zero or more rows
2. Signature shall index a valid Type specification in the Blob heap [ERROR]
3. There shall be no duplicate rows, based upon Signature [ERROR]

End informative text

23 Metadata logical format: other structures

23.1 Bitmasks and flags

This subclause explains the flags and bitmasks used in the metadata tables. When a conforming implementation encounters a metadata structure (such as a flag) that is not specified in this standard, the behavior of the implementation is unspecified.
23.1.1 Values for AssemblyHashAlgorithm

	Algorithm
	Value

	None
	0x0000

	Reserved (MD5)
	0x8003

	SHA1
	0x8004

23.1.2 Values for AssemblyFlags

	Flag
	Value
	Description

	PublicKey
	0x0001
	The assembly reference holds the full (unhashed) public key.

	SideBySideCompatible
	0x0000
	The assembly is side-by-side compatible

	<reserved>
	0x0030
	Reserved: both bits shall be zero

	Retargetable
	0x0100
	The implementation of this assembly used at runtime is not expected to match the version seen at compile time. (See the text following this table.)

	EnableJITcompileTracking
	0x8000
	Reserved (a conforming implementation of the CLI can ignore this setting on read; some implementations might use this bit to indicate that a CIL-to-native-code compiler should generate CIL-to-native code map)

	DisableJITcompileOptimizer
	0x4000
	Reserved (a conforming implementation of the CLI can ignore this setting on read; some implementations might use this bit to indicate that a CIL-to-native-code compiler should not generate optimized code)

In portable programs, the Retargetable (0x100) bit shall be set on all references to assemblies specified in this Standard.
23.1.3 Values for Culture

	ar-SA
	ar-IQ
	ar-EG
	ar-LY

	ar-DZ
	ar-MA
	ar-TN
	ar-OM

	ar-YE
	ar-SY
	ar-JO
	ar-LB

	ar-KW
	ar-AE
	ar-BH
	ar-QA

	bg-BG
	ca-ES
	zh-TW
	zh-CN

	zh-HK
	zh-SG
	zh-MO
	cs-CZ

	da-DK
	de-DE
	de-CH
	de-AT

	de-LU
	de-LI
	el-GR
	en-US

	en-GB
	en-AU
	en-CA
	en-NZ

	en-IE
	en-ZA
	en-JM
	en-CB

	en-BZ
	en-TT
	en-ZW
	en-PH

	es-ES-Ts
	es-MX
	es-ES-Is
	es-GT

	es-CR
	es-PA
	es-DO
	es-VE

	es-CO
	es-PE
	es-AR
	es-EC

	es-CL
	es-UY
	es-PY
	es-BO

	es-SV
	es-HN
	es-NI
	es-PR

	Fi-FI
	fr-FR
	fr-BE
	fr-CA

	Fr-CH
	fr-LU
	fr-MC
	he-IL

	hu-HU
	is-IS
	it-IT
	it-CH

	Ja-JP
	ko-KR
	nl-NL
	nl-BE

	nb-NO
	nn-NO
	pl-PL
	pt-BR

	pt-PT
	ro-RO
	ru-RU
	hr-HR

	Lt-sr-SP
	Cy-sr-SP
	sk-SK
	sq-AL

	sv-SE
	sv-FI
	th-TH
	tr-TR

	ur-PK
	id-ID
	uk-UA
	be-BY

	sl-SI
	et-EE
	lv-LV
	lt-LT

	fa-IR
	vi-VN
	hy-AM
	Lt-az-AZ

	Cy-az-AZ
	eu-ES
	mk-MK
	af-ZA

	ka-GE
	fo-FO
	hi-IN
	ms-MY

	ms-BN
	kk-KZ
	ky-KZ
	sw-KE

	Lt-uz-UZ
	Cy-uz-UZ
	tt-TA
	pa-IN

	gu-IN
	ta-IN
	te-IN
	kn-IN

	mr-IN
	sa-IN
	mn-MN
	gl-ES

	kok-IN
	syr-SY
	div-MV
	

Note on RFC 1766, Locale names: a typical string would be “en-US”. The first part (“en” in the example) uses ISO 639 characters (“Latin-alphabet characters in lowercase. No diacritical marks of modified characters are used”). The second part (“US” in the example) uses ISO 3166 characters (similar to ISO 639, but uppercase); that is, the familiar ASCII characters a–z and A–Z, respectively. However, whilst RFC 1766 recommends the first part be lowercase and the second part be uppercase, it allows mixed case. Therefore, the validation rule checks only that Culture is one of the strings in the list above—but the check is totally case-blind—where case-blind is the familiar fold on values less than U+0080

23.1.4 Flags for events [EventAttributes]

	Flag
	Value
	Description

	SpecialName
	0x0200
	Event is special.

	RTSpecialName
	0x0400
	CLI provides 'special' behavior, depending upon the name of the event

23.1.5 Flags for fields [FieldAttributes]

	Flag
	Value
	Description

	FieldAccessMask
	0x0007
	These 3 bits contain one of the following values:

	CompilerControlled
	0x0000
	Member not referenceable

	Private
	0x0001
	Accessible only by the parent type

	FamANDAssem
	0x0002
	Accessible by sub-types only in this Assembly

	Assembly
	0x0003
	Accessibly by anyone in the Assembly

	Family
	0x0004
	Accessible only by type and sub-types

	FamORAssem
	0x0005
	Accessibly by sub-types anywhere, plus anyone in assembly

	Public
	0x0006
	Accessibly by anyone who has visibility to this scope field contract attributes

	Static
	0x0010
	Defined on type, else per instance

	InitOnly
	0x0020
	Field can only be initialized, not written to after init

	Literal
	0x0040
	Value is compile time constant

	NotSerialized
	0x0080
	Reserved (to indicate this field should not be serialized when type is remoted)

	SpecialName
	0x0200
	Field is special

	Interop Attributes

	PInvokeImpl
	0x2000
	Implementation is forwarded through PInvoke.

	Additional flags

	RTSpecialName
	0x0400
	CLI provides 'special' behavior, depending upon the name of the field

	HasFieldMarshal
	0x1000
	Field has marshalling information

	HasDefault
	0x8000
	Field has default

	HasFieldRVA
	0x0100
	Field has RVA

23.1.6 Flags for files [FileAttributes]

	Flag
	Value
	Description

	ContainsMetaData
	0x0000
	This is not a resource file

	ContainsNoMetaData
	0x0001
	This is a resource file or other non-metadata-containing file

23.1.7 Flags for Generic Parameters [GenericParamAttributes]

	Flag
	Value
	Description

	VarianceMask
	0x0003
	These 2 bits contain one of the following values:

	None
	0x0000
	The generic parameter is non-variant and has no special constraints

	Covariant
	0x0001
	The generic parameter is covariant

	Contravariant
	0x0002
	The generic parameter is contravariant

	SpecialConstraintMask
	0x001C
	These 3 bits contain one of the following values:

	ReferenceTypeConstraint
	0x0004
	The generic parameter has the class special constraint

	NotNullableValueTypeConstraint
	0x0008
	The generic parameter has the valuetype special constraint

	DefaultConstructorConstraint
	0x0010
	The generic parameter has the .ctor special constraint

23.1.8 Flags for ImplMap [PInvokeAttributes]

	Flag
	Value
	Description

	NoMangle
	0x0001
	PInvoke is to use the member name as specified

	Character set

	CharSetMask
	0x0006
	This is a resource file or other non-metadata-containing file. These 2 bits contain one of the following values:

	CharSetNotSpec
	0x0000
	

	CharSetAnsi
	0x0002
	

	CharSetUnicode
	0x0004
	

	CharSetAuto
	0x0006
	

	SupportsLastError
	0x0040
	Information about target function. Not relevant for fields

	Calling convention

	CallConvMask
	0x0700
	These 3 bits contain one of the following values:

	CallConvWinapi
	0x0100
	

	CallConvCdecl
	0x0200
	

	CallConvStdcall
	0x0300
	

	CallConvThiscall
	0x0400
	

	CallConvFastcall
	0x0500
	

23.1.9 Flags for ManifestResource [ManifestResourceAttributes]

	Flag
	Value
	Description

	VisibilityMask
	0x0007
	These 3 bits contain one of the following values:

	Public
	0x0001
	The Resource is exported from the Assembly

	Private
	0x0002
	The Resource is private to the Assembly

23.1.10 Flags for methods [MethodAttributes]

	Flag
	Value
	Description

	MemberAccessMask
	0x0007
	These 3 bits contain one of the following values:

	CompilerControlled
	0x0000
	Member not referenceable

	Private
	0x0001
	Accessible only by the parent type

	FamANDAssem
	0x0002
	Accessible by sub-types only in this Assembly

	Assem
	0x0003
	Accessibly by anyone in the Assembly

	Family
	0x0004
	Accessible only by type and sub-types

	FamORAssem
	0x0005
	Accessibly by sub-types anywhere, plus anyone in assembly

	Public
	0x0006
	Accessibly by anyone who has visibility to this scope

	Static
	0x0010
	Defined on type, else per instance

	Final
	0x0020
	Method cannot be overridden

	Virtual
	0x0040
	Method is virtual

	HideBySig
	0x0080
	Method hides by name+sig, else just by name

	VtableLayoutMask
	0x0100
	Use this mask to retrieve vtable attributes. This bit contains one of the following values:

	ReuseSlot
	0x0000
	Method reuses existing slot in vtable

	NewSlot
	0x0100
	Method always gets a new slot in the vtable

	Strict
	0x0200
	Method can only be overriden if also accessible

	Abstract
	0x0400
	Method does not provide an implementation

	SpecialName
	0x0800
	Method is special

	Interop attributes

	PInvokeImpl
	0x2000
	Implementation is forwarded through PInvoke

	UnmanagedExport
	0x0008
	Reserved: shall be zero for conforming implementations

	Additional flags

	RTSpecialName
	0x1000
	CLI provides 'special' behavior, depending upon the name of the method

	HasSecurity
	0x4000
	Method has security associate with it

	RequireSecObject
	0x8000
	Method calls another method containing security code.

Implementation Specific (Microsoft)

UnmanagedExport indicates a managed method exported via thunk to unmanaged code.

Strict is referred to as CheckAccessOnOverride.
23.1.11 Flags for methods [MethodImplAttributes]

	Flag
	Value
	Description

	CodeTypeMask
	0x0003
	These 2 bits contain one of the following values:

	IL
	0x0000
	Method impl is CIL

	Native
	0x0001
	Method impl is native

	OPTIL
	0x0002
	Reserved: shall be zero in conforming implementations

	Runtime
	0x0003
	Method impl is provided by the runtime

	ManagedMask
	0x0004
	Flags specifying whether the code is managed or unmanaged. This bit contains one of the following values:

	Unmanaged
	0x0004
	Method impl is unmanaged, otherwise managed

	Managed
	0x0000
	Method impl is managed

	Implementation info and interop

	ForwardRef
	0x0010
	Indicates method is defined; used primarily in merge scenarios

	PreserveSig
	0x0080
	Reserved: conforming implementations can ignore

	InternalCall
	0x1000
	Reserved: shall be zero in conforming implementations

	Synchronized
	0x0020
	Method is single threaded through the body

	NoInlining
	0x0008
	Method cannot be inlined

	MaxMethodImplVal
	0xffff
	Range check value

Implementation Specific (Microsoft)
PreserveSig method signature is not to be mangled to do HRESULT conversion. InternalCall indicates the method body is provided by the CLI itself.

23.1.12 Flags for MethodSemantics [MethodSemanticsAttributes]

	Flag
	Value
	Description

	Setter
	0x0001
	Setter for property

	Getter
	0x0002
	Getter for property

	Other
	0x0004
	Other method for property or event

	AddOn
	0x0008
	AddOn method for event

	RemoveOn
	0x0010
	RemoveOn method for event

	Fire
	0x0020
	Fire method for event

23.1.13 Flags for params [ParamAttributes]

	Flag
	Value
	Description

	In
	0x0001
	Param is [In]

	Out
	0x0002
	Param is [out]

	Optional
	0x0010
	Param is optional

	HasDefault
	0x1000
	Param has default value

	HasFieldMarshal
	0x2000
	Param has FieldMarshal

	Unused
	0xcfe0
	Reserved: shall be zero in a conforming implementation

23.1.14 Flags for properties [PropertyAttributes]

	Flag
	Value
	Description

	SpecialName
	0x0200
	Property is special

	RTSpecialName
	0x0400
	Runtime(metadata internal APIs) should check name encoding

	HasDefault
	0x1000
	Property has default

	Unused
	0xe9ff
	Reserved: shall be zero in a conforming implementation

23.1.15 Flags for types [TypeAttributes]

	Flag
	Value
	Description

	Visibility attributes

	VisibilityMask
	0x00000007
	Use this mask to retrieve visibility information. These 3 bits contain one of the following values:

	NotPublic
	0x00000000
	Class has no public scope

	Public
	0x00000001
	Class has public scope

	NestedPublic
	0x00000002
	Class is nested with public visibility

	NestedPrivate
	0x00000003
	Class is nested with private visibility

	NestedFamily
	0x00000004
	Class is nested with family visibility

	NestedAssembly
	0x00000005
	Class is nested with assembly visibility

	NestedFamANDAssem
	0x00000006
	Class is nested with family and assembly visibility

	NestedFamORAssem
	0x00000007
	Class is nested with family or assembly visibility

	Class layout attributes

	LayoutMask
	0x00000018
	Use this mask to retrieve class layout information. These 2 bits contain one of the following values:

	AutoLayout
	0x00000000
	Class fields are auto-laid out

	SequentialLayout
	0x00000008
	Class fields are laid out sequentially

	ExplicitLayout
	0x00000010
	Layout is supplied explicitly

	Class semantics attributes

	ClassSemanticsMask
	0x00000020
	Use this mask to retrive class semantics information. This bit contains one of the following values:

	Class
	0x00000000
	Type is a class

	Interface
	0x00000020
	Type is an interface

	Special semantics in addition to class semantics

	Abstract
	0x00000080
	Class is abstract

	Sealed
	0x00000100
	Class cannot be extended

	SpecialName
	0x00000400
	Class name is special

	Implementation Attributes

	Import
	0x00001000
	Class/Interface is imported

	Serializable
	0x00002000
	Reserved (Class is serializable)

	String formatting Attributes

	StringFormatMask
	0x00030000
	Use this mask to retrieve string information for native interop. These 2 bits contain one of the following values:

	AnsiClass
	0x00000000
	LPSTR is interpreted as ANSI

	UnicodeClass
	0x00010000
	LPSTR is interpreted as Unicode

	AutoClass
	0x00020000
	LPSTR is interpreted automatically

	CustomFormatClass
	0x00030000
	A non-standard encoding specified by CustomStringFormatMask

	CustomStringFormatMask
	0x00C00000
	Use this mask to retrieve non-standard encoding information for native interop. The meaning of the values of these 2 bits is unspecified.

	Class Initialization Attributes

	BeforeFieldInit
	0x00100000
	Initialize the class before first static field access

	Additional Flags

	RTSpecialName
	0x00000800
	CLI provides 'special' behavior, depending upon the name of the Type

	HasSecurity
	0x00040000
	Type has security associate with it

23.1.16 Element types used in signatures

The following table lists the values for ELEMENT_TYPE constants. These are used extensively in metadata signature blobs – see §23.2

Implementation Specific (Microsoft)

These values are defined in the file inc\CorHdr.h in the SDK

	Name
	Value
	Remarks

	ELEMENT_TYPE_END
	0x00
	Marks end of a list

	ELEMENT_TYPE_VOID
	0x01
	

	ELEMENT_TYPE_BOOLEAN
	0x02
	

	ELEMENT_TYPE_CHAR
	0x03
	

	ELEMENT_TYPE_I1
	0x04
	

	ELEMENT_TYPE_U1
	0x05
	

	ELEMENT_TYPE_I2
	0x06
	

	ELEMENT_TYPE_U2
	0x07
	

	ELEMENT_TYPE_I4
	0x08
	

	ELEMENT_TYPE_U4
	0x09
	

	ELEMENT_TYPE_I8
	0x0a
	

	ELEMENT_TYPE_U8
	0x0b
	

	ELEMENT_TYPE_R4
	0x0c
	

	ELEMENT_TYPE_R8
	0x0d
	

	ELEMENT_TYPE_STRING
	0x0e
	

	ELEMENT_TYPE_PTR
	0x0f
	Followed by type

	ELEMENT_TYPE_BYREF
	0x10
	Followed by type

	ELEMENT_TYPE_VALUETYPE
	0x11
	Followed by TypeDef or TypeRef token

	ELEMENT_TYPE_CLASS
	0x12
	Followed by TypeDef or TypeRef token

	ELEMENT_TYPE_VAR
	0x13
	Generic parameter in a generic type definition, represented as number

	ELEMENT_TYPE_ARRAY
	0x14
	type rank boundsCount bound1 … loCount lo1 …

	ELEMENT_TYPE_GENERICINST
	0x15
	Generic type instantiation. Followed by type type-arg-count type-1 ... type-n

	ELEMENT_TYPE_TYPEDBYREF
	0x16
	

	ELEMENT_TYPE_I
	0x18
	System.IntPtr

	ELEMENT_TYPE_U
	0x19
	System.UIntPtr

	ELEMENT_TYPE_FNPTR
	0x1b
	Followed by full method signature

	ELEMENT_TYPE_OBJECT
	0x1c
	System.Object

	ELEMENT_TYPE_SZARRAY
	0x1d
	Single-dim array with 0 lower bound

	ELEMENT_TYPE_MVAR
	0x1e
	Generic parameter in a generic method definition, represented as number

	ELEMENT_TYPE_CMOD_REQD
	0x1f
	Required modifier : followed by a TypeDef or TypeRef token

	ELEMENT_TYPE_CMOD_OPT
	0x20
	Optional modifier : followed by a TypeDef or TypeRef token

	ELEMENT_TYPE_INTERNAL
	0x21
	Implemented within the CLI

	ELEMENT_TYPE_MODIFIER
	0x40
	Or’d with following element types

	ELEMENT_TYPE_SENTINEL
	0x41
	Sentinel for vararg method signature

	ELEMENT_TYPE_PINNED
	0x45
	Denotes a local variable that points at a pinned object

	
	0x50
	Indicates an argument of type System.Type.

	
	0x51
	Used in custom attributes to specify a boxed object (§23.3).

	
	0x52
	Reserved

	
	0x53
	Used in custom attributes to indicate a FIELD (§22.10, 23.3).

	
	0x54
	Used in custom attributes to indicate a PROPERTY (§22.10, 23.3).

	
	0x55
	Used in custom attributes to specify an enum (§23.3).

23.2 Blobs and signatures

The word signature XE "signature" \b is conventionally used to describe the type info for a function or method; that is, the type of each of its parameters, and the type of its return value. Within metadata, the word signature is also used to describe the type info for fields, properties, and local variables. Each Signature is stored as a (counted) byte array in the Blob heap. There are several kinds of Signature, as follows:

· MethodRefSig (differs from a MethodDefSig only for VARARG calls)
· MethodDefSig

· FieldSig

· PropertySig

· LocalVarSig

· TypeSpec

· MethodSpec

The value of the first byte of a Signature 'blob' indicates what kind of Signature it is. Its lowest 4 bits hold one of the following: C, DEFAULT, FASTCALL, STDCALL, THISCALL, or VARARG (whose values are defined in §23.2.3), which qualify method signatures; FIELD, which denotes a field signature (whose value is defined in §23.2.4); or PROPERTY, which denotes a property signature (whose value is defined in §23.2.5). This subclause defines the binary 'blob' format for each kind of Signature. In the syntax diagrams that accompany many of the definitions, shading is used to combine into a single diagram what would otherwise be multiple diagrams; the accompanying text describes the use of shading.

Signatures are compressed before being stored into the Blob heap (described below) by compressing the integers embedded in the signature. The maximum encodable integer is 29 bits long, 0x1FFFFFFF. The compression algorithm used is as follows (bit 0 is the least significant bit):

· If the value lies between 0 (0x00) and 127 (0x7F), inclusive, encode as a one-byte integer (bit 7 is clear, value held in bits 6 through 0)

· If the value lies between 28 (0x80) and 214 – 1 (0x3FFF), inclusive, encode as a 2-byte integer with bit 15 set, bit 14 clear (value held in bits 13 through 0)

· Otherwise, encode as a 4-byte integer, with bit 31 set, bit 30 set, bit 29 clear (value held in bits 28 through 0)

· A null string should be represented with the reserved single byte 0xFF, and no following data

[Note: The table below shows several examples. The first column gives a value, expressed in familiar (C-like) hex notation. The second column shows the corresponding, compressed result, as it would appear in a PE file, with successive bytes of the result lying at successively higher byte offsets within the file. (This is the opposite order from how regular binary integers are laid out in a PE file.) end note]
	Original Value
	Compressed Representation

	0x03
	03

	0x7F
	7F (7 bits set)

	0x80
	8080

	0x2E57
	AE57

	0x3FFF
	BFFF

	0x4000
	C000 4000

	0x1FFF FFFF
	DFFF FFFF

The most significant bits (the first ones encountered in a PE file) of a “compressed” field, can reveal whether it occupies 1, 2, or 4 bytes, as well as its value. For this to work, the “compressed” value, as explained above, is stored in big-endian order; i.e., with the most significant byte at the smallest offset within the file.

Signatures make extensive use of constant values called ELEMENT_TYPE_xxx – see §23.1.16

. In particular, signatures include two modifiers called:

ELEMENT_TYPE_BYREF – this element is a managed pointer (see Partition I_alink=Partition_I
). This modifier can only occur in the definition of LocalVarSig (§23.2.4

)
23.2.11

). It shall not occur within the definition of a Field (§23.2.10

) or RetType (§23.2.6

), Param (§
ELEMENT_TYPE_PTR – this element is an unmanaged pointer (see Partition I_alink=Partition_I
). This modifier can occur in the definition of LocalVarSig (§23.2.4

)
23.2.11

) or Field (§23.2.10

), RetType (§23.2.6

), Param (§
23.2.1 MethodDefSig

A MethodDefSig is indexed by the Method.Signature column. It captures the signature of a method or global function. The syntax diagram for a MethodDefSig is:

[image: image15.png]MethodDefSig

N ey
e
e N
e N oy B N

o

This diagram uses the following abbreviations:

HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see §15.3

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3

DEFAULT = 0x0, used to encode the keyword default in the calling convention, see §15.3

VARARG = 0x5, used to encode the keyword vararg in the calling convention, see §15.3

GENERIC = 0x10, used to indicate that the method has one or more generic parameters.
Implementation Specific (Microsoft)

The above names are defined in the file inc\CorHdr.h as part of the SDK, using a prefix of “IMAGE_CEE_CS_CALLCONV_”

The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention (DEFAULT, VARARG, or GENERIC). These are ORed together.

GenParamCount is the number of generic parameters for the method. This is a compressed int32. [Note: For generic methods, both MethodDef and MemberRef shall include the GENERIC calling convention, together with GenParamCount; these are significant for binding—they enable the CLI to overload on generic methods by the number of generic parameters they include. end note]
ParamCount is an integer that holds the number of parameters (0 or more). It can be any number between 0 and 0x1FFFFFFF. The compiler compresses it too (see Partition II Metadata Validation) – before storing into the 'blob' (ParamCount counts just the method parameters – it does not include the method’s return type)

The RetType item describes the type of the method’s return value (§23.2.11

)

The Param item describes the type of each of the method’s parameters. There shall be ParamCount instances of the Param item (§23.2.10

).

23.2.2 MethodRefSig

A MethodRefSig is indexed by the MemberRef.Signature column. This provides the call site Signature for a method. Normally, this call site Signature shall match exactly the Signature specified in the definition of the target method. For example, if a method Foo is defined that takes two unsigned int32s and returns void; then any call site shall index a signature that takes exactly two unsigned int32s and returns void. In this case, the syntax diagram for a MethodRefSig is identical with that for a MethodDefSig – see §23.2.1

The Signature at a call site differs from that at its definition, only for a method with the VARARG calling convention. In this case, the call site Signature is extended to include info about the extra VARARG arguments (for example, corresponding to the “...” in C syntax). The syntax diagram for this case is:

[image: image16.png]MethodRefSig (in case where it diffors from MethodDefSig)

>

HASTHIS

>

EXPLICITTHIS

>

VARARG

»{ ParamCount

7

RetType.

'

Peram

SENTINEL

']

Peram

S

This diagram uses the following abbreviations:

HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see §15.3

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3

VARARG = 0x5, used to encode the keyword vararg in the calling convention, see 15.3

SENTINEL = 0x41 (§15.3

23.1.16

), used to encode “...” in the parameter list, see §
Implementation Specific (Microsoft)

The above names are defined in the file inc\CorHdr.h as part of the SDK, using a prefix of “IMAGE_CEE_CS_CALLCONV_”.

· The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS, and the calling convention VARARG. These are ORed together.

· ParamCount is an integer that holds the number of parameters (0 or more). It can be any number between 0 and 0x1FFFFFFF The compiler compresses it too (see Partition II Metadata Validation) – before storing into the 'blob' (ParamCount counts just the method parameters – it does not include the method’s return type)

· The RetType item describes the type of the method’s return value (§23.2.11

)

· The Param item describes the type of each of the method’s parameters. There shall be ParamCount instances of the Param item (§23.2.10

).

The Param item describes the type of each of the method’s parameters. There shall be ParamCount instances of the Param item.This starts just like the MethodDefSig for a VARARG method (§23.2.1

). But then a SENTINEL token is appended, followed by extra Param items to describe the extra VARARG arguments. Note that the ParamCount item shall indicate the total number of Param items in the Signature – before and after the SENTINEL byte (0x41).

In the unusual case that a call site supplies no extra arguments, the signature shall not include a SENTINEL (this is the route shown by the lower arrow that bypasses SENTINEL and goes to the end of the MethodRefSig definition).
23.2.3 StandAloneMethodSig

A StandAloneMethodSig is indexed by the StandAloneSig.Signature column. It is typically created as preparation for executing a calli instruction. It is similar to a MethodRefSig, in that it represents a call site signature, but its calling convention can specify an unmanaged target (the calli instruction invokes either managed, or unmanaged code). Its syntax diagram is:

[image: image17.png]StandAloneMethodSig

ol - (e
g
=
=
=
i T

/,-] .

This diagram uses the following abbreviations (§15.3

):

HASTHIS for 0x20

EXPLICITTHIS for 0x40

DEFAULT
for 0x0

VARARG
for 0x5

C for 0x1

STDCALL for 0x2

THISCALL for 0x3

FASTCALL for 0x4

SENTINEL for 0x41 (§15.3

)
23.1.16

 and §
Implementation Specific (Microsoft)

The above names are defined in the file inc\CorHdr.h as part of the SDK, using a prefix of “IMAGE_CEE_CS_CALLCONV_”

· The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention – DEFAULT, VARARG, C, STDCALL, THISCALL, or FASTCALL. These are OR’d together.

· ParamCount is an integer that holds the number of non-vararg and vararg parameters, combined. It can be any number between 0 and 0x1FFFFFFF The compiler compresses it too (see Partition II Metadata Validation) – before storing into the blob (ParamCount counts just the method parameters – it does not include the method’s return type)

· The RetType item describes the type of the method’s return value (§23.2.11

)

· The first Param item describes the type of each of the method’s non-vararg parameters. The (optional) second Param item describes the type of each of the method’s vararg parameters. There shall be ParamCount instances of Param (§23.2.10

).

This is the most complex of the various method signatures. Two separate diagrams have been combined into one in this diagram, using shading to distinguish between them. Thus, for the following calling conventions: DEFAULT (managed), STDCALL, THISCALL and FASTCALL (unmanaged), the signature ends just before the SENTINEL item (these are all non vararg signatures). However, for the managed and unmanaged vararg calling conventions:

VARARG (managed) and C (unmanaged), the signature can include the SENTINEL and final Param items (they are not required, however). These options are indicated by the shading of boxes in the syntax diagram.

23.2.4 FieldSig

A FieldSig is indexed by the Field.Signature column, or by the MemberRef.Signature column (in the case where it specifies a reference to a field, not a method, of course). The Signature captures the field’s definition. The field can be a static or instance field in a class, or it can be a global variable. The syntax diagram for a FieldSig looks like this:

[image: image18.png]FieldSig

FIELD

o customtrod

Type

This diagram uses the following abbreviations:

FIELD for 0x6

Implementation Specific (Microsoft)

IMAGE_CEE_CS_CALLCONV_FIELD is defined in the file inc\CorHdr.h as part of the SDK.

CustomMod is defined in §23.2.12

23.2.7

. Type is defined in §
23.2.5 PropertySig

A PropertySig is indexed by the Property.Type column. It captures the type information for a Property – essentially, the signature of its getter method:

the number of parameters supplied to its getter method

the base type of the Property (the type returned by its getter method)
type information for each parameter in the getter method (that is, the index parameters)
Note that the signatures of getter and setter are related precisely as follows:

· The types of a getter’s paramCount parameters are exactly the same as the first paramCount parameters of the setter
· The return type of a getter is exactly the same as the type of the last parameter supplied to the setter
The syntax diagram for a PropertySig looks like this: [image: image19.png]PROPERT! PropertySig
©8)

) e ey -]

Implementation Specific (Microsoft)

IMAGE_CEE_CS_CALLCONV_PROPERTY is defined in the file inc\CorHdr.h as part of the SDK.

The first byte of the Signature holds bits for HASTHIS and PROPERTY. These are OR’d together.

Type specifies the type returned by the Getter method for this property. Type is defined in §23.2.10

.
23.2.12

. Param is defined in §
ParamCount is an integer that holds the number of index parameters in the getter methods (0 or more). (§23.2.1

) (ParamCount counts just the method parameters – it does not include the method’s base type of the Property)

23.2.6 LocalVarSig

A LocalVarSig is indexed by the StandAloneSig.Signature column. It captures the type of all the local variables in a method. Its syntax diagram is:

[image: image20.png]LocalVarSig

LoCAL_SIG

[

Count

Customiod >/ Conswaint

>

BYREF

Type

»[TvPeDBYREF

This diagram uses the following abbreviations:

LOCAL_SIG for 0x7, used for the .locals directive, see§15.4.1.3
Implementation Specific (Microsoft)

IMAGE_CEE_CS_CALLCONV_LOCAL_SIG is defined in the file inc\CorHdr.h as part of the SDK.

BYREF for ELEMENT_TYPE_BYREF (§23.1.16

)

Constraint is defined in §23.2.9

.

Type is defined in §23.2.12

Count is an unsigned integer that holds the number of local variables. It can be any number between 1 and 0xFFFE.

There shall be Count instances of the Type in the LocalVarSig

23.2.7 CustomMod

The CustomMod (custom modifier) item in Signatures has a syntax diagram like this:

[image: image21.png]CustomMod

cmoo_oPT

TypeDetEncoded

|

coo_REGD

|

TypeRefEncoded

This diagram uses the following abbreviations:

CMOD_OPT for ELEMENT_TYPE_CMOD_OPT (§23.1.16

)

CMOD_REQD for ELEMENT_TYPE_CMOD_REQD (§23.1.16

)

The CMOD_OPT or CMOD_REQD value is compressed, see §23.2

.

The CMOD_OPT or CMOD_REQD is followed by a metadata token that indexes a row in the TypeDef table or the TypeRef table. However, these tokens are encoded and compressed – see §23.2.8

 for details

If the CustomModifier is tagged CMOD_OPT, then any importing compiler can freely ignore it entirely. Conversely, if the CustomModifier is tagged CMOD_REQD, any importing compiler shall ‘understand’ the semantic implied by this CustomModifier in order to reference the surrounding Signature.

Implementation Specific (Microsoft)

A typical use for a CustomModifier is for VISUAL C++ .NET to denote a method parameter as const. It does this using a CMOD_OPT, followed by a TypeRef to Microsoft.VisualC.IsConstModifier (defined in Microsoft.VisualC.DLL)

VISUAL C++ .NET also uses a CustomModifier (embedded within a RetType – see §23.2.11

) to mark the native calling convention of a function. Of course, if that routine is implemented as managed code, this info is not used. But if it turns out to be implemented as unmanaged code, it becomes crucial, so that automatically generated thunks marshal the arguments correctly. This technique is used in IJW (“It Just Works”) scenarios. Strictly speaking, such a custom modifier does not apply only to the RetType, it really applies to the whole function. In these cases, the TypeRef following the CMOD_OPT is to one of CallConvCdecl, CallConvStdcall, CallConvThiscall or CallConvFastcall.

23.2.8 TypeDefOrRefEncoded

These items are compact ways to store a TypeDef, TypeRef, or TypeSpec token in a Signature (§23.2.12

).

Consider a regular TypeRef token, such as 0x01000012. The top byte of 0x01 indicates that this is a TypeRef token (see Partition VI
_alink=Partition_V
 for a list of the supported metadata token types). The lower 3 bytes (0x000012) index row number 0x12 in the TypeRef table.

The encoded version of this TypeRef token is made up as follows:

1. encode the table that this token indexes as the least significant 2 bits. The bit values to use are 0, 1 and 2, specifying the target table is the TypeDef, TypeRef or TypeSpec table, respectively

2. shift the 3-byte row index (0x000012 in this example) left by 2 bits and OR into the 2-bit encoding from step 1

3. compress the resulting value (§23.2

). This example yields the following encoded value:

a) encoded = value for TypeRef table = 0x01 (from 1. above)

b) encoded = (0x000012 << 2) | 0x01

 = 0x48 | 0x01

 = 0x49

c) encoded = Compress (0x49)

 = 0x49

So, instead of the original, regular TypeRef token value of 0x01000012, requiring 4 bytes of space in the Signature 'blob', this TypeRef token is encoded as a single byte.

23.2.9 Constraint

The Constraint item in Signatures currently has only one possible value, ELEMENT_TYPE_PINNED (§23.1.16

), which specifies that the target type is pinned in the runtime heap, and will not be moved by the actions of garbage collection.

A Constraint can only be applied within a LocalVarSig (not a FieldSig). The Type of the local variable shall either be a reference type (in other words, it points to the actual variable – for example, an Object, or a String); or it shall include the BYREF item. The reason is that local variables are allocated on the runtime stack – they are never allocated from the runtime heap; so unless the local variable points at an object allocated in the GC heap, pinning makes no sense.

23.2.10 Param

The Param (parameter) item in Signatures has this syntax diagram:

[image: image22.png]Param

Customtiad

BVREF

Type

TVPEDEREF

This diagram uses the following abbreviations:

BYREF for 0x10 (§23.1.16

)

TYPEDBYREF for 0x16 (§23.1.16

)

CustomMod is defined in §23.2.12

23.2.7

. Type is defined in §
23.2.11 RetType

The RetType (return type) item in Signatures has this syntax diagram:

[image: image23.png]RetType

Custorhtod 7 »| BvREF b »[e
[TvrEDEVREF
» vop

RetType is identical to Param except for one extra possibility, that it can include the type VOID. This diagram uses the following abbreviations:

BYREF for ELEMENT_TYPE_BYREF (§23.1.16

)

TYPEDBYREF for ELEMENT_TYPE_TYPEDBYREF (§23.1.16

)

VOID for ELEMENT_TYPE_VOID (§23.1.16

)

23.2.12 Type

Type is encoded in signatures as follows (I1 is an abbreviation for ELEMENT_TYPE_I1, U1 is an abbreviation for ELEMENT_TYPE_U1, and so on; see 23.1.16

):
Type ::=

BOOLEAN | CHAR | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 | I | U |
| ARRAY Type ArrayShape (general array, see §23.2.13

)

| CLASS TypeDefOrRefEncoded

| FNPTR MethodDefSig

| FNPTR MethodRefSig

| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type *
| MVAR number

| OBJECT

| PTR CustomMod* Type

| PTR CustomMod* VOID

| STRING

| SZARRAY CustomMod* Type (single dimensional, zero-based array i.e., vector)

| VALUETYPE TypeDefOrRefEncoded

| VAR number

The GenArgCount non-terminal is an int32 value (compressed) specifying the number of generic arguments in this signature.
23.2.13 ArrayShape

An ArrayShape has the following syntax diagram:

[image: image24.png]ArrayShape

Rank || Numsizas

e —

o Leouna

Rank is an integer (stored in compressed form, see §23.2

) that specifies the number of dimensions in the array (shall be 1 or more). NumSizes is a compressed integer that says how many dimensions have specified sizes (it shall be 0 or more). Size is a compressed integer specifying the size of that dimension – the sequence starts at the first dimension, and goes on for a total of NumSizes items. Similarly, NumLoBounds is a compressed integer that says how many dimensions have specified lower bounds (it shall be 0 or more). And LoBound is a compressed integer specifying the lower bound of that dimension – the sequence starts at the first dimension, and goes on for a total of NumLoBounds items. None of the dimensions in these two sequences can be skipped, but the number of specified dimensions can be less than Rank.

Here are a few examples, all for element type int32:

	
	Type
	Rank
	NumSizes
	Size
	NumLoBounds
	LoBound

	[0...2]
	I4
	1
	1
	3
	0
	

	[,,,,,,]
	I4
	7
	0
	
	0
	

	[0...3, 0...2,,,,]
	I4
	6
	2
	4 3
	2
	0 0

	[1...2, 6...8]
	I4
	2
	2
	2 3
	2
	1 6

	[5, 3...5, ,]
	I4
	4
	2
	5 3
	2
	0 3

[Note: definitions can nest, since the Type can itself be an array. end note]
23.2.14 TypeSpec

The signature in the Blob heap indexed by a TypeSpec token has the following format –

TypeSpecBlob ::=

 PTR CustomMod* VOID

| PTR CustomMod* Type

| FNPTR MethodDefSig

| FNPTR MethodRefSig

| ARRAY Type ArrayShape

| SZARRAY CustomMod* Type

| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type Type*

For compactness, the ELEMENT_TYPE_ prefixes have been omitted from this list. So, for example, “PTR” is shorthand for ELEMENT_TYPE_PTR. (§23.1.16

) Note that a TypeSpecBlob does not begin with a calling-convention byte, so it differs from the various other signatures that are stored into Metadata.

23.2.15 MethodSpec

The signature in the Blob heap indexed by a MethodSpec token has the following format –

MethodSpecBlob ::=

 GENRICINST GenArgCount Type Type*

GENRICINST has the value 0x0A. [Note: This value is known as IMAGE_CEE_CS_CALLCONV_GENERICINST in the Microsoft CLR implementation. end note] The GenArgCount is a compressed int32 indicating the number of generic arguments in the method. The blob then specifies the instantiated type, repeating a total of GenArgCount times.

23.2.16 Short form signatures

The general specification for signatures leaves some leeway in how to encode certain items. For example, it appears valid to encode a String as either

long-form: (ELEMENT_TYPE_CLASS, TypeRef-to-System.String)

short-form: ELEMENT_TYPE_STRING
Only the short form is valid. The following table shows which short-forms should be used in place of each long-form item. (As usual, for compactness, the ELEMENT_TYPE_ prefix have been omitted here – so VALUETYPE is short for ELEMENT_TYPE_VALUETYPE)

	Long Form
	Short Form

	Prefix
	TypeRef to:
	

	CLASS
	System.String
	STRING

	CLASS
	System.Object
	OBJECT

	VALUETYPE
	System.Void
	VOID

	VALUETYPE
	System.Boolean
	BOOLEAN

	VALUETYPE
	System.Char
	CHAR

	VALUETYPE
	System.Byte
	U1

	VALUETYPE
	System.Sbyte
	I1

	VALUETYPE
	System.Int16
	I2

	VALUETYPE
	System.UInt16
	U2

	VALUETYPE
	System.Int32
	I4

	VALUETYPE
	System.UInt32
	U4

	VALUETYPE
	System.Int64
	I8

	VALUETYPE
	System.UInt64
	U8

	VALUETYPE
	System.IntPtr
	I

	VALUETYPE
	System.UIntPtr
	U

	VALUETYPE
	System.TypedReference
	TYPEDBYREF

[Note: arrays shall be encoded in signatures using one of ELEMENT_TYPE_ARRAY or ELEMENT_TYPE_SZARRAY. There is no long form involving a TypeRef to System.Array. end note]
23.3 Custom attributes

A Custom Attribute has the following syntax diagram:

[image: image25.png]CustomAttrib

Pratag

' Firetin

NumNamed

‘» Namedarg

-l

All binary values are stored in little-endian format (except PackedLen items, which are used only as counts for the number of bytes to follow in a UTF8 string). If there are no fields, parameters, or properties specified the entire attribute is represented as an empty blob.
CustomAttrib starts with a Prolog – an unsigned int16, with value 0x0001.
Next comes a description of the fixed arguments for the constructor method. Their number and type is found by examining that constructor’s row in the MethodDef table; this information is not repeated in the CustomAttrib itself. As the syntax diagram shows, there can be zero or more FixedArgs. (Note that VARARG constructor methods are not allowed in the definition of Custom Attributes.)

Next is a description of the optional “named” fields and properties. This starts with NumNamed – an unsigned int16 giving the number of “named” properties or fields that follow. Note that NumNamed shall always be present. A value of zero indicates that there are no “named” properties or fields to follow (and of course, in this case, the CustomAttrib shall end immediately after NumNamed). In the case where NumNamed is non-zero, it is followed by NumNamed repeats of NamedArgs.
[image: image26.png]o Een

if SZARRAY

ifnot SZARRAY.

NumEem

e

The format for each FixedArg depends upon whether that argument is an SZARRAY or not – this is shown in the lower and upper paths, respectively, of the syntax diagram. So each FixedArg is either a single Elem, or NumElem repeats of Elem.

(SZARRAY is the single byte 0x1D, and denotes a vector – a single-dimension array with a lower bound of zero.)

NumElem is an unsigned int32 specifying the number of elements in the SZARRAY, or 0xFFFFFFFF to indicate that the value is null.
[image: image27.png]Elem

i > Val
sting o e
o[Swsing
bored vletype
Lol Fmoroptype | va

An Elem takes one of the forms in this diagram, as follows:
· If the parameter kind is simple (first line in the above diagram) (bool, char, float32, float64, int8, int16, int32, int64, unsigned int8, unsigned int16, unsigned int32 or unsigned int64) then the 'blob' contains its binary value (Val). (A bool is a single byte with value 0 (false) or 1 (true); char is a two-byte Unicode character; and the others have their obvious meaning.) This pattern is also used if the parameter kind is an enum -- simply store the value of the enum's underlying integer type.
· If the parameter kind is string, (middle line in above diagram) then the blob contains a SerString – a PackedLen count of bytes, followed by the UTF8 characters. If the string is null, its PackedLen has the value 0xFF (with no following characters). If the string is empty (“”), then PackedLen has the value 0x00 (with no following characters).
· If the parameter kind is System.Type, (also, the middle line in above diagram) its value is stored as a SerString (as defined in the previous paragraph), representing its canonical name. The canonical name is its full type name, followed optionally by the assembly where it is defined, its version, culture and public-key-token. If the assembly name is omitted, the CLI looks first in the current assembly, and then in the system library (mscorlib); in these two special cases, it is permitted to omit the assembly-name, version, culture and public-key-token.

· If the parameter kind is System.Object, (third line in the above diagram) the value stored represents the “boxed” instance of that value-type. In this case, the blob contains the actual type's FieldOrPropType (see below), followed by the argument’s unboxed value. [Note: it is not possible to pass a value of null in this case. end note]
[image: image28.png]NamedArg

FIELD

FieldOrPropType.

[

FixedArg

[

PROPERTY

A NamedArg is simply a FixedArg (discussed above) preceded by information to identify which field or property it represents. [Note: Recall that the CLI allows fields and properties to have the same name; so we require a means to disambiguate such situations. end note]
FIELD is the single byte 0x53.
PROPERTY is the single byte 0x54.
If the type of the named field or property is a boxed simple value type (bool, char, float32, float64, int8, int16, int32, int64, unsigned int8, unsigned int16, unsigned int32 or unsigned int64) then FieldOrPropType is immediately preceded by a byte containing the value 0x51 .
The FieldOrPropType shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, ELEMENT_TYPE_STRING. A single-dimensional, zero-based array is specified as a single byte 0x1D followed by the FieldOrPropType of the element type. (See §23.1.16
) An enum is specified as a single byte 0x55 followed by a SerString.
The FieldOrPropName is the name of the field or property, stored as a SerString (defined above).

A number of examples involving custom attributes are contained in Annex B of Partition VI.
23.4 Marshalling descriptors

A Marshalling Descriptor is like a signature – it’s a 'blob' of binary data. It describes how a field or parameter (which, as usual, covers the method return, as parameter number 0) should be marshalled when calling to or from unmanaged code via PInvoke dispatch. The ILAsm syntax marshal can be used to create a marshalling descriptor, as can the pseudo custom attribute MarshalAsAttribute – see §21.2.1

)

Note that a conforming implementation of the CLI need only support marshalling of the types specified earlier – see §15.5.5

.

Marshalling descriptors make use of constants named NATIVE_TYPE_xxx. Their names and values are listed in the following table:

	Name
	Value

	NATIVE_TYPE_BOOLEAN
	0x02

	NATIVE_TYPE_I1
	0x03

	NATIVE_TYPE_U1
	0x04

	NATIVE_TYPE_I2
	0x05

	NATIVE_TYPE_U2
	0x06

	NATIVE_TYPE_I4
	0x07

	NATIVE_TYPE_U4
	0x08

	NATIVE_TYPE_I8
	0x09

	NATIVE_TYPE_U8
	0x0a

	NATIVE_TYPE_R4
	0x0b

	NATIVE_TYPE_R8
	0x0c

	NATIVE_TYPE_LPSTR
	0x14

	NATIVE_TYPE_LPWSTR
	0x15

	NATIVE_TYPE_INT
	0x1f

	NATIVE_TYPE_UINT
	0x20

	NATIVE_TYPE_FUNC
	0x26

	NATIVE_TYPE_ARRAY
	0x2a

Implementation Specific (Microsoft)
The Microsoft implementation supports a richer set of types to describe marshalling between Windows native types and COM. These additional options are listed in the following table:

	Implementation Specific (Microsoft)

	Name
	Value
	Remarks

	NATIVE_TYPE_CURRENCY
	0x0f
	

	NATIVE_TYPE_BSTR
	0x13
	

	NATIVE_TYPE_LPTSTR
	0x16
	

	NATIVE_TYPE_FIXEDSYSSTRING
	0x17
	

	NATIVE_TYPE_IUNKNOWN
	0x19
	

	NATIVE_TYPE_IDISPATCH
	0x1a
	

	NATIVE_TYPE_STRUCT
	0x1b
	

	NATIVE_TYPE_INTF
	0x1c
	

	NATIVE_TYPE_SAFEARRAY
	0x1d
	

	NATIVE_TYPE_FIXEDARRAY
	0x1e
	

	NATIVE_TYPE_BYVALSTR
	0x22
	

	NATIVE_TYPE_ANSIBSTR
	0x23
	

	NATIVE_TYPE_TBSTR
	0x24
	Selects BSTR or ANSIBSTR depending on platform

	NATIVE_TYPE_VARIANTBOOL
	0x25
	2-byte Boolean value: false = 0; true = -1

	NATIVE_TYPE_ASANY
	0x28
	

	NATIVE_TYPE_LPSTRUCT
	0x2b
	

	NATIVE_TYPE_CUSTOMMARSHALER
	0x2c
	Custom marshaler native type. Shall be followed by a string in the format: "Native type name/0Custom marshaler type name/0Optional cookie/0" OR // "{Native type GUID}/0Custom marshaler type name/0Optional cookie/0"

	NATIVE_TYPE_ERROR
	0x2d
	This native type coupled with ELEMENT_TYPE_I4 will map to VT_HRESULT

	NATIVE_TYPE_MAX
	0x50
	Used to indicate “no info”

The 'blob' has the following format –

MarshalSpec ::=
 NativeIntrinsic
| ARRAY ArrayElemType
| ARRAY ArrayElemType ParamNum
| ARRAY ArrayElemType ParamNum NumElem
Implementation Specific (Microsoft)
The Microsoft implementation supports a wider range of options:

MarshalSpec ::=
 NativeIntrinsic
| ARRAY ArrayElemType
| ARRAY ArrayElemType ParamNum
| ARRAY ArrayElemType ParamNum NumElem
| CUSTOMMARSHALLER Guid UnmanagedType ManagedType Cookie
| FIXEDARRAY NumElem ArrayElemType
| SAFEARRAY SafeArrayElemType

NativeIntrinsic ::=
 BOOLEAN | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8
| LPSTR | LPSTR | INT | UINT | FUNC

For compactness, the NATIVE_TYPE_ prefixes have been omitted in the above lists; for example, “ARRAY” is shorthand for NATIVE_TYPE_ARRAY.
Implementation Specific (Microsoft)
NativeIntrinsic ::= …
| CURRENCY | BSTR | LPTSTR
| FIXEDSYSSTRING | STRUCT | INTF | FIXEDARRAY | BYVALSTR | ANSIBSTR
| TBSTR | VARIANTBOOL | ASANY | LPSTRUCT | ERROR
Guid is a counted-UTF8 string – e.g., “{90883F05-3D28-11D2-8F17-00A0C9A6186D}” – it shall include leading { and trailing } and be exactly 38 characters long

UnmanagedType is a counted-UTF8 string – e.g., “Point”

ManagedType is a counted-UTF8 string – e.g., “System.Util.MyGeometry” – it shall be the fully-qualified name (namespace and name) of a managed Type defined within the current assembly (that Type shall implement ICustomMarshaller, and provides a “to” and “from” marshalling method)

Cookie is a counted-UTF8 string – e.g., “123” – an empty string is allowed

ArrayElemType ::=
 NativeIntrinsic

Implementation Specific (Microsoft)
ArrayElemType ::= …
| MAX

The value MAX is used to indicate “no info”

The following information and table are specific to the Microsoft implementation of the CLI:

SafeArrayElemType ::=
I2 | I4 | R4 | R8 | CY | DATE | BSTR | DISPATCH | ERROR | BOOL | VARIANT | UNKNOWN
 | DECIMAL | I1 | UI1 | UI2 | UI4 | INT | UINT

where each is prefixed by VT_. The values for the VT_xxx constants are given in the following table:

	Implementation Specific (Microsoft)

	Constant
	Value

	VT_I2
	= 2,

	VT_I4
	= 3,

	VT_R4
	= 4,

	VT_R8
	= 5,

	VT_CY
	= 6,

	VT_DATE
	= 7,

	VT_BSTR
	= 8,

	VT_DISPATCH
	= 9,

	VT_ERROR
	= 10,

	VT_BOOL
	= 11,

	VT_VARIANT
	= 12,

	VT_UNKNOWN
	= 13,

	VT_DECIMAL
	= 14,

	VT_I1
	= 16,

	VT_UI1
	= 17,

	VT_UI2
	= 18,

	VT_UI4
	= 19,

	VT_INT
	= 22,

	VT_UINT
	= 23,

ParamNum is an integer (compressed as described in §23.2

) specifying the parameter in the method call that provides the number of elements in the array – see below.
NumElem is an integer compressed as described in §23.2

 (specifying the number of elements or additional elements – see below).
[Note: For example, in the method declaration:

.method void M(int32[] ar1, int32 size1, unsigned int8[] ar2, int32 size2) { … }

The ar1 parameter might own a row in the FieldMarshal table, which indexes a MarshalSpec in the Blob heap with the format:

ARRAY MAX 2 1

This says the parameter is marshalled to a NATIVE_TYPE_ARRAY. There is no additional info about the type of each element (signified by that NATIVE_TYPE_MAX). The value of ParamNum is 2, which indicates that parameter number 2 in the method (the one called size1) will specify the number of elements in the actual array – let’s suppose its value on a particular call is 42. The value of NumElem is 0. The calculated total size, in bytes, of the array is given by the formula:

if ParamNum = 0
 SizeInBytes = NumElem * sizeof (elem)
else
 SizeInBytes = (@ParamNum + NumElem) * sizeof (elem)
endif

 The syntax “@ParamNum” is used here to denote the value passed in for parameter number ParamNum – it would be 42 in this example. The size of each element is calculated from the metadata for the ar1 parameter in Foo’s signature – an ELEMENT_TYPE_I4 (§23.1.16

) of size 4 bytes. end note]
24 Metadata physical layout

The physical on-disk representation of metadata is a direct reflection of the logical representation described in §22
_21_Metedata_Logical_Format_Tables and §23

. That is, data is stored in streams representating the metadata tables and heaps. The main complication is that, where the logical representation is abstracted from the number of bytes needed for indexing into tables and columns, the physical representation has to take care of that explicitly by defining how to map logical metadata heaps and tables into their physical representations.

 Unless stated otherwise, all binary values are stored in little-endian format.

24.1 Fixed fields

Complete CLI components (metadata and CIL instructions) are stored in a subset of the current Portable Executable (PE) File Format (§25

). Because of this heritage, some of the fields in the physical representation of metadata have fixed values. When writing these fields it is best that they be set to the value indicated, on reading they should be ignored.

24.2 File headers

24.2.1 Metadata root

The root of the physical metadata starts with a magic signature, several bytes of version and other miscellaneous information, followed by a count and an array of stream headers, one for each stream that is present. The actual encoded tables and heaps are stored in the streams, which immediately follow this array of headers.

	Offset
	Size
	Field
	Description

	0
	4
	Signature
	Magic signature for physical metadata : 0x424A5342.

	4
	2
	MajorVersion
	Major version, 1 (ignore on read)

	6
	2
	MinorVersion
	Minor version, 1 (ignore on read)

	8
	4
	Reserved
	Reserved, always 0 (§24.1

).

	12
	4
	Length
	Length of version string in bytes, say m (<= 255), rounded up to a multiple of four.

	16
	m
	Version
	UTF8-encoded version string of length m (see below)

	16+m
	
	
	Padding to next 4 byte boundary, say x.

	x
	2
	Flags
	Reserved, always 0 (§24.1

).

	x+2
	2
	Streams
	Number of streams, say n.

	x+4
	
	StreamHeaders
	Array of n StreamHdr structures.

The Version string shall be “Standard CLI 2005” for any file that is intended to be executed on any conforming implementation of the CLI, and all conforming implementations of the CLI shall accept files that use this version string. Other strings shall be used when the file is restricted to a vendor-specific implementation of the CLI. Future versions of this standard shall specify different strings, but they shall begin “Standard CLI”. Other standards that specify additional functionality shall specify their own specific version strings beginning with “Standard□”, where “□” represents a single space. Vendors that provide implementation-specific extensions shall provide a version string that does not begin with “Standard□”. (For the first version of this Standard, the Version string was “Standard CLI 2002”.)
24.2.2 Stream header

A stream header gives the names, and the position and length of a particular table or heap. Note that the length of a Stream header structure is not fixed, but depends on the length of its name field (a variable length null-terminated string).

	Offset
	Size
	Field
	Description

	0
	4
	Offset
	Memory offset to start of this stream from start of the metadata root (§24.2.1

)

	4
	4
	Size
	Size of this stream in bytes, shall be a multiple of 4.

	8
	
	Name
	Name of the stream as null-terminated variable length array of ASCII characters, padded to the next 4-byte boundary with \0 characters. The name is limited to 32 characters.

Both logical tables and heaps are stored in streams. There are five possible kinds of streams. A stream header with name “#Strings” that points to the physical representation of the string heap where identifier strings are stored; a stream header with name “#US” that points to the physical representation of the user string heap; a stream header with name “#Blob” that points to the physical representation of the blob heap, a stream header with name “#GUID” that points to the physical representation of the GUID heap; and a stream header with name “#~” that points to the physical representation of a set of tables.

Implementation Specific (Microsoft Only)

Some compilers store metadata in a #- stream, which holds an uncompressed, or non-optimized, representation of metadata tables; this includes extra metadata “pointer” tables. Such PE files do not form part of this International standard

Each kind of stream shall occur at most once, that is, a meta-data file shall not contain two “#US” streams, or five “#Blob” streams. Streams need not be there if they are empty.

The next subclauses describe the structure of each kind of stream in more detail.

24.2.3 #Strings heap

The stream of bytes pointed to by a “#Strings” header is the physical representation of the logical string heap. The physical heap can contain garbage, that is, it can contain parts that are unreachable from any of the tables, but parts that are reachable from a table shall contain a valid null-terminated UTF8 string. When the #String heap is present, the first entry is always the empty string (i.e., \0).

24.2.4 #US and #Blob heaps

The stream of bytes pointed to by a “#US” or “#Blob” header are the physical representation of logical Userstring and 'blob' heaps respectively. Both these heaps can contain garbage, as long as any part that is reachable from any of the tables contains a valid 'blob'. Individual blobs are stored with their length encoded in the first few bytes:

· If the first one byte of the 'blob' is 0bbbbbbb2, then the rest of the 'blob' contains the bbbbbbb2 bytes of actual data.

· If the first two bytes of the 'blob' are 10bbbbbb2 and x, then the rest of the 'blob' contains the (bbbbbb2 << 8 + x) bytes of actual data.

· If the first four bytes of the 'blob' are 110bbbbb2, x, y, and z, then the rest of the 'blob' contains the (bbbbb2 << 24 + x << 16 + y << 8 + z) bytes of actual data.

The first entry in both these heaps is the empty 'blob' that consists of the single byte 0x00.

Strings in the #US (user string) heap are encoded using 16-bit Unicode encodings. The count on each string is the number of bytes (not characters) in the string. Furthermore, there is an additional terminal byte (so all byte counts are odd, not even). This final byte holds the value 1 if and only if any UTF16 character within the string has any bit set in its top byte, or its low byte is any of the following: 0x01–0x08, 0x0E–0x1F, 0x27, 0x2D, 0x7F. Otherwise, it holds 0. The 1 signifies Unicode characters that require handling beyond that normally provided for 8-bit encoding sets.

24.2.5 #GUID heap

The “#GUID” header points to a sequence of 128-bit GUIDs. There might be unreachable GUIDs stored in the stream.

24.2.6 #~ stream

The “#~” streams contain the actual physical representations of the logical metadata tables (§22
_21_Metedata_Logical_Format_Tables). A “#~” stream has the following top-level structure:

	Offset
	Size
	Field
	Description

	0
	4
	Reserved
	Reserved, always 0 (§24.1

).

	4
	1
	MajorVersion
	Major version of table schemata; shall be 2 (§24.1

).

	5
	1
	MinorVersion
	Minor version of table schemata; shall be 0 (§24.1

).

	6
	1
	HeapSizes
	Bit vector for heap sizes.

	7
	1
	Reserved
	Reserved, always 1 (§24.1

).

	8
	8
	Valid
	Bit vector of present tables, let n be the number of bits that are 1.

	16
	8
	Sorted
	Bit vector of sorted tables.

	24
	4*n
	Rows
	Array of n 4-byte unsigned integers indicating the number of rows for each present table.

	24+4*n
	
	Tables
	The sequence of physical tables.

The HeapSizes field is a bitvector that encodes the width of indexes into the various heaps. If bit 0 is set, indexes into the “#String” heap are 4 bytes wide; if bit 1 is set, indexes into the “#GUID” heap are 4 bytes wide; if bit 2 is set, indexes into the “#Blob” heap are 4 bytes wide. Conversely, if the HeapSize bit for a particular heap is not set, indexes into that heap are 2 bytes wide.

	Heap size flag
	Description

	0x01
	Size of “#String” stream >= 216.

	0x02
	Size of “#GUID” stream >= 216.

	0x04
	Size of “#Blob” stream >= 216.

The Valid field is a 64-bit bitvector that has a specific bit set for each table that is stored in the stream; the mapping of tables to indexes is given at the start of §22
_21_Metedata_Logical_Format_Tables. For example when the DeclSecurity table is present in the logical metadata, bit 0x0e should be set in the Valid vector. It is invalid to include non-existent tables in Valid, so all bits above 0x2c shall be zero.

The Rows array contains the number of rows for each of the tables that are present. When decoding physical metadata to logical metadata, the number of 1’s in Valid indicates the number of elements in the Rows array.

A crucial aspect in the encoding of a logical table is its schema. The schema for each table is given in §22.37

, has the following columns: a 4-byte-wide flags, an index into the String heap, another index into the String heap, an index into TypeDef , TypeRef , or TypeSpec table, an index into Field table, and an index into MethodDef table.
22

_21_Metedata_Logical_Format_Tables. For example, the table with assigned index 0x02 is a TypeDef table, which, according to its specification in §
The physical representation of a table with n columns and m rows with schema (C0,…,Cn-1) consists of the concatenation of the physical representation of each of its rows. The physical representation of a row with schema (C0,…, n-1) is the concatenation of the physical representation of each of its elements. The physical representation of a row cell e at a column with type C is defined as follows:

· If e is a constant, it is stored using the number of bytes as specified for its column type C (i.e., a 2-bit mask of type PropertyAttributes)

· If e is an index into the GUID heap, 'blob', or String heap, it is stored using the number of bytes as defined in the HeapSizes field.

· If e is a simple index into a table with index i, it is stored using 2 bytes if table i has less than 216 rows, otherwise it is stored using 4 bytes.

· If e is a coded index that points into table ti out of n possible tables t0, …tn-1, then it is stored as e << (log n) | tag{ t0, …tn-1}[ti] using 2 bytes if the maximum number of rows of tables t0, …tn-1, is less than 2(16 – (log n)), and using 4 bytes otherwise. The family of finite maps tag{ t0, …tn-1} is defined below. Note that decoding a physical row requires the inverse of this mapping. [For example, the Parent column of the Constant table indexes a row in the Field, Param, or Property tables. The actual table is encoded into the low 2 bits of the number, using the values: 0 => Field, 1 => Param, 2 => Property.The remaining bits hold the actual row number being indexed. For example, a value of 0x321, indexes row number 0xC8 in the Param table.]

	TypeDefOrRef: 2 bits to encode tag
	Tag

	TypeDef
	0

	TypeRef
	1

	TypeSpec
	2

	HasConstant: 2 bits to encode tag
	Tag

	Field
	0

	Param
	1

	Property
	2

	HasCustomAttribute: 5 bits to encode tag
	Tag

	MethodDef
	0

	Field
	1

	TypeRef
	2

	TypeDef
	3

	Param
	4

	InterfaceImpl
	5

	MemberRef
	6

	Module
	7

	Permission
	8

	Property
	9

	Event
	10

	StandAloneSig
	11

	ModuleRef
	12

	TypeSpec
	13

	Assembly
	14

	AssemblyRef
	15

	File
	16

	ExportedType
	17

	ManifestResource
	18

[Note: HasCustomAttributes only has values for tables that are “externally visible”; that is, that correspond to items in a user source program. For example, an attribute can be attached to a TypeDef table and a Field table, but not a ClassLayout table. As a result, some table types are missing from the enum above. end note]
	HasFieldMarshall: 1 bit to encode tag
	Tag

	Field
	0

	Param
	1

	HasDeclSecurity: 2 bits to encode tag
	Tag

	TypeDef
	0

	MethodDef
	1

	Assembly
	2

	MemberRefParent: 3 bits to encode tag
	Tag

	TypeDef
	0

	TypeRef
	1

	ModuleRef
	2

	MethodDef
	3

	TypeSpec
	4

	HasSemantics: 1 bit to encode tag
	Tag

	Event
	0

	Property
	1

	MethodDefOrRef: 1 bit to encode tag
	Tag

	MethodDef
	0

	MemberRef
	1

	MemberForwarded: 1 bit to encode tag
	Tag

	Field
	0

	MethodDef
	1

	Implementation: 2 bits to encode tag
	Tag

	File
	0

	AssemblyRef
	1

	ExportedType
	2

	CustomAttributeType: 3 bits to encode tag
	Tag

	Not used
	0

	Not used
	1

	MethodDef
	2

	MemberRef
	3

	Not used
	4

	ResolutionScope: 2 bits to encode tag
	Tag

	Module
	0

	ModuleRef
	1

	AssemblyRef
	2

	TypeRef
	3

	TypeOrMethodDef: 1 bit to encode tag
	Tag

	TypeDef
	0

	MethodDef
	1

25 File format extensions to PE

This contains informative text only

The file format for CLI components is a strict extension of the current Portable Executable (PE) File Format. This extended PE format enables the operating system to recognize runtime images, accommodates code emitted as CIL or native code, and accommodates runtime metadata as an integral part of the emitted code. There are also specifications for a subset of the full Windows PE/COFF file format, in sufficient detail that a tool or compiler can use the specifications to emit valid CLI images.

The PE format frequently uses the term RVA (Relative Virtual Address). An RVA is the address of an item once loaded into memory, with the base address of the image file subtracted from it (i.e., the offset from the base address where the file is loaded). The RVA of an item will almost always differ from its position within the file on disk. To compute the file position of an item with RVA r, search all the sections in the PE file to find the section with RVA s, length l and file position p in which the RVA lies, ie s (r < s+l. The file position of the item is then given by p+(r-s).

Unless stated otherwise, all binary values are stored in little-endian format.

End informative text

25.1 Structure of the runtime file format

The figure below provides a high-level view of the CLI file format. All runtime images contain the following:

· PE headers, with specific guidelines on how field values should be set in a runtime file.

· A CLI header that contains all of the runtime specific data entries. The runtime header is read-only and shall be placed in any read-only section.

· The sections that contain the actual data as described by the headers, including imports/exports, data, and code.

[image: image29.png]PE Hoaders

CU Header

CLI Data : metadata, L method bodies, fx-ups

Native Image Sectons.

The CLI header (§25.4

) in the rest of the image. Note that the runtime data can be merged into other areas of the PE format with the other data based on the attributes of the sections (such as read only versus execute, etc.).
24

; for CIL see § 25.3.3

) is found using CLI Header directory entry in the PE header. The CLI header in turn contains the address and sizes of the runtime data (for metadata, see §
25.2 PE headers

A PE image starts with an MS-DOS header followed by a PE signature, followed by the PE file header, and then the PE optional header followed by PE section headers.

25.2.1 MS-DOS header

The PE format starts with an MS-DOS stub of exactly the following 128 bytes to be placed at the front of the module. At offset 0x3c in the DOS header is a 4-byte unsigned integer offset, lfanew, to the PE signature (shall be “PE\0\0”), immediately followed by the PE file header.

	0x4d
	0x5a
	0x90
	0x00
	0x03
	0x00
	0x00
	0x00

	0x04
	0x00
	0x00
	0x00
	0xFF
	0xFF
	0x00
	0x00

	0xb8
	0x00
	0x00
	0x00
	0x00
	0x00
	0x00
	0x00

	0x40
	0x00
	0x00
	0x00
	0x00
	0x00
	0x00
	0x00

	0x00
	0x00
	0x00
	0x00
	0x00
	0x00
	0x00
	0x00

	0x00
	0x00
	0x00
	0x00
	0x00
	0x00
	0x00
	0x00

	0x00
	0x00
	0x00
	0x00
	0x00
	0x00
	0x00
	0x00

	0x00
	0x00
	0x00
	0x00
	lfanew

	0x0e
	0x1f
	0xba
	0x0e
	0x00
	0xb4
	0x09
	0xcd

	0x21
	0xb8
	0x01
	0x4c
	0xcd
	0x21
	0x54
	0x68

	0x69
	0x73
	0x20
	0x70
	0x72
	0x6f
	0x67
	0x72

	0x61
	0x6d
	0x20
	0x63
	0x61
	0x6e
	0x6e
	0x6f

	0x74
	0x20
	0x62
	0x65
	0x20
	0x72
	0x75
	0x6e

	0x20
	0x69
	0x6e
	0x20
	0x44
	0x4f
	0x53
	0x20

	0x6d
	0x6f
	0x64
	0x65
	0x2e
	0x0d
	0x0d
	0x0a

	0x24
	0x00
	0x00
	0x00
	0x00
	0x00
	0x00
	0x00

25.2.2 PE file header

Immediately after the PE signature is the PE File header consisting of the following:

	Offset
	Size
	Field
	Description

	0
	2
	Machine
	Always 0x14c (§24.1

).

	2
	2
	Number of Sections
	Number of sections; indicates size of the Section Table, which immediately follows the headers.

	4
	4
	Time/Date Stamp
	Time and date the file was created in seconds since January 1st 1970 00:00:00 or 0.

	8
	4
	Pointer to Symbol Table
	Always 0 (§24.1

).

	12
	4
	Number of Symbols
	Always 0 (§24.1

).

	16
	2
	Optional Header Size
	Size of the optional header, the format is described below.

	18
	2
	Characteristics
	Flags indicating attributes of the file, see §25.2.2.1.

25.2.2.1 Characteristics

A CIL-only DLL sets flag 0x2000 to 1, while a CIL-only .exe has flag 0x2000 set to zero:

	Flag
	Value
	Description

	IMAGE_FILE_DLL
	0x2000
	The image file is a dynamic-link library (DLL).

Except for the IMAGE_FILE_DLL flag (0x2000), flags 0x0002, 0x0004, 0x008, and 0x0100 shall all be set, while all others shall always be zero (§24.1

).

25.2.3 PE optional header

Immediately after the PE Header is the PE Optional Header. This header contains the following information:

	Offset
	Size
	Header part
	Description

	0
	28
	Standard fields
	These define general properties of the PE file, see §25.2.3.1

.

	28
	68
	NT-specific fields
	These include additional fields to support specific features of Windows, see 25.2.3.2

.

	96
	128
	Data directories
	These fields are address/size pairs for special tables, found in the image file (for example, Import Table and Export Table).

25.2.3.1 PE header standard fields

These fields are required for all PE files and contain the following information:

	Offset
	Size
	Field
	Description

	0
	2
	Magic
	Always 0x10B (§24.1

).

	2
	1
	LMajor
	Always 6 (§24.1

).

	3
	1
	LMinor
	Always 0 (§24.1

).

	4
	4
	Code Size
	Size of the code (text) section, or the sum of all code sections if there are multiple sections.

	8
	4
	Initialized Data Size
	Size of the initialized data section, or the sum of all such sections if there are multiple data sections.

	12
	4
	Uninitialized Data Size
	Size of the uninitialized data section, or the sum of all such sections if there are multiple unitinitalized data sections.

	16
	4
	Entry Point RVA
	RVA of entry point , needs to point to bytes 0xFF 0x25 followed by the RVA in a section marked execute/read for EXEs or 0 for DLLs

	20
	4
	Base Of Code
	RVA of the code section. (This is a hint to the loader.)

	24
	4
	Base Of Data
	RVA of the data section. (This is a hint to the loader.)

This contains informative text only

The entry point RVA shall always be either the x86 entry point stub or be 0. On non-CLI aware platforms, this stub will call the entry point API of mscoree (_CorExeMain or _CorDllMain). The mscoree entry point will use the module handle to load the metadata from the image, and invoke the entry point specified in vthe CLI header.

End informative text

25.2.3.2 PE header Windows NT-specific fields

These fields are Windows NT specific:

	Offset
	Size
	Field
	Description

	28
	4
	Image Base
	Always 0x400000 (§24.1

).

	32
	4
	Section Alignment
	Always 0x2000 (§24.1

).

	36
	4
	File Alignment
	Either 0x200 or 0x1000.

	40
	2
	OS Major
	Always 4 (§24.1

).

	42
	2
	OS Minor
	Always 0 (§24.1

).

	44
	2
	User Major
	Always 0 (§24.1

).

	46
	2
	User Minor
	Always 0 (§24.1

).

	48
	2
	SubSys Major
	Always 4 (§24.1

).

	50
	2
	SubSys Minor
	 Always 0 (§24.1

).

	52
	4
	Reserved
	Always 0 (§24.1

).

	56
	4
	Image Size
	Size, in bytes, of image, including all headers and padding; shall be a multiple of Section Alignment.

	60
	4
	Header Size
	Combined size of MS-DOS Header, PE Header, PE Optional Header and padding; shall be a multiple of the file alignment.

	64
	4
	File Checksum
	Always 0 (§24.1

).

	68
	2
	SubSystem
	Subsystem required to run this image. Shall be either IMAGE_SUBSYSTEM_WINDOWS_CE_GUI (0x3) or IMAGE_SUBSYSTEM_WINDOWS_GUI (0x2).

	70
	2
	DLL Flags
	Always 0 (§24.1

).

	72
	4
	Stack Reserve Size
	Always 0x100000 (1Mb) (§24.1

).

	76
	4
	Stack Commit Size
	Always 0x1000 (4Kb) (§24.1

).

	80
	4
	Heap Reserve Size
	Always 0x100000 (1Mb) (§24.1

).

	84
	4
	Heap Commit Size
	Always 0x1000 (4Kb) (§24.1

).

	88
	4
	Loader Flags
	Always 0 (§24.1

)

	92
	4
	Number of Data Directories
	Always 0x10 (§24.1

).

25.2.3.3 PE header data directories

The optional header data directories give the address and size of several tables that appear in the sections of the PE file. Each data directory entry contains the RVA and Size of the structure it describes, in that order.

	Offset
	Size
	Field
	Description

	96
	8
	Export Table
	Always 0 (§24.1

).

	104
	8
	Import Table
	RVA and Size of Import Table, (§25.3.1

).

	112
	8
	Resource Table
	Always 0 (§24.1

).

	120
	8
	Exception Table
	Always 0 (§24.1

).

	128
	8
	Certificate Table
	Always 0 (§24.1

).

	136
	8
	Base Relocation Table
	Relocation Table; set to 0 if unused (§25.3.1

).

	144
	8
	Debug
	Always 0 (§24.1

).

	152
	8
	Copyright
	Always 0 (§24.1

).

	160
	8
	Global Ptr
	Always 0 (§24.1

).

	168
	8
	TLS Table
	Always 0 (§24.1

).

	176
	8
	Load Config Table
	Always 0 (§24.1

).

	184
	8
	Bound Import
	Always 0 (§24.1

).

	192
	8
	IAT
	RVA and Size of Import Address Table, (§25.3.1

).

	200
	8
	Delay Import Descriptor
	Always 0 (§24.1

).

	208
	8
	CLI Header
	CLI Header with directories for runtime data, (§25.3.1

).

	216
	8
	Reserved
	Always 0 (§24.1

).

The tables pointed to by the directory entries are stored in one of the PE file’s sections; these sections themselves are described by section headers.

25.3 Section headers

Immediately following the optional header is the Section Table, which contains a number of section headers. This positioning is required because the file header does not contain a direct pointer to the section table; the location of the section table is determined by calculating the location of the first byte after the headers.

Each section header has the following format, for a total of 40 bytes per entry:

	Offset
	Size
	Field
	Description

	0
	8
	Name
	An 8-byte, null-padded ASCII string. There is no terminating null if the string is exactly eight characters long.

	8
	4
	VirtualSize
	Total size of the section in bytes. If this value is greater than SizeOfRawData, the section is zero-padded.

	12
	4
	VirtualAddress
	For executable images this is the address of the first byte of the section, when loaded into memory, relative to the image base.

	16
	4
	SizeOfRawData
	Size of the initialized data on disk in bytes, shall be a multiple of FileAlignment from the PE header. If this is less than VirtualSize the remainder of the section is zero filled. Because this field is rounded while the VirtualSize field is not it is possible for this to be greater than VirtualSize as well. When a section contains only uninitialized data, this field should be 0.

	20
	4
	PointerToRawData
	Offset of section’s first page within the PE file. This shall be a multiple of FileAlignment from the optional header. When a section contains only uninitialized data, this field should be 0.

	24
	4
	PointerToRelocations
	RVA of Relocation section.

	28
	4
	PointerToLinenumbers
	Always 0 (§24.1

).

	32
	2
	NumberOfRelocations
	Number of relocations, set to 0 if unused.

	34
	2
	NumberOfLinenumbers
	Always 0 (§24.1

).

	36
	4
	Characteristics
	Flags describing section’s characteristics, see below.

The following table defines the possible characteristics of the section.

	Flag
	Value
	Description

	IMAGE_SCN_CNT_CODE
	0x00000020
	Section contains executable code.

	IMAGE_SCN_CNT_INITIALIZED_DATA
	0x00000040
	Section contains initialized data.

	IMAGE_SCN_CNT_UNINITIALIZED_DATA
	0x00000080
	Section contains uninitialized data.

	IMAGE_SCN_MEM_EXECUTE
	0x20000000
	Section can be executed as code.

	IMAGE_SCN_MEM_READ
	0x40000000
	Section can be read.

	IMAGE_SCN_MEM_WRITE
	0x80000000
	Section can be written to.

25.3.1 Import Table and Import Address Table (IAT)

The Import Table and the Import Address Table (IAT) are used to import the _CorExeMain (for a .exe) or _CorDllMain (for a .dll) entries of the runtime engine (mscoree.dll). The Import Table directory entry points to a one element zero terminated array of Import Directory entries (in a general PE file there is one entry for each imported DLL):

	Offset
	Size
	Field
	Description

	0
	4
	ImportLookupTable
	RVA of the Import Lookup Table

	4
	4
	DateTimeStamp
	Always 0 (§24.1

).

	8
	4
	ForwarderChain
	Always 0 (§24.1

).

	12
	4
	Name
	RVA of null-terminated ASCII string “mscoree.dll”.

	16
	4
	ImportAddressTable
	RVA of Import Address Table (this is the same as the RVA of the IAT descriptor in the optional header).

	20
	20
	
	End of Import Table. Shall be filled with zeros.

The Import Lookup Table and the Import Address Table (IAT) are both one element, zero terminated arrays of RVAs into the Hint/Name table. Bit 31 of the RVA shall be set to 0. In a general PE file there is one entry in this table for every imported symbol.

	Offset
	Size
	Field
	Description

	0
	4
	Hint/Name Table RVA
	A 31-bit RVA into the Hint/Name Table. Bit 31 shall be set to 0 indicating import by name.

	4
	4
	
	End of table, shall be filled with zeros.

The IAT should be in an executable and writable section as the loader will replace the pointers into the Hint/Name table by the actual entry points of the imported symbols.

The Hint/Name table contains the name of the dll-entry that is imported.

	Offset
	Size
	Field
	Description

	0
	2
	Hint
	Shall be 0.

	2
	variable
	Name
	Case sensitive, null-terminated ASCII string containing name to import. Shall be “_CorExeMain” for a .exe file and “_CorDllMain” for a .dll file.

25.3.2 Relocations

In a pure CIL image, a single fixup of type IMAGE_REL_BASED_HIGHLOW (0x3) is required for the x86 startup stub which access the IAT to load the runtime engine on down level loaders. When building a mixed CIL/native image or when the image contains embedded RVAs in user data, the relocation section contains relocations for these as well.

The relocations shall be in their own section, named “.reloc”, which shall be the final section in the PE file. The relocation section contains a Fix-Up Table. The fixup table is broken into blocks of fixups. Each block represents the fixups for a 4K page, and each block shall start on a 32-bit boundary.

Each fixup block starts with the following structure:

	Offset
	Size
	Field
	Description

	0
	4
	PageRVA
	The RVA of the block in which the fixup needs to be applied. The low 12 bits shall be zero.

	4
	4
	Block Size
	Total number of bytes in the fixup block, including the Page RVA and Block Size fields, as well as the Type/Offset fields that follow, rounded up to the next multiple of 4.

The Block Size field is then followed by (BlockSize –8)/2 Type/Offset. Each entry is a word (2 bytes) and has the following structure (if necessary, insert 2 bytes of 0 to pad to a multiple of 4 bytes in length):

	Offset
	Size
	Field
	Description

	0
	4 bits
	Type
	Stored in high 4 bits of word. Value indicating which type of fixup is to be applied (described above)

	0
	12 bits
	Offset
	Stored in remaining 12 bits of word. Offset from starting address specified in the Page RVA field for the block. This offset specifies where the fixup is to be applied.

25.3.3 CLI header

The CLI header contains all of the runtime-specific data entries and other information. The header should be placed in a read-only, sharable section of the image. This header is defined as follows:

	Offset
	Size
	Field
	Description

	0
	4
	Cb
	Size of the header in bytes

	4
	2
	MajorRuntimeVersion
	The minimum version of the runtime required to run this program, currently 2.

	6
	2
	MinorRuntimeVersion
	The minor portion of the version, currently 0.

	8
	8
	MetaData
	RVA and size of the physical metadata (§24

).

	16
	4
	Flags
	Flags describing this runtime image. (§25.3.3.1

).

	20
	4
	EntryPointToken
	Token for the MethodDef or File of the entry point for the image

	24
	8
	Resources
	RVA and size of implementation-specific resources.

	32
	8
	StrongNameSignature
	RVA of the hash data for this PE file used by the CLI loader for binding and versioning

	40
	8
	CodeManagerTable
	Always 0 (§24.1

).

	48
	8
	VTableFixups
	RVA of an array of locations in the file that contain an array of function pointers (e.g., vtable slots), see below.

	56
	8
	ExportAddressTableJumps
	Always 0 (§24.1

).

	64
	8
	ManagedNativeHeader
	Always 0 (§24.1

).

25.3.3.1 Runtime flags

The following flags describe this runtime image and are used by the loader.

	Flag
	Value
	Description

	COMIMAGE_FLAGS_ILONLY
	0x00000001
	Always 1 (§24.1

).

	COMIMAGE_FLAGS_32BITREQUIRED
	0x00000002
	Image can only be loaded into a 32-bit process, for instance if there are 32-bit vtablefixups, or casts from native integers to int32. CLI implementations that have 64-bit native integers shall refuse loading binaries with this flag set.

	COMIMAGE_FLAGS_STRONGNAMESIGNED
	0x00000008
	Image has a strong name signature.

	COMIMAGE_FLAGS_TRACKDEBUGDATA
	0x00010000
	Always 0 (§24.1

).

25.3.3.2 Entry point metadata token

· The entry point token (§22.19

) when the entry point for a multi-module assembly is not in the manifest assembly. The signature and implementation flags in metadata for the method indicate how the entry is run
22.26

) or File token (§15.4.1.2

) is always a MethodDef token (§
25.3.3.3 Vtable fixup

Certain languages, which choose not to follow the common type system runtime model, can have virtual functions which need to be represented in a v-table. These v-tables are laid out by the compiler, not by the runtime. Finding the correct v-table slot and calling indirectly through the value held in that slot is also done by the compiler. The VtableFixups field in the runtime header contains the location and size of an array of Vtable Fixups (§15.5.1

). V-tables shall be emitted into a read-write section of the PE file.
Each entry in this array describes a contiguous array of v-table slots of the specified size. Each slot starts out initialized to the metadata token value for the method they need to call. At image load time, the runtime Loader will turn each entry into a pointer to machine code for the CPU and can be called directly.

	Offset
	Size
	Field
	Description

	0
	4
	VirtualAddress
	RVA of Vtable

	4
	2
	Size
	Number of entries in Vtable

	6
	2
	Type
	Type of the entries, as defined in table below

	Constant
	Value
	Description

	COR_VTABLE_32BIT
	0x01
	Vtable slots are 32 bits.

	COR_VTABLE_64BIT
	0x02
	Vtable slots are 64 bits.

	COR_VTABLE_FROM_UNMANAGED
	0x04
	Transition from unmanaged to managed code.

	COR_VTABLE_CALL_MOST_DERIVED
	0x10
	Call most derived method described by the token (only valid for virtual methods).

25.3.3.4 Strong name signature

This header entry points to the strong name hash for an image that can be used to deterministically identify a module from a referencing point (§6.2.1.3

).

25.4 Common Intermediate Language physical layout

This section contains the layout of the data structures used to describe a CIL method and its exceptions. Method bodies can be stored in any read-only section of a PE file. The MethodDef (§22.26

) records in metadata carry each method's RVA.

A method consists of a method header immediately followed by the method body, possibly followed by extra method data sections (§25.4.4

) shall be specified in the method header and for each chained item after that.
25.4.5

), typically exception handling data. If exception-handling data is present, then CorILMethod_MoreSects flag (§
There are two flavors of method headers - tiny (§25.4.1

). The tiny header is 1 byte long and stores only the method's code size. A method is given a tiny header if it has no local variables, maxstack is 8 or less, the method has no exceptions, the method size is less than 64 bytes, and the method has no flags above 0x7. Fat headers carry full information - local vars signature token, maxstack, code size, flag. Tiny method headers can start on any byte boundary. Fat method headers shall start on a 4-byte boundary.25.4.3

). The two least significant bits in a method header indicate which type is present (§25.4.2

) and fat (§
25.4.1 Method header type values

The two least significant bits of the first byte of the method header indicate what type of header is present. These 2 bits will be one and only one of the following:

	Value
	Value
	Description

	CorILMethod_TinyFormat
	0x2
	The method header is tiny (§25.4.2

) .

	CorILMethod_FatFormat
	0x3
	The method header is fat (§25.4.3

).

25.4.2 Tiny format

Tiny headers use a 6-bit length encoding. The following is true for all tiny headers:

· No local variables are allowed

· No exceptions

· No extra data sections

· The operand stack shall be no bigger than 8 entries

A Tiny Format header is encoded as follows:

	Start Bit
	Count of Bits
	Description

	0
	2
	Flags (CorILMethod_TinyFormat shall be set, see §25.4.4

).

	2
	6
	Size, in bytes, of the method body immediately following this header.

25.4.3 Fat format

The fat format is used whenever the tiny format is not sufficient. This can be true for one or more of the following reasons:

· The method is too large to encode the size (i.e., at least 64 bytes)
· There are exceptions

· There are extra data sections

· There are local variables

· The operand stack needs more than 8 entries

A fat header has the following structure

	Offset
	Size
	Field
	Description

	0
	12 (bits)
	Flags
	Flags (CorILMethod_FatFormat shall be set in bits 0:1, see §25.4.4

)

	12 (bits)
	4 (bits)
	Size
	Size of this header expressed as the count of 4-byte integers occupied (currently 3)

	2
	2
	MaxStack
	Maximum number of items on the operand stack

	4
	4
	CodeSize
	Size in bytes of the actual method body

	8
	4
	LocalVarSigTok
	Meta Data token for a signature describing the layout of the local variables for the method. 0 means there are no local variables present

25.4.4 Flags for method headers

The first byte of a method header can also contain the following flags, valid only for the Fat format, that indicate how the method is to be executed:

	Flag
	Value
	Description

	CorILMethod_FatFormat
	0x3
	Method header is fat.

	CorILMethod_TinyFormat
	0x2
	Method header is tiny.

	CorILMethod_MoreSects
	0x8
	More sections follow after this header (§25.4.5

).

	CorILMethod_InitLocals
	0x10
	Call default constructor on all local variables.

25.4.5 Method data section

At the next 4-byte boundary following the method body can be extra method data sections. These method data sections start with a two byte header (1 byte for flags, 1 byte for the length of the actual data) or a 4-byte header (1 byte for flags, and 3 bytes for length of the actual data). The first byte determines the kind of the header, and what data is in the actual section:

	Flag
	Value
	Description

	CorILMethod_Sect_EHTable
	0x1
	Exception handling data.

	CorILMethod_Sect_OptILTable
	0x2
	Reserved, shall be 0.

	CorILMethod_Sect_FatFormat
	0x40
	Data format is of the fat variety, meaning there is a 3-byte length least-significant byte first format. If not set, the header is small with a 1-byte length

	CorILMethod_Sect_MoreSects
	0x80
	Another data section occurs after this current section

Currently, the method data sections are only used for exception tables (§19
). The layout of a small exception header structure as is a follows:
	Offset
	Size
	Field
	Description

	0
	1
	Kind
	Flags as described above.

	1
	1
	DataSize
	Size of the data for the block, including the header, say n*12+4.

	2
	2
	Reserved
	Padding, always 0.

	4
	n
	Clauses
	n small exception clauses (§25.4.6

).

The layout of a fat exception header structure is as follows:

	Offset
	Size
	Field
	Description

	0
	1
	Kind
	Which type of exception block is being used

	1
	3
	DataSize
	Size of the data for the block, including the header, say n*24+4.

	4
	n
	Clauses
	n fat exception clauses (§25.4.6

).

25.4.6 Exception handling clauses

Exception handling clauses also come in small and fat versions.

The small form of the exception clause should be used whenever the code sizes for the try block and the handler code are both smaller than 256 bytes and both their offsets are smaller than 65536. The format for a small exception clause is as follows:
	Offset
	Size
	Field
	Description

	0
	2
	Flags
	Flags, see below.

	2
	2
	TryOffset
	Offset in bytes of try block from start of method body.

	4
	1
	TryLength
	Length in bytes of the try block

	5
	2
	HandlerOffset
	Location of the handler for this try block

	7
	1
	HandlerLength
	Size of the handler code in bytes

	8
	4
	ClassToken
	Meta data token for a type-based exception handler

	8
	4
	FilterOffset
	Offset in method body for filter-based exception handler

The layout of the fat form of exception handling clauses is as follows:

	Offset
	Size
	Field
	Description

	0
	4
	Flags
	Flags, see below.

	4
	4
	TryOffset
	Offset in bytes of try block from start of method body.

	8
	4
	TryLength
	Length in bytes of the try block

	12
	4
	HandlerOffset
	Location of the handler for this try block

	16
	4
	HandlerLength
	Size of the handler code in bytes

	20
	4
	ClassToken
	Meta data token for a type-based exception handler

	20
	4
	FilterOffset
	Offset in method body for filter-based exception handler

The following flag values are used for each exception-handling clause:

	Flag
	Value
	Description

	COR_ILEXCEPTION_CLAUSE_EXCEPTION
	0x0000
	A typed exception clause

	COR_ILEXCEPTION_CLAUSE_FILTER
	0x0001
	An exception filter and handler clause

	COR_ILEXCEPTION_CLAUSE_FINALLY
	0x0002
	A finally clause

	COR_ILEXCEPTION_CLAUSE_FAULT
	0x0004
	Fault clause (finally that is called on exception only)

26 Index

!
19

!!
19

&
19

*
19

\n
6
\ooo
6
\t
6
+
6
abstract
39, 41, 79

accessibility
25

default
40
overriding and
48
.addon
102

address
66

ansi
39, 41, 86

arglist
84

array

jagged
64

multi-dimensional
62

native
22
rank of
62
single-dimensional
62

as any
24
.assembly
4, 9, 12, 15

assembly
4

assembly
11
assembly

defining an
12
assembly

version number
14
assembly

referencing an
16
assembly
79

assembly
92

.assembly extern
4, 9, 15, 16
AssemblyAttributesGoHere
115

assert
109

attribute
9
accessibility
39
custom
110

assembly linker
115

CIL-to-native Code
112

CLS-defined
112

interop with unmanaged code
115

remoting
113

thread local storage
115

field
92

field contract
93

genuine custom
110
inheritance
41
interoperation
41, 94

pre-defined
38
pseudo custom
111
special handling
42
type layout
40
type semantics
40
visibility
39
auto
39, 40
autochar
39, 41, 86

beforefieldinit
39, 42, 51

BeginInvoke
69, 72

blob
118
block

catch
106
fault
107
filter
106
finally
107
handler
106
protected
105
bool
19, 22
boxing
58, 98

byte list
8
bytearray
94

byvalstr
24
call
60, 73, 74

calli
67

calling convention
74
callvirt
60, 73, 74

.capability
47

catch
105, 106
.cctor
50, 75, 82

cdecl
87

char
19

character

escape
6
cil
82, 85

.class
9, 18, 38, 46

class
19

.class extern
9, 18
CLS tag
120
code

type-safe
3
unmanaged
85

unverifiable
3
verifiable
3
ComEmulateAttribute
116

compilercontrolled
79, 93

constraint
36
constructor

class
50
instance
50

conv.ovf.u
67

conv.u
67

.corflags
9, 12
.ctor
50, 75, 82, 110

.culture
13, 16

.custom
9, 13, 15, 16, 18, 47, 76, 100, 102, 110
custom
24
.data
9, 18, 47, 76, 86, 95
data marshaling
85

deadlock
51

default
75

delegate
69
creation
69
delegate call

asynchronous
72
synchronous
71
demand
109

deny
109

directive
9
dottedname
6, 48
.emitbyte
76, 77
endfault
107

endfinally
107

EndInvoke
69, 72

.entrypoint
4, 16, 76, 77
enum
64
underlying type
64
enumeration
See enum

ERROR tag
120
.event
47, 102
event
102
event

declaration
102
event

adder
102
event

remover
102
event

fire
102
exception handling
105
explicit
39, 40, 74, 92

extends
38
famandassem
79, 92

family
79, 92

famorassem
79, 92

fastcall
87

fault
105, 107

.field
9, 18, 47, 92

field

global
54

field
92
field

instance
92
field

static
92
field

global
92
.file
10, 15
.file alignment
10, 12
file name
9
filter
105, 106
final
79

finalizer
50

finally
105, 107

.fire
102

fixed array
24
fixed sysstring
24
float32
8, 19, 22, 94

float64
8, 19, 23, 94

forwardref
82, 85

fromunmanaged
86
generic instance
30
generic method definition
30
generic parameter
42
generic type definition
28
generics
26
.get
100
GUID
118

handle

opaque
89

handler
105, 106
HasDefaultInterfaceAttribute
116

.hash
16
.hash algorithm
13, 16

heap
118
Blob
118

Guid
118

String
118

UserString
118

hexbyte
5, 8

hidebysig
80

hiding
25
id
6
ID
6
identifier
6
keyword as an
6
ILAsm
2

case sensitivity of
5
syntax
5
.imagebase
10, 13
implements
38, 56

import
39
[in]
76
inheritcheck
109

init
77, 78

initobj
59

initonly
50, 92

instance
50, 74
instance explicit
74
instruction

protected
105
int
23
native
19

native unsigned
19

int16
19, 23, 95

unsigned
20

int32
5, 19, 23, 86, 95

unsigned
20

int64
5, 19, 23, 86, 95

unsigned
20

int8
19, 23, 95

unsigned
20

interface
38, 39, 40, 56

internalcall
82

InvalidOperationException
66

Invoke
69

isinst
58

label
7
code
7, 77

data
7, 92, 95

list of
7
.language
10

lasterr
87
layout
53
default
40
explicit
53

sequential
53

ldarga
66

ldelem
62

ldelema
62, 66

ldflda
66

ldftn
67, 74

ldind
66

ldloca
66

ldsflda
66

ldvirtftn
67, 74

#line
77

.line
8, 47, 77

linkcheck
109

literal
93

.locale
13

.locals
78
.locals
77

localsinit flag
59

lpstr
23
lpstruct
24
lpwstr
23
managed
69, 82

manifest
11
manifest resource
15
marshal
22, 75, 76, 93

marshaling
88
.maxstack
4, 77

member

special
50
metadata

semantics of
2

structure of
2

metadata merging
54
metadata table

Assembly
121
AssemblyOS
121
AssemblyProcessor
122
AssemblyRef
122
AssemblyRefOS
122
AssemblyRefProcessor
123
ClassLayout
123
Constant
125
CustomAttribute
126
DeclSecurity
127
Event
130
EventMap
129
ExportedType
131
Field
133
FieldLayout
135
FieldMarshal
136
FieldRVA
137
File
138
GenericParam
138
GenericParamConstraint
140
ImplMap
140
InterfaceImpl
141
ManifestResource
142
MemberRef
143
MethodDef
144
MethodImpl
148
MethodSemantics
149
MethodSpec
150
Module
151
ModuleRef
151
NestedClass
152
Param
152
Property
153
PropertyMap
154
StandAloneSig
155
TypeDef
156
TypeRef
160
TypeSpec
161
.method
4, 10, 18, 47, 73

method
19

method
23
method

virtual
47

method

global
54

method

static
73
method

instance
73
method

virtual
74
method

definition
75

method

entry point
77
method

predefined attributes for a
79

method

implementation attributes for a
82

method

vararg
84
method

unmanaged
85
Method
See method definition

method body
76
method declaration
73
method definition
73
method descriptor
73
method implementation
48, 73
method reference
73
method transition thunk
85
MethodDecl
See method implementation, See method declaration

MethodImpl
56

MethodRef
See method reference

modifier

optional
See modopt

required
See modreq

modopt
20, 76

modreq
20, 76

.module
10, 17, 20, 21

module
11
module

declaring a
17
module

referencing a
17
module

manifest
18

module
120
<Module>
54, 134, 146, 148

.module extern
10, 17
.mresource
10, 15
mscorlib
4, 16

.namespace
10

namespace
11

native
82, 86

nested assembly
39

nested famandassem
39

nested family
39

nested famorassem
39

nested private
39, 40
nested public
39, 40
newarr
62

newobj
59, 69

newslot
25, 47, 74, 80

NoComRegistrationAttribute
116

NoIDispatchAttribute
116

noinlining
82

nomangle
87
nometadata
16
notserialized
93

null
55
object
19

operator

+
6
[opt]
76
.other
100, 102

[out]
76
.override
47, 48, 77

.override method
77

.pack
47, 53
.param
76, 77, 79
.param type
47, 77, 79
PDB
8

.permission
77, 109

.permissionset
77, 109

permitonly
109

pinned
20, 21
PInvoke
See platform invoke

pinvokeimpl
80, 86

platform invoke
83, 85, 86
platformapi
87

pointer
65
managed
65, 67

method
67
unmanaged
65, 66

pointer arithmetic
66
Portable Debug
8

prejitgrant
109
preservesig
82
private
39, 40, 80, 93

privatescope
80

.property
47, 100
property
100
property

declaration
100

property

getter
100
property

setter
100
public
39, 40, 80, 93

.publickey
13, 14, 16

.publickeytoken
16
QSTRING
6
race
51

realnumber
5, 8
RegAsm
88

.removeon
102

reqopt
109

reqrefuse
109

reqsecobj
80
request
109

resolution scope
21

rtspecialname
39, 42, 50, 80, 93, 100, 102

runtime
69, 82

scope block
84

sealed
39, 41
security

declarative
109
sequential
39, 40
serializable
39, 42
serialization
42

.set
100
signature
172
.size
47

Source line information
8

specialname
39, 42, 50, 80, 93, 100, 102

SQSTRING
6
Standard Public Key
14
static
80, 93

static data

initialization of
97
stdcall
87

stelem
62

stind
66

string
19

string literal

concatenation of
6
struct
24
.subsystem
10, 12
synchronized
82

System.ArgIterator
84

System.Array
62

System.Array.Initialize
59

System.AsyncCallback
69, 72

System.Attribute
110

System.AttributeUsageAttribute
112

System.CLSCompliantAttribute
112

System.Console
4

System.Delegate
69

System.Diagnostics.ConditionalAttribute
117

System.Diagnostics.DebuggableAttribute
113

System.Diagnostics.DebuggerHiddenAttribute
113

System.Diagnostics.DebuggerStepThroughAttribute
113

System.EnterpriseServices.SynchronizationAttribute
113

System.Enum
64

System.Enum.ToString
125

System.FlagsAttribute
117

System.Globalization.CultureInfo
13

System.IAsyncResult
69, 72

System.IntPtr
69

System.MarshalByRefObject
66

System.MissingMethodException
73

System.MulticastDelegate
69

System.Net.DnsPermissionAttribute
114

System.Net.SocketPermissionAttribute
114

System.Net.WebPermissionAttribute
114

System.NonSerializedAttribute
112

System.Object
19, 38, 69, 72

System.Object.Finalize
50

System.ObsoleteAttribute
112

System.ParamArrayAttribute
117

System.Reflection.AssemblyAlgorithmIDAttribute
111

System.Reflection.AssemblyCultureAttribute
115

System.Reflection.AssemblyFlagsAttribute
111

System.Reflection.AssemblyVersionAttribute
115

System.Reflection.DefaultMemberAttribute
111, 117

System.Runtime.CompilerServices.DecimalConstantAttribute
117

System.Runtime.CompilerServices.FaultModeAttribute
117

System.Runtime.CompilerServices.IndexerNameAttribute
117

System.Runtime.CompilerServices.InitializeArray
98

System.Runtime.CompilerServices.MethodImplAttribute
111

System.Runtime.InteropServices.ClassInterfaceAttribute
115

System.Runtime.InteropServices.ComAliasNameAttribute
116

System.Runtime.InteropServices.ComConversionLossAttribute
116

System.Runtime.InteropServices.ComImportAttribute
112

System.Runtime.InteropServices.ComRegisterFunctionAttribute
116

System.Runtime.InteropServices.ComSourceInterfacesAttribute
116

System.Runtime.InteropServices.ComUnregisterFunctionAttribute
116

System.Runtime.InteropServices.ComVisibleAttribute
116

System.Runtime.InteropServices.DispIdAttribute
116

System.Runtime.InteropServices.DllImportAttribute
111

System.Runtime.InteropServices.FieldOffsetAttribute
111

System.Runtime.InteropServices.GCHandle
89

System.Runtime.InteropServices.GuidAttribute
116

System.Runtime.InteropServices.IdispatchImplAttribute
116

System.Runtime.InteropServices.ImportedFromTypeLibAttribute
116

System.Runtime.InteropServices.InAttribute
111

System.Runtime.InteropServices.InterfaceTypeAttribute
116

System.Runtime.InteropServices.MarshalAsAttribute
111

System.Runtime.InteropServices.OptionalAttribute
112

System.Runtime.InteropServices.OutAttribute
111

System.Runtime.InteropServices.PreserveSigAttribute
112

System.Runtime.InteropServices.ProgIdAttribute
116

System.Runtime.InteropServices.StructLayoutAttribute
111

System.Runtime.InteropServices.TypeLibFuncAttribute
116

System.Runtime.InteropServices.TypeLibTypeAttribute
116

System.Runtime.InteropServices.TypeLibVarAttribute
116

System.Runtime.Interopservices.UnmanagedType
22

System.Runtime.Remoting.ContextAttribute
113

System.Runtime.Remoting.Messaging.OneWayAttribute
113

System.Runtime.Serialization
98

System.Security.DynamicSecurityMethodAttribute
113, 114

System.Security.Permissions.CodeAccessSecurityAttribute
114

System.Security.Permissions.ecurityAttribute
114

System.Security.Permissions.EnvironmentPermissionAttribute
114

System.Security.Permissions.FileIOPermissionAttribute
114

System.Security.Permissions.ReflectionPermissionAttribute
114

System.Security.Permissions.RegistryPermissionAttribute
114

System.Security.Permissions.SecurityAttribute
9

System.Security.Permissions.SecurityPermissionAttribute
114

System.Security.Permissions.StrongNameIdentityPermissionAttribute
114

System.Security.Permissions.UIPermissionAttribute
115

System.Security.Permissions.ZoneIdentityPermissionAttribute
115

System.Security.SuppressUnmanagedCodeSecurityAttribute
113

System.SerializableAttribute
112

System.String
4, 19, 41

System.ThreadStaticAttribute
115

System.ValueType
64

table
118
tail.
83

terminal
5
thiscall
87

thread local storage

unmanaged
97

ThreadAffinityAttribute
113

thunk
85

tlbexp
88

tlbimp
88

tls
97
token

foreign
131
regular
131
.try
105
try
105

try block
105
type
19
abstract
41
base
38
built-in
19, 21

closed
30
concrete
50
definition of a
19, 38
instantiated
30
marshalling of a
22
native data
22
nested
52

open
30
pointer
65
reference
19
specification
20
user defined
19
value
58

type initializer
50

type layout
123
typedref
20

unbox
60

unboxing
58
unicode
39, 41, 87

unmanaged
82, 86

unmanaged cdecl
75

unmanaged COM
87

unmanaged fastcall
75

unmanaged stdcall
75

unmanaged thiscall
75

unmanagedexp
80
unsigned int
23
unsigned int16
23
unsigned int32
23
unsigned int64
23
unsigned int8
23
validation
3

value class
59
value type
20

vararg
75, 76, 84

vector
62
.ver
14
.ver
13

.ver
16

verification
3

virtual
80

visibility
25

default
40
void
20, 75

.vtfixup
10, 85

WARNING tag
120
winapi
87

Partition II
1
Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
rex Partition II Metadata.doc 27-02-05 11,43

