2 SQL Server Query Tuning

styleref "heading 1" 5

Hands-On Lab
Lab Manual

SQL Server™ 2005:

SQL Query Tuning
Information in this document is subject to change without notice. The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

2004 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, MS, Windows, Windows NT, MSDN, Active Directory, BizTalk, SQL Server, SharePoint, Outlook, PowerPoint, FrontPage, Visual Basic, Visual C++, Visual J++, Visual InterDev, Visual SourceSafe, Visual C#, Visual J#, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

SQL Server Query Tuning
Objectives

After completing this lab, you will be able to:
· Use the SQL Profiler to troubleshoot deadlocks

· Generate a query plan for a poorly performing query and save the plan as an XML document

· Use the Database Tuning Advisor

Note

This lab focuses on the concepts in this module and as a result may not comply with Microsoft security recommendations.

Note

The SQL Server 2005 labs are based on beta builds of the product. The intent of these labs is to provide you with a general feel of some of the planned features for the next release of SQL Server. As with all software development projects, the final version may differ from beta builds in both features and user interface. For the latest details on SQL Server 2005, please visit http://www.microsoft.com/sql/2005/.

Prerequisites
Before working on this lab, you must have:
· Experience with basic administration tasks in SQL Server 2000
· A familiarity with the Transact-SQL language

· Completed the SQL Server Management Studio hands-on lab.
Scenario
You are the database administrator for the AdventureWorks database.
Your users are experiencing frequent deadlocks and you are concerned that the deadlocks might be a cause of poor system performance. You have isolated a query that is often involved in deadlocks. You will capture a trace of the events leading up to the deadlock and the details of the deadlock itself, using SQL Profiler.
After tracking down the cause of the deadlocks, you realize that it is not a major cause of system performance degradation, so you decide to investigate key queries. You will analyze the queries by inspecting the query plans being used for them, and you will employ the Index Tuning Advisor to suggest optimum indexes.
Estimated time to complete this lab: 45 minutes

Exercise 0:
Lab Setup

· Task 1: Verify that you are logged into Windows
· Log in using the Administrator account. The password is pass@word1.
Exercise 1:
Troubleshooting Deadlocks with SQL Profiler

In this exercise, you will use the SQL Profiler tool to capture deadlock information.
Deadlocks occur when two processes are mutually blocking each other because each is holding an exclusive lock that prevents the other from completing its transaction.

Deadlocks can also occur when two processes are trying to access rows in the same table if the rows are accessed in a different sequence by the two processes. Deadlocks can also involve more than two processes. For example, process A could block process B, which is blocking process C, which is blocking process A.
SQL Server detects when a deadlock occurs by periodically looking for “cycles” in the chain of blocked and blocker processes. When a deadlock is detected, SQL Server will choose one of the processes as the “victim,” abort that session and rollback the process’s current transaction. This will release all the locks that process was holding and usually allow the any blocked processes to continue execution.

The likelihood of deadlocks can be reduced by careful application design and good indexing. The best prevention is to keep your transactions as short as possible, and never to allow transactions to span batches. In addition, wherever possible you should try to access tables in the same order. For example, if you have several different procedures that all need to update the same three tables, they all should update the tables in the same order.
Even with careful planning, deadlocks cannot be prevented completely. When they do occur, you can use the SQL Profiler to capture the events leading up to the deadlock, and to determine the actual objects and TSQL statements involved.
SQL Server 2005 will also allow you to save the deadlock graph in XML. Eventually, there will be tools in SQL Profiler to read in a Deadlock XML file and display the deadlock graphically, clearly indicating which resources were requested by each process involved, which locks were granted, and where blocking occurred prior to the deadlock detection.
· Task 1: Define a trace to capture deadlock information

1. From the Windows task bar, select the Start | All Programs | Microsoft SQL Server 2005 | Profiler menu item.
2. Click the New Trace button (the first button on the SQL Profiler toolbar).
3. When the Connect to Server dialog box appears, verify that Server type is set to SQL Server, Server name is set to localhost, and that Windows Authentication is selected as the authentication method. Click Connect.

4. If a SQL Profiler message box appears to retrieve a trace definition file from the server, click OK.

The Trace Properties dialog box will open. The first tab, General, is similar to the General tab in the SQL Server 2000 Profiler’s trace definition dialog box.
5. In the Trace Name text box, enter Deadlock1. In the Use the template drop-down, select Blank.
6. Select the Save to File checkbox and change the directory to C:\SQL Labs\User Projects. Accept the default filename of Deadlock1.trc. Click Save. Leave the other options on the Trace Properties dialog box at the default values.
7. Click the Events Selection tab.

In SQL Server 2005, the process of defining the events to capture in the Profiler is different from what it was in SQL Server 2000. Events are selected by expanding an event category and then checking the boxes for the events you want to capture. Not all data items are available for every event. This was also true in SQL Server 2000 Profiler, but it wasn’t as obvious from the way data items were selected in that version.
For example, performance data items, such as duration, reads and writes, are not available for starting events. These performance data items are only available for events such as SP:Completed (the stored procedure completion event) and SP:StmtCompleted (statement completion within a stored procedure). In addition, some events have data for EventSubClass, BinaryData and IntegerData, and others do not.
8. Select the checkboxes for the following events, and ensure that all of their available data values are selected:

· In the Locks category:

· Lock: Deadlock Chain

· Deadlock graph

· In the Stored Procedures category:

· RPC:Starting

· SP:StmtStarting

· SP:StmtCompleted

· RPC:Completed

In SQL Profiler for 2005, filters are set in the Events Selection screen.
9. Scroll to the right until you find the DatabaseID column.
10. Right-click the DatabaseID column heading and select Edit Column Filter. Expand the Not equal to node, and type in the number 4. Click OK. This will filter out all activity in the msdb database.

11. Right-click the DatabaseName column heading and select Edit Column Filter. Expand the Not like node, and type in ReportServer. Click OK. This will filter out all activity in the ReportServer database.

You do not need to apply any additional filters for this exercise, but you may want to explore which data items allow filters and which do not. Some data items allow a range filter. You can use this filter to specify exact values that must match, or a range of values specified by greater than or less than operators. Other data items allow a pattern matching filter, which you can use with “like” or “not like” operators.
Note that if you right-click on any data item or event name, the shortcut menu includes the option, Organize Columns. This option allows you to rearrange the order in which the data items appear in your output.
12. Click the Events Extraction Settings tab. Select the Save Deadlock XML Events Separately checkbox. Verify that the current directory is C:\SQL Labs\User Projects, enter the File name “XMLdeadlock”, and click Save. Click Each Deadlock XML batch in a distinct file, and click Run. Your trace will begin.

· Task 2: Generate a multi table deadlock

1. From the Windows task bar, select Start | All Programs | Microsoft SQL Server 2005 | SQL Server Management Studio.

2. When the Connect to Server dialog box appears, enter localhost as the Server name, and verify that Windows Authentication is selected as the authentication method. Click Connect.
3. Select the File | Open | Project/Solution menu item. Navigate to C:\SQL Labs\Lab Projects\Tuning Lab\Exercise 1. Select Exercise 1.ssmssln and click Open.

4. In the Solution Explorer window, double-click Copy tables.sql under the Queries folder, to open this SQL script.
5. Press F5 or click the Execute toolbar button.

This script, which will take a few moments to run, makes copies of several tables from the AdventureWorks database. When you modify data in the following tasks, you will be working with the new copies and will not be affecting the original data. After inspecting the statements, you can close this script.
6. Open the SQL script First part multi table deadlock.sql.

This script allows you to create a deadlock. The scenario is that you need to change the Active status for two of your vendors to “false”. You also need to update the contact data for these vendors, to identify two contacts as owners.
The script in First part multi table deadlock.sql updates the NewVendor data for Vendor ID 1, and then attempts to update the NewVendorContact data for Vendor ID 1. However, you will not execute the entire script at once.
7. Select a portion of the script, beginning at the first line and ending before the comment line that reads Only execute up to this point in the first batch. Press F5 or click the Execute button.
Note that you have executed a BEGIN TRAN and no COMMIT TRAN or ROLLBACK TRAN. You would normally want to avoid this, because transactions held open across batches have a greater chance of being involved in a deadlock. This exercise violates that recommendation intentionally to cause a deadlock.
8. Open the SQL script Second part multi table deadlock.sql.

The script in Second part multi table deadlock.sql updates the NewVendorContact data for Vendor ID 15, and then attempts to update the NewVendor data for Vendor ID 15. Again, you will not execute the entire script all at once.
9. Select the portion of the script from the first line down to before the comment line that reads Only execute up to this point in the first batch. Press F5 or click the Execute button.
10. Use the down-arrows in the upper right corner of the code window to select First part multi table deadlock.sql. Select only the second UPDATE statement in the transaction, after the comment Next, start execution here, and click the Execute button.

The update statement will not complete executing, because it will be blocked by the first update in the transaction in the Second part multi table deadlock.sql script. This is not a deadlock yet, because there is only one blocking process and one blocked process.
11. Go back to the query window for Second part multi table deadlock.sql. Select only the second UPDATE statement in the transaction, beginning after the comment Next, start execution here, and click the Execute button.

This second update will be blocked by the first update in the transaction in the First part multi table deadlock.sql script. Because both processes are now blocking each other, this is a true deadlock.
SQL Server will detect the deadlock and choose one process as the “victim.” You should see this message in the results window for one of the deadlock scripts (the Process ID may be different on your computer):
Msg 1205, Level 13, State 45, Line 1

Transaction (Process ID 57) was deadlocked on lock resources with another process and has been chosen as the deadlock victim. Rerun the transaction.

The transaction is rolled back when the deadlock error message is generated, and all the locks are released. The other “winning” transaction is then no longer blocked and can complete its second update.
Note

The transaction that was not the deadlock victim is still pending, although it has completed both its updates. It has been neither committed nor rolled back.

12. Run the last line (ROLLBACK TRAN) in the transaction that wasn’t the deadlock victim, to rollback the transaction.

· Task 3: Examine the captured deadlock information

1. Return to your running trace in the SQL Profiler and click the Stop Selected Trace toolbar button, which has a red square icon. Near the end of the trace you will see two rows that begin with Lock:Deadlock Chain.

2. Select the Deadlock Graph event below the Lock:Deadlock Chain events. When you select this event in Profiler, Deadlock Graph information appears in the lower window of the Profiler, similar to that shown in Figure 1.

[image: image1.png]Iy AID Lock
aie
FieiD: 1 s
Pagaid 21240 S0
assocaed bl 2057554050555 e
Tobl nome: Advrratioks @ NowVendor [oSt o) a0
Log Uaed: 516

D Lok _ XOEE: Outdcicds
|, omertossx Input B Lanousgeven:
mnt UPOATE aie tament: UPOATE
PageiD 21472

assocaod bl 12057554055 163004
Ttk name. AdverursWork dbo NewVendorContact

Figure 1: This diagram is a representation of the processes involved in deadlock, including the type and mode of lock each process held, the type of lock each process was waiting on, and some information about the actual resource on which the lock was placed.
Exercise 2:
Isolating a Slow Running Query Using SQL Profiler

In this exercise, you will use the SQL Profiler to isolate a poorly performing query within a query batch.

· Task 1: Define a trace to capture query performance information

1. If SQL Profiler is not already loaded, then from the Windows task bar, select the Start | All Programs | Microsoft SQL Server 2005 | Profiler menu.

2. Click the New Trace button (the first button on the SQL Profiler toolbar).

3. When the Connect to Server dialog box opens, verify that Server type is set to SQL Server, Server name is set to localhost, and that Windows Authentication is selected as the authentication method. Click Connect.

4. In the Trace Name text box, enter TuneBatch as the name of your trace. In the Use the template drop-down, select TSQL. Check the Save to File box and confirm that the directory is C:\SQL Labs\User Projects. Accept the default file name of TuneBatch.trc. Click Save, and leave the other options on the General tab of the Trace Properties dialog box at the default values.
5. Click the Events Selection tab. In addition to the events that are selected by default in this template, select the following events, and include all of their available data values:

· In the Performance category:

· Showplan XML

· Showplan All

· In the Stored Procedures category:

· SP:StmtCompleted

· In the TSQL category:

· SQL:BatchCompleted

6. Right-click the DatabaseName column heading and select Edit Column Filter. Expand the option Like and type in “AdventureWorks”. Click OK.
This will filter out all activity except for the selected events in the AdventureWorks database.
7. Click the Events Extraction Settings tab. Select the Save XML Showplan events separately checkbox. Verify that the target directory is C:\SQL Labs\User Projects, enter the file name XMLQueryPlans, and click Save. Click Each XML Showplan batch in a distinct file, and click Run. Your trace will begin.

· Task 2: Isolate a poorly performing query in a batch

1. Load Microsoft SQL Server Management Studio, if you do not already have it loaded.

2. Click File | Open | Project/Solution. Navigate to C:\SQL Labs\Lab Projects\Tuning Lab\Exercise 2. Select Exercise 2.ssmssln and click Open.

3. In the Solution Explorer window, double-click BatchToTune.sql under the Queries folder, to open this SQL script.

4. Press F5 or click the Execute toolbar button.
5. Once the script execution completes, go back to the trace running in SQL Profiler and stop the trace by clicking the Stop Selected Trace button, the red square in the toolbar.
6. Scroll to the right to find the Duration column. Only some of the events have a duration listed.
7. Isolate the event with the greatest value in the Duration column. Select that row in the Profiler output, and you should see the query in the lower Profiler window.
8. Look in your C:\SQL Labs\User Projects\ directory. It should contain several .SQLPlan files. Select the most recent file and open it in Management Studio by right-clicking on the file name, choosing Open.

Having query plans in XML allows third party vendors to develop software to interpret and display them. In addition, an XML query plan can be sent to a support provider, who can then view it in a graphical format and see the same output that appears in SQL Server Management Studio.
Exercise 3:
Examining an Execution Plan

In this exercise, you will use the Include Actual Execution Plan option to examine the execution plan for a poorly performing query.
· Task 1: Examine the statistics and Execution Plan for a poorly performing query

1. Load Microsoft SQL Server Management Studio, if you do not already have it loaded.

2. Click File | Open | Project/Solution. Navigate to C:\SQL Labs\Lab Projects\Tuning Lab\Exercise 3. Select Exercise 3.sssmssln and click Open.

3. In the Solution Explorer window, double-click Slow query.sql under the Queries folder, to open this SQL script.

4. Right-click anywhere in the query window, and click Query Options.
5. In the left-hand pane, select Execution | Advanced and check the box for SET STATISTICS TIME. Click OK.

6. Right-click anywhere in the query window, and click Include Actual Execution Plan (you can also select this option from the Query menu in the toolbar).
7. Switch to the Profiler and run the TuneBatch trace by clicking the Start Selected Trace button, the green arrowhead.
8. Switch back to Management Studio and execute the query.

9. Click the Execution plan tab at the bottom of the results window.

Notice that almost all the join operations are performed using Hash Match joins. SQL Server uses a hash join when there are no useful indexes on the query. This generally indicates that tuning is in order. All of the table accesses are performed as table scans, because there are no indexes on these tables at all.
10. Switch to the Profiler and select the row for the SQL:BatchCompleted event for the SELECT query that you just executed. Note the Duration value, which you will refer to in the next exercise.
Exercise 4:
Using the Database Tuning Advisor

In this exercise, you will let the Database Tuning Advisor (DTA) recommend indexes for the poorly performing query that you examined in Exercise 3.
The Database Tuning Advisor is the SQL Server 2005 successor to the Index Tuning Wizard. For this exercise, you will only be tuning a single query, but the DTA is capable of tuning an entire workload of events captured in a SQL Profiler trace. The workload could contain many queries spanning several hours during real-world conditions.
· Task 1: Use the Database Tuning Advisor to recommend indexes for a single query

1. Return to SQL Profiler and stop any running traces by clicking on the red Stop Selected Trace button.
2. Select the Tools | Database Tuning Advisor menu item, and confirm the connection settings if a dialog box pops up. (Be patient. The dialog box may take a few moments to load.) Supply connection information and click Connect when prompted.

3. On the Workload tab, type in a session name of TuneQuery.
4. For the Workload, select File. Click the Browse for a workload file button (the button with a binoculars icon, to the right of the Workload textbox). In the Select Workload File dialog box, change Files of type to SQL Script (*.sql).

5. Browse to C:\SQL Labs\Lab Projects\Tuning Lab\Exercise3 and select the file Slow Query.sql. Click Open.
6. In the Databases and Tables section in the lower part of the Workload tab, check the AdventureWorks database.
7. Examine the Tuning Options tab, including the Advanced Options. Do not change anything in the Advanced Options dialog box.
8. Click the Start Analysis button (the green arrow) to start the analysis. Wait until the analysis completes, which may take a minute or two.
9. When the analysis is done, you’ll see three more tabs: Progress, Recommendations, and Reports. Click the Recommendations tab and clear the box Show existing objects at the bottom of the tab. This will show you only the changes that are recommended.
10. Select the Actions | Apply Recommendations menu item. Click OK in the Apply Recommendations dialog box, after verifying that Apply now is selected. A message box will confirm that the recommendations have successfully been applied. Click OK.

11. Close the Database Tuning Advisor.
12. In the SQL Profiler, restart the TuneBatch trace.

13. Return to the Slow Query.sql window in the SQL Server Management Studio, and execute the query.

14. In the SQL Profiler, check the Duration of the SELECT statement. It should be lower than the value you received in the last exercise, before you let the DTA add the recommended indexes.

Last Saved: 9/13/2004 1:36:00 PM
Last Printed: 5/1/2004 7:57:00 PM

