[image: image1.png]

Hands-On Lab
Lab Manual

LINQ Project: Unified Language Features for Object and Relational Queries
Please do not remove this manual from the lab

Information in this document is subject to change without notice. The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, MS, Windows, Windows NT, MSDN, Active Directory, BizTalk, SQL Server, SharePoint, Outlook, PowerPoint, FrontPage, Visual Basic, Visual C++, Visual J++, Visual InterDev, Visual SourceSafe, Visual C#, Visual J#, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

Contents
1Lab 1: LINQ Project: Unified Language Features for Object and Relational Queries

1Lab Objective

1Exercise 1 – Using LINQ with In-Memory Collections

2Task 1 – Creating a LINQ Solution

2Task 2 – Querying a Generic List of Integers

4Task 3 – Querying Structured Types

6Exercise 2 – DLinq: LINQ for Connected Databases

6Task 1 – Working with DLinq

6Task 2 – Querying using Expressions

9Task 3 – Querying using the Standard Query Operators

10Exercise 3 – XLinq: LINQ for XML documents

10Task 1 – Adding XLinq Support

11Task 2 – Creating Documents from Scratch

13Task 3 – Using XML Documents with Files

14Exercise 4 – Understanding the Standard Query Operators

14Task 1 – Working with the OfType Operator

15Task 2 – Working with the Min, Max, Sum, and Average Operators

16Task 3 – Working with the Select Operator

18Task 4 – Working with the Where Operator

19Task 5 – Working with the Count Operator

19Task 6 – Working with the All and Any Operators

20Task 7 – Working with the ToArray and ToList Operators

Lab 1: LINQ Project: Unified Language Features for Object and Relational Queries
This lab provides an introduction to The LINQ Project. The language integrated query framework for .NET (codenamed “LINQ”) is a set of language extensions to C# and Visual Basic and a unified programming model that extends the .NET Framework to offer integrated querying for objects, databases and XML.
First, you will look at basic LINQ features including the Standard Query Operators and lambda expressions. Next, you will see how these features can be used against in-memory collections, connected databases, and XML documents. Finally, you will take a look at the various query operators available for data manipulation and extraction.
Lab Objective
Estimated time to complete this lab: 60 minutes
The objective of this lab is to gain a clear understanding of the LINQ project. You will see how data manipulation can occur on objects in memory, database tables, and XML files. These new APIs benefit from IntelliSense™ and full compile-time checking without resorting to string-based queries. This lab will touch on basic LINQ technologies, along with database-specific DLinq and XML-specific XLinq. A brief look at query operators will be included.
	· Using LINQ with In-Memory Collections
· DLinq: LINQ for Connected Databases
· XLinq: LINQ for XML Documents
· Understanding the Standard Query Operators

Exercise 1 – Using LINQ with In-Memory Collections
Note: Realize that The LINQ Project relies on new keywords and syntax introduced with C# 3.0, but which is not yet fully understood by Visual Studio 2005. This may cause some features to give incomplete information or stop functioning entirely; for example IntelliSense™ will not always be correct and error messages can be confusing. Keep in mind that the IDE support and compiler are preview releases, and still have many flaws. A consequence is that incorrect code may result in an abundance of error messages. It is important to address errors top-down, then recompile as spurious errors will often disappear once valid ones are addressed.

In this exercise, you will learn how to query over object sequences. Any collection supporting the generic interface System.Collections.Generic.IEnumerable<T> is considered a sequence and can be operated on using the new LINQ Standard Query Operators. Support is also included for types defined using System.Collections.IEnumerable so that existing code will work with LINQ as well. Standard Query Operators allow programmers to construct queries as well as projections that create new types on the fly. This goes hand-in-hand with type inference, a new feature that allows local variables to be automatically typed by their initialization expression.
Task 1 – Creating a LINQ Solution
1. Click the Start | Programs | Microsoft Visual Studio 2005 Beta 2 | Microsoft Visual Studio 2005 Beta 2 menu command.
2. Click the Tools | Options menu command

3. In the left hand treeview select Debugger | General
4. In the right hand pane find the option “Redirect all output to the Quick Console window” and uncheck it

5. Click OK
6. Click the File | New | Project… menu command

7. In the New Project dialog, in the Project types list on the left, click Visual C# | LINQ Preview
8. In the Templates pane on the right, click LINQ Console Application
9. Click OK.
10. At the warning dialog, click OK
Task 2 – Querying a Generic List of Integers
11. In Solution Explorer, double click Program.cs
12. Create a new method that declares a populated collection of integers (put this method in the Program class):

static void NumQuery()

{

 var numbers = new int[] { 1, 4, 2, 7, 8, 9 };
}

Notice that the left-hand side of the assignment does not explicitly mention a type. This is possible due to one of the new features of LINQ: the inference of type information, where possible, directly by the compiler. In this case the right-hand side specifies that the type is int[]; therefore the type of numbers is inferred to be int[]. This is often convenient for initialization expressions because it allows the type name to be specified only once.
13. Add the following code to query the collection for even numbers:
static void NumQuery()
{

 var numbers = new int[] { 1, 4, 2, 7, 8, 9 };

 var evenNumbers =
 from p in numbers
 where (p % 2) == 0

 select p;

}
In this step the right-hand side of the assignment is a query expression, which is a language extension introduced by The LINQ project. As in the previous step, type inference is being used here to simplify the code. The return type from a query may not be immediately obvious. This example is returning System.Collections.Generic.IEnumerable<int>, but many queries return structured results with no obvious declared type; indeed, sometimes there will be no way to specify the type when they are created as anonymous types. In these cases type inference can be particularly useful.
14. Add the following code to display the results:
static void NumQuery()
{

 var numbers = new int[] { 1, 4, 2, 7, 8, 9 };

 var evenNumbers =
 from p in numbers

 where (p % 2) == 0

 select p;

 Console.WriteLine("Result:");

 foreach(var val in evenNumbers)

 {

 Console.WriteLine(val);

 }

 Console.ReadLine();

}
Notice that the foreach statement has been extended to use type inference as well. The final line, Console.ReadLine(), is used to prevent the console window from disappearing until enter is pressed.
15. Finally, add a call to the NumQuery method from the Main method:
static void Main(string[] args)

{

 NumQuery();
}

16. Press F5 to launch the application. A console window will appear. As intended all even numbers are displayed (the numbers 4, 2, and 8 appear in the console output).
17. Press ENTER to exit the application.
The call to the Console.ReadLine method prevents the console window from disappearing immediately. In subsequent tasks, this step will not be stated explicitly.

Task 3 – Querying Structured Types
18. In this task, you will move beyond primitive types and apply the query features to custom structured types. Above the Program class declaration, add the following declaration to create a Person class:
class Person
{

 public int Age;

 public string Name;

}

Notice that there is no declared constructor. In the past this would require consumers to create an instance of the object using the default parameterless constructor and then set the fields explicitly as separate statements.
19. Within the Program class declaration, create the following new method:
static void ObjectQuery()

{

 var people = new List<Person>() {

 new Person { Age = 12, Name = "Bob" },

 new Person { Age = 18, Name = "Cindy" },

 new Person { Age = 13 }

 };

}
There are several interesting things to note about this code block. First of all, notice that the new collection is being populated directly within the curly braces. That is, even though the type is List<T>, not an array, it’s possible to use braces to immediately add elements without calling the Add method. Second, notice that the Person elements are being created with a new syntax (known as object initializers). Even though there is no constructor with two parameters for the Person class, it is possible to create objects of that class as expressions by setting its fields explicitly inside curly braces. Finally, notice that there is no need to specify every field explicitly, rather only those which need to be set are stated. For example, the third element only sets the Age field of the Person. The Name property will retain its default value of null.
20. Next query the collection for teenagers. Add the following query code:
static void ObjectQuery()

{

 var people = new List<Person>() {

 new Person { Age = 12, Name = "Bob" },

 new Person { Age = 18, Name = "Cindy" },

 new Person { Age = 13 }

 };

 var teenagers =
 from p in people

 where p.Age > 12 && p.Age < 20

 select p;

}
21. Finally, output the results with the following code:
static void ObjectQuery()

{

 var people = new List<Person>() {

 new Person { Age=12, Name="Bob" },

 new Person { Age=18, Name="Cindy" },

 new Person { Age=13 }

 };

 var teenagers =
 from p in people

 where p.Age > 12 && p.Age < 20

 select p;

 Console.WriteLine("Result:");

 foreach(var val in teenagers)

 {

 Console.WriteLine("> Name = {0}, Age = {1}", val.Name, val.Age);

 }

 Console.ReadLine();

}
As before, the var keyword is used in the foreach loop yet it is still strongly typed.
22. Add a call to the ObjectQuery method in the Main method (and remove the call to NumQuery):

static void Main(string[] args)

{

 ObjectQuery();
}

23. Press F5 to debug the application.
Two results are shown. The first result shows that the name is Cindy, but the second result shows no name. This is the expected output since the Name field of that object was never initialized. As you can see, working with complex types is just as easy as working with primitive types using LINQ query expressions.
Exercise 2 – DLinq: LINQ for Connected Databases
Note: This exercise demonstrates that the same features available for querying in-memory collections can be applied to databases.
In this exercise, you will learn about DLinq, a new part of ADO.NET that supports Language Integrated Query, allowing you to query and manipulate objects associated with database tables. It eliminates the traditional mismatch between database tables and your application’s domain specific object model freeing you to work with data as objects while the framework manages the rest.
Task 1 – Working with DLinq
24. The first step is to create business objects to model the tables. Right click the LINQConsoleApplication1 project and then click Add | Existing Item.

To simplify the lab, the Northwind table definitions will be imported from an external file. The code is easy to understand, but tedious and error-prone to generate. Once the definitions are in-place accessing the tables is easy. The LINQ Preview contains a program (SQLMetal) that can be used to generate these classes automatically.
25. Browse to C:\Program Files\LINQ Preview\Samples\SampleQueries\Northwind.cs
26. Click Add
27. In Program.cs, add a directive to use the nwind namespace at the top of the file:
using nwind;

28. In Solution Explorer, double click LINQConsoleApplication1 | Northwind.cs
Notice that the Northwind object inherits from DataContext. This is not necessary for in-memory LINQ queries but, in the case of DLinq, it adds additional support for accessing the underlying database tables.
29. Scroll down to the public partial class Category
Each type definition relates to a given database table. Each column is defined with a database datatype, primary/foreign key relationships, identity status and other relevant properties for declaratively creating an object model from a database table. This allows data to be retrieved and manipulated consistently from the underlying table, while allowing client code to treat it strictly as objects.
Task 2 – Querying using Expressions
30. In Program.cs, within the Program class declaration, create the following new method:

static void DatabaseQuery()

{

 Northwind db = new Northwind(
 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");
}
This creates a Northwind object that represents the strongly typed connection to the database.
31. Each table is now accessed as a property of the db variable. At this point, querying is identical to the previous exercise. Add the following code to retrieve American customers:
static void DatabaseQuery()

{

 Northwind db = new Northwind(
 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var matchingCustomers =
 from c in db.Customers

 where c.Country == "USA"
 select c;
}
32. Displaying the matching customers is straightforward. Add the following code:
static void DatabaseQuery()

{

 Northwind db = new Northwind(
 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var matchingCustomers =
 from c in db.Customers

 where c.Country == "USA"
 select c;

 foreach(var cust in matchingCustomers)

 {

 Console.WriteLine("> {0} / {1} / {2}",

 cust.CompanyName, cust.ContactName, cust.Country);

 }

 Console.ReadLine();
}
Of course, at this point the collection of matching customers could just as easily be displayed in a list box or printed in a report.
33. Finally, add a call to the new method in the Main method (and remove the call to ObjectQuery):

static void Main(string[] args)

{

 DatabaseQuery();
}

34. Press F5 to debug the application.

Thirteen results are shown. These are all of the customers in the Northwind Customers table with a Country value of USA.

35. So far, the queries have been primarily based on filtering; however, LINQ supports many options to query data beyond filtering. For example, to sort the list by ContactName simply use the orderby clause:
static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var matchingCustomers =
 from c in db.Customers

 where c.Country == "USA"

 orderby c.ContactName
 select c;

 foreach(var cust in matchingCustomers)

 {

 Console.WriteLine("> {0} / {1} / {2}",

 cust.CompanyName, cust.ContactName, cust.Country);

 }

 Console.ReadLine();
}
36. Press F5 to debug the application.

The same thirteen results are shown, but notice that the order is now determined by the alphabetical ordering second displayed field, ContactName.

37. It is also possible to use built-in string methods in queries. Modify the where clause as shown:
static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var matchingCustomers =

from c in db.Customers

where c.CompanyName.Contains("Market")

orderby c.ContactName

select c;

 foreach(var cust in matchingCustomers)

 {

 Console.WriteLine("> {0} / {1} / {2}",

 cust.CompanyName, cust.ContactName, cust.Country);

 }

 Console.ReadLine();
}
38. Press F5 to debug the application.

The results have been filtered down to just the four rows containing "Market" in the CompanyName column.

Task 3 – Querying using the Standard Query Operators
39. The query expression syntax shown in previous examples (expressions starting with “from”) is not the only method of querying data using LINQ. LINQ also introduces various Standard Query Operators to achieve the same functionality using a more traditional object-centric approach. Modify the code to use explicit query construction:
static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var matchingCustomers =

 db.Customers.

 Where(c => c.CompanyName.Contains("Market"));
 foreach(var cust in matchingCustomers)

 {

 Console.WriteLine("> {0} / {1} / {2}",

 cust.CompanyName, cust.ContactName, cust.Country);

 }

 Console.ReadLine();
}
The parameter passed to the Where method is known as a lambda expression and the syntax for creating it is introduced with C# 3.0. The "c" becomes the parameter to an unnamed method. The => token separates the parameter assignment from the actual body. The c.CompanyName.Contains("Market") expression can be thought to have an implicit return statement preceding it. In DLinq this expression is emitted as an expression tree which DLinq uses to construct the equivalent SQL statement at runtime.
40. Press F5 to debug the application.

Notice that little has changed in this example. The query is now calling the Standard Query Operators, but the results are the same, as is the procedure for working with the results.
41. Aggregates of data can be produced by simply calling the Standard Query Operators on the result just as you would any other method. Add the following code to determine the average unit price of all products starting with the letter "A":
static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var matchingCustomers =

 db.Customers.Where(c => c.CompanyName.Contains("Market"));

 foreach(var cust in matchingCustomers)

 {

 Console.WriteLine("> {0} / {1} / {2}",

 cust.CompanyName, cust.ContactName, cust.Country);

 }

 var avgCost =
 db.Products.
 Where(p => p.ProductName.StartsWith("A")).
 Select(p => p.UnitPrice).
 Average();

 Console.WriteLine("Average cost = {0:c}", avgCost);

 Console.ReadLine();
}
42. Press F5 to debug the application.

In addition to the customers the results now show the average cost for products starting with "A". If this is read from left to right, it would read as, specify the table (db.Products) and restrict the results to those with product names which begin with "A". This first step, by itself, simply returns a filtered result set of Products matching the criteria. Next, select the UnitPrice column which returns a collection of prices, one for each original result. The final method performs an average on the collection of prices and returns a single value.

Exercise 3 – XLinq: LINQ for XML documents
Note: XLinq is an in-memory XML cache that takes advantage of Standard Query Operators and exposes a simplified way to create XML documents and fragments.
In this exercise, you will learn how to read XML documents into the XDocument object, how to query elements from that object, and how to create documents and elements from scratch.
Task 1 – Adding XLinq Support
43. The project template used earlier takes care of adding references and using directives automatically. In Solution Explorer, expand LINQConsoleApplication1 | References
Notice the System.Xml.XLinq reference.
44. In Program.cs notice the directive to use the XLinq namespace:

using System.Xml.XLinq;

Task 2 – Creating Documents from Scratch
45. Creating full-fledged documents from scratch requires instantiating the XDocument object then appropriate XElement, XAttribute and other entities as required for the document. If only an XML fragment is needed then just the XElement class can be used. After the Main method, enter the following code to create a small document containing contact names:
public static XDocument CreateDocument()

{

 // create the document all at once

 return new XDocument(

 new XDeclaration("1.0", null, null),

 new XElement("organizer",

 new XElement("contacts",

 new XElement("contact", new XAttribute("category", "home"),

 new XElement("name", "John Smith")),

 new XElement("contact", new XAttribute("category", "home"),

 new XElement("name", "Sally Peters")),

 new XElement("contact", new XAttribute("category", "work"),

 new XElement("name", "Jim Anderson")))));

}
46. The simplest action to take is to display the document. After the CreateDocument method, create a new method, XMLQuery, invoke CreateDocument, then write the document to the console as follows:
public static void XMLQuery()

{

 XDocument doc = CreateDocument();

 Console.WriteLine(doc);

 Console.ReadLine();

}

47. Replace the code in the Main method with a call to XMLQuery():

static void Main(string[] args)

{

 XMLQuery();
}

48. Press F5 to debug the application.

As you can see, creating the document required few steps, and can be accomplished in a single line of code

49. The next step is to query the document. The Descendants method returns all descendant elements of the name typed (in this case, contact). The Where method should be familiar from previous exercises. Add the following code to query for all contact elements with a category attribute matching "home":
public static void XMLQuery()

{

 XDocument doc = CreateDocument();

 Console.WriteLine(doc);

 var contacts =

from c in doc.Descendants("contact")

where (string)c.Attribute("category") == "home"

select c;
 Console.WriteLine("\n\nResults:");

 foreach(var contact in contacts)

 {

 Console.WriteLine("\n{0}", contact);

 }
 Console.ReadLine();

}

50. Press F5 to debug the application.

In addition to the document being displayed, you now also have an XML element containing only the two non-work contacts. This is a departure from DOM programming that requires that all elements be part of a document. This XML element can be considered "document-free."

51. XLinq also makes it easy to create new elements from existing elements. This can be substantially easier than working with XQuey/XPath due to the available C# language constructs with which you are familiar. Enter the following code to transform the contacts XML into a list of friends.
public static void XMLQuery()

{

 XDocument doc = CreateDocument();

 Console.WriteLine(doc);

 var contacts =
 from c in doc.Descendants("contact")

 where (string)c.Attribute("category") == "home"

 select c;
 Console.WriteLine("\n\nResults:");

 foreach(var contact in contacts)

 {

 Console.WriteLine("\n{0}", contact);

 }

 XElement transformedElement =

 new XElement("friends",

 from f in contacts

 select new XElement("friend",

 new XAttribute("fullname", (string)f.Element("name"))));
 Console.WriteLine("\n\n {0}", transformedElement);

 Console.ReadLine();

}

52. Press F5 to debug the application.

At first glance the code may appear convoluted, but breaking it down it should appear logical. A new XElement object, friends, is created. The second argument simply returns a collection of XElement objects to be placed beneath the friends element. The collection is the same query used to return all personal contact elements from a few steps ago. Then, instead of simply selecting an item to return, a new XElement object, friend, is created with an XAttribute of fullname.
Task 3 – Using XML Documents with Files

53. Documents or elements can easily be saved to and restored from files.
public static void XMLQuery()

{

 XDocument doc = CreateDocument();

 Console.WriteLine(doc);

 var contacts =

from c in doc.Descendants("contact")

where (string)c.Attribute("category") == "home"

select c;
 Console.WriteLine("\n\nResults:");

 foreach(var contact in contacts)

 {

 Console.WriteLine("> {0}", contact);

 }

 XElement transformedElement =

 new XElement("friends",

 from f in contacts

 select new XElement("friend",

 new XAttribute("fullname", (string)f.Element("name"))));
 Console.WriteLine("\n\n {0}", transformedElement);

 transformedElement.Save("XLinqDocument.xml");

 XDocument doc2 = XDocument.Load("XLinqDocument.xml");

 Console.WriteLine("\n\nFrom disk:\n{0}", doc2);

 Console.ReadLine();

}

54. Press F5 to debug the application.

Little has changed in the output, except that transformed document is now displayed twice. The second display is from the saved file. Saving and loading documents requires little effort.

Exercise 4 – Understanding the Standard Query Operators
Note: LINQ contains approximately thirty different query operators. Only a small sample of them will be highlighted here, and additional operators can be added programmatically.
In this exercise, you will learn about several of the query operators available for data access and manipulation. These operators are declared as extension methods on the System.Query.Sequence type and are known together as the Standard Query Operators. These operators operate on sequences, that is, any object that implements IEnumerable<T>.
Task 1 – Working with the OfType Operator
55. LINQ retains all type information through queries and modifications. The OfType operator can be used alone to restrict a result set, or in conjunction with other operators. Above the CreateDocument method, add the following new method:
public static void OperatorQuery()

{

 object[] values = {1, "ant", 2, 'x', 3, true, 4};
}

An unlikely collection such as this would be difficult to query. Having numeric, string, character, and Boolean values make any common comparison impossible.
56. The OfType operator restricts a result set to only those values of the given type, regardless of any other criteria. Add the following code to see a simple restriction query in this format:
public static void OperatorQuery()

{

 object[] values = {1, "ant", 2, 'x', 3, true, 4};

 var results = values.OfType<int>();

}

57. Now that the results are restricted, the values can be used or simply displayed. Add the following code to dump the integer results to the console:
public static void OperatorQuery()

{

 object[] values = {1, "ant", 2, 'x', 3, true, 4};

 var results = values.OfType<int>();

 Console.WriteLine("Results:");

 foreach(var result in results)

 {

 Console.WriteLine(result);

 }

 Console.ReadLine();
}

58. Add a call to the new method in the Main method:

static void Main(string[] args)

{

 OperatorQuery();
}

59. Press F5 to debug the application.

Only the int values are displayed. From here, the results can be further restricted or manipulated as needed.

Task 2 – Working with the Min, Max, Sum, and Average Operators

60. In the previous exercise, you worked with Northwind database tables to learn how DLinq can work with databases. You will now return to the DatabaseQuery method to use some additional operators on the data. Add a call to the method in the Main method:

static void Main(string[] args)

{

 DatabaseQuery();
}

61. In the DatabaseQuery method, delete most of the body so that it appears thus:
static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 Console.ReadLine();
}
62. Add the following lines to demonstrate the Min, Max, Sum, and Average operators:

static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var minCost = db.Products.Min(p => p.UnitPrice);

 var maxCost = db.Products.Select(p => p.UnitPrice).Max();

 var sumCost = db.Products.Sum(p => p.UnitsOnOrder);

 var avgCost = db.Products.Select(p => p.UnitPrice).Average();

 Console.WriteLine("Min = {0:c}, Max = {1:c}, Sum = {2}, Avg = {3:c}",

 minCost, maxCost, sumCost, avgCost);
 Console.ReadLine();
}
This example demonstrates how the various aggregate math functions can be applied to data. You may have noticed that there are two signatures for the methods shown. Min and Sum are invoked directly on the db.Products object, while the Max and Average operators are chained after Select operators. The effect is identical. In the former case the aggregate function is applied just to the sequences that satisfy the expression, in the latter case it is applied to all the objects.

63. Press F5 to debug the application.

The addition of these operators reduces code complexity considerably.

Task 3 – Working with the Select Operator
64. The Select operator is used to perform a projection over a sequence, based on the arguments passed to the operator. The source data is enumerated and results are yielded based on the selector function for each element. The resulting collection can be a direct pass-through of the source objects, a single-field narrowing, or any combination of fields in a new object. In the DatabaseQuery method, delete most of the body so that it appears thus:

static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 Console.ReadLine();
}
65. Add the following lines to create a direct projection:

static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var productsWithCh =

from p in db.Products

where p.ProductName.Contains("Ch")

select p;

 Console.ReadLine();
}
As written, this query will first restrict the source data based on ProductName, then select the entire Product.
66. Add the following lines to create a single-value projection:
static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var productsWithCh =
 from p in db.Products

 where p.ProductName.Contains("Ch")

 select p;

 var productsByName =

db.Products.
 Where(p => p.UnitPrice < 5).
 Select(p => p.ProductName);

 Console.ReadLine();
}
This query restricts based on the unit price, then returns a sequence of product names.
67. Add the following lines to create a multi-value projection by using an anonymous type:

static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var productsWithCh =

from p in db.Products

where p.ProductName.Contains("Ch")

select p;

 var productsByName =

db.Products.

Where(p => p.UnitPrice < 5).

Select(p => p.ProductName);

 var productsDetails =

db.Products.

Where(p => p.Discontinued).
 Select(p => new {p.ProductName, p.UnitPrice});

 Console.ReadLine();
}
The returned type in this example is never declared as a type. It is created by the compiler based on the data types specified.
68. Finally, display the results with the following code:
static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var productsWithCh =

from p in db.Products

where p.ProductName.Contains("Ch")

select p;

 var productsByName =

db.Products.
 Where(p => p.UnitPrice < 5).
 Select(p => p.ProductName);

 var productsDetails =

db.Products.

Where(p => p.Discontinued).
 Select(p => new {p.ProductName, p.UnitPrice });

 Console.WriteLine(">>Products containing Ch");

 foreach(var product in productsWithCh)

 {

 Console.WriteLine("{0}, {1}",

product.ProductName, product.ProductID);

 }

 Console.WriteLine("\n\n>>Products names only");

 foreach(var product in productsByName)

Console.WriteLine(product);

 Console.WriteLine("\n\n>>Products as new types");

 foreach(var product in productsDetails)

 {

 Console.WriteLine("{0}, {1}",

product.ProductName, product.UnitPrice);

 }

 Console.ReadLine();
}
69. Press F5 to debug the application and view the results

Task 4 – Working with the Where Operator
70. The Where operator filters a sequence of values based on a predicate. It enumerates the source sequence yielding only those values that match the predicate. In the DatabaseQuery method, delete most of the body so that it appears thus:

static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 Console.ReadLine();
}
71. The Where operator can filter based on any predicate. Enter the following code to filter the employee based on birthdate:
static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var janBirthdays =

db.Employees.

Where(e => e.BirthDate.Value.Month == 1);

 foreach(var emp in janBirthdays)
 {

 Console.WriteLine("{0}, {1}", emp.LastName, emp.FirstName);

 }

 Console.ReadLine();
}
72. Press F5 to debug the application and view the results

Task 5 – Working with the Count Operator
73. The Count operator simply returns the number of elements in a sequence. This can be applied to the collection itself, or chained to other operators such as Where to count a restricted sequence. In the DatabaseQuery method, delete most of the body so that it appears thus:

static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 Console.ReadLine();
}
74. Add the following code to count the number of elements in the Customers table:
static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 int before = db.Customers.Count();

 int after = db.Customers.Where(c => c.City == "London").Count();

 int after2 = db.Customers.Count(c => c.City == "London");

 Console.WriteLine("Before={0}, After={1}/{2}",

before, after, after2);

 Console.ReadLine();
}
Notice that the restriction can occur prior to Count being invoked. It can also take effect directly within the call to Count.
75. Press F5 to debug the application and view the results

Task 6 – Working with the All and Any Operators
76. The All and Any operators check whether any or all elements of a sequence satisfy a condition. The Any operator returns as soon as a single matching element is found. In the DatabaseQuery method, delete most of the body so that it appears thus:

static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 Console.ReadLine();
}
77. Like the Count operator, the All and Any operators can be invoked on any condition, and can further restrict their scope by passing a predicate directly in the invocation. Add the following code to demonstrate both operators:
static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var cust1 = db.Customers.Where(c => c.Orders.Any());

 var cust2 =

db.Customers.

Where(c => c.Orders.All(o => o.Freight < 50));
 foreach(var cust in cust1)

Console.WriteLine("{0}", cust.ContactName);

 Console.WriteLine("-----");

 foreach(var cust in cust2)

Console.WriteLine("{0}", cust.ContactName);

 Console.ReadLine();
}
In this case, the Any operator is used within the Where operator of another expression. This is perfectly legal as the operator is still being called on a sequence, c.Orders. This is used to return a sequence of all customers who have placed any orders. The All operator is used to return customers whose orders have all had freight costs under $50.
78. Press F5 to debug the application and view the results

Task 7 – Working with the ToArray and ToList Operators
79. The ToArray and ToList operators are convenience operators designed to convert a sequence to a typed array or list, respectively. In the DatabaseQuery method, delete most of the body so that it appears thus:

static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 Console.ReadLine();
}
80. These operators are very useful for integrating queried data with existing libraries of code. They are also useful when you want to cache the result of a query. Start by creating a sequence:
static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var customers = db.Customers.Where(c => c.City == "London");

 Console.ReadLine();
}
Note that the sequence could even be as simple as db.Customers. Restricting the results is not a necessary component to use ToArray or ToList.
81. Next, simply declare an array or List collection, and assign the proper values using the appropriate operator:
static void DatabaseQuery()

{

 Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\Northwnd.mdf");

 var customers = db.Customers.Where(c => c.City == "London");

 Customer[] custArray = customers.ToArray();

 List<Customer> custList = customers.ToList();

 Console.ReadLine();
}
Lab Summary

In this lab you performed the following exercises.

	· Using LINQ with In-Memory Collections
· DLinq: LINQ for Connected Databases
· XLinq: LINQ for XML Documents

· Understanding the Standard Query Operators

You saw how the LINQ framework and features seamlessly tie together data access and manipulation from a variety of sources. LINQ allows you to work with in-memory objects with the power of SQL and the flexibility of C#. DLinq further builds on this support to link your objects to database tables with little extra effort. Finally XLinq brings XML query abilities with the features of XPath, but the ease of C#. The large collection of standard query operators offers built-in options for data manipulation that would have required extensive custom code in the past. Using the LINQ additions to C#, querying and transforming data in a variety of formats is easier than ever.
Page 1
Page iv

