[bookmark: _Toc162626388]Windows Azure Blob
December, 2008
Table of Contents
1	Introduction	1
2	Data Model	2
3	Blob REST Interface	4
4	A Blob as a List of Blocks	4
4.1	Block Data Abstractions	5
4.2	REST Request Examples	6
4.2.1	REST PUT Block Examples	6
4.2.2	REST PUT BlockList Examples	6
4.2.3	REST GET Blob Examples	7
4.3	Block Upload Scenarios	7
5	Conditional PUT and GET	9
6	Blob Enumeration	10
6.1	Hierarchical Listing	10
6.2	Pagination	11
7	Best Practices	11
7.1	Retry Timeouts and “Connection closed by Host” errors	12
7.2	Tune Application for Repeated Timeout errors	12
7.3	Error handling and reporting	12
7.4	Compressed content	12

[bookmark: _Toc184561019][bookmark: _Toc184568083][bookmark: _Toc184568178][bookmark: _Toc184568573][bookmark: _Toc184568669][bookmark: _Toc184568853][bookmark: _Toc184568976][bookmark: _Toc195982971][bookmark: _Toc200362516][bookmark: _Toc184395992][bookmark: _Toc196542724][bookmark: _Toc217110214]Introduction
 Windows Azure is the foundation of Microsoft’s Cloud Platform. It is the “Operating System for the Cloud” that provides essential building blocks for application developers to write scalable and highly available services. Windows Azure provides:
· Virtualized Computation
· Scalable Storage
· Automated Management
· Rich Developer SDK

Windows Azure Storage allows application developers to store their data in the cloud, so the application can access its data from anywhere at any time, store any amount of data and for any length of time, and be confident that the data is durable and will not be lost. Windows Azure Storage provides a rich set of data abstractions:
· Windows Azure Blob – provides storage for large data items.
· Windows Azure Table – provides structured storage for maintaining service state.
· Windows Azure Queue – provides asynchronous work dispatch to enable service communication.

To use Windows Azure Storage a user needs to create a storage account. This is done via the Windows Azure portal web interface. The user will receive a 256-bit secret key once the account is created. This secret key is then used to authenticate user requests to the storage system. Specifically, a HMAC SHA256 signature for the request is created using this secret key. The signature is passed with each request to authenticate the user requests by verifying the HMAC signature.

This document describes Windows Azure Blob, and how to use it. Windows Azure Blob enables applications to store large objects, up to 50GB each in the cloud. It supports massively scalable blob system, where hot blobs will be served from many servers to scale out and meet the traffic needs of your application. Furthermore, the system is highly available and durable. You can always access your data from anywhere at any time, and the data is replicated at least 3 times for durability. In addition, strong consistency is provided to ensure that the object is immediately accessible once it is added or updated; a subsequent read will immediately see the changes made from a previously committed write.
[bookmark: _Toc195982972][bookmark: _Toc200362517][bookmark: _Toc217110215]Data Model
The figure below depicts the namespace of Windows Azure Blob.

· Storage Account – All access to Windows Azure Storage is done through a storage account.
· This is the highest level of the namespace for accessing blobs
· An account can have many Blob Containers

Figure 1 Blob Storage Concepts
· Blob Container – A container provides a grouping of a set of blobs. The container name is scoped by the account.
· Sharing policies are set at the container level. Currently "Public READ" and "Private" are supported. When a container is "Public READ", all its contents can be read by anyone without requiring authentication. When a container is "Private", only the owner of the corresponding account can access the blobs in that container with authenticated access.
· Containers can also have metadata associated with them. Metadata is in the form of <name, value> pairs, and they are up to 8KB in size per container.
· The ability to list all of the blobs within the container is also provided.
· Blob – Blobs are stored in and scoped by Blob Containers. Each blob can be up to 50GB. A blob has a unique string name within the container. Blobs can have metadata associated with them, which are <name, value> pairs, and they are up to 8KB in size per blob. The blob metadata can be gotten and set separately from the blob data bits.

The above namespace is used to perform all access to Windows Azure Blob. The URI for a specific blob is structured as follows:

http://<account>.blob.core.windows.net/<container>/<blobname>

The storage account name is specified as the first part of the hostname followed by the keyword “blob”. This sends the request to the part of Windows Azure Storage that handles blob requests. The host name is followed by the container name, followed by “/”, and then the blob name. Accounts and containers have naming restrictions (see the SDK document for details), for example, the container name cannot contain a “/”.

A few notes on containers:
· Containers are scoped by accounts as described above. The storage system handles containers in a distributed manner, and there is no centralize resource bottleneck in terms of dealing with containers. The goal is to allow container operations to be on the high availability code paths of your application.
· There can be a delay when recreating a recently deleted container, especially when there were a large number of blobs in that container. The system needs to reclaim the blobs in that container before the same container name can be created again. While the server is deleting all of the blobs, recreating the container will fail with an error indicating the container is being deleted.
· When an application deletes a container or creates a brand new container, these commands are quickly committed on the server with acknowledgement back to the application, even though the delete can go on for awhile. Therefore, these can be on the high availability code paths for an application
[bookmark: _Toc217110216]Blob REST Interface
All access to Windows Azure Blob is done through a standard HTTP REST PUT/GET/DELETE interface.

The HTTP/REST commands supported to implement the blob operations include:
· PUT Blob - Inserts a new blob or overwrites an existing blob of the given name
· GET Blob - Get an entire blob, or get a range of bytes within the blob using the standard HTTP range GET operation.
· DELETE Blob - Delete an existing blob.

The Put, Get and Delete are all operations that can be done on a blob with the following URL:
http://<account>.blob.core.windows.net/<container>/<blobname>

You can upload a blob up to 64MB in size using a single PUT blob request up into the cloud. To go up to the 50GB blob size limit, one must use the block interface for uploading a blob larger than 64MB, which is described next.

See the SDK document for the complete definition of the REST APIs.
[bookmark: _Toc217110217]A Blob as a List of Blocks
One of the target scenarios for Windows Azure Blob is to enable efficient upload of blobs that are many GBs in size. This is provided by Windows Azure Blob through the following steps:
· Break the Blob (e.g., Movie.avi) to be uploaded into contiguous blocks. For example, a 10GB movie can be broken up into 2500 blocks, each of size 4MB, where the first block represents bytes 1 through 4194304, the second block would be bytes 4194305 through 8388608, etc.
· Give each block a unique ID/name. This unique ID is scoped by the blob name being uploaded. For example, the first block could be called “Block 0001”, the second block “Block 0002”, etc.
· PUT each block into the cloud. This is done by doing a PUT specifying the URL above with the query specifying that this is a PUT block along with the block ID. In continuing our example, to put the first block, the blob name would be “Movie.avi”, and the block ID is “Block 0001”.
· After all of the blocks are stored in Windows Azure Storage, then we commit the list of blocks uploaded to represent the blob name they were associated with. This is done with a PUT specifying the URL above with the query specifying that this is a blocklist command. Then the HTTP header contains the list of blocks to be committed for this blob. When this operation succeeds, the list of blocks, in the order in which they were listed, now represents the readable version of the blob. The blob can then be read using the GET blob commands described above.

The following figure shows adding blocks to the Windows Azure Blob data concepts.

Figure 2 Blob Storage Concepts - Adding Blocks

As described earlier, blobs can be accessed via PUT and GET by using the following URL:
http://<account>.blob.core.windows.net/<container>/<blobname>

In the examples shown in Figure2, a single PUT can be used to put the images with the following URLs:
http://sally.blob.core.windows.net/pictures/IMG001.JPG
http://sally.blob.core.windows.net/pictures/IMG002.JPG

The same URLs can be used to get the blobs. In using a single PUT, blobs up to 64MB can be stored. To store blobs larger than 64MB and up to 50GB, one needs to first PUT all of the blocks, and then PUT the block list to comprise the readable version of the blob. In Figure 2 above, only after the blocks have been put and committed as part of the block list can the blob can be read using the following URL:
http://sally.blob.core.windows.net/pictures/MOV1.AVI

GET operations always operate on the blob level, and do not involve specifying blocks.

[bookmark: _Toc217110218]Block Data Abstractions
Each block is identified by a Block ID, which is up to 64 bytes in size, and it is scoped by the blob name. So different blobs can have blocks with the same IDs. Blocks are immutable. Each block is up to 4MB in size, and the blocks within the same blob can be of different sizes. Windows Azure Blob provides the following Block level operations:
· PUT block - upload a block for a blob. Note that a block that has been successfully uploaded with a PUT block operation does not become part of the blob until it is committed as part of a block list with the PUT blocklist operation.
· PUT blocklist - commits a blob by specifying the list of block IDs that make up the blob. The blocks specified in this operation must have been successfully uploaded using PUT block calls. The order of the blocks in the put blocklist operation, will comprise the readable version of the blob.
· GET blocklist - retrieve the block list that has been previously committed for the blob using the PUT blocklist operation. The returned block list specifies the ID and size of each block.

[bookmark: _Toc217110219]REST Request Examples
All of the examples below refer to a blob named “MOV1.avi” contained in the “movies” container under the account “sally”.
[bookmark: _Toc217110220]REST PUT Block Examples
Below is an example of a REST request for a PUT block operation for a 4MB block. Note that the PUT HTTP verb is used, and the "?comp=block" operation indicates that this is a PUT block operation. Then BlockID is specified. Content-MD5 can be provided to guard against network transfer errors and insure integrity. The Content-MD5 in this case is the MD5 checksum of the block data in the request. The MD5 checksum is checked on the server, and if it does not match, an error is returned. The content length specifies the size of the block data contents. There is also an authorization header inside the HTTP request header as shown below.

	PUT http://sally.blob.core.windows.net/movies/MOV1.avi
	?comp=block &blockid=BlockId1 &timeout=60
	HTTP/1.1 Content-Length: 4194304
	Content-MD5: HUXZLQLMuI/KZ5KDcJPcOA==
	Authorization: SharedKey sally: 	F5a+dUDvef+PfMb4T8Rc2jHcwfK58KecSZY+l2naIao=
	x-ms-date: Mon, 27 Oct 2008 17:00:25 GMT
	……… Block Data Contents ………

[bookmark: _Toc217110221]REST PUT BlockList Examples
Below is an example of a REST request for a PUT blocklist operation. Note that the PUT HTTP verb is used, and the "?comp=blocklist" operation indicates that this is a PUT blocklist operation. The block list is specified inside the HTTP request body in XML format, as shown in the example below. Note that the Content-Length field in the request header corresponds to the length of the request body, not the length of the blob to be created. There is also an authorization header inside the HTTP request header as shown below.
	PUT http://sally.blob.core.windows.net/movies/MOV1.avi
	?comp=blocklist &timeout=120
	HTTP/1.1 Content-Length: 161213
	Authorization: SharedKey sally: 	QrmowAF72IsFEs0GaNCtRU143JpkflIgRTcOdKZaYxw=
	x-ms-date: Mon, 27 Oct 2008 17:00:25 GMT
	<?xml version=“1.0” encoding=“utf-8”?>
	<BlockList>
	 <Block>BlockId1</Block>
	 <Block>BlockId2</Block>
	 ………………
	</BlockList>

[bookmark: _Toc217110222]REST GET Blob Examples
Below is an example of a REST request for a GET blob operation. The HTTP verb GET is used in this case. The request below will get the entire contents of the given blob. If the container the blob belongs to ("movies" in this example) has sharing policy set to "Private", then authentication is required to get the blob. Otherwise, if the container has a "Public-Read" sharing policy, then authentication is not required, and the request header does not need an authorization header.
	GET http://sally.blob.core.windows.net/movies/MOV1.avi
	HTTP/1.1
	Authorization: SharedKey sally: 	RGllHMtzKMi4y/nedSk5Vn74IU6/fRMwiPsL+uYSDjY=
	X-ms-date: Mon, 27 Oct 2008 17:00:25 GMT

Range GET is also supported as shown in the example below to retrieve a byte range within the given blob.
	GET http://sally.blob.core.windows.net/movies/MOV1.avi
	HTTP/1.1
	Range: bytes=1024000-2048000

[bookmark: _Toc217110223]Block Upload Scenarios
Uploading a blob as a list of blocks has the following benefits:
· Continuation – as each block is uploaded one can verify the success of that block and retry the block if there is a failure and continue from that point.
· Parallel Upload – one can upload the blocks in parallel to decrease the upload time of a very large blob.
· Out of Order Upload – one can even upload blocks out of order. What matters is the order of the list of blocks when doing a PUT blocklist. The list of blocks in the PUT blocklist operation specifies the order of the blocks that comprise the readable version of the blob.

 (
PutBlock
(BlockId1);
PutBlock
(BlockId
3
);
PutBlock
(BlockId
4
);
PutBlock
(BlockId
2
);
PutBlock
(BlockId
4
);
PutBlockList
(BlockId2, BlockId3, BlockId4);
)
Figure 4 Block Upload Scenario

The example in Figure 4 will be used to explain the different scenarios one can encounter when using the block interface for uploading blobs. These are:

· Uploading Blocks with Same Block IDs - When blocks of the same block ID are uploaded for the same blob, the most recent block associated with that ID will be used when committing the blob with PUT blocklist. In the example above, two blocks with BlockId4 are uploaded and the latter one will be used in the final committed block list for the blob.

· Uploading Blocks Out of Order - Blocks can be uploaded in a different order as in the final committed block list in the blob. In the example above, the final committed block list has the blocks in the order of BlockId2, BlockId3, and BlockId4, but these blocks are uploaded in a different order. The readable blob data (via GET) is ordered with respect to the list specified in PUT blocklist.

· Unused Blocks - Furthermore, some blocks may never get committed into the final block list in the blob. These blocks will be garbage collected by the system. BlockId1 and the first Block with ID BlockId4 in the example will be garbage collected. More specifically, once a new blob is created via PUT blocklist, all of the uncommitted blocks that have been uploaded so far, but not included in the block list specified in PUT blocklist, will be garbage collected.

A large blob may take a long time to be uploaded entirely. But in the mean time, the uploaded but uncommitted blocks do take up storage space, and someone may upload many blocks but never commit them using PUT blocklist. If there is an extended period of inactivity for that blob (currently set to a week), these uncommitted blocks will be garbage collected by the system.

An interesting scenario is when there are multiple concurrent writers to the same blob. There are two issues to discuss.
· Block IDs – If an application has multiple client writers to the same blob name via blocks, the block IDs have to be unique among the multiple writers to avoid conflicts, or the block IDs have to represent the contents of the block being written (so if multiple clients write the same block, the block will have the same ID, since it represents the same data). To provide correctness for multiple writers potentially writing the same Blob, it is recommended that the block ID be a hash (e.g., an MD5 hash) of the block contents. This way the block ID represents the contents of the block.
· First Commit Wins - When multiple clients try to upload blocks for the same blob concurrently, whoever commits the blob first via PUT blocklist (or a writer calling PUT blob) wins, and all of the other uncommitted blocks uploaded by the other writers for that blob name will be removed and garbage collected. Therefore, coordination across all the concurrent writers may be necessary to efficiently update the same blob in parallel.

[bookmark: _Toc217110224]Conditional PUT and GET
Windows Azure Blob supports conditional PUT and GET, which can be used to efficiently handle concurrency and client caching.

Conditional PUT can be used where multiple users might update the same blob. For example, one can do a put blob conditionally on the last modification time of the blob to make sure the blob being modified is the same version that the client is modifying. This can be used to implement optimistic concurrency. For instance, two clients A and B are updating the same blob. They read the current version of the blob, make some changes to it, and then upload it back to the store. In this scenario, each of them will record the last modification time of the blob they retrieved from the store (assume that the last modification time is X). When they are ready to upload the updated version of the blob back to the store, they can use a conditional PUT blob based on the modification time they retrieved last time. The operation would specify that the PUT should be conditioned on "if not modified since time X". In this way, if the blob has been changed by a different client since time X, the update operation will fail, and the client will be notified of this.

Conditional GET can be used to efficiently handle cache consistency issues. For example, a client has a local blob cache, which caches the hot blobs retrieved from the store. For each cached blob, its last modified time is recorded. When the client cache decides to refresh its blobs from the store, it can use conditional GET based on the modified time (on the condition being "if modified since time X"). This way, only the blobs that have been modified and are different to the cached copy need to be downloaded from the store.
[bookmark: _Toc217110225]Blob Enumeration
The Blob system provides an interface to enumerate the blobs in a container. It supports hierarchical listing of blobs within a container. It also supports a continuation mechanism to allow enumeration of a large number of blobs.

[bookmark: _Toc217110226]Hierarchical Listing
The ListBlobs interface supports "prefix" and "delimiter" parameters, which are used to support hierarchical listing of blobs. For example, assume that in an account “sally”, we have a container "movies" that contains blobs with the following names:
	
Action/Rocky1.wmv
	Action/Rocky2.wmv
	Action/Rocky3.wmv
	Action/Rocky4.wmv
	Action/Rocky5.wmv
	Drama/Crime/GodFather1.wmv
	Drama/Crime/GodFather2.wmv
	Drama/Memento.wmv
	Horror/TheBlob.wmv

As we can see, "/" is used as a delimiter to have a directory-like hierarchy for the blob names. To list all the "directories", one can specify "delimiter=/" in the ListBlobs query, and the following will be the request and part of the response:

 Request:
GET http://sally.blob.windows.net/movies?comp=list&delimiter=/
 Response:
	<BlobPrefix>Action</BlobPrefix>
	<BlobPrefix>Drama</BlobPrefix>
	<BlobPrefix>Horror</BlobPrefix>

Note that the "BlobPrefix" tag indicates that the corresponding entry is a blob name prefix, instead of a full blob name. Also note that same prefix is only returned once in the result.

As a step further, we can combine prefix with delimiter to list contents of a "sub-directory". For example, if we specify "prefix=Drama/" and "delimiter=/", we will list all the sub-directories and files inside the directory "Drama":

 Request:
GET http://sally.blob.windows.net/movies?comp=list &prefix=Drama/ &delimiter=/
 Response:
	<BlobPrefix>Drama/Crime</BlobPrefix>
	<Blob>Drama/Memento.wmv</Blob>

Note that "Drama/Memento.wmv" is a full blob name, therefore it is tagged as such.

[bookmark: _Toc217110227]Pagination
The ListBlobs interface allows one to specify "maxresults", which is the maximum number of results to be returned in that call. Furthermore, the system enforces an upper bound on the maximum number of results that can be returned in a single call (see the SDK document for details). When the smaller of the two limits is reached, the call returns with the corresponding results, along with an opaque "NextMarker". If this marker is not empty, then that indicates there are more results to be returned. One can use this "NextMarker" in a latter call to continue the listing onto the next page of results.

In the previous example, suppose we want to list all the blobs in the "Action" directory and every time return up to 3 results, then the first set of results would be:

 Request:
GET http://sally.blob.windows.net/movies?comp=list &prefix=Action &maxresults=3
 Response:
	<Blob>Action/Rocky1.wmv</Blob>
	<Blob>Action/Rocky2.wmv</Blob>
	<Blob>Action/Rocky3.wmv</Blob>
	<NextMarker> OpaqueMarker1</NextMarker>

The first set of blobs will be returned along with an opaque marker. This opaque marker can be passed into a second ListBlobs call, which in this case will return the following results:

 Request:
GET http://sally.blob.windows.net/movies?comp=list &prefix=Action &maxresults=3
&marker=OpaqueMarker1

 Response:
	<Blob>Action/Rocky4.wmv</Blob>
	<Blob>Action/Rocky5.wmv</Blob>
	<NextMarker></NextMarker>

As shown above, the remaining blobs in the directory are returned, and "NextMarker" is set to empty, indicating that there are no more results.
[bookmark: _Toc217110228]Best Practices
When designing an application for use with Windows Azure Storage, it is important to handle errors appropriately. This section describes issues to consider when designing your application.
[bookmark: _Toc217110229]Retry Timeouts and “Connection closed by Host” errors
Requests that receive a Timeout or “Connection closed by Host” response might not have been processed by Windows Azure Storage. For example, if a PUT request returns a timeout, a subsequent GET might retrieve the old value or the updated value. If you see either of these responses, retry the request again with exponential back-off.
[bookmark: _Toc217110230]Tune Application for Repeated Timeout errors
[bookmark: d0e2953]Timeout errors can occur if there are network issues between your application and data center. Over the wide area network, it is recommended to break a single large transfer into a series of smaller calls, and design your application to handle timeouts/failures in this case so that it is able to resume after an error and continue to make progress. For example, instead of getting a 1GB blob at once, you can get a byte range of it every time and record the progress so that it can be resumed if the connection is broken or times out. Another example is that to do a listing of a large number of blobs, take advantage of the continuation support provided by Windows Azure Blob, and do a series of ListBlobs calls to get the blob lists in pages. Tune the size limit of each request based on the network link you have.

We designed the system to scale and be able to handle a large amount of traffic. However, extremely high rate of requests may lead to request timeouts. In that case, reducing your request rate may decrease or eliminate errors of this type. Generally speaking, most users will not experience these errors regularly; however, if you are experiencing high or unexpected Timeout errors, contact us via the MSDN Windows Azure forums to discuss how to optimize your use of Windows Azure Storage and prevent these types of errors in your application.

[bookmark: _Toc217110231]Error handling and reporting
[bookmark: d0e2965]The REST API is designed to look like a standard HTTP server and interact with existing HTTP clients (e.g., browsers, HTTP client libraries, proxies, caches, and so on). To ensure the HTTP clients handle errors properly, we map each Windows Azure Storage error to an HTTP status code.
HTTP status codes are less expressive than Windows Azure Storage error codes and contain less information about the error. Although the HTTP status codes contain less information about the error, clients that understand HTTP, but not the Windows Azure Storage errors, will usually handle the error correctly.

Therefore, when handling errors or reporting Windows Azure Storage errors to end users, use the Windows Azure Storage error code instead of the HTTP status code as it contains the most information about the error. Additionally, when debugging your application, you should also consult the human readable <ExceptionDetails> element of the XML error response.

[bookmark: _Toc217110232]Compressed content
Currently Windows Azure does not automatically compress data when you send it from your application to the storage in the cloud. However, your application can compress the data first and then store it in the cloud. This can give the application performance benefits in term of network bandwidth, especially when the data is highly compressible. Furthermore, remember to set the Content-Encoding header to "gzip" when uploading the blob compressed with gzip, so that when the blob is retrieved, the web clients know that the content is in a compressed form and know how to deal with it.

sally

pictures

IMG001.JPG

IMG002.JPG

MOV1.AVI

Account

Container

Blob

movies

sally

pictures

IMG001.JPG

IMG002.JPG

MOV1.AVI

Account

Container

Blob

Block

Block 1

Block 2

Block 3

movies

1

