[image: image1.png]

Hands-On Lab
Lab Manual

DLinq: Database Language Integrated Queries
Please do not remove this manual from the lab

Information in this document is subject to change without notice. The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, MS, Windows, Windows NT, MSDN, Active Directory, BizTalk, SQL Server, SharePoint, Outlook, PowerPoint, FrontPage, Visual Basic, Visual C++, Visual J++, Visual InterDev, Visual SourceSafe, Visual C#, Visual J#, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

Contents
1Lab 1: DLinq: Database Language Integrated Queries

1Lab Objective

1Exercise 1 – Creating Object Models

1Task 1 – Creating a LINQ Solution

2Task 2 – Mapping Northwind Customers

3Task 3 – Querying Database Data

4Task 4 – Mapping Relationships Across Tables

6Task 5 – Strongly-Typing the DataContext Object

7Task 6 – Using Code Generation to Create the Object Model

9Exercise 2 – Modifying the Database Data

9Task 1 – Creating an Entity

10Task 2 – Updating an Entity

11Task 3 – Deleting an Entity

12Task 4 – Using Transactions

12Exercise 3 – Working with Advanced features

13Task 1 – Integrating Custom Queries

15Task 2 – Exploring Object Identity

Lab 1: DLinq: Database Language Integrated Queries
This lab is intended to provide a clear picture of the relational data access support provided by the LINQ Project, referred to as DLinq. You will start by creating an object model based on the Northwind database, followed by querying that database using the C# 3.0 query expressions. Next you will create an object model from an existing database using SQLMetal. You will look at mapping relationships then Create, Update, and Delete operations. Then you will see how to use transactions, object retrieval, stored procedure integration, and object identity with DLinq.
DLinq is a language-agnostic component of the LINQ Project. Although the samples in the document are shown only in C# for consistency, DLinq can be used just as well with the LINQ-enabled version of the Visual Basic compiler.

Realize that The LINQ Project relies on new keywords and syntax introduced with C# 3.0, but which is not yet fully understood by Visual Studio 2005. This may cause some features to give incomplete information or stop functioning entirely; for example IntelliSense™ will not always be correct and error messages can be confusing. Keep in mind that the IDE support and compiler are preview releases, and still have many flaws. A consequence is that incorrect code may result in an abundance of error messages. It is important to address errors top-down, then recompile as spurious errors will often disappear once valid ones are addressed.

Lab Objective
Estimated time to complete this lab: 90 minutes
The objective of this lab is to gain an understanding of the role DLinq plays in database integration with C# applications. You will explore the CRUD operations -- Create, Retrieve, Update, and Delete, and how they are invoked without explicit use of SQL query or update commands. You will learn about how classes are mapped to database tables and how to fine-tune the integration.
	· Exercise 1 – Creating an object model from a database
· Exercise 2 – Modifying data in the database
· Exercise 3 – Working with advanced features

Exercise 1 – Creating Object Models
In this exercise, you will learn how to map a class to a database table, and how to retrieve objects.
Task 1 – Creating a LINQ Solution

1. Click the Start | Programs | Microsoft Visual Studio 2005 Beta 2 | Microsoft Visual Studio 2005 Beta 2 menu command.
2. Click the Tools | Options menu command

3. In the left hand treeview select Debugger | General
4. In the right hand pane find the option “Redirect all output to the Quick Console window” and uncheck it

5. Click OK
6. In Microsoft Visual Studio, click the File | New | Project… menu command
7. In the New Project dialog, in Project types, click Visual C# | LINQ Preview
8. In Templates, click LINQ Console Application
9. Provide a name for the new project by entering “DLinqHOL” in the Name field

10. Click OK
11. At the warning dialog, click OK
Task 2 – Mapping Northwind Customers

12. Create an entity class to map to the Customer table by entering the following code in Program.cs (put the Customer class declaration immediately above the Program class declaration):
[Table(Name="Customers")]

public class Customer

{

 [Column (Id=true)]

 public string CustomerID;

}
The Table attribute maps a class to a database table. The Column attribute then maps each field to a table column. In the Customers table, the primary key is CustomerID. This is used to establish the identity of the mapped object. You designate this by setting the Id parameter to true. An object mapped to the database through a unique key is referred to as an entity. Here instances of Customer class are entities.

13. Add the following code to declare a City property:

[Table(Name="Customers")]

public class Customer

{

 [Column (Id=true)]

 public string CustomerID;

 private string _City;

 [Column(Storage = "_City")]

 public string City

 {

 get { return this._City; }

 set { this._City = value; }

 }
}
Fields can be mapped to columns as shown in step 1, but in most cases properties would be used instead. When you declare public properties, you must specify the corresponding storage field using the Storage parameter to the Column attribute.

14. Enter the following code within the Main method to specify the link to the Northwind database, and to establish a connection between the underlying database and the code-based data structures:
static void Main(string[] args)

{

 // Use a standard connection string

 DataContext db = new DataContext(

 @"C:\Program Files\LINQ Preview\Data\northwnd.mdf");

 // Get a typed table to run queries

 Table<Customer> Customers = db.GetTable<Customer>();
}
This step retrieves data from the database. This is accomplished using the DataContext object which is the main conduit by which you retrieve objects from the database and submit changes back.
Task 3 – Querying Database Data
15. The connection has been established; however no data is actually retrieved until a query is executed. This is known as lazy or deferred evaluation. Add the following query for London-based customers:
static void Main(string[] args)

{

 // Use a standard connection string

 DataContext db = new DataContext(

 @"C:\Program Files\LINQ Preview\Data\northwnd.mdf");

 // Get a typed table to run queries

 Table<Customer> Customers = db.GetTable<Customer>();
 // Query for customers in London

 var custs =
 from c in Customers

 where c.City == "London"

 select c;
}
This query, which returns all of the customers from London defined in the Customers table, is expressed in query expression syntax, which is translated into explicit method-based syntax by the compiler. Notice that the type for custs is not declared. This is a convenient feature of C# 3.0 that allows you to rely on the compiler to use the inferred type. This is especially useful as queries can return complex multi-property types that need not be explicitly declared. Learn more about type inference and take an in-depth look at all of the C# 3.0 features in the TLNHOL17 - C# 3.0 Language Enhancements Hands on Lab.
16. Add the following code to execute the query and print out the results:

static void Main(string[] args)

{

 // Use a standard connection string

 DataContext db = new DataContext(

 @"C:\Program Files\LINQ Preview\Data\northwnd.mdf");

 // Get a typed table to run queries

 Table<Customer> Customers = db.GetTable<Customer>();
 // Query for customers in London

 var custs =
 from c in Customers

 where c.City == "London"

 select c;
 foreach(var cust in custs)

 {

 Console.WriteLine("ID={0}, City={1}", cust.CustomerID, cust.City);

 }

 Console.ReadLine();
}
The example in step 1 of task 3 shows a query. It is executed when the code above consume the results. At that point, a corresponding SQL command is executed and objects are materialized. This concept is called lazy evaluation. It allows queries to be composed without the cost of immediate round-trip to the database, query execution and object materialization. The query expressions are not evaluated until the results are needed. The code above results in the execution of the query defined in step 1 of task 3.

17. Press F5 to debug the solution
18. Press ENTER to exit the application
The call to the Console.ReadLine method prevents the console window from disappearing immediately. In subsequent tasks, this step will not be stated explicitly.

Task 4 – Mapping Relationships Across Tables
19. After the Customer class definition, create the Order entity class definition with the following code, indicating that Orders.Customer relates as a foreign key to Customers.CustomerID:
[Table(Name="Orders")]

public class Order

{

 private int _OrderID;

 private string _CustomerID;

 private EntityRef<Customer> _Customer;

 public Order() {this._Customer = new EntityRef<Customer>();}
 [Column(Storage="_OrderID", DbType="Int NOT NULL IDENTITY",
 Id=true, AutoGen=true)]

 public int OrderID

 {

 get { return this._OrderID; }

 // No need to specify a setter because AutoGen is true
 }

 [Column(Storage="_CustomerID", DbType="NChar(5)")]

 public string CustomerID

 {

 get { return this._CustomerID; }

 set { this._CustomerID = value; }

 }

 [Association(Storage="_Customer", ThisKey="CustomerID")]

 public Customer Customer

 {

 get { return this._Customer.Entity; }

 set { this._Customer.Entity = value; }

 }

}
DLinq allows to you express one-to-one and one-to-many relationships using the EntityRef and EntitySet types. The Association attribute is used for mapping a relationship. By creating the association above, you will be able to use the Order.Customer property to relate directly to the appropriate Customer object. By setting this declaratively, you avoid working with foreign key values to associate the corresponding objects manually. The EntityRef type is used in class Order because there is only one customer corresponding to a given Order.
20. In this step the Customer class is annotated to indicate its relationship to the Order class. This is not strictly necessary, as defining it in either direction is sufficient to create the link; however, it allows you to easily navigate objects in either direction. Add the following code to the Customer class to see the association from the other direction:
public class Customer

{
 private EntitySet<Order> _Orders;

 public Customer() { this._Orders = new EntitySet<Order>(); }
 [Association(Storage="_Orders", OtherKey="CustomerID")]

 public EntitySet<Order> Orders

 {

 get { return this._Orders; }

 set { this._Orders.Assign(value); }

 }
 …
}
Notice that you do not set the value of the _Orders object, but rather you call its Assign method to create the proper assignment. The EntitySet type is used because from Customers to Orders, rows are related one-to-many, that is one Customers row to many Orders rows.
21. You can now access Order objects directly from the Customer objects, or vice-versa. Modify the Main method with the following code to demonstrate an implicit join:

// Query for customers who have placed orders
var custs =
 from c in Customers

 where c.Orders.Any()
 select c;

foreach (var cust in custs)

{

 Console.WriteLine("ID={0}, Qty={1}", cust.CustomerID, cust.Orders.Count);

}
22. Press F5 to debug the solution

Task 5 – Strongly-Typing the DataContext Object

23. Add the following code above the Customer class declaration:

public class Northwind : DataContext

{

 // Table<T> abstracts database details per table/date type
 public Table<Customer> Customers;

 public Table<Order> Orders;

 public Northwind(string connection) : base(connection) { }

}
24. Make the following changes to the Main method to use the strongly-typed DataContext.
// Use a standard connection string

Northwind db = new Northwind(

 @"C:\Program Files\LINQ Preview\Data\northwnd.mdf");

// Query for customers from Seattle
var custs =
 from c in db.Customers

 where c.City == "Seattle"
 select c;
foreach(var cust in custs)

{

 Console.WriteLine("ID={0}", cust.CustomerID);

}
25. Press F5 to debug the solution
This optional feature is convenient since calls to GetTable<T> are not needed. Strongly typed tables can be used in all queries once such a class derived from DataContext is used.
Task 6 – Using Code Generation to Create the Object Model
26. Generating the database table relationships can be tedious and prone to error. Until Visual Studio is extended to support LINQ, you can run a code generation tool, SQLMetal, manually. Click the Start | Programs | Microsoft Visual Studio 2005 Beta 2 | Visual Studio Tools | Visual Studio 2005 Command Prompt menu item.
27. Execute the following command to change directory to the project location:

cd "C:\Documents and Settings\Administrator\My Documents\Visual Studio 2005\Projects\DLinqHOL\DLinqHOL"
28. Generate the entire Northwind class hierarchy, annotated with primary key and foreign key designations by entering the following command:

"C:\Program Files\LINQ Preview\Bin\sqlmetal.exe" /server:.\SQLExpress /database:"c:\program files\LINQ Preview\data\northwnd.mdf" /pluralize /code >Northwind.cs

29. In Microsoft Visual Studio, in the Solution Explorer, click the DLinqHOL | Add | Existing Item menu command.
30. Locate the new Northwind.cs file, then click Add
31. In Program.cs, remove the Northwind, Order, and Customer classes
32. In Solution Explorer, double-click Northwind.cs
33. On the line starting with public partial class, select CProgramFilesLINQPreviewDataNorthwndMdf, replace it with a shorter name Northwind. Search and replace to make sure that all instances are changed.
This step is not necessary, but provides a better-formatted name. Here we have not explicitly named the database when attaching the MDF file. Hence the name of the database is the full pathname of the MDF file. For a suitably named database, the generated class name would be more appropriate.
34. For New name, enter "Northwind"
35. Click OK, then Apply
36. Press F5 to debug the solution
The output is the same, but the explicit coding required is far less. This is akin to letting Visual Studio generate strongly-typed datasets. You can create them manually, but it is more tedious and error-prone. Code generation is strictly an option – you can always write your own classes or use a different code generator if you prefer.
Now let’s try a query in Program.cs with the generated classes in Northwinds.cs
37. Rerun the query from Task 3, step 1

Northwind db = new Northwind(
@"C:\Program Files\LINQ Preview\Data\northwnd.mdf");
// Query for customers in London

var custs =
 from c in db.Customers

 where c.City == "London"

 select c;

foreach (Customer c in custs)

{

 Console.WriteLine(c.CompanyName);

}
38. Press F5 to debug the solution

39. So far we have run queries that retrieve entire objects. But you can also select the properties of interest. The following query retrieves only the ContactName property.
var q =
 from c in db.Customers

 where c.Region == null

 select c.ContactName;

foreach (var c in q) Console.WriteLine(c);
Console.ReadLine();

40. It is also possible to create composite results, as in traditional SQL where an arbitrary collection of columns can be returned as a result set. In DLinq, this is accomplished through the use of anonymous types. Modify the code as shown to create a new object type to return the desired information:
var q =
 from c in db.Customers

 where c.Region == null

 select new{Company=c.CompanyName, Contact=c.ContactName};

foreach (var c in q)

 Console.WriteLine("{0}/{1}", c.Contact, c.Company);
Console.ReadLine();

41. Press F5 to debug the application

There are several things to notice here. First, the new operator is invoked with no corresponding type name. This causes the compiler to create a new anonymous type based on the names and types of parameters passed. Second, notice that the members are renamed to Company and Contact. It is optional to specify names. If they are not specified members are named based on the source field name. In the foreach statement, the object is referenced with Contact and Company properties as defined above.

42. Change the code as follows to do a join:

var ids = (
 from c in db.Customers, e in db.Employees

 where c.City == e.City

 select e.EmployeeID)
 .Distinct();
foreach(var id in ids)

{

 Console.WriteLine(id);

}
43. Press F5 to debug the solution
The above example illustrates how a SQL style join can be used when there is no explicit relationship to navigate. It also shows how a specific property can be selected (projection) instead of the entire object. It also shows how the query expression syntax can be blended with the Standard Query Operators – Distinct() in this case.
Exercise 2 – Modifying the Database Data
In this exercise, you will move beyond data retrieval and see how to manipulate the data. The four basic data operations are Create, Retrieve, Update, and Delete, collectively referred to as CRUD. You will see that Creating, Updating, and Deleting is simple and intuitive with DLinq.
Task 1 – Creating an Entity

44. Copy the file C:\Program Files\LINQ Preview\Data\northwnd.mdf to C:\temp\northwnd.mdf

45. Modify the Main method so that it appears as the following:

// Use a standard connection string but connect to temporary copy
Northwind db = new Northwind(

 @"C:\Temp\northwnd.mdf");

Console.ReadLine();
46. Creating a new entity is straightforward. Objects such as Customer and Order can be created with the new operator as with any other objects. Of course you will need to make sure that foreign key validations succeed. Enter the following code before the Console.ReadLine statement in the Main method to create a new customer:
// Create the new Customer object

Customer newCust = new Customer();

newCust.CompanyName = "AdventureWorks Cafe";
newCust.CustomerID = "ADVCA";

// Add the customer to the Customers table

db.Customers.Add(newCust);

Console.WriteLine("\nCustomers matching CA before update");

foreach(var c in db.Customers.Where(c => c.CustomerID.Contains("CA")))
{
 Console.WriteLine("{0}, {1}, {2}",

 c.CustomerID, c.CompanyName, c.Orders.Count);
}
Console.ReadLine();
47. Press F5 to debug the solution
Notice that the new row does not show up in the results. The data has not been added to the database yet.
Task 2 – Updating an Entity

48. Once you have a reference to an entity object you can modify its properties like any other object. Add the following code to modify the contact name for a customer:
// Query for specific customer
// First() returns one object rather than collection of one
var cust = (
 from c in db.Customers

 where c.CustomerID == "ALFKI"

 select c)
 .First();

// Change the contact name of the customer
cust.ContactName = "New Contact";
Console.ReadLine();

As in the last task, no changes have actually been sent to the database yet.
Task 3 – Deleting an Entity

49. Using the same customer object, you can delete the first order. The following code demonstrates how to sever relationships between rows, and how to remove a row from the database. Add the following code before the Console.ReadLine to see how objects can be deleted:
// Access the first element in the Orders collection

Order ord0 = cust.Orders[0];

// Access the first element in the OrderDetails collection

OrderDetail detail0 = ord0.OrderDetails[0];

// Display the order to be deleted
Console.WriteLine("The Order Detail to be deleted is: OrderID = {0}, ProductID = {1}",

detail0.OrderID, detail0.ProductID);

// Mark the Order Detail row for deletion from the database

db.OrderDetails.Remove(detail0);

Console.ReadLine();
50. The final step required for creating, updating, and deleting objects, is to actually submit the changes to the database. Without this step, the changes will only be local and will not show up in query results. Insert the following code to finalize the changes:

db.SubmitChanges();

Console.ReadLine();

51. Add some additional lines after the SubmitChanges call to demonstrate the before and after effects of submitting to the database:

db.SubmitChanges();

Console.WriteLine("\nCustomers matching CA after update");

foreach(var c in db.Customers.Where(c => c.CustomerID.Contains("CA")))
{
 Console.WriteLine("{0}, {1}, {2}",

 c.CustomerID, c.CompanyName, c.Orders.Count);
}
Console.ReadLine();

52. Press F5 to debug the solution
Once the new customer is inserted, it cannot be inserted again due to the primary key constraint. Consequently, this can be only be run once.
Task 4 – Using Transactions

53. In the Solution Explorer, right-click References, then click Add Reference

54. In the .NET tab, click System.Transactions, then click OK
DLinq uses implicit transactisons for insert/update/delete operations by default. When SubmitChanges() is called, it generates SQL commands for insert/update/delete and wraps them in a transaction. But it is also possible to define explicit transaction boundaries using TransactionScope in the .NET Framework version 2.0. The TransactionScope is found in the System.Transactions namespace.
55. At the top of Program.cs, add the following using directive:

using System.Transactions;

56. In Main, replace the existing code with the following code to see the query and the update performed in a single transaction:
// Use a standard connection string for updates
Northwind db = new Northwind(

 @"C:\Temp\northwnd.mdf");

using(TransactionScope ts = new TransactionScope())

{

 var q =
 from p in db.Products

 where p.ProductID == 15

 select p;

 Product prod = q.First();
 // Show UnitsInStock before update

 Console.WriteLine("In stock before update: {0}", prod.UnitsInStock);

 if (prod.UnitsInStock > 0) prod.UnitsInStock--;

 db.SubmitChanges();

 ts.Complete();
 Console.WriteLine("Transaction successful");

}

Console.ReadLine();

57. Press F5 to debug the application
Exercise 3 – Working with Advanced features
In this exercise, you will learn more about
1. Using custom SQL commands for updating the database; and

2. Exploring object identity and using multiple DataContext objects
Task 1 – Integrating Custom Queries

58. At the command prompt, execute the following command to change directory to the project location:

cd "C:\Documents and Settings\Administrator\My Documents\Visual Studio 2005\Projects\DLinqHOL\DLinqHOL"
59. At the command prompt, generate the DLinq entity objects by entering the following command:

"C:\Program Files\LINQ Preview\Bin\sqlmetal.exe" /server:.\SQLExpress /database:DVDCollection /pluralize /code >DVDCollection.cs

60. In Microsoft Visual Studio, in the Solution Explorer, click the DLinqHOL | Add | Existing Item menu command.

61. Locate the new DVDCollection.cs file, then click Add
62. In Solution Explorer, double-click DVDCollection.cs. For this task, we will use the classes in DVDCollection.cs instead of Northwind.cs.
63. Add the following code to DVDCollection.cs in partial class DVDCollection to add a custom implementation of the delete operation:
public partial class DVDCollection : DataContext {

 public Table<DVD> DVDs;

 public int DeleteCalled = 0;

 public int InsertCalled = 0;

 public int UpdateCalled = 0;
 public DVDCollection() {

 }

 public DVDCollection(string connection) :

 base(connection) {

 }

 [DeleteMethod]

 public void OnDelete(DVD dvd)

 {

 Console.WriteLine("OnDelete()");

 ExecuteCommand("DELETE FROM [DVDs] WHERE [ID] = {0}",

 dvd.ID);

 DeleteCalled++;

 }

}

64. Custom query capabilities are especially important when a database is already in-place and optimized with stored procedures. Modify the code as shown to convert the delete call to take advance of an existing stored procedure:
[DeleteMethod]

public void OnDelete(DVD dvd)

{

 Console.WriteLine("OnDelete()");
 ExecuteCommand("exec DeleteDVD {0}", dvd.ID);

 DeleteCalled++;

}

The Console.WriteLine call makes it clear when the delete method is being invoked.
65. Just as the delete operation, you can also add custom functionality to the insert and update operations. Add the following code to support this:
[InsertMethod]

public void OnInsert(DVD dvd)

{
 Console.WriteLine("OnInsert()");

 // Generate a new ID for this entity/row

 string guid = System.Guid.NewGuid().ToString();

 ExecuteCommand("exec InsertDVD {0}, {1}, {2}",

 guid, dvd.Title, dvd.MyRating);

 // Set the new ID for consistency

 dvd.ID = guid;

 InsertCalled++;

}

[UpdateMethod]

public void OnUpdate(DVD original, DVD current)

{

 Console.WriteLine("OnUpdate()");

 ExecuteCommand("exec UpdateDVD {0}, {1}, {2}",

 original.ID, current.Title, current.MyRating);
 UpdateCalled++;

}

66. Make a copy of the database files DVDCollectionDatabase.mdf and DVDCollectionDatabase_log.ldf to C:\Temp. This allows you to retain the database in the original state while working on update exercises.

67. Modify the Main method so that it appears thus:
// Use a standard connection string

DVDCollection db = new DVDCollection(

 @"C:\Temp\DVDCollectionDatabase.mdf");

// Create a new DVD entry
DVD newDVD = new DVD{Title="New DVD", MyRating=5};
//Add the new DVD to the in-memory collection
db.DVDs.Add(newDVD);

//Persist the DVD to the database
db.SubmitChanges();

// Display the newly generated ID

Console.WriteLine("New ID: {0}", newDVD.ID);

// Grab the first DVD (just created)
var disc = db.DVDs.First();

Console.WriteLine("{0}/{1}", disc.Title, disc.MyRating);

//Remove the DVD, then submit to the database

db.DVDs.Remove(disc);

db.SubmitChanges();

Console.ReadLine();
68. Press F5 to debug the solution
Task 2 – Exploring Object Identity

69. DLinq preserves object identity across multiple queries. If two queries contain overlapping results, the same entity is returned in each result set. This simplifies application logic as consistent objects can be assumed. With typical relational data access API's, the developer is forced to catch overlaps to prevent multiple copies from being created. Note that this consistency is handled through the DataContext (or a derived class). If more than one DataContext is used, each will maintain its own copy of individual objects. Modify the Main method to match the following:
// Use a standard connection string

Northwind db = new Northwind(

 @"c:\program files\LINQ Preview\data\northwnd.mdf");

var c1 = db.Customers.First();

var c2 = db.Customers.First();

Console.WriteLine("Name1={0}, Name2={1}\n c1 == c2 is {2}",

 c1.CompanyName, c2.CompanyName, object.ReferenceEquals(c1,c2));
Console.ReadLine();
70. Press F5 to debug the solution

As you can see, the objects refer to the same row, and are also identical objects.
71. In order to demonstrate the ability to access the objects as distinct entities, modify the code as follows:
// Use a standard connection string

Northwind db = new Northwind(

 @"c:\program files\LINQ Preview\data\northwnd.mdf");

var c1 = db.Customers.First();

// Create a second connection
Northwind db2 = new Northwind(

 @"c:\program files\LINQ Preview\data\northwnd.mdf");
var c2 = db2.Customers.First();

Console.WriteLine("Name1={0}, Name2={1}\n c1 == c2 is {2}",

 c1.CompanyName, c2.CompanyName, object.ReferenceEquals(c1,c2));

Console.ReadLine();
72. Press F5 to debug the solution

Now, though the objects still refer to the same row, they are no longer identical objects.
73. Because each object is being retrieved with the same query, it can also be demonstrated that the query is irrelevant – as long as the row in the database is the same, the object will be the same. This is assuming that the same DataContext is used. Change the code to remove the second DataContext and modify the queries as shown:
// Use a standard connection string

Northwind db = new Northwind(

 @"c:\program files\LINQ Preview\data\northwnd.mdf");

var c1 = db.Customers.First(c => c.CustomerID == "ALFKI");

var c2 = (
 from o in db.Orders

 where o.Customer.CustomerID == "ALFKI"

 select o)
 .First()
 .Customer;
Console.WriteLine("Name1={0}, Name2={1}\n c1 == c2 is {2}",

 c1.CompanyName, c2.CompanyName, object.ReferenceEquals(c1,c2));

Console.ReadLine();
This example illustrates identity in a more subtle case. Unlike in the first step, the queries look quite different but return the same Customer object. The first query, c1, is for the first customer with a CustomerID of ALFKI. The second query, c2, comes from a different approach, starting with the Orders table. Each order is examined in the where clause, to determine its parent customer. When it finds an order from the appropriate customer, it grabs the first item, which is still an Order object, and retrieves its Customer property. But both c1 and c2 refer to the same object because of the intrinsic identity of that object.
One more thing to note: The Standard Query Operator - First() is invoked to convert a collection into a singleton. This ensures that a Customer object is assigned to c1; not a collection of Customer objects, even if the collection would have only contained one element.
74. Press F5 to debug the solution
Object equality is a vital feature in an object-relational framework. It ensures that if you update a property of an entity, that state is consistent throughout your application. DLinq provides powerful built-in features to make this happen with no additional work.

Lab Summary

Instructor's Note: DLinq is still an early technology, but sufficient progress has been made to demonstrate powerful data capabilities. Some of these features require manual steps, however we will look at integrating some of the steps into Visual Studio as work progresses.
In this lab you performed the following exercises.

	· Exercise 1- Creating Database Object models
· Exercise 2- Modifying the Database Data
· Exercise 3 – Working with Advanced Features

In this lab, you learned about how the LINQ Project is advancing query capabilities to the .NET Framework. You mapped database tables to language types and populated them with live data. You also saw how seamlessly data can be retrieved and updated with little extra work than required for traditional objects. Finally, you saw how advanced capabilities such as transactions, custom queries, and object identity can make it easier for developers to simply concentrate on the application logic. DLinq provides a powerful bridge from objects to relational data making data-driven applications easier to build than ever.
Thank you for trying DLinq. We look forward to your feedback.
Page 1
Page iii

