
[image: image1.png]Microsoft:
% Windows Server System

Health Modeling:
A Key Step to DSI-Enabled Applications

Microsoft Corporation

Published: April 2005
Abstract

Ensuring that applications are designed for operations is one of the key steps to unlock the powers of the Dynamic System Initiative (DSI). The overall manageability of applications, including the operating system itself has become increasingly important at Microsoft as demonstrated in the Common Engineering Criteria of the Windows Server System software infrastructure. This paper covers one very important aspect of this push at Microsoft: health modeling. This paper describes both a framework and a process for understanding the health of any application, pinpointing needed management instrumentation for new and existing applications, and developing consistent automated monitoring and recovery rules for monitoring solutions.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.
© 2005 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, and Windows Server System are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All other trademarks are property of their respective owners.

Contents

1Introduction

2Health Modeling Concepts

2The Monitoring and Troubleshooting Workflow

3The Managed Entity Hierarchy

5Managed Entity Aspects

6Operational Conditions (Classification)

7Grouping Operational Conditions by Aspect

8Health States

8Single Managed Entity Health State Calculation

9Single Child Aspect Health State Rollup

10Multi-Instance Health State Rollup

11Detection

12Verification

13Diagnosis

15Recovery

15Recovery Verification

16How to Build a Health Model

16Building the Managed Entity Hierarchy

16Identifying Operational Conditions and Verification Steps

16Determining How to Detect and Diagnose Operational Conditions

17Determining the Right Recovery Actions

18Grouping Operational Conditions into Aspects with Rollup

19Example Health Model

22Health Model Uses and Futures

23Summary

24Appendix: Instrumentation Design Guidelines

24Events

26Performance Counters

27Appendix: Sample Health Model XML Document

34Related Links

Introduction

The Dynamic Systems Initiative (DSI) is a commitment from Microsoft and its partners to help IT teams capture and use knowledge to design more manageable systems and automate ongoing operations; resulting in reduced costs and more time to proactively focus on what is most important to the organization.

From a core technology perspective, DSI is about building software that enables knowledge of an IT system to be created, modified, transferred and operated on throughout the lifecycle of that system. Knowledge of the designers’ intent for those systems, knowledge of the environment in which the systems operate, knowledge of IT policies that govern those systems, and knowledge of the user experience associated with those systems is all included. Today monitoring rules that encode the health and structural aspects of hardware and software can be created in the form of management packs for Microsoft Operations Manager. Longer term, all facets (software, hardware, network, components) and the configurations and behaviors of the application as a whole will be modeled using a schema we call the System Definition Model (SDM).

By delivering software and solutions that enable knowledge of an IT system to be captured in these models and operated on across the lifecycle, DSI will result in:

Increased productivity and reduced costs across the entire IT organization

Reduced time and effort required to troubleshoot and maintain systems

Improved system compliance with business and IT policies

Increased responsiveness to changing business demands

New systems and applications today must live in a complex and interconnected world – both on the same machine and across networks. As much as an application developer may try to make their code robust and completely free of issues, it is simply impractical to predict all the ways the external services fail and applications should not be writing code to diagnose and recover from external failures.

It is critical however to provide the right view of an application and the tools to monitor it to allow Operations and IT professional customers to meet their Service Level Agreements with their customers. Full monitoring capabilities and troubleshooting guidance are probably the most important deliverables that can be supplied to these customers that will reduce the time it will take them to adopt and deploy any new application or service. When customers can monitor how things are performing in production and know how to troubleshoot when something goes wrong, they will be much more comfortable and confident in deploying the new technology.

The Health Modeling Concepts, Procedures, and Guidelines in this paper will allow the application or service developer to meet the needs of these customers and take a key first step along the path to the full DSI vision for their applications. It will provide the right framework to be able to understand and design the proper Operations Monitoring and Troubleshooting workflow for any application.

Health Modeling Concepts

When customers are evaluating a new or upgraded application, they expect to get information on the new capabilities it will provide that will help them meet their business needs. They also expect to get information on how to setup and deploy that application in their environments. All too often however, they are never given the guidance or tools to operate that software on a daily basis once they get it deployed.

Providing the right view of an application, what it looks like when it is and isn’t functioning normally, and providing the right knowledge to troubleshoot issues to IT and Operations customers allows them to meet their Service Level Agreements to their own customers. Troubleshooting guidance and automated monitoring capabilities delivered to customers when an application is released will substantially improve the adoption and deployment rates for any new or updated application. Customers will be more comfortable and confident in deploying new technology when they can monitor how it is performing in production and know how to get out of trouble quickly when something goes wrong.

The Health Modeling concepts in this section allow the developer of a new application or an IT professional building monitoring knowledge for an existing application to take a critical big step towards the DSI vision by delivering more manageable, operationally-aware applications by guiding the application developer, IT professional, or operator through:

Understanding the Monitoring and Troubleshooting pipeline and the sequence of activities within that pipeline.

Building a hierarchy of Managed Entities that represents the logical services and objects the application exposes – in a way IT Professional and Operations audiences will understand.

Identifying the functional Aspects for each Managed Entity that are of interest for monitoring

Identifying all of the Operational Conditions and associated severities that each Aspect can get into.

Identifying the Verification steps that need to be taken to confirm (or refute) whether an Aspect is in a bad Operational Condition.

Identifying the Instrumentation that already exists in an application that allows the Detection of each of the Operational Conditions; and pinpointing where instrumentation needs to be added for conditions that can’t be externally detected.

Identifying the Diagnosis steps needed to determine the root causes for each Operational Condition in an Aspect.

Identifying the Recovery steps that need to be taken to resolve each root cause and return an Aspect to full health.

The Monitoring and Troubleshooting Workflow

The Monitoring and Troubleshooting Workflow defines the logical stages of the monitoring process and explains the relationships and division of responsibility between them.

The stages of this process in order are:

Detection

Classification

Diagnosis

Recovery

Verification

[image: image2.emf]Red

Operational

Condition

(Classification)

Diagnoser

Resolver

Detector

Verifier

Green

Operational

Condition

(Classification)

Aspect

Figure 1
The Managed Entity Hierarchy

A Managed Entity is any logical part of an application or service an operator or administrator would be interested in monitoring, configuring or reporting on. It is important to understand that an administrator will be choosing what to monitor or act upon based on their business needs and the importance of the services provided by the application in meeting those needs. They will not base these decisions on how the software is physically built or any internal organizational divisions that may have impacted its design. For these reasons, when the managed entity hierarchy is being built internal architectural design documents should be used as a starting point, but the focus needs to be on the logical objects and relationships that customers will understand.

The Managed Entity hierarchy is the starting point for any Health Model and its structure will drive the definition, connection, and relationships for all of the other concepts in the Health Model. A Managed Entity hierarchy can be represented as a basic parent/child tree structure such as the following example:

[image: image3.emf]Print Server

Role

Managed Entity

Print Spooler

Service

Managed Entity

Print Queue

Managed Entity

Printer

Multi-Instance

Managed

Entity

Printer Active

Directory

Publication

Managed Entity

Local File

System

External Managed

Entity

Active

Directory

External Managed

Entity

Printer Driver

Managed Entity

Print Server Health Model

Figure 2
The following rules must be followed when building the Managed Entity hierarchy:

Managed Entities must be defined for the logical or physical parts of the application that the administrators or operators will be interested in monitoring, configuring, or reporting on - in terms that THEY will easily understand.

For an individual Health Model there can be one and only one Top/Parent Managed entity – it’s a tree with one root. If a point is reached where there is a need to have two top-level Managed Entities, they should be split out into two separate Health Models.

A Managed Entity hierarchy can have no loops (i.e. a child Managed Entity cannot also be the parent of an entity that is at a higher level in the tree). For very low-level features, this may result in a hierarchy with only one Managed Entity.

A Managed Entity can have multiple instances that exist on the same machine that may be monitored independently and will have separate Health States.

Every Managed Entity must have an external method (API call, registry lookup, Event notification, etc.) that management applications and services can use to discover when a new instance of the Managed entity has been created. If this is multi-instance Managed Entity this method must be able to uniquely identify a particular runtime instance as well.

Managed Entity Aspects

Different kinds of administrators, operators, and service personnel will tend to be interested in different functional Aspects of the application. For example, the person responsible for doing capacity planning for the overall Print Server infrastructure will be interested in information about Printing Performance, and any potential Capacity issues caused by printers going offline. The person responsible for making sure that there is enough toner and paper in the printers however is only interested in whether there is a problem with Printing Consumables. Grouping by functional Aspects allows the right set of operators to be notified, the potential for different business/escalation rules by area, and the ability to provide custom rollup views targeted at different operational audiences.

Each of these functional Aspects will be defined by a set of mutually exclusive Operational Conditions (see next section) as the following diagram illustrates:

[image: image4.emf]Printing Performance Aspect

No

Printers

Degraded

Capacity

Printing Capacity Aspect

Full

Capacity

Printing Consumables Aspect

Printing AD Publication Aspect

Figure 3
Operational Conditions (Classification)

An Operational Condition identifies some functionality that has been lost (or restored) relative to a specific Aspect of a Managed Entity. Each Operational Condition will also have an associated severity color (Red, Yellow, or Green) that indicates at a high-level how serious this condition is to the health of the Aspect overall. In essence, an Operational Condition answers the question “What’s not working and how bad is it?” When defining the Operational Conditions that Managed Entity Aspects can get into the following question needs to be asked:

“How should the functionality that will no longer be available in the application be described to an end user, IT Professional, or administrator and how serious is it overall to the Aspect it most immediately impacts?”

A “Green” Operational Condition signals a positive change for the Aspect and is most useful from a monitoring and troubleshooting perspective for signaling that other Red or Yellow Operational Conditions may no longer be in effect.

The following diagram illustrates how Operational Conditions are related to a Managed Entity, an Aspect, Verification actions, and Diagnostic actions:

[image: image5.emf]Aspect

Operational

Condition

Managed

Entity

Verifier

Is Confirmed By

Diagnoser

I

s

D

i

a

g

n

o

s

e

d

B

y

Aspect

Operational

Condition

Figure 4
Grouping Operational Conditions by Aspect

Each of the Managed Entities in an application can be in (and frequently will be if something is going wrong) several Operational Conditions at the same time. Operational Conditions associated with the same Managed Entity can however be known to be mutually exclusive and represent a true single-state machine. For Example, it is impossible to be in the “Queue Latency Critical” and “Queue Latency Warning” Operational Conditions at the same time so they are mutually exclusive conditions. Verifying the existence of any of these Operational Conditions will automatically “clear” the existence of any other conditions in that group that may have been detected previously.

When a group of these Operational Conditions has been identified, they will by definition be monitoring the same functional Aspect of the Managed Entity (e.g. Some Performance Characteristic, Security State, Active Directory Publishing Capabilities, etc.).

Each Aspect must contain at least one Operational Condition, can have at most three Operational Conditions, and can have at most one Operational Condition for any given color. If an Aspect does not have a defined Green Operational Condition a green condition is indicated by the absence of any Red or Yellow signaled Operational Condition. This usually however indicates that some instrumentation is lacking in the application that could be used to detect the transition back to a healthy condition for this Aspect and it should be added if possible when the application has not yet shipped.

The following example illustrates a Managed Entity with two defined functional Aspects and the Operational Conditions within those Aspects:

[image: image6.emf]Print Queue

Managed Entity

No Jobs

Exiting

Queue

Print Jobs

Stuck in

Queue

Queue

Latency

Critical

Queue

Latency

Warning

Queue

Latency

Normal

Queue Latency Aspect Queue De-Spool Aspect

Figure 5

Health States

Health States are quick high-level indicators (Red, Yellow, or Green) of how well a given Managed Entity is performing. A Health State provides non-quantitative data, but does tell the administrator at a glance if the application is in trouble and roughly how serious the situation is. A Health State is ideal for using in GUI monitoring consoles when monitoring a large number of applications as it delivers a consolidated color coded view of the major sub-services for each application instance.

A key thing to remember is that the Health State of a Managed Entity is always going to be a judgment call about how serious it is and it is almost always relative to how important the functionality is to a particular customer. For example, one customer may decide that a total Network saturation level of 90% is a Yellow Health State while another would consider 80% to be Red. For this reason, when rollup rules are encoded from a Health Model into a particular monitoring application it must be done in a way that customers can easily override things like thresholds and the indicated color.

Single Managed Entity Health State Calculation

Although more complicated logic can be used to determine the overall Health State of a Managed Entity (such as averaging or complex Boolean logic), in general this will simply be the worst colored Aspect that currently has unresolved for Operational Conditions.

The following diagram illustrates an example of this simple “worst case” roll-up rule for the Health State of a sample Print Server Queue where one Aspect is Yellow and the another Aspect is Red:

[image: image7.emf]Print Queue

Managed Entity

No Jobs

Exiting

Queue

Print Jobs

Stuck in

Queue

Queue

Latency

Critical

Queue

Latency

Warning

Queue

Latency

Normal

Queue Latency Aspect Queue De-Spool Aspect

Figure 6

Single Child Aspect Health State Rollup

The severity color of a child Managed Entity in the hierarchy can also act as a “Detector” for an Aspect at the parent level. The way to think about this is after each of the Operational Conditions for an Aspect has been defined, ask the question: “For each of the Operational Conditions this Aspect can be in, could it also impact something operationally one level up?”

Then look for the closest condition(s) at the parent level (or define them now if nothing matches) that should be indicated and create rollup rules between the Aspects that contain those conditions. Since an Aspect can be in one and only one Operational Condition at a time, the rollup rules are defined between Aspects rather than on a per-Operational Condition basis.

The simplest method for doing this kind of rollup is by using a directly connected single child-to-parent relationship as the following diagram illustrates:

 [image: image8.emf]Print Server

Role

Managed Entity

Print Queue

Managed Entity

Bad

Queue

File

Can’t

Spool

New

Jobs

R

e

d

o

r

Y

e

l

l

o

w

C

h

i

l

d

=

Y

e

l

l

o

w

Spooler

Normal

Figure 7

Multi-Instance Health State Rollup

When the Managed Entity hierarchy contains objects that can have multiple instances, the rollup logic can get a bit more complicated. For example, it may make sense to signal a Yellow Operational Condition for the parent Aspect if only one instance of the child is having a problem but a Red Operational Condition if > 50% of them are having problems. The logic can be as complicated as it needs to be to rollup the right information, but remember that the target Operations Management audience needs to understand what the rollup means. The following example illustrates the simple 50% rule from above where there is more than one printer being hosted on the same print server:

[image: image9.emf]Printer #3

Print Server

Role

Managed Entity

Printer #2

Printer #1

Managed

Entity

Printer

Offline

Cannot

Print

Degraded

Capacity

Printing Capacity Aspect

A

n

y

R

e

d

i

s

Y

e

l

l

o

w

,

>

5

0

%

i

s

R

e

d

Full

Capacity

Figure 8

Detection

Monitoring is a continuous process that attempts to ensure that any problem with the application is detected as soon as possible so that automated recovery can be attempted or an operator can be alerted. To detect a problem, a monitoring application:

Watches for events, performance counter thresholds, activity trace logs, or other detection signatures that indicate when a particular Operational Condition may be occurring on a monitored machine.

Runs periodic on-demand detection tasks to provide active monitoring. One of the key benefits of having independent Verifiers is that a Verification Task can automatically be used for these on-demand detections and it is built from the exact same steps/code used to confirm when an Aspect is in a bad Operational Condition.

Signals a parent Operational Condition when a child Aspect has a defined rollup rule.

The following diagram illustrates how a Detector is related to an Operational Condition and how an Aspect is linked to both a Diagnoser and a Verifier:

[image: image10.emf]Detector #1

Event, Counter,

Scheduled Verifier

Operational

Condition

D

e

t

e

c

t

s

Diagnoser

Detector #2

Event, Counter,

Scheduled Verifier

D

e

t

e

c

t

s

Verifier

S

i

g

n

a

l

s

Aspect

Child Aspect

Rollup

Figure 9
Verification

It is generally a good practice to verify that an Aspect is still unhealthy before potentially lengthy or disruptive diagnosis is attempted to avoid additional service interruption if the Aspect has returned to normal. The logic that verifies whether an Aspect is in a Red or Yellow Operational Condition should be separated out into a separate external Verifier that will simply return which of the three possible conditions is in effect at the time. Verifiers should not attempt any kind of diagnosis as they need to be lightweight and their job is only to confirm whether the loss of functionality (e.g. “Queue Latency Critical”, “Can’t Print”, etc.) is still observed or not.

Having a verifier that is built as an external script or executable will allow the same piece of code to be used to:

Confirm whether a particular Aspect is in an unhealthy Operational Condition or not.

Verify that Recovery Actions were successful at resolving a particular problem with an Aspect.

Perform on-demand detection the condition of an Aspect even in the absence of some event being logged. Scheduled execution of Verifiers can be used as Health “Pings” specific to the service even if no user has yet noticed a problem.

Provide troubleshooting tools that can be used in multiple environments and applications.

In proactive monitoring environments such as Microsoft Operations Manager, the verification step is frequently combined with other parts of the monitoring workflow. This can be done in these environments because there is not usually a delay between detection and the start of diagnosis where the problem may have gone away on its own.

The following diagram illustrates all of the places that a Verifier can be utilized in the Monitoring and Troubleshooting workflow:

[image: image11.emf]Operational

Condition

(Classification)

Diagnoser

Resolver

Verifier

(Optional)

Detector

Verifier

Scheduled

Verifier

Aspect

Green

Operational

Condition

(Classification)

Figure 10

Diagnosis

After an Operational Condition has been detected within an Aspect and confirmed to still exist it will be necessary to diagnose what is causing the problem so that the appropriate recovery actions can be taken. There is usually a good indication of where to start diagnosis based on the context of how the problem was detected in the first place, but frequently further analysis will be needed to identify the true root cause and start the recovery process. For example, it may be known that there is a network connectivity problem of some kind because of an error code that was returned to the application. Until it has been determined that the IP address lease from the DHCP Server was lost however, the steps needed to fix it (attempting to renew the lease) are not clear. Additional trace logs may have to be examined, correlation of information from other events may have to be done, or even querying the live runtime state may be necessary to determine the true root cause of a problem.

A Diagnoser can be thought of as a function that takes a general high-level indication of what is causing a particular Operational Condition in the Aspect as input and returns a specific root cause that can then be used to take the appropriate recovery steps. The Event or Performance Counter that leads to the detection of the Operational Condition will usually be a very good indicator of where to start diagnosis for the problem in the Aspect. The following diagram illustrates this concept:

[image: image12.emf]Diagnoser

Resolver for Root

Cause #1

Resolver for Root

Cause #3

Resolver for Root

Cause #2

I

d

e

n

t

i

f

i

e

s

R

o

o

t

C

a

u

s

e

#

1

I

d

e

n

t

i

f

i

e

s

R

o

o

t

C

a

u

s

e

#

3

I

den

ti

f

i

es

Ro

o

t

Cause

#2

Figure 11

The following rules must be followed when Diagnosers are being designed:

If it is believed that the failure is caused by an external dependency the application has, do NOT try and write diagnostic code for that failure. Simply point to the external Managed Entity that is causing the failure and let their troubleshooting take over.

If there are multiple Events or Counters associated with the same Operational Condition the Diagnoser for the Aspect that contains them must be able to determine all possible root causes. If this is leading to very complicated code in the Diagnoser with a lot of branches, consider if having more specific Aspects each with their own Diagnoser makes sense.

Recovery

Once the Root Cause has been determined, the next step is to attempt to resolve the problem. This process can involve re-configuration of the application, restarting a service, manipulating internal state by calling some management API, or performing some other Administrative Task.

Recovery Verification

After recovery actions have been performed, it is necessary to verify that the Aspect does not have any remaining Operational Conditions. This step is critical as no automated Recovery Task can ever be 100% guaranteed to work in all cases, and clearing the Red Operational Condition within an Aspect does not guarantee that the Yellow condition is not still there.

The same Verifier code that can be used to confirm the existence of any Red or Yellow Operational Conditions within an Aspect, can now be used to confirm whether they are now all gone. Whereas a Red or Yellow response was expected after Detection, a Green response from this code now will indicate success.

How to Build a Health Model

Building the Managed Entity Hierarchy

When Building a Health Model, always start by building a Managed Entity Hierarchy that has Operations and Helpdesk personnel in mind. Much of the raw information needed during this process will already be available from artifacts that are created during a normal software development project.

Examine Architectural Design diagrams for the logical and physical components that make up the application or service and think about how they could be explained to administrators or operations personnel.

Examine the Build dependencies of the application for the external Managed Entities it directly depends on.

Review existing and in-progress Deployment and Operations Documentation for how services have been represented for this application.

Review the way the Product Support Organization has categorized and organized information about the functionality the application exposes.

Survey the internal IT organization on how they have categorized and organized their different job functions around the application or service.

Identifying Operational Conditions and Verification Steps

The next step in the process of building the Health Model is to identify all of the Operational Conditions and how to verify if those conditions were happening in deployment.

For each of the Managed Entities identified above ask: “What are the partially functioning states this Managed Entity could get into?” There should always be a minimum two Operational Conditions for every Managed Entity, "Fully functional" and "Not providing service at all."

Examine the applications Architectural Diagrams and Build dependencies again and ask: “If this dependency failed to provide the service it was expected to, what would it mean operationally to this component?”

Interview the Test, Product Support, and IT Organizations for this application and ask them the same questions asked internally above.

Once all of the Operational Conditions have been identified, ask the question: “How could this condition be confirmed live in deployment without access to any of my source code or debuggers?”

The Test, Support, and IT organizations are going to be the key contributors to this analysis as they are the ones who have past experience on this kind of troubleshooting.

Determining How to Detect and Diagnose Operational Conditions

Now that there is a list of all of the currently known Operational Conditions and how to verify their existence, you need to identify how they can be detected and how to diagnose the root causes when they occur. The critical teams to have involved during this part of the analysis are Testing, Development, Product Support and an IT organization that has done some deployment of the application if possible.

For New Applications:

For each of the Operational Conditions identified previously implement the proper Event or Performance Counter to detect it.

If the detection of an Operational Condition will require a Performance Counter, ask the question: “What are the reasonable thresholds for this counter where a warning or alert should be raised for an Operator?”

For every Event and Performance Counter implemented above ask the question: “If this Event or exceeded threshold happens, what is the first guess on what is causing it based on the code path?”

For each Event that is implemented, ensure that it:

· Is logged at the appropriate level to match the Health State of the Operational Condition it is detecting

· Contains the information about which Managed Entity it belongs to, the Operational Condition it indicates, and the Diagnostic starting point. For example: “This event indicates that <Managed Entity> is experiencing <Operational Condition Description> because of a problem with <Diagnoser Description>.”

For Existing Applications:

Inventory all of the existing Events, Performance Counters, Trace Logs, and Diagnostic utilities.

For every Event ask the question: “If this Event is seen, what functionality will it impact, and what is the first guess on what is causing it based on the code path?” This basically boils down to mapping every Event to a Managed Entity, an Operational Condition, and a Diagnoser.

For every Performance Counter ask the following questions:

· “What are the reasonable thresholds for this counter an Operator should be warned or alerted?”

· ”What should be done to diagnose what might be causing the application to not get the service levels expected?”

If there are any remaining Green Operational Conditions at this point, either add instrumentation to be able to detect them (recommended), or remove them to rely solely on the absence of Red/Yellow conditions to signal the return to Green.

Determining the Right Recovery Actions

From the last step, a complete list of Diagnostic starting points for all of the known Operational Conditions will be available. This step in the process maps out all of the Root Causes and the set of steps that will be needed to recover each of them. The critical teams to have involved during this part of the analysis are Testing, Development, Product Support and if possible an IT organization with experience deploying this application.

For each identified Diagnosers ask the question: “What are all the known that application could be having this issue?” The list of Events and Performance Counters connected in the previous step will usually be a good indication of what these causes could be.

With the list of known Root Causes, ask the following question for each of them: “What are the manual steps that would need to be taken to correct this issue, and are there any tools or utilities that can be used during the process?”

Finally, now that the steps to correct each of the Root Causes have been determined one final question needs to be answered: “Are there any additional steps that need to be taken to return the application to a normal running state?” This last step is important, because even if the underlying problem has been fixed it may still be necessary to perform final steps to bring the service or application back online to start servicing requests.

Grouping Operational Conditions into Aspects with Rollup

The final step in the Health Modeling process is to group all of the Operational Conditions into their functional Aspects and create the rollup rules from child to parent Aspect. The critical teams to have involved during this last step are Product Support and if possible an IT organization with experience deploying this application.

For each Managed Entity identified previously, collect the set of Operational Conditions that belongs with that entity.
For each group of Operational Conditions, ask the question: ”Are any of the Operational Conditions related to each other around some functional Aspect or discipline that would be of interest to the operators of this application?”
Create an Aspect group for each of these related Operational Conditions. Remember, every Operational Condition must be a member of some Aspect (even if it is alone) and there can be at most one Red, Yellow, and Green Operational Condition in each Aspect.
For each Aspect group identified:
· Combine the descriptions previously captured for each of the Operational Conditions into a single description that describes the entire Aspect and all the conditions it can be in.
· Combine the Verification actions and any Verifier code previously captured for each Operational Condition into one Verifier for the Aspect.
· Combine the Diagnosis actions and any Diagnoser code previously captured for each Operational Condition into one Diagnoser for the Aspect.
· Combine the Recovery Actions and any Resolver code previously captured for each root cause into the list of Resolvers for the Aspect.
Finally, for each Aspect ask the question: “For each of the Operational Conditions this Aspect can be in, could it also impact something operationally one level up?”
Then look for the closest condition(s) at the parent level (or define them now if nothing matches) that should be indicated and create rollup rules between the Aspects that contain those conditions.

Example Health Model

The following diagrams bring together all of the relationships and concepts that were discussed in this paper using a slice of the sample in-progress Print Server Role Health Model that was used throughout this paper:

[image: image13.emf]Printer #3

Print Server

Role

Managed Entity

Print Queue

Managed Entity

Rest of

Health

Model

Printer Driver

Managed Entity

Corrupt

File

Bad

Queue

File

Can’t

Spool

New

Jobs

S

i

g

n

a

l

s

P

a

r

e

n

t

E

x

t

e

r

n

a

l

B

l

a

m

e

Diagnoser

Di

agnose

Resolver

R

e

s

o

l

v

e

Printer #2

Printer #1

Managed

Entity

Load

Failure

Printer

Offline

S

i

g

n

a

l

s

P

a

r

e

n

t

Cannot

Print

Diagnoser

Resolver

R

e

s

o

l

v

e

Diagnose

Degraded

Capacity

Printing Capacity Group

S

i

g

n

a

l

s

P

a

r

e

n

t

S

i

g

n

a

l

s

P

a

r

e

n

t

i

f

>

5

0

%

Print Server Health Model

Local File

System

External Managed

Entity

Full

Capacity

Detect

Detect

Detect

Detect

Print

Queue

Started

Detect

Figure 12
[image: image14.emf]Y

e

l

l

o

w

i

f

>

2

5

%

Printer #3

Print Server

Role

Managed Entity

Rest of

Health

Model

Printer Driver

Managed Entity

Printer #2

Printer #1

Managed

Entity

Load

Failure

Printer

Offline

G

r

e

e

n

i

f

N

o

t

R

e

d

,

D

i

r

e

c

t

i

f

R

e

d

Cannot

Print

Degraded

Capacity

Role Print Capacity

Y

e

l

l

o

w

i

f

>

2

5

%

,

R

e

d

i

f

>

5

0

%

Printer Branch Full Health Rollup

Full

Capacity

Printer

Online

No Color

Low

Paper

No Paper

Low Color

Old Driver

New

Color

Role Print Consumables

Low Critial

Paper

Jam

R

e

d

i

f

>

5

0

%

,

Y

e

l

l

o

w

i

f

a

n

y

Y

e

l

l

o

w

i

f

a

n

y

,

R

e

d

i

f

>

5

0

%

R

e

d

No Black Low Black

New

Black

Role Print Fidelity

Degraded

Output

Critical

Output

Loss

Y

e

l

l

o

w

I

f

a

n

y

,

R

e

d

i

f

>

5

0

%

R

e

d

R

e

d

i

f

>

2

5

%

,

Y

e

l

l

o

w

i

f

A

n

y

R

e

d

i

f

>

2

5

%

R

e

d

,

Y

e

l

l

o

w

i

f

A

n

y

Figure 13
[image: image15.emf]Printer #1

Managed

Entity

Printer Managed Entity

Network

External Managed Entity

Printer

Offline

Printer

Online

No Color

Low Color

New

Color

Event

0x12

Offline

Diag

Port Error

Resolve

Verify

Offline

Event

0x17

No

Longer

Shared

Event

0x01

Counter

Not

Ready

Event

0x95

Counter

Color

<25%

Event

0x98

Printer Driver

Managed Entity

Load

Failure

Old Driver

Event

0x16

Event

0x18

Event

0x3C

Verify

Load

Failure

Offline

Diag

No Driver

Resolver

Color

Diag

Empty

Cartridge

Verify

Color

Empty

Invalid

Driver

Driver

Diag

Verify Old

Driver

Signing

Policy

Error

Color

Diag

Empty

Cartridge

Verify

Color

Empty

Figure 14
Health Model Uses and Futures

Health Modeling is one of the key basic requirements for the next Microsoft Windows release as well as all of the Windows Server System applications. Over the last two plus years Microsoft has developed several revisions of the Health Model that is being used internally by the Windows and server applications teams to guide their design, capture monitoring and diagnosis knowledge, so that it can be utilized in many derivative forms.

Currently health modeling using internally developed tools is being used throughout the Windows team and many other Windows Server System teams to improve the manageability of their components and applications.

The next version of Microsoft Operations Manager will incorporate model based management and thus incorporate health modeling into the daily operations of monitored applications and services.

[image: image16.emf]Health

Model

System

Definition

Model

Application

Architecture

Operations

Guidance

Deployment

Guidance

Top Customer

Issues

Instrumentation

Web

Knowledgebase

Eventlog

Queries

MOM

Management

Pack

Figure 14
Summary

The Health Model is a key step that can be taken today to start to unlock the powers of DSI and SDM in current and future applications. The process of building a Health Model leads to:

Well designed application instrumentation that allows for full monitoring, diagnosis, and troubleshooting capabilities.

Identification of any gaps in the existing instrumentation for an application and recommended correction.

Identified areas where automated recovery can be implemented in an application to reduce downtime and product support costs.

Operations documentation that will substantially reduce the time to adoption and deployment of new applications.

Customers that have a full understanding of how an application is architected and behaves in live deployment.

Consistent, well designed rules and knowledge for monitoring solutions like Microsoft Operations Manager.

In short, the Health Model provides the knowledge and tools for customers to reduce the operations, troubleshooting, and support costs.

Appendix: Instrumentation Design Guidelines

Events

When designing the events that will be logged from an application, first and foremost the audience for the events must be remembered: Helpdesk support, Operations teams, and IT professionals. These are customers who may or may not have a degree in Computer Science and they definitely have no idea what is going on in the application code. With that in mind, the following guidelines should be used when logging events from application code.

Use the Proper Type of Event for the Information That Needs to be Communicated

When designing the Event structure for an application, make sure that the information logged matches to the intended audience for the different Event types available. Although the Health Model typically focuses only on Admin and Operational Events, the following table outlines all of the types of Events that can be logged, and the intended usage/audience for each:

	Type
	Intended Usage and Audience

	Admin

Events
	These events are to be examined by End Users, Administrators, and Product Support. They must correspond to an identifiable problem and must be actionable - they must specify what an Admin needs to do to rectify the situation. Since Admin Events always indicate a problem, they should always be turned on by default.

	Operational Events
	While Product Support, Helpdesk, and possibly Administrators are the primary audience for these types of events during diagnosis, they should be designed so that they can be easily used by tools. They either provide additional information that helps diagnose a problem or trigger some automatic action that will assist in troubleshooting

Operational events are not usually directly designed for human consumption and are often perceived as noise by administrators. They are typically used by tools to trigger further action or diagnosis of a particular problem. Since tools actively listen for these events they must have a well known schema. Because they are not numerous, they are always turned on.

In some cases to be actionable an event may need to contain large amounts of data that will help in diagnosis. Such an event would be an Operational Event, and a duplicate Admin event would be generated without the data. This approach ensures that events targeted at the administrator are concise and actionable and do not contain detailed information that may be perceived as noise.

	Analytic/
Activity
Trace Events
	These events are similar to Operational events in that they are used by tools and for similar purposes as Operational events.

Often it is only possible to derive information from a group of events, rather then a single specific one. When these kinds of event signatures indicate a problem, it may not be possible to resolve an issue with a simple user action. An analysis of some kind is required, involving a utility that can collect and analyze a set of related events. Since tools actively listen for these kinds of events they must have a well defined schema that can be interpreted by code.

These events are not typically left turned on for performance reasons or because of the volume of information they may produce. Because they cannot be relied on to be enabled in all environments, they cannot be used as a trigger for an action or to indicate a problem in isolation.

The most common use for these events is in tracing and analyzing an application’s activity to determine the root cause of a problem that was detected by some other means, or to collect statistical data about the system over time.

	Debug
Trace Events
	These events are created and published by developers solely for developer consumption.

There are no requirements or restrictions on contents or volume of these events. Since the volume is usually high however, these events are off by default. These events are usually of no use to anybody who does not have direct access to the source code that is being traced.

Log Events at the Proper Level

Error-Level events should only be used for cases where there is a critical loss of functionality in the application that will impact end-user Service Levels and that cannot automatically be recovered from.

Warning-Level events should only be used for cases where there is a degraded level of service from the application that may impact some but not all end-user service or as a notification of a potential future problem.

Informational-Level events should be used for changes of state that happen as part of the normal operation of the application or as a signal that the application recovered from a previously bad state.

Error and Warning Level events must be Actionable

Provide the right context: The message text should describe which part of the application is having problems (Managed Entity) and what functions it can no longer perform (Operational Condition).

Tell them what to do: If an explanation can be given on what to do to start determining the root cause (Diagnoser) in non-coding terms that information should also be included in the message text directly.

Don’t Log Spurious Events

Remember events are being logged to alert an administrator or IT Professional that there is something needing their attention. Frequently logged warning and informational level errors will rapidly teach customers not to go looking for useful information in the event log. If these kinds of events will be valuable for diagnosis and troubleshooting but will be frequent, they should be moved to a private log.

Don’t Reuse Event IDs for Things That Have Different Meanings

Although it may be tempting to have a handful of Event IDs that are reused with specific information in the message text about the true cause, this practice should always be avoided. It becomes extremely difficult, time consuming, and costly to implement a Health Model and encode Monitoring rules if this approach is taken.

Do Log Events Whenever this is a Change in Available Functionality in the Application—Both Negative and Positive Changes

Frequently, applications and services will log events when something BAD is happening in the code. Do not forget however to log Operational Events when there is a positive state change in the application as well. These events also provide valuable information to administrators and can be used to avoid potentially long down-times during diagnosis. For example, if a problem was detected communicating with the database required by the application, a later event that says “Database connection re-established” could be used short-circuit a prolonged diagnosis and recovery sequence.

Performance Counters

The key to designing good performance counters that can be used for Health Monitoring and detecting potential problems with a service is to focus on Service Level metrics rather than point in time counters. For example, a performance counter that returns the current number of active connections tells an operator nothing about how well that service is meeting the needs of its clients. A counter that returns the average end-to-end transaction time for the set of active clients however can be used to detect degraded performance that needs to be addressed.

To measure and analyze the performance of an application or system, the components that constitute the application need to be instrumented to expose a set of performance metrics. Counters can be monitored, graphed, collected and analyzed in order to assess performance, to isolate performance issues, to identify resource consumption and to aid in determining capacity bottlenecks.

It is important when designing performance counters for an application to recognize what the key metrics are that would indicate service level changes in a particular Managed Entity or to service overall within the Health Model. As strange as it may sound, performance counters are not for measuring how good the performance of an application currently is. Performance counters are there to identify when the application is approaching a severely degraded level of throughput that will impact the service level of users - before it is too late.

Performance counters are used to monitor health as well as to do capacity planning based on performance trends over time. In order to manage the performance and capacity of an application or service these elements should be considered:

Is the application a single-server solution or a distributed solution? If the system is distributed across components then incoming and outgoing items should be tracked as Raw Counters or Throughput as well as latency.

Are there any internal queues in the application? For each of these queues counters for should be designed to measure queue length, latency (from arrival to completion), and overall throughput.

Does the application implement some kind of internal caching? If the application implements a cache then counters should exist for cache size as a Raw Counter and cache hit rate as a Utilization Counter. The goal here is to qualify how effectively the administrators have tuned their system to match their needs in production.

The following is a list of commonly used performance metrics that are useful in measuring end-user impact that should be exposed as counters for each of the Managed Entities in the application:

Throughput – Measures the rate at which work is being completed, e.g. Disk Reads/sec, Committed transactions/sec, Outgoing calls/sec, average disk bytes/write operation, successful requests/sec failures/sec.

Utilization – Measures the fraction of work units to perform a function or servicing a request, usually measured as a percentage or ratio, e.g. %time in GC, %cache hit ratio, %processor utilization, etc.

Queue Length – Measures how many work items are in a queue waiting to be serviced, e.g. Processor queue length, Current disk queue length, ASP pages requests queued, etc.

Raw Counters – Simple counters representing quantitative units of information, e.g. number of current connections, bytes sent, faxes sent, active sessions, failed requests, and successful requests.
Appendix: Sample Health Model XML Document

The following sample XML document in a prototype Health Modeling schema illustrates the examples used throughout this document.

<HealthModel Name="PrintServerRoleHealthModel" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="D:\My Documents\Manageability\XML Schema\dev.xsd">

<Description>The Print Server Role. Liberties have been taken with it in many cases however for the sake of simplifying the diagrams or to illustrate a concept that would have been difficult in the Windows Print Server as it exists today. It should not be assumed that all of the examples used in this document will be part of the final shipping Health Model for this Windows Server Role. </Description>

<ManagedEntity Name="PrintServerRole">

<Description>The Print Server Role Managed Entity</Description>

<Comments>This Managed Entity represents the entire Print Server Role</Comments>

<Aspect Name="PrintingCapacityGroup">

<Description>Indicates the ability of the Print Server Role to perform its

 printing functions</Description>

<Comments>Specific comments about this aspect...</Comments>

<GreenOperationalCondition Name="FullCapacity">

<Description>The Print Server is fully operational</Description>

</GreenOperationalCondition>

<YellowOperationalCondition Name="DegradedCapacity">

<Description>The Print Server has degraded capabilities</Description>

</YellowOperationalCondition>

<RedOperationalCondition Name="CannotPrint">

<Description>The Print Server is inoperational</Description>

</RedOperationalCondition>

</Aspect>

<Aspect Name="PrintServerConsumables">

<Description>Indicates the level of consumables (paper, ink) at the Print Server

Role level</Description>

<YellowOperationalCondition Name="Low">

<Description>The consumables at the Print Server level are low</Description>

</YellowOperationalCondition>

<RedOperationalCondition Name="Critical">

<Description>The consumables at the Print Server level are at a critical

level</Description>

</RedOperationalCondition>

</Aspect>

<Aspect Name="PrintServerOutputFidelity">

<Description>Indicates the output fideliy for the print Server</Description>

<YellowOperationalCondition Name="DegradedOutput">

<Description>The Output is degraded likely because some printers are running

out of color ink</Description>

</YellowOperationalCondition>

<RedOperationalCondition Name="CriticalOutputLoss">

<Description>The loss on the Output is critical likely because some printers

are running out of black ink</Description>

</RedOperationalCondition>

</Aspect>

</ManagedEntity>

<ManagedEntity Name="Printer">

<Description>The Printer Managed Entity</Description>

<Aspect Name="PrinterStatus">

<Description>Indicates If the printer is Online or offline</Description>

<GreenOperationalCondition Name="OnLine">

<Description>The Printer is Online</Description>

<Detector>

<Event EventID="0x01">

<Description>...</Description>

<Comments>...</Comments>

</Event>

</Detector>

</GreenOperationalCondition>

<RedOperationalCondition Name="OffLine">

<Description>The Printer is Offline</Description>

<Detector>

<Event EventID="0x012">

<Description>Document %1, %2 owned by %3 was timed out on %4. The spooler

was waiting for %5 milli-seconds and no data was received.</Description>

<Comments>The spooler never received the document indicating that the

printer may be offline</Comments>

</Event>

<Event EventID="0x013">

<Description>Sharing printer failed %1, Printer %2 share name

%3.</Description>

<Comments>The shared printer can no longer be accessed. Potentially because

the share name has been removed</Comments>

</Event>

<PerformanceCounter Name="NotReadyErrorsPerHour" Threshold="10">

<Description>This performance counter indicates the number of time the

printer reported it was not ready within the last hour</Description>

<Comments/>

</PerformanceCounter>

</Detector>

</RedOperationalCondition>

<Diagnoser Name="OfflineDiagnoser">

<Description>This will diagnose why the printer is Offline</Description>

<Comments/>

<DiagnosticTask>DiagnoseWhyOffline.exe</DiagnosticTask>

<Resolver Name="RestoreSharing">

<Description>The printer was no longer shared. Try to restore the sharing by

performing the following manual steps: 1) Verify that the server hosting the

share printer is accessible over the network 2) ... </Description>

<Comments/>

</Resolver>

<Resolver Name="RestoreSharing">

<Description>The network seems to be down. Link to the networking managed

entity</Description>

<Comments/>

<BlameManagedEntity Name="Windows.Base.Networking"/>

</Resolver>

</Diagnoser>

<Verifier Name="VerifyPrinterStatus">

<Description>This will verify the printer status</Description>

<VerificationTask>VerifyPrinterStatus.exe</VerificationTask>

</Verifier>

</Aspect>

<Aspect Name="PaperLevel">

<Description>Indicates If there is a Paper Jam on this printer</Description>

<YellowOperationalCondition Name="PaperLow">

<Description>Paper is low on this printer</Description>

</YellowOperationalCondition>

<RedOperationalCondition Name="OutOfPaper">

<Description>The Printer is out of paper</Description>

</RedOperationalCondition>

</Aspect>

<Aspect Name="ColorInkLevel">

<Description>Level of Color Ink for this printer</Description>

<GreenOperationalCondition Name="Full">

<Description>The color cartridge is full</Description>

<Detector>

<Event EventID="0x095">

<Description>This event indicates that the color ink cartridge has been

replaced</Description>

</Event>

</Detector>

</GreenOperationalCondition>

<YellowOperationalCondition Name="LowColor">

<Description>The color cartridge is almost running out of ink</Description>

<Detector>

<PerformanceCounter Name="ColorInkLevelPercentage" Threshold="75">

<Description>This performance counter indicates how empty the ink color tank

is. When the tank is 75% empty, this operational condition is raised

</Description>

<Comments/>

</PerformanceCounter>

</Detector>

</YellowOperationalCondition>

<RedOperationalCondition Name="OutOfColorInk">

<Description>The Color Cartridge is empty</Description>

<Detector>

<PerformanceCounter Name="ColorInkLevelPercentage" Threshold="90">

<Description>This performance counter indicates how empty the ink color tank

is. When the tank is 90% empty, this operational condition is raised

</Description>

<Comments/>

</PerformanceCounter>

<Event EventID="0x096">

<Description>This event indicates that the color ink cartridge is

empty</Description>

</Event>

</Detector>

</RedOperationalCondition>

<Diagnoser Name="DiagnoseInkColorStatus">

<Description>Should check visually the status of the color ink tank

</Description>

<Comments/>

<Resolver Name="AddColorInk">

<Description>Replace the color ink tank</Description>

</Resolver>

</Diagnoser>

<Verifier Name="VerifyColorStatus">

<Description>This will verify the level of color ink by querying the

ColorInkLevelPercentage performance counter</Description>

<VerificationTask>VerifyColorStatus.vbs</VerificationTask>

</Verifier>

</Aspect>

<Aspect Name="BlackInkLevel">

<Description>Level of Color Ink for this printer</Description>

<GreenOperationalCondition Name="Full">

<Description>The black ink cartridge is full</Description>

<!-- <Detector> Detector not described for simplicity </Detector> -->

</GreenOperationalCondition>

<YellowOperationalCondition Name="Low">

<Description>The black cartridge is almost running out of ink</Description>

<!-- <Detector> Detector not described for simplicity </Detector> -->

</YellowOperationalCondition>

<RedOperationalCondition Name="OutOfBlackInk">

<Description>The black ink Cartridge is empty</Description>

<!-- <Detector> Detector not described for simplicity </Detector> -->

</RedOperationalCondition>

<!-- <Diagnoser> Diagnoser not described for simplicity </Diagnoser> -->

<!-- <Verifier> Verifier not described for simplicity </Verifier> -->

</Aspect>

<Aspect Name="PaperJam">

<Description>Indicates If there is a Paper Jam on this printer</Description>

<RedOperationalCondition Name="PaperJam">

<Description>The paper is jammed on this printer</Description>

<!-- <Detector> Detector not described for simplicity </Detector> -->

</RedOperationalCondition>

<!-- <Diagnoser> Diagnoser not described for simplicity </Diagnoser> -->

<!-- <Verifier> Verifier not described for simplicity </Verifier> -->

</Aspect>

</ManagedEntity>

<ManagedEntity Name="PrintDriver">

<Description>The Print Driver Managed Entity</Description>

<Aspect Name="DriverStatus">

<Description>Indicates the status of the print driver</Description>

<YellowOperationalCondition Name="OldDriver">

<Description>An Old Driver was loaded successfully</Description>

<Detector>

<Event EventID="0x3C">

<Description>This event indicates that an out of date driver was loaded

successfully</Description>

</Event>

</Detector>

</YellowOperationalCondition>

<RedOperationalCondition Name="LoadFailure">

<Description>The driver could not be loaded</Description>

<Detector>

<Event EventID="0x17">

<Description>The driver was not found</Description>

</Event>

<Event EventID="0x16">

<Description>The Driver failed to load</Description>

</Event>

</Detector>

</RedOperationalCondition>

<Diagnoser Name="DriverDiagnoser">

<Description>This will diagnose why the driver failed to load or is

outdated</Description>

<Comments/>

<DiagnosticTask>DriverDiagnoser.exe</DiagnosticTask>

<Resolver Name="UpdateDriver">

<Description>This resolver will automatically download, install and reload

the latest version of the driver for this printer </Description>

<Comments/>

<ResolverTask>UpdateAndReloadDriver.exe</ResolverTask>

</Resolver>

</Diagnoser>

<Verifier Name="VerifyDriver">

<Description>This will verify if the driver is installed and loaded

</Description>

<VerificationTask>VerifyDriver.exe</VerificationTask>

</Verifier>

</Aspect>

</ManagedEntity>

<ManagedEntityHierarchy Name="PrintServerRole">

<ManagedEntityHierarchy Name="Printer" MultiInstances="true">

<ManagedEntityHierarchy Name="PrintDriver"/>

</ManagedEntityHierarchy>

</ManagedEntityHierarchy>

<AspectRollup>

<AspectRollupNode ManagedEntity="Printer" Aspect="PrinterStatus">

<RollupFrom ManagedEntity="Print Driver" Aspect="DriverStatus"

RollupStrategy="GreenIfNotRed"/>

</AspectRollupNode>

<AspectRollupNode ManagedEntity="PrinterServerRole" Aspect="RolePrintCapacity">

<RollupFrom ManagedEntity="Printer" Aspect="PaperJam"

RollupStrategy="MoreThan50PercentYellowOr20PercentRed"/>

<RollupFrom ManagedEntity="Printer" Aspect="PrinterStatus"

RollupStrategy="MoreThan50PercentYellowOr20PercentRed"/>

</AspectRollupNode>

<AspectRollupNode ManagedEntity="PrinterServerRole" Aspect="RolePrintConsumable">

<RollupFrom ManagedEntity="Printer" Aspect="PaperLevel"

RollupStrategy="MoreThan50PercentYellowOr20PercentRed"/>

<RollupFrom ManagedEntity="Printer" Aspect="ColorInkLevel"

RollupStrategy="MoreThan50PercentYellowOr20PercentRed"/>

<RollupFrom ManagedEntity="Printer" Aspect="BlackInkLevel"

RollupStrategy="MoreThan50PercentYellowOr20PercentRed"/>

</AspectRollupNode>

<AspectRollupNode ManagedEntity="PrinterServerRole" Aspect="RolePrintFidelity">

<RollupFrom ManagedEntity="Printer" Aspect="ColorInkLevel"

RollupStrategy="MoreThan50PercentYellowOr20PercentRed"/>

<RollupFrom ManagedEntity="Printer" Aspect="BlackInkLevel"

RollupStrategy="MoreThan50PercentYellowOr20PercentRed"/>

</AspectRollupNode>

</AspectRollup>

<RollupStrategies>

<RollupStrategy Name="MoreThan50PercentYellowOr20PercentRed">

<Description> For a multi instances Managed Entity, the following rules will be

applied for the rollup on a given aspect If there is at least one yellow or one

red for that aspect, a yellow will be rolled up If more that 50% of the Managed

Entities for that aspect are yellow, then a red will be rolled up if more than

20% of the Managed Entities for that aspect are red, then a red will be rolled up

</Description>

<!-- Additional XML content omitted for simplicity -->

</RollupStrategy>

<RollupStrategy Name="Direct">

<Description>This will directly roll up the color of the given aspect. Remember

that the absence of Red or Yellow indicates green</Description>

<!-- Additional XML content omitted for simplicity -->

</RollupStrategy>

<RollupStrategy Name="GreenIfNotRed">

<Description>This will roll up a green if the given aspect is not Red (i.e rolls

up a green even for a yellow aspect)</Description>

<!-- Additional XML content omitted for simplicity -->

</RollupStrategy>

</RollupStrategies>

</HealthModel>

Related Links

See the following resources for further information:

Dynamic Systems Initiative at http://www.microsoft.com/windowsserversystem/dsi/default.mspx

Microsoft Management Home Page at http://www.microsoft.com/management/default.mspx

Windows Server System at http://www.microsoft.com/windowsserversystem/default.mspx

Creating a Performance Extension DLL at Performance Monitoring Guidelines
Using Event Logging at Event Logging Guidelines

Did you find this information useful? Please send your suggestions and comments about this white paper to hmfeed@microsoft.com.

