 [image: image1.png]

Hands-On Lab
Lab Manual

Using xml with XLinq and C#3.0
Please do not remove this manual from the lab

Information in this document is subject to change without notice. The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, MS, Windows, Windows NT, MSDN, Active Directory, BizTalk, SQL Server, SharePoint, Outlook, PowerPoint, FrontPage, Visual Basic, Visual C++, Visual J++, Visual InterDev, Visual SourceSafe, Visual C#, Visual J#, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, places, or events is intended or should be inferred.

Contents
1Lab Overview

1Lab Background

1Setup

1Lab Structure

1Directory Structure

1Project Structure

3Lab Exercises

3Exercise 1: Creating the initial report

3Task 1 – Open the GanglandAccounting Project

3Task 2 – Implement Helper Method for Creating Transaction Elements

5Task 3 – Run It

6Exercise 2 – Add Payments to the Report

6Task 1 – Open the Project

7Task 2 – Create the Payments Xml Nodes

9Task 3 – Run It

10Exercise 3 – Adding Receipts to the Report

10Task 1 – Open the Project

10Task 4 – Create the ‘Receipts’ Xml Element

13Task 3 – Run It

14Exercise 4 - Adding Report Summaries

14Task 1 – Open the GanglandAccounting Project

15Task 2 – Create the ActivitySummary Element

18Task 3 – Create the SuspicousActivitySummary

19Task 5 – Putting Everything Together

19Task 6 – Run It

20Exercise 5 – No Honor amongst Thieves…

20Task 1 – Open the GanglandAccounting Project

20Task 2 – Implement the ReportAdjustment Functionality

22Task 6 – Run It

22Lab Summary

23Appendix 1: Iterators and ‘yield return’ in C# 2.0

Lab Overview
Welcome to the XLinq hands on lab. In this lab you will learn how to use the new XML Store and Language Integrated Query (LINQ) features in C# 3.0 in order to create, query, and transform xml easily and directly within the C# language.

Lab Background

In this lab you will play the role of an accountant working for a Chicago family of organized crime (also known as ‘the mob’). It is your job to prepare the monthly report sent out to your boss, who is the head of your criminal organization. The report contains a summary of all the money coming into and going out of the organization each month. This information is retrieved from a database, converted into an xml document in the appropriate format, and then sent out to your boss.
Setup
This lab uses source code in the zip file called ‘XLinq Hands On Lab.zip’ located in the ‘Hands On Lab’ folder of the LINQ Preview installation folder. To work with this lab, you will need to unzip this file into any directory you choose. The rest of the document will refer to this directory as the <LAB-FOLDER>’.
Lab Structure
Directory Structure
This lab is split into a number of exercises, each labeled Exercise1-5. These sub-labs can be found at ‘<LAB-FOLDER>Exercises”. Each exercise lives within in its own folder, and that folder contains two sub-folders, ‘start’ and ‘end’.

The ‘start’ folder represents your visual studio project just as it should look before you begin working on the exercise. If you decide to only complete some of the exercises in this lab during a given sitting, you can come back and start again by picking up the project found in the ‘start’ subdirectory for your next exercise.

The ‘end’ folder contains a project as it should look at the end of the exercise. If you get stuck while working on an exercise, you can look at this folder to sub-lab to see how the solution looks.
 Project Structure

The lab you will be working in is called GanglandAccounting, since this project is an attempt to set up a simple accounting ledger for the mob. The project is made up of two collections of source files: files with classes that have already been implemented for you and files with classes that you will implement over the course of the labs.
These are the files which have already been filled in for you:
· Constants.cs – All of the attribute and element names used in this lab are declared as constants, all of which are stored in this file. If you see references to things like Constants.Transaction or Constants.amount, they are declared in this file.
· HelperMethods.cs – This file holds a static class that contains some miscellaneous helper methods. These helper methods do things like:

· Parse command line parameters

· Retrieve data from the database (using DLINQ)
· Send out the completed report when it is done being created.

These methods have already been implemented for you so that you can focus on working with XML and XLinq.

· MobAcitivity.cs – This file was generated by DLINQ (Language Integrated Query over Databases), and is responsible for providing strongly typed access to the mob activity stored in the database. This file declares classes like Individual and Activity, which represent rows in the Individuals and Activities tables of our database.
These are the files which you will implement over the course of the labs:

· Program.cs – The file containing the application’s Main function. You will work with this file during all the exercises in this lab.
· TransactionBuilder.cs – You will implement the code in this file during exercise 1.
· PaymentsBuilder.cs– You will implement the code in this file during exercise 2.
· ReceiptsBuilder.cs– You will implement the code in this file during exercise 3.
· SummaryBuilder.cs– You will implement the code in this file during exercise 4.
· ReportAdjuster.cs– You will implement the code in this file during exercise 5.

Lab Exercises

Exercise 1: Creating the initial report
Let’s start by getting the application up and running with some simple data. In this exercise you will construct a new XElement and add it to the report.
The xml you will create in this exercise looks like this:
<?xml version="1.0" ?>

<Report periodStart="8/1/2005 12:00:00 AM" periodEnd="9/1/2005 12:00:00 AM">

 <Transactions>

 <Transaction counterParty="Some person" date="9/12/2005 12:00:00 AM"

 transactionType="Test Transaction" amount="42" />

 </Transactions>

</Report>
Note: a counterParty is the party other then you which is involved in the transaction. For a payment, the counterParty is the person you are paying. For a receipt it is the person who is paying you.

Task 1 – Open the GanglandAccounting Project

1. From the start menu, select Start > All Programs > Microsoft Visual Studio 2005 Beta 2 > Microsoft Visual Studio 2005 Beta 2.

2. From the visual studio menu, select File > Open > Project/Solution

3. When the open dialog box appears, open the solution at

‘<LAB-FOLDER>Exercises\Exercise1\Start\GanglandAccounting.sln’.
Task 2 – Implement Helper Method for Creating Transaction Elements
In this task, you will create a helper method that generates ‘Transaction’ xml elements. A transaction is an instance when the organization either paid out received money. By creating a helper method for generating transactions now, we will be able to write simpler code when we are further along in the exercise.

4. From the solution explorer in Visual Studio, open TransactionBuilder.cs.

5. Find the CreateTransactionElement function in the TransactionBuilder class which does not take an Activity as a parameter and replace the body of the function with the following code:
public static XElement CreateTransactionElement(string counterParty,

 DateTime transactionDate, string transactionType,

 double amount)

{

 return new XElement(Constants.Transaction,

 new XAttribute(Constants.counterParty, counterParty),

 new XAttribute(Constants.date, transactionDate.ToString()),

 new XAttribute(Constants.transactionType, transactionType),

 new XAttribute(Constants.amount, Math.Round(amount, 2)));

}
Hint: To bring up auto-completion, press {ctrl} + {space}
Here you see the basics of constructing a XElement. The XElement constructor takes a string (the name of the element) followed by a collection of other parameters (specified as params object[]) that will end up inside the element as either attributes, children elements, text content or other xml items. This function creates an element with several attributes that has the following text representation:
<Transaction counterParty="" date="" transactionType="" amount="" />

6. Call CreateTransactionElement from CreateReport. Now we just need to get the CreateTransactionElement function called. Open the Program.cs file, find the CreateReport function, and add the following code:

XElement report = new XElement(Constants.Report,

 new XAttribute(Constants.periodStart, startDate.ToString()),

 new XAttribute(Constants.periodEnd, endDate.ToString()),

 new XElement(Constants.Transactions,
 TransactionBuilder.CreateTransactionElement("Some person",
 DateTime.Parse("9/12/2005"), "Test Transaction", 42)

));

Note: If you use data other then what you see here for the attribute values, you will get a warning at the end of this exercise, otherwise everything should work fine.
Task 3 – Run It

Now that we have something very simple in place, let’s run it.

7. Hit the {F5} key to start up the debugger. If all goes well, you should see an instance of Internet Explorer start up, showing you the xml report you just created, which should look like this:
<?xml version="1.0" ?>

<Report periodStart="8/1/2005 12:00:00 AM" periodEnd="9/1/2005 12:00:00 AM">

 <Transactions>

 <Transaction counterParty="Some person" date="9/12/2005 12:00:00 AM"

 transactionType="Test Transaction" amount="42" />

 </Transactions>

</Report>
Exercise 2 – Add Payments to the Report

Now that we have something up and running, let’s add some real data to it. We will start by adding to the report all the times the organization had to pay out money during the month. The xml we will be creating in this lab will look something like this (I have highlighted the differences between this and the xml created in the last exercise:
<?xml version="1.0" ?>

<Report periodStart="8/1/2005 12:00:00 AM" periodEnd="9/1/2005 12:00:00 AM">
 <Transactions>
 <Payments>

 <Transaction counterParty="" date="" transactionType="" amount="" />

 <Transaction counterParty="" date="" transactionType="" amount="" />

 </Payments>

 </Transactions>
</Report>

Of course, your report will have many transactions, each of which will have real data in it. Also, be aware that we mark all payments as transactions with negative amounts (because the organization is loosing money) so all the payments will have negative amounts.
Task 1 – Open the Project
You have two choices now. If you just finished Exercise 1, you can choose to continue working in the VS project you used for that exercise. In that case, you only have to make one change:

8. Update the Exercise Number. Update the following line of code in the Main function of Program.cs:

XElement report = CreateReport(startDate, endDate, skimOffTheTop);

HelperMethods.ValidateReportAgainstKnownLabResults(report, LabExercises.Exercise2);

HelperMethods.SendReportToBoss(report);
Console.WriteLine("Report sent off to boss.");
This tells the project that you are working in Exercise 2, so that it will validate your report against the correct solution for this exercise.

If you have not just completed the previous exercise, or just want to start with a clean project, then you can open the project at “<LAB-FOLDER>Exercises\Exercise2\Start\GanglandAccounting.sln”:

9. If Visual Studio up and running with an open solution, close the currently open solution by selecting File > Close Solution.

10. If Visual Studio is not open, open it. From the start menu, select Start > All Programs > Microsoft Visual Studio 2005 Beta 2 > Microsoft Visual Studio 2005 Beta 2.

11. From the visual studio menu, select File > Open > Project/Solution

12. When the open dialog box appears, open the solution at

‘<LAB-FOLDER>Exercises\Exercise2\Start\GanglandAccounting.sln’.
Task 2 – Create the Payments Xml Nodes

13. Open the PaymentsBuilder.cs file from the Solution Explorer in Visual Studio.
Create an extension method for creating payroll elements. An extension method is a static method that can be used in C# as if it were a member function of another class. Let’s create our example and the details of this will become clearer. Inside the PaymentsBuilder class, add the following function.
private static IEnumerable<XElement> ConvertToPayrollElements(this IEnumerable<Individual> individuals, DateTime paymentDate)

{

 foreach(Individual individual in individuals)

 {

 yield return TransactionBuilder.CreateTransactionElement(

 individual.Name, paymentDate, "Salary Payment",

 individual.Roles.PayRate * -1);

 }

}
This function uses two interesting features. First, it uses ‘yield return’ in order to implement an IEnumerable (yield return is a new feature added to C# 2.0: this feature allows you to implement IEnumerable in a simple way. For more information on this see Appendix 1 at the end of this document). Second, the first parameter to this function, individuals, is marked with ‘this’ before the declaration of the parameter. This tells the compiler that this function is supposed to extend IEnumerable<Individual>, which means that you can call this function as if it were a member of the IEnumerable<Individual> class. In other words, you could use the following code:

IEnumerable<Individual> individuals = GetIndividualsFromSomewhere();

IEnumerable<XElement> payrollElements=
 individuals.ConvertToPayrollElements(DateTime.Now);
This does not actually add the function into the class, but the compiler allows the developer to use the function as if this were the case. Under the covers the compiler translates this to a call onto the static. This feature is called ‘Extension Methods’ in C# 3.0.
14. Implement the CreatePaymentsXml function. Replace the body of the CreatePaymentsXml function inside the PaymentsBuilder class with the following code.
public static XElement CreatePaymentsXml(DateTime paymentsDate)

{

 IEnumerable<Individual> individuals =

 HelperMethods.GetIndividualsFromDatabase();

 IEnumerable<XElement> paymentElements =

 individuals.ConvertToPayrollElements(paymentsDate);

 return new XElement(Constants.Payments,

 paymentElements);

}
This function retrieves an IEnumerable of Individuals from the database, then converts this into an IEnumerable of XElement using the ConvertToPayrollElements function we just created (which internally uses our CreateTransactionElement helper method), and then constructs a new ‘Payments’ xml element out of this collection of Transaction elements. Notice that the XElement constructor is given two parameters here, the name of the element and the IEnumerable of XElement. The constructor will use this second parameter to add all of the elements in the enumeration as its children.
Please note that this function could, of course, have been implemented in one statement like so:

 return new XElement(Constants.Payments,

 HelperMethods.GetIndividualsFromDatabase().ConvertToPayrollElements(date));

In Language Integrated Query terms, we would call this type of chaining of method calls with the use of extension methods ‘Explicit Dot Notation’. As you will see shortly, there are ways to simplify this syntax in some cases through a technique called Query Expressions.

15. Call CreatePaymentsXml from CreateReport. Now we just need to get the CreatePaymentsXml function called. Open the Program.cs file, find the CreateReport function, delete the following line of code:
XElement report = new XElement(Constants.Report,

 new XAttribute(Constants.periodStart, startDate.ToString()),

 new XAttribute(Constants.periodEnd, endDate.ToString()),

 new XElement(Constants.Transactions,

 TransactionBuilder.CreateTransactionElement("Some person",
 DateTime.Parse("9/12/2005"), "Test Transaction", 42)
));

And add this one:

XElement report = new XElement(Constants.Report,

 new XAttribute(Constants.periodStart, startDate.ToString()),

 new XAttribute(Constants.periodEnd, endDate.ToString()),

 new XElement(Constants.Transactions,

 PaymentsBuilder.CreatePaymentsXml(startDate)

));

Task 3 – Run It

Now that we have something very simple in place, let’s run it.

16. Hit the {F5} key to start up the debugger. If all goes well, you should see an instance of Internet Explorer start up, showing you the xml report you just created.

Note: The amounts are all negative for all the payments because a payment is, by definition, a loss of money. Using a negative amount for payments makes some math easier later in the lab.

Exercise 3 – Adding Receipts to the Report
Now that we have all the money we paid out during this period in our report (the ’Payments’) we need to create the portion of the report that represents all the money we have taken in (the ‘Receipts’). After we have completed this step, the xml we have created will look something like this (The differences between this xml and the one from the last exercise are highlighted):

<?xml version="1.0" ?>

<Report periodStart="8/1/2005 12:00:00 AM" periodEnd="9/1/2005 12:00:00 AM">
 <Transactions>
 <Payments>

 <Transaction counterParty="" date="" transactionType="" amount="" />

…

 </Payments>

 <Receipts>

 <Transaction counterParty="" date="" transactionType="" amount="" />

 …
 </Receipts>

 </Transactions>
</Report>

Task 1 – Open the Project

You have two choices now. If you just finished Exercise 2, you can choose to continue working in the VS project you used for that exercise. In that case, you only have to make one change:

17. Update the Exercise Number. Update the following line of code in the Main function of Program.cs:

HelperMethods.ValidateReportAgainstKnownLabResults(report, LabExercises.Exercise3);
This tells the project that you are working in Exercise 3, so that it will validate your report against the correct solution for this exercise.

If you have not just completed the previous exercise, or just want to start with a clean project, then you can open the project at “<LAB-FOLDER>Exercises\Exercise3\Start\GanglandAccounting.sln”:

18. If Visual Studio up and running with an open solution, close the currently open solution by selecting File > Close Solution.

19. If Visual Studio is not open, open it. From the start menu, select Start > All Programs > Microsoft Visual Studio 2005 Beta 2 > Microsoft Visual Studio 2005 Beta 2.

20. From the visual studio menu, select File > Open > Project/Solution

21. When the open dialog box appears, open the solution at

‘<LAB-FOLDER>Exercises\Exercise3\Start\GanglandAccounting.sln’.
Task 4 – Create the ‘Receipts’ Xml Element
22. Open the ReceiptsBuilder.cs file from Visual Studio (if it is not already open).

23. Implement the CreateReceiptsXml function. Replace the code inside the CreateReceiptsXml function of the ReceiptsBuilder class with the following code.
private static XElement CreateReceiptsXml(DateTime start, DateTime end)

{

 return new XElement(Constants.Receipts,
 HelperMethods.GetMobActivitiesFromDatabase(start,end).

 Select(activity => TransactionBuilder.CreateTransactionElement(activity))
);

}
In the case of creating the Payments element, we used a custom extension function called ConvertToPayrollElements to convert our Individuals into XElements. Of course, it would be overkill to use a custom extension function every time you wanted to perform a conversion like this, and for this reason LINQ comes with a built-in extension function called Select(). Select is an extension function which extends IEnumerable<T> (where T would be some actual type, in this case it would be IEnumerable<Activity>). Unlike ConvertToPayrollElements though, this function takes another parameter, a delegate which itself takes a parameter of type T (or Activity in this case). The interesting syntax inside the Select function implements that delegate. We use the Select function like this:
Select(activity => CreateTransactionElement(activity))

But internally this gets converted to something like this:

delegate XElement SomeAnonymousDelegate(Activity activity);

public XElement ConvertActivityToXElement(Activity activity)

{

 return TransactionBuilder.CreateTransactionElement(activity);

}

Select(new SomeAnonymousDelegate(ConvertActivityToXElement));

This syntax is new to C# 3.0. Let’s take a look at it again.

Select(activity => CreateTransactionElement(activity))

The best way to think about it is like this: You are embedding a function inside the parameter list of the Select method. The confusing ‘activity =>’ portion of this declares the parameter to the function you are embedding here. When your function gets called, the CLR will set the value of activity just like what you see in the ConvertActivityToXElement function above.
Another difference in the new syntax is the lack of a return statement. If the delegate you are implementing only consists of a single statement which returns a value, and that return value is the same as what is returned by the delegate, then you can omit the return in these cases. If you had needed to put multiple statements in your delegate then you would have had to use a more complicated syntax which we will not look at here.
If you look at the CreateReceiptsXml function we just created, you may notice that there is a number of function calls all chained together in a form like:

someObject.XXX().YYY().ZZZ()

As we saw earlier, this syntax is referred to as ‘explicit dot notation’ in LINQ because of how it chains together a number of function calls into one statement. It is not, however, the only way to use Language Integrated Query. The other format is called ‘Query Expressions’, and we will now re-create the CreateReceiptsXml function using Query Expressions.
24. Implement the CreateReceiptsXmlFromComprehension function. Replace the code inside the CreateReceiptsXmlFromComprehension function of the ReceiptsBuilder class with the following code.
private static XElement CreateReceiptsXmlFromComprehension(DateTime start,

 DateTime end)

{

 IEnumerable<XElement> receiptElements =

 from

 activity in HelperMethods.GetMobActivitiesFromDatabase(start, end)

 select

 TransactionBuilder.CreateTransactionElement(activity);

 return new XElement(Constants.Receipts, receiptElements);

 }
Note: while we implemented this function as two statements, it is possible to re-implement this function as one statement, embedding the expression directly into the constructor for the XElement.
The majority of this function implements a Query Expression, which is a SQL-like syntax that is transformed by the compiler into something more like the explicit dot syntax. Query Expressions are designed to be a more familiar, SQL-like alternative to explicit dot notation. For complicated queries like ones we will see in subsequent exercises, query expressions provide a syntax which is significantly easier to understand. In this case the expression is translated into the code in the CreateReceiptsXml function implemented in the previous step. Let’s take a look at the query expression syntax in more detail:

from

 activity in HelperMethods.GetMobActivitiesFromDatabase(start, end)

This specifies that we are going to be selecting Activity’s from the helper method GetMobActivitiesFromDatabase, and that we will reference these Activity‘s by the name ‘activity’ in the rest of the expression. This is very similar to using a foreach. In fact, we could rewrite this whole expression with the following code (although it would need to go in its own function in order for yield return to work):

foreach (Activity activity in HelperMethods.GetMobActivitiesFromDatabase(start, end))

{

 yield return activity;
}
Notice that in C# 2.0, the foreach loop we specify needs to declare the type of activity.. In the expression, we do not need to declare the type of ‘activity’ because the compiler infers the type for you (in this case the type of the ‘activity’ variable is actually Activity, which you could find out by looking at the return type of the HelperMethods.GetMobActivitiesFromDatabase method.

The next clause of the expression is:

select

 TransactionBuilder.CreateTransactionElement(activity);

This says that for each activity in the ’from’ clause, return the XElement created by calling into the CreateTransactionElement function. Actually that is not quite true. What is returned is an IEnumerable<XElement> which will call into CreateTransactionElement(activity); each time you move to another XElement in the returned enumerator. This is important because you do not want to cache the whole collection into memory; instead you only call into CreateTransactionElement to create new elements as needed.
If this syntax is still confusing to you, you should go back and look at the simpler version in CreateReceiptsXml that uses the explicit dot notation, because the query expression is just a simplified syntax which will reduce down to explicit dot notation during compilation.
25. Call CreateReceiptsXmlFromComprehension from CreateReport. Now we just need to get the CreateReceiptsXmlFromComprehension function called. Open the Program.cs file, find the CreateReport function, and add the following line of code:

XElement report = new XElement(Constants.Report,

 new XAttribute(Constants.periodStart, startDate.ToString()),

 new XAttribute(Constants.periodEnd, endDate.ToString()),

 new XElement(Constants.Transactions,

 PaymentsBuilder.CreatePaymentsXml(startDate),
 ReceiptsBuilder.CreateReceiptsXmlFromComprehension(startDate, endDate)

));

Task 3 – Run It

Now that we have something very simple in place, let’s run it.

26. Hit the {F5} key to start up the debugger. If all goes well, you should see an instance of Internet Explorer start up, showing you the xml report you just created.

Exercise 4 - Adding Report Summaries
In this exercise you will take the report that you created in the last lab and add some summaries to it. The xml report you will create in this lab will look something like this (Lines which are new or have changed since the last exercise are highlighted):
<?xml version="1.0"?>

<Report periodStart="" periodEnd="" profit="">

 <ActivitySummary>

 <Activity activityType="" totalReceipts="" />

 <Activity activityType="" totalReceipts="" />

 </ActivitySummary>

 <EmployeeSummary>

 <Individual name="" totalReceipts="" />

 <Individual name="" totalReceipts="" />

 </EmployeeSummary>

 <Transactions>

 <Payments>

 …
 </Payments>

 <Receipts>

 …
 </Receipts>

 </Transactions>

</Report>

Task 1 – Open the GanglandAccounting Project

You have two choices now. If you just finished Exercise 3, you can choose to continue working in the VS project you used for that exercise. In that case, you only have to make one change:

27. Update the Exercise Number. Update the following line of code in the Main function of Program.cs:

HelperMethods.ValidateReportAgainstKnownLabResults(report, LabExercises.Exercise4);
This tells the project that you are working in Exercise 4, so that it will validate your report against the correct solution for this exercise.

If you have not just completed the previous exercise, or just want to start with a clean project, then you can open the project at “<LAB-FOLDER>Exercises\Exercise4\Start\GanglandAccounting.sln”:

28. If Visual Studio up and running with an open solution, close the currently open solution by selecting File > Close Solution.

29. If Visual Studio is not open, open it. From the start menu, select Start > All Programs > Microsoft Visual Studio 2005 Beta 2 > Microsoft Visual Studio 2005 Beta 2.

30. From the visual studio menu, select File > Open > Project/Solution

31. When the open dialog box appears, open the solution at
‘<LAB-FOLDER>Exercises\Exercise4\Start\GanglandAccounting.sln’.
Task 2 – Create the ActivitySummary Element
We will begin by adding a new element to the report that summarizes how much money was made by the organization’s various criminal activities.

32. Open the SummaryBuilder.cs file in Visual Studio using the solution explorer.

33. Implement the CreateActivitySummaryXml function. Replace the contents of the CreateActivitySummaryXml function in the SummaryBuilder class with the following code.

private static XElement CreateActivitySummaryXml(XElement report)

{

 return new XElement(Constants.ActivitySummary,

 from

 transaction in report. Element(Constants.Transactions).

 Element(Constants.Receipts).Elements(Constants.Transaction)

 group

 transaction

 by (string)transaction.Attribute(Constants.transactionType)

 into groupedActivity

 orderby

 groupedActivity.Group.Sum(transaction =>

 (double)transaction.Attribute(Constants.amount)) descending

 select

 new XElement(Constants.Activity,

 new XAttribute(Constants.activityType, groupedActivity.Key),

 new XAttribute(Constants.totalReceipts,

 Math.Round(groupedActivity.Group.Sum(transaction =>

 (double)transaction.Attribute(Constants.amount)),2))));

}
Note: The “Element (string name)” function returns the child element of the current node with the same name as what is passed in. The “Elements ()” function returns all child nodes with the passed in name.
Now that’s a mouthful! Let’s break it down. We are going to return an element called ‘ActivitySummary’ whose children are created from the result of a Query Expression. This summary will contain an element for each criminal activity and the amount of money made by performing this activity. The results will be sorted by the amount of money made with the best money makers showing up first in the list.
Here is the first section of the expression:

from

 transaction in report. Element(Constants.Transactions).

 Element(Constants.Receipts).Elements(Constants.Transaction)

This tells us that the expression will select all elements selected by the following XPath expression:

/Report/Transactions/Receipts/Transaction

In other words, it selects all Transaction elements that are directly underneath a Receipts element.
The next section of the expression is:

group

 transaction

 by (string)transaction.Attribute(Constants.transactionType)

 into groupedActivity

This section specifies that the results should be grouped by the value of the ‘transactionType’ attribute of these elements. The rest of the query will refer to these groups by using the groupedActivity identifier.
Another interesting thing about the group clause is that it retieves the value of the ‘transactionType’ attribute by retrieving the attribute with a call to:

transaction.Attribute(Constants.transactionType)
This function returns an XAttribute. We then cast the XAttribute to a string, which actually returns just the value of the attribute cast as a string.

The next section of the expression specifies that the results of the grouping should be sorted:

orderby

 groupedActivity.Group.Sum(transaction =>

 (double)transaction.Attribute(Constants.amount)) descending

The expression after the orderby keyword specifies what expression is used to provide the sort order. In this case the expression is:

groupedActivity.Group.Sum(

 transaction =>(double)transaction.Attribute(Constants.amount)

)

In other words, we are going to create a sum out of all the elements in each group. We specify the value to sum by using an anonymous delegate. In this case, the delegate is going to return the value of the amount attribute for each Transaction elements in the grouping.

Notice that we are also returning the value the ‘amount’ attribute by casting the attribute to a double.
The final portion of the expression is:

select

 new XElement(Constants.Activity,

 new XAttribute(Constants.activityType, groupedActivity.Key),

 new XAttribute(Constants.totalReceipts,
 Math.Round(groupedActivity.Group.Sum(transaction =>
 (double)transaction.Attribute(Constants.amount)),2))));

This section specifies that the expression should return one new ‘Activity’ element for each group that was selected. This element has two children, the name of the activity:
new XAttribute(Constants.activityType, groupedActivity.Key),

and the sum of all money made by performing that activity:

new XAttribute(Constants.totalReceipts,
 Math.Round(groupedActivity.Group.Sum(

 transaction =>(double)transaction.Attribute(Constants.amount)),2))
The value of this attribute is the same expression used in the orderby clause, except in this case the value has been rounded out to two decimal places using the Math.Round() function.
Task 3 – Create the SuspicousActivitySummary

The next summary we will create is designed to find potential employees who may be cheating the organization out of its hard-earned profits. One of the captains, Mad Sam, has become suspicious that one his lieutenants, ‘Eggs’ Benny, is having his people withhold some of their earnings on big scores, and he asked the boss if you (as the accountant) could keep track of any high-value transactions that any of Eggs’ people execute. That way Sam can follow up to make sure that the ‘family’ is getting its share.

34. Implement the CreateSuspicousActivitySummaryXml function. Replace the contents of the CreateSuspicousActivitySummaryXml function in the SummaryBuilder class with the following code.
private static XElement CreateSuspicousActivitySummaryXml(XElement report)

{

 return new XElement(Constants.SuspicousActivitySummary,

 from

 individual in HelperMethods.GetIndividualsFromDatabase(),

 transaction in report.Element(Constants.Transactions).

 Element(Constants.Receipts).Elements(Constants.Transaction)

 where

 individual.Name ==

 (string)transaction.Attribute(Constants.counterParty)

 &&

 individual.Superior == "Eggs Benny"

 &&

 (double)transaction.Attribute(Constants.amount) > 1000.0

 select

 transaction);

}

Note: If you did not notice it, you are joining database and XML data together in this query expression.

This expression is interesting because it does a join between xml elements and data retrieved from the database. Let’s take a closer look.

The expression begins with the following from clause:
from

 individual in HelperMethods.GetIndividualsFromDatabase(),

 transaction in report.Element(Constants.Transactions).

 Element(Constants.Receipts).Elements(Constants.Transaction)

This clause specifies two sources, the first being the collection of all individuals in the database:
 individual in HelperMethods.GetIndividualsFromDatabase(),
The second being all the transaction elements that are children of the payments element:

 transaction in report.Element(Constants.Transactions).

 Element(Constants.Receipts).Elements(Constants.Transaction)

The where clause specifies (among other things) how to join these two data sources together:
where

 individual.Name == (string)transaction.Attribute(Constants.counterParty)

In addition, the where clause restricts the results to only those elements where the individual reports to Eggs Benny and where the amount of the transaction is greater then $1,000.00:
individual.Superior == "Eggs Benny"

&&

(double)transaction.Attribute(Constants.amount) > 1000.0

The select clause ends the expression by returning all the transactions that meet these criteria:
select

 transaction
Task 5 – Putting Everything Together
Now that we have functions that will update the report with our summaries, we just need to get these functions called from Main().
35. Call UpdateReportWithSummaries from CreateReport. The UpdateReportWithSummaries function will update our report with our summaries. Now we just need to get the UpdateReportWithSummaries function called. Open the Program.cs file, find the CreateReport function, and add the following line of code:

XElement report = new XElement(Constants.Report,

 new XAttribute(Constants.periodStart, startDate.ToString()),

 new XAttribute(Constants.periodEnd, endDate.ToString()),

 new XElement(Constants.Transactions,

 PaymentsBuilder.CreatePaymentsXml(startDate),
 ReceiptsBuilder.CreateReceiptsXmlFromComprehension(startDate, endDate)

));

SummaryBuilder.UpdateReportWithSummaries(report);
Task 6 – Run It

Now that we have something very simple in place, let’s run it.

36. Hit the {F5} key to start up the debugger. If all goes well, you should see an instance of Internet Explorer start up, showing you the xml report you just created.

Exercise 5 – No Honor amongst Thieves…
As the ‘accountant’ for your family of organized crime, you sit in a position of honor and trust. You are the only person other then the boss who has access to all financial records of the organization, and since it is your job to summarize this data for the head of the family, you are the only real source for this information. Clearly, your boss trusts you since he is willing to put you in this position.
In this exercise you will violate that trust by implementing methods which allow you remove a certain percentage of all payments from the books. This ‘lost’ money will then be yours to keep, a technique known as ‘skimming off the top’.
Task 1 – Open the GanglandAccounting Project

You have two choices now. If you just finished Exercise 4, you can choose to continue working in the VS project you used for that exercise. In that case, you only have to make one change:

37. Update the Exercise Number. Update the following line of code in the Main function of Program.cs:

HelperMethods.ValidateReportAgainstKnownLabResults(report, LabExercises.Exercise5);
This tells the project that you are working in Exercise 5, so that it will validate your report against the correct solution for this exercise.

If you have not just completed the previous exercise, or just want to start with a clean project, then you can open the project at “<LAB-FOLDER>Exercises\Exercise5\Start\GanglandAccounting.sln”:

38. If Visual Studio up and running with an open solution, close the currently open solution by selecting File > Close Solution.

39. If Visual Studio is not open, open it. From the start menu, select Start > All Programs > Microsoft Visual Studio 2005 Beta 2 > Microsoft Visual Studio 2005 Beta 2.

40. From the visual studio menu, select File > Open > Project/Solution

41. When the open dialog box appears, open the solution at
‘<LAB-FOLDER>Exercises\Exercise5\Start\GanglandAccounting.sln’.
Task 2 – Implement the ReportAdjustment Functionality
We will break this code into three parts:

· An extension function which extends IEnumerable<XAttribute> and filters out attributes we do not want to adjust.

· An extension function which extends IEnumerable<XAttribute> and which updates the value of the attributes’ values to be only a certain percentage of what they were previously.

42. Open the ReportAdjuster.cs file.

43. Create the function FilterOutPayments function. Add the following function in the ReportAdjuster class.
private static IEnumerable<XAttribute> FilterOutPayments(

 this IEnumerable<XAttribute> attributes)

{

 return

 from

 attribute in attributes

 where

 attribute.Parent.Name != Constants.Transaction

 ||

 ((XElement)attribute.Parent.Parent).Name != Constants.Payments

 select

 attribute;

}
This function extends IEnumerable<XAttribute>, and it returns a new IEnumerable<XAttribute> which has filtered out attributes whose parent element is a Transaction element, and where that Transaction element has a Payments element as a parent. This is important because we only want to reduce the amount of money coming in, not the amount going out.

44. Create the function AdjustAmounts function. Add the following function in the ReportAdjuster class.
private static void AdjustAmounts(this IEnumerable<XAttribute> attributes,

 double adjustmentAmount)

{

 foreach(XAttribute attribute in attributes)

 {

 attribute.Value = ((double)attribute * adjustmentAmount).ToString("f2");

 }

}
This function also extends IEnumerable<XAttribute>, and it updates all the attributes in the collection so that the value of the attribute (which is assumed here to be numeric) is updated to be a certain percentage of its old value.
45. Create the function AdjustReportfunction. Add the following function in the ReportAdjuster class.
public static void AdjustReport(XElement report, double amountToSkimOffTheTop)

{

 report.Descendants().Attributes(Constants.amount).

 FilterOutPayments().AdjustAmounts(1.0-amountToSkimOffTheTop);

}

This function gets all elements with report.Descendants() and then gets all the ‘amount’ attributes in those elements. This is then passed into FilterOutPayments which does just that, and the returned collection is passed onto AdjustAmounts.
46. Call UpdateReportWithSummaries from CreateReport. The UpdateReportWithSummaries function will update our report with our summaries. Now we just need to get the UpdateReportWithSummaries function called. Open the Program.cs file, find the CreateReport function, and add the following line of code:

XElement report = new XElement(Constants.Report,

 new XAttribute(Constants.periodStart, startDate.ToString()),

 new XAttribute(Constants.periodEnd, endDate.ToString()),

 new XElement(Constants.Transactions,

 PaymentsBuilder.CreatePaymentsXml(startDate),
 ReceiptsBuilder.CreateReceiptsXmlFromComprehension(startDate, endDate)

));

SummaryBuilder.UpdateReportWithSummaries(report);

if(skimOffTheTop)

 ReportAdjuster.AdjustReport(report, .1);
Note: The value ‘skimOffTheTop’ will be passed in with the value true. This value is initially set by a command line parameter.

Task 6 – Run It

Now that we have something very simple in place, let’s run it.

47. Hit the {F5} key to start up the debugger. If all goes well, you should see an instance of Internet Explorer start up, showing you the xml report you just created.

Lab Summary
Well, that’s it. Over the course of this lab you should have encountered the fundamentals of working with xml by using the new Language Integrated Query features in C# 3.0. We hope you enjoyed this lab, and that you look forward to using the new Xml store and its interaction with Language Integrated Query in a future release of Visual Studio and the .Net Framework.

Appendix 1: Iterators and ‘yield return’ in C# 2.0

An iterator is a method that lets you use foreach over a class. The iterator code specifies how return values are generated when the foreach loop accesses each element of the collection. Iterators simplify the process of implementing IEnumerable or IEnumerator methods.

Iterators automatically keep track of the current element in the collection, allowing you to concentrate on writing the code that returns each value in turn.

In this example, the class DaysOfTheWeek is a simple collection class that stores the days of the week as strings. For each iteration of a foreach loop, a different day of the week string is returned.

// Iterator Example

public class DaysOfTheWeek

{

 string[] m_Days = { "Sun", "Mon", "Tue", "Wed", "Thr", "Fri", "Sat"};

 public System.Collections.IEnumerator GetEnumerator()

 {

 foreach (string day in m_Days)

 yield return day;

 }

}

// Create an instance of the collection class

DaysOfTheWeek MyWeek = new DaysOfTheWeek();

// Iterate through it with foreach

foreach (string day in MyWeek)

 Console.WriteLine(day);

The yield keyword is used to specify the value (or values) returned. When the yield return statement is reached, the current location is stored. Execution is restarted from this location the next time the iterator is called.

The iterator block must be called multiple times (seven times in this example) before its own for loop finishes returning all its values. This is what the calling foreach does.

Iterators are especially useful with collection classes, providing an easy way of iterating non-trivial data structures such as binary trees.

Page 1
Page iii

