Filename: TEMPDB_Capacity_Planning_Index_Build.doc
3

[image: image1.png]Microsoft*

SQL Server 2005

TEMPDB Capacity Planning and Concurrency Considerations for Index Create and Rebuild
SQL Server Best Practices Article

Writer: Sanjay Mishra
Technical Reviewers: Tom Davidson, Mark Souza, Prem Mehra, Sunil Agarwal, Mike Ruthruff
Project Editor: Suzanne Bonney
Published: August 2006
Applies To: SQL Server 2005

Table of Contents

1Introduction

1Overview

2Test Objective

2Measuring Temporary Disk Space Usage

3Test Methodology

5Test Results and Observations

5Temporary Space Usage

6Example

7Observations

7Recommendations

8Conclusion

Introduction
Creating and rebuilding indexes are some of the most common database management tasks. Depending on application requirements and data volume changes, the database administrators develop periodic index maintenance schedules. Some of the key factors to consider while you devise an index maintenance plan are performance, concurrency, and required resources. SQL Server 2005 provides you with several options for index create and rebuild operations that you can use to effectively meet the requirements of performance, concurrency, and resources.

This paper describes the various options for index create and rebuild operations, and their effects on performance, concurrency, and resource requirements. This paper also provides some best practice recommendations.
Overview
SQL Server 2005 provides an option (ONLINE = ON or OFF) to help manage the performance and concurrency requirements while creating or rebuilding an index. Online index create or rebuild (ONLINE=ON) provides maximum concurrency, but uses more resources and takes longer to complete. During an online index create or rebuild, queries, inserts, updates, and deletes are allowed on the underlying table. Offline index create or rebuild (ONLINE=OFF, the default) uses less resources and takes less time, but restricts concurrency. An offline index create or rebuild restricts user access to the underlying table for the duration of the operation. For more information about online index operations, see SQL Server Books Online (http://go.microsoft.com/fwlink/?LinkId=73380).
To help control how SQL Server manages the temporary space during an index operation, SQL Server provides another option: SORT_IN_TEMPDB. SQL Server uses temporary storage for sorting and other intermediate tasks while creating or rebuilding an index. This temporary storage can be used from the user database, or it can be used from the TEMPDB database. When the SORT_IN_TEMP option of the CREATE INDEX or ALTER INDEX statement is set to OFF (the default), the temporary storage is used from the user database. When SORT_IN_TEMP is set to ON, the temporary storage is used from the TEMPDB database.

The same amount of temporary storage is required whether you are using the temporary space from the user database or from the TEMPDB database. The advantages of using the temporary space from the TEMPDB database (SORT_IN_TEMPDB=ON) are described in the tempdb and Index Creation topic in SQL Server 2005 Books Online (http://go.microsoft.com/fwlink/?LinkId=71051).

These two options (ONLINE and SORT_IN_TEMPDB) together influence the amount of space that is used in the user database and in the TEMPDB database. Other factors that influence the amount of temporary space needed are the following:

· Whether you are dealing with a clustered index or a non-clustered index

· Whether you are creating a new index or rebuilding an old index.

The following sections describe how to measure the amount of temporary space being used. They also provide capacity planning guidelines for the temporary space, together with concurrency and contiguity considerations.

Test Objective

The objective of this exercise is to determine the following:

· How much temporary space is required to create or rebuild a clustered index

· How much temporary space is required to create or rebuild a non-clustered index

· Whether it matters if you are creating/rebuilding a unique or a non-unique index

· Whether it matters if you are creating/rebuilding an index on a partitioned or a non-partitioned table

· Whether it matters if the index is a narrow single column index or a wide index that encompasses all the columns in the table

· Whether it matters if the index has included columns

· What is the effect on the amount of temporary space and performance if you want the maximum concurrency while creating/rebuilding an index

· What is the effect on performance and concurrency if you want to use the least amount of temporary space

Measuring Temporary Disk Space Usage

When the temporary space is used from the TEMPDB database, it is easier to measure the amount of space being used by a task or a session by using the Dynamic Management Views (DMV) in SQL Server 2005.
The DMV sys.dm_db_session_space_usage provides TEMPDB usage information for each session. The easiest way to measure the TEMPDB space that is used by a given operation is to query this DMV for your session before and after the operation. The following query is an example of this:

SELECT * FROM sys.dm_db_session_space_usage WHERE SESSION_ID = @@spid

GO

<create or rebuild the index>

GO

select * from sys.dm_db_session_space_usage where session_id = @@spid

GO

Note that when you query sys.dm_db_session_space_usage, the data in the DMV is not updated until the completion of the batch. Therefore, you must execute the before query, the index operation, and the after query in three separate batches. You can use three GO statements, as shown in the previous example, to accomplish this. If you execute all three statements in one batch, as in the following query, you will find that the outputs of the first and the last query on the DMV are the same.

SELECT * FROM sys.dm_db_session_space_usage WHERE SESSION_ID = @@spid

<create or rebuild the index>

SELECT * FROM sys.dm_db_session_space_usage WHERE SESSION_ID = @@spid

GO

Therefore, while querying the DMV sys.dm_db_session_space_usage, always use the GO statement appropriately to obtain the amount of TEMPDB space used.

Another DMV sys.dm_db_task_space_usage, provides TEMPDB usage information for each task. As a task, such as an index rebuild, progresses you can monitor how much temporary space is being used by that task. However, as soon as the task completes, the counters in the sys.dm_db_task_space_usage DMV are reset to 0. Therefore, unless you have queried this DMV immediately before task completion, you cannot determine the total amount of TEMPDB space that is used by a specific task.

The DMV sys.dm_db_task_space_usage is useful for continuous monitoring while a task is in progress. The DMV sys.dm_db_session_space_usage is useful for measuring the total amount of TEMPDB that was used by a task at the end of the task. To get the TEMPDB usage information, look at two columns in the output of sys.dm_db_session_space_usage or sys.dm_db_task_space_usage.

· user_objects_alloc_page_count: For an index create or rebuild, this column represents the TEMPDB space that is used by the mapping index. When a clustered index is created or rebuilt online, a temporary nonclustered index is created to map old bookmarks to new bookmarks. This temporary index is called the mapping index. The mapping index includes one record for each row in the table. It contains the indexed columns along with the old and new record identifiers. The mapping index is created only when you are performing an online create or rebuild of a clustered index. There is no mapping index if the operation is performed offline, or if the index you are creating or rebuilding is a non-clustered index.

· internal_objects_alloc_page_count: This column represents the space that is used by the sort runs while creating or rebuilding an index.
Row versioning is used for online index create and rebuild operations, and TEMPDB space is used for the version store. If there are transactions on the table that are concurrent with the online index create or rebuild, row versions are maintained in the version store. The column version_store_reserved_page_count in the DMV sys.dm_db_file_space_usage reports the size of the version store. Version store size can also be monitored using the System Monitor (perfmon) counter Version Store Size (KB) in the performance object MSSQL:Transactions. Note that regardless of whether you specify SORT_IN_TEMPDB = ON or SORT_IN_TEMPDB = OFF, the version store is always in the TEMPDB. The amount of space that is required for the version store depends on the size and duration of the transactions that change the data in the underlying table.

For more information about sys.dm_db_session_space_usage, sys.dm_db_task_space_usage and sys.dm_db_file_space_usage, see the sys.dm_db_session_space_usage (http://go.microsoft.com/fwlink/?LinkId=71095), sys.dm_db_task_space_usage (http://go.microsoft.com/fwlink/?LinkId=71096), and sys.dm_db_file_space_usage (http://go.microsoft.com/fwlink/?LinkId=71097) topics in SQL Server Books Online.
Test Methodology

Several tests were performed to measure the temporary usage by index create and rebuild operations. Only one index was involved in all tests. While creating an index, no other index existed on the table. While rebuilding an index, that index was the only index on the table. Table 1 describes the tests that were performed:

	Test
	Description
	Measurement/Analysis
	Observation

	1
	Create unique index (both clustered and non-clustered) on a set of columns
	Measure TEMPDB space used and compare the results of Test 1 and Test 2
	The amount of TEMPDB space that is used is not affected by whether it is a unique or a non-unique index, except that a unique non-clustered index cannot be created online.

	2
	Create non-unique index (both clustered and non-clustered) on the same set of columns as Test 1.
	
	

	3
	Create index (both clustered and non-clustered) on a set of columns on a partitioned table (with degree of parallelism not less than the number of partitions).
	Measure TEMPDB space used and compare the results of Test 3 and Test 4
	The amount TEMPDB space that is used is not affected by whether the table and index are partitioned.

	4
	Create index (both clustered and non-clustered) on the same set of columns on a non-partitioned table with the same data as Test 3.
	
	

	5
	Create a clustered index online and update the data in the underlying table.
	Measure TEMPDB usage
	For a clustered index create, TEMPDB is used for sorting, mapping index, and the version store.

	6
	Create/rebuild index (both clustered and non-clustered) on a single IDENTITY column. The indexed column is 4 bytes for a total or 46 bytes in the row, and is approximately 8% of the row size.
	Measure TEMPDB usage for sorting and for the mapping index.
	The size of the mapping index increases as the index gets wider. In the worst case scenario, when the clustered index consists of all the columns in the table, the mapping index takes approximately 121% of the size of the index.

	7
	Create/Rebuild composite index (both clustered and non-clustered) consisting of three columns. The total size of the indexed columns is 10 bytes for a total of 42 bytes in the row, and is approximately 25% of the row size.
	
	

	8
	Create/rebuild composite index (both clustered and non-clustered) consisting of all the columns of a table. The total size of the indexed columns is 42 bytes, and is 100% of the row size. This is an example of the widest index.
	
	

	9
	Create/rebuild index (both clustered and non-clustered) on tables of different sizes, starting with 1x to 8x (1x = 179 million rows).
	Measure TEMPDB usage.
	The space used for sort runs and mapping index, with respect to the index size, varies insignificantly with respect to the size of the table.

Table 1: Tests performed
Test Results and Observations

This section describes the results of the tests and the observations found.
Temporary Space Usage
As described earlier in this paper, the amount of temporary space used depends on various factors. Note the following important information:
· For an offline create or rebuild (ONLINE=OFF in the CREATE INDEX or ALTER INDEX statement), temporary space is used only for sorting, and is reflected by the column internal_objects_alloc_page_count.

· For an online create or rebuild of a clustered index, temporary space is also used for the mapping index, and is reflected by the column user_objects_alloc_page_count.

· When you rebuild a clustered index, no sorting is required because the data is already sorted. Therefore, no temporary space is required for sort runs. However, when you create a clustered index, sorting is required, and you will use temporary space for that.

· Rebuilding a non-clustered index does not involve sorting because the data is already sorted. Therefore, no temporary space is required.

· Rebuilding a clustered index offline does not require any temporary space. Because the data is already sorted, you do not need temporary space for sort runs; and, because the operation is offline, you do not need temporary space for the mapping index.
Table 2 summarizes when and how the space in the user database and TEMPDB is used for index create and rebuild operations.

	ONLINE
	SORT IN TEMPDB
	Temporary space for clustered index create
	Temporary space for clustered index rebuild
	Temporary space for non-clustered index create
	Temporary space for non-clustered index rebuild

	YES
	YES
	S, M, V all in TEMPDB
	M, V in TEMPDB
	Not Applicable
	None

	YES
	NO
	S and M in user DB, V in TEMPDB
	M in user DB, V in TEMPDB
	Not Applicable
	None

	NO
	YES
	S in TEMPDB
	None
	S in TEMPDB
	S in TEMPDB

	NO
	NO
	S in user DB
	None
	S in User DB
	S in user DB

S = sort runs, M = mapping index, V = version store

Table 2: Temporary space used for sorting, mapping index, and version store
The amount of TEMPDB space that is used is a function of the size of the index. Table 3 shows the amount of TEMPDB space that is used with respect to the size of the index (TEMPDB space used/index size) for indexes of different width:

· A single column index on an IDENTITY column. The indexed column is of 4 bytes out of a total of 46 bytes in the row, and is approximately 8% of the row size. This is an example of a narrow index.

· A composite index consisting of three columns. The total size of the indexed columns is 10 bytes out of a total of 42 bytes in the row, and is approximately 25% of the row size. This is an example of a typical index.

· A composite index consisting of all the columns. The total size of the indexed columns is 42 bytes and is 100% of the row size. This is an example of the widest index. Such indexes are not very common on large tables, but are used here as an example of the worst case scenario.
	Type of create, rebuild
	TEMPDB space used / Size of the index

	
	Single-column index

8% of row size

(4 bytes out of 46 bytes)
	3-column index

25% of row size

(10 bytes out of 42 bytes)
	All-column index

100% of row size

(42 bytes out of 42 bytes)

	
	Mapping index
	Sort runs
	Total
	Mapping index
	Sort runs
	Total
	Mapping index
	Sort runs
	Total

	Online clustered index create
	0.33
	1.1
	1.43
	0.52
	1.12
	1.64
	1.21
	1.11
	2.32

	Online clustered index rebuild
	0.17
	0
	0.17
	0.31
	0
	0.31
	1.01
	0
	1.01

	Online non-clustered index create
	n/a
	n/a
	n/a
	n/a
	n/a
	n/a
	n/a
	n/a
	n/a

	Online non-clustered index rebuild
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Offline clustered index create
	0
	1.02
	1.02
	0
	1.02
	1.02
	0
	1.01
	1.01

	Offline clustered index rebuild
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Offline non-clustered index create, offline non-clustered index rebuild
	0
	1.07
	1.07
	0
	1.05
	1.05
	0
	1.02
	1.02

Table 3: TEMPDB space used / index size
Example

Size of the table = 1159633 pages = 8.85 GB
Number of rows in the table = 179743073
Size of each row = 42 bytes

Number of columns in the index = 3 => 10 bytes

Size of the clustered index created = 1159650 pages = 8.85 GB
Size of the mapping index in the TEMPDB = 603848 pages = 4.6 GB (approximately 52% of the index size)
Space used in TEMPDB for the sort runs = 1293728 pages = 9.88 GB (approximately 112% of the index size)

Total space used in TEMPDB = 1897576 pages = 14.48 GB (approximately 164% of the index size)

Therefore, to create the clustered index online, you need at least 8.85 GB of free space in the user database and 14.48 GB of free space in TEMPDB. After the clustered index is created, the space used by the table is freed, but during the creation of the clustered index, the table and the index coexist. Therefore, you must free space in the user database equal to the size of the index that is being created. If you choose the SORT_IN_TEMPDB = OFF option, you need a total of 23.33 GB of free space in the user database.

If there are concurrent transactions on the table while you are creating the index, you also need additional space in TEMPDB for the version store. In one test, we updated 5% of the rows in the table while creating the clustered index online, and the version store was measured to be 143408 pages = 1.1 GB for this operation.
Observations
· The ratio of space used for sort runs plus the mapping index to the index size varies insignificantly with respect to the size of the table We verified these results with various table sizes, starting with 1x to 8x (1x = 179 million rows). The ratios shown in Table 3 are consistent across table size.

· The ratio of space used for sort runs with respect to the index size doesn’t vary much whether it is a clustered and non-clustered index, whether it is a create or a rebuild operation, whether it is performed online or offline, and whether it is a wide or a narrow index. It is approximately 110% of the size of the index.

· The size of the mapping index increases as the index gets wider. For the worst case scenario, when the clustered index consists of all the columns in the table, the mapping index takes approximately 121% of the size of the index.

· The mapping index is smaller for a rebuild than for a create. This is because the row identifiers do not change for a clustered index rebuild. The new and old identifiers are the same. Therefore, only one row identifier is included in the mapping index.

Recommendations
Choosing options for an index create or rebuild involves deciding whether to do it online or offline, and whether to use the temporary space in TEMPDB or in the user database. Table 4 illustrates the options and their effects.
	ONLINE
	Concurrency
	Versioning
	Time
	SORT_IN_TEMPDB

	YES
	high
	Yes
	Slow
	YES

	YES
	high
	Yes
	Slow
	NO

	NO
	Low
	No
	Fast
	YES

	NO
	Low
	No
	Fast
	NO

Table 4: Index create/rebuild recommendations
· Make sure that the TEMPDB is on a disk subsystem that provides sufficient I/O throughput, and that the TEMPDB is big enough to accommodate the temporary space that is required for the index create or rebuild operation. By default, the TEMPDB is created in the Data directory under the SQL Server installation folder (for example, C:\SQL2005\MSSQL.1\MSSQL\Data). In this configuration, there might not be enough space for the TEMPDB, and the storage might not have adequate I/O throughput. Therefore, it is a best practice to move the TEMPDB to a storage area with sufficient space and performance after you install SQL Server. Also, note that the TEMPDB database is a common resource for the entire instance of SQL Server. You should consider the activities in all the user databases that might be using TEMPDB while you plan for the TEMPDB.

· To achieve the least time to create or rebuild an index, use the offline option (ONLINE=OFF). However, this prevents all user access to the underlying table for the duration of the index create or rebuild.

· To achieve the least effect on other users accessing the table, use the online option (ONLINE=ON). However, an online operation takes more time and uses more TEMPDB space as compared to an offline operation.

· To use the least amount of space in TEMPDB while you rebuild a clustered index, use the offline (ONLINE=OFF) option. However, this affects concurrency because access to the table is prevented for the duration of the index rebuild.

· To use the least amount of space in TEMPDB while you rebuild a non-clustered index, use the online (ONLINE=ON) option. The online rebuild also provides the best concurrency, but takes longer to complete.

· If there are transactions on the table that are concurrent with the online index create or rebuild, you need to plan for additional space in TEMPDB for the version store.

Conclusion

Some of the key factors to consider while you devise an index maintenance plan are performance, concurrency, and required resources. SQL Server 2005 provides you with several options for index create and rebuild operations that you can use to effectively meet the requirements of performance, concurrency, and resources. You can create or rebuild index online to maximize concurrency, and can manage the temporary space effectively by using the SORT_IN_TEMPDB option.

