

[bookmark: _Toc225215539]The "Oslo" Modeling Language Specification
March 19, 2009
© 2009 Microsoft Corporation. All rights reserved.

This draft specification is provided “as is” and Microsoft disclaims all warranties whatsoever with respect to this specification including specifically for merchantability and fitness for a particular purpose. The posting of this specification does not grant you or your company any license or other rights, either express or implied, or other rights to any intellectual property owned or controlled by Microsoft, its affiliates or any other third party. You are granted no rights to use “Microsoft” or other Microsoft trademarks or trade names in any way or any form hereunder.

The "Oslo" Modeling Language Specification	1
1 Introduction	7
1.1 Language	7
1.1.1 Basics	7
1.1.2 Character Processing	9
1.1.3 Output	11
1.2 Expressions	14
1.2.1 Collections	15
1.2.2 Entities	17
1.3 Types	18
1.3.1 Collection types	21
1.3.2 Nullable types	22
1.3.3 Entity types	22
1.3.4 Declaring fields	23
1.3.5 Declaring computed values	24
1.3.6 Constraints on entity types	26
1.4 Queries	27
1.4.1 Filtering	27
1.4.2 Selection	28
1.5 Modules	29
2 Lexical Structure	31
2.1 Programs	31
2.2 Grammars	31
2.2.1 Grammar notation	31
2.2.2 Lexical grammar	32
2.2.3 Syntactic grammar	32
2.3 Lexical analysis	33
2.3.1 Line terminators	33
2.3.2 Comments	34
2.3.3 Whitespace	35
2.4 Tokens	35
2.4.1 Identifiers	35
2.4.2 Keywords	36
2.4.3 Literals	37
2.4.3.1 Decimal literals	38
2.4.3.2 Integer literals	38
2.4.3.3 Scientific literals	38
2.4.3.4 Date literals	39
2.4.3.5 DateTime literals	39
2.4.3.6 DateTimeOffset literals	39
2.4.3.7 Time literals	40
2.4.3.8 Text literals	41
2.4.3.9 Logical literals	43
2.4.3.10 Binary literals	44
2.4.3.11 Null literal	44
2.4.3.12 Guid literals	44
2.4.4 Operators and punctuators	44
2.5 Pre-processing directives	45
2.5.1 Conditional compilation symbols	46
2.5.2 Pre-processing expressions	46
2.5.3 Declaration directives	46
2.5.4 Conditional compilation directives	47
3 Text Pattern Expressions	50
3.1 Primary Expressions	50
3.1.1 Character Class	50
3.1.2 References	50
3.1.3 Repetition operators	51
3.1.4 Inline Rules	51
3.1.5 Any	52
3.1.6 Error	52
3.2 Term Operators	53
4 Productions	54
4.1 Pattern Declaration	54
4.2 Term Declaration	54
4.3 Constructors	55
4.3.1 Constructor operators	57
4.3.2 Default Constructor	58
4.4 Precedence	59
4.4.1 Production Precedence	59
4.4.2 Term Precedence	60
5 Rules	62
5.1 Token Rules	62
5.1.1 Final Modifier	62
5.2 Syntax Rules	63
5.3 Interleave Rules	63
5.4 Inline Rules	63
5.5 Rule Parameters	64
6 Languages	65
6.1 Main Rule	65
6.2 Cross-language rule references	66
7 Types	67
7.1 Type declaration	67
7.2 Subtyping	69
7.3 Operators	69
7.4 Intrinsic Types	70
7.4.1 Any	70
7.4.2 General	71
7.4.3 Number	71
7.4.3.1 Operators	71
7.4.3.2 AutoNumber	72
7.4.4 Text	72
7.4.4.1 Members	73
7.4.4.2 Declaration	73
7.4.5 Logical	73
7.4.6 Binary	74
7.4.7 Guid	74
7.4.8 Date	75
7.4.9 DateTime	75
7.4.10 DateTimeOffset	75
7.4.11 Time	75
7.5 Entity	75
7.5.1 Declaration	75
7.5.2 Identity	76
7.5.3 Operators	76
7.5.4 Members	77
7.5.5 Indexer	77
7.5.6 Ascription	77
7.5.7 Constructor	78
7.6 Collections	78
7.6.1 Declaration	78
7.6.2 Operators	79
7.6.3 Members	79
7.6.4 Indexers	80
7.6.4.1 Selectors	80
7.6.4.2 Projectors	81
7.6.5 Uniqueness	82
7.7 Null	82
8 Computed and Stored Values	84
8.1 Computed Value Declaration	84
8.1.1 Overloading	84
8.2 Fields	85
8.3 External Declarations	85
9 Expressions	87
9.1 Operators	87
9.1.1 Operator precedence and associativity	87
9.2 Member access	88
9.2.1 Symbol lookup	89
9.3 Initializers	89
9.3.1 Collection Initializer	90
9.3.2 Enumeration Initializer	90
9.3.3 Reference Initializer	90
9.3.4 Non Local Initialization	91
9.4 Invocation Expression	92
9.5 Primary expressions	92
9.5.1 Simple names	93
9.5.2 Parenthesized expressions	93
9.5.3 Context variable	93
9.5.4 Infoof operator	93
9.6 Unary operators	94
9.7 Multiplicity	95
9.8 Arithmetic operators	95
9.9 Shift operators	96
9.10 Relational and type-testing operators	96
9.11 Equality operators	96
9.12 Logical operators	96
9.13 Conditional operators	97
9.13.1 Coalescing operator	97
9.13.2 Conditional operator	97
9.14 Query expressions	97
9.15 Compact query expressions	99
9.15.1 Where operator	99
9.15.2 Select operator	100
9.16 Binary and Collection operators	100
9.17 Expressions	100
10 Module	101
10.1 Compilation Unit	101
10.2 Module Declaration	101
10.3 Inter-Module Dependencies	102
10.4 Compilation Episode	106
10.5 Storage	106
11 Attributes	108
11.1 Case Insensitive	108
11.2 Classification	108
11.3 FormatScope	109
11.4 Nest	109
12 Catalog	110
13 SQL Mapping	113
13.1 Basic Types	113
13.1.1 Unsupported Scalar Types	114
13.2 Modules	115
13.3 Extents	115
13.3.1 Extents -> Tables	115
13.3.2 Identity columns	117
13.3.3 Entity References: One-To-One and One-To-Many	118
13.3.4 Many-To-Many Relationships	120
13.3.5 Default Values	122
13.3.6 Constraints	123
13.3.7 Computed Value Fields	125
13.3.8 Extent Initialization	126
13.3.9 Labeled Extent Initialization	129
13.3.10 Identifiers and Collisions	131
13.4 Computed Values	131
13.4.1 Query Return Types	133
13.4.2 Overloading	133
13.5 Expressions	133
13.5.1 Composition	133
13.5.2 Constants	134
13.5.3 Numeric Expressions	135
13.5.4 String Expressions	135
13.5.5 Date Expressions	135
13.5.6 Binary Expressions	136
13.5.7 Byte Expressions	136
13.5.8 Guid Expressions	136
13.5.9 Logical Expressions	137
13.5.10 Conditionals	137
13.5.11 Nullable Expressions	137
13.5.12 Explicit Conversion	138
13.5.12.1 Implicit Conversion	138
13.5.13 Global References	139
13.5.14 Collection Expressions	141
13.5.14.1 Entity collections only:	142
13.5.14.2 Logical collections only:	142
13.5.14.3 Numeric collections only:	143
13.5.14.4 Queries	143
13.5.15 Entity Expressions	145
13.5.16 Member Access	145
13.5.17 Anonymous Collections	146
13.5.18 Anonymous Entities	148
13.5.19 Global built-in functions	148
13.6 Other Things	148
14 Glossary	149
[bookmark: _Toc207477203][bookmark: _Toc209252031][bookmark: _Toc190040155][bookmark: _Toc204157909][bookmark: _Toc206555947][bookmark: _Toc181526387][bookmark: _Toc181589124][bookmark: _Toc225215540] Introduction
The "Oslo" Modeling Language ("M") is a language for modeling domains using text. A domain is any collection of related concepts or objects. Modeling domain consists of selecting certain characteristics to include in the model and implicitly excluding others deemed irrelevant. Modeling using text has some advantages and disadvantages over modeling using other media such as diagrams or clay. A goal of the M language is to exploit these advantages and mitigate the disadvantages.
A key advantage of modeling in text is ease with which both computers and humans can store and process text. Text is often the most natural way to represent information for presentation and editing by people. However, the ability to extract that information for use by software has been an arcane art practiced only by the most advanced developers. The language feature of M enables information to be represented in a textual form that is tuned for both the problem domain and the target audience. The M language provides simple constructs for describing the shape of a textual language – that shape includes the input syntax as well as the structure and contents of the underlying information. To that end, M acts as both a schema language that can validate that textual input conforms to a given language as well as a transformation language that projects textual input into data structures that are amenable to further processing or storage.
M builds on 4 basic concepts:
1. Language – a collection of rules that recognize free text an produce a structured representation of relevant concepts in the text.
2. Data – a sparse textual representation of information amenable to automated storage, transformation and communication.
3. Constraint – a rule that recognizes specific structure and relationships within data.
4. Transformation – a mapping between source data and result data.

[bookmark: _Toc225215541][bookmark: _Toc205402394][bookmark: _Toc207477204][bookmark: _Toc209252032]Language
[bookmark: _Toc225215542]Basics
A M language definition consists of one or more named rules, each of which describe some part of the language. The following fragment is a simple language definition:
language HelloLanguage {
 syntax Main = "Hello, World";
}
The language being specified is named HelloLanguage and it is described by one rule named Main. A language may contain more than one rule; the name Main is used to designate the initial rule that all input documents must match in order to be considered valid with respect to the language.
Rules use patterns to describe the set of input values that the rule applies to. The Main rule above has only one pattern, "Hello, World" that describes exactly one legal input value:
Hello, World
If that input is fed to the M processor for this language, the processor will report that the input is valid. Any other input will cause the processor to report the input as invalid.
Typically, a rule will use multiple patterns to describe alternative input formats that are logically related. For example, consider this language:
language PrimaryColors {
 syntax Main = "Red" | "Green" | "Blue";
}
The Main rule has three patterns – input must conform to one of these patterns in order for the rule to apply. That means that the following is valid:
Red
as well as this:
Green
and this:
Blue
No other input values are valid in this language.
Most patterns in the wild are more expressive than those we’ve seen so far – most patterns combine multiple terms. Every pattern consists of a sequence of one or more grammar terms, each of which describes a set of legal text values. Pattern matching has the effect of consuming the input as it sequentially matches the terms in the pattern. Each term in the pattern consumes zero or more initial characters of input – the remainder of the input is then matched against the next term in the pattern. If all of the terms in a pattern cannot be matched the consumption is “undone” and the original input will used as a candidate for matching against other patterns within the rule.
A pattern term can either specify a literal value (like in our first example) or the name of another rule. The following language definition matches the same input as the first example:
language HelloLanguage2 {
 syntax Main = Prefix ", " Suffix;
 syntax Prefix = "Hello";
 syntax Suffix = "World";
}
Like functions in a traditional programming language, rules can be declared to accept parameters. A parameterized rule declares one or more “holes” that must be specified to use the rule. The following is a parameterized rule:
syntax Greeting(salutation, separator) = salutation separator "World";
To use a parameterized rule, one simply provides actual rules as arguments to be substituted for the declared parameters:
syntax Main = Greeting(Prefix, ", ");
A given rule name may be declared multiple times provided each declaration has a different number of parameters. That is, the following is legal:
syntax Greeting(salutation, sep, subject) = salutation sep subject;
syntax Greeting(salutation, sep) = salutation sep "World";
syntax Greeting(sep) = "Hello" sep "World";
syntax Greeting = "Hello" ", " "World";
The selection of which rule is used is determined based on the number of arguments present in the usage of the rule.
A pattern may indicate that a given term may match repeatedly using the standard Kleene operators (e.g., ?, *, and +). For example, consider this language:
language HelloLanguage3 {
 syntax Main = Prefix ", "? Suffix*;
 syntax Prefix = "Hello";
 syntax Suffix = "World";
}
This language considers the following all to be valid:
Hello
Hello,
Hello, World
Hello, WorldWorld
HelloWorldWorldWorld
Terms can be grouped using parentheses to indicate that a group of terms must be repeated:
language HelloLanguage3 {
 syntax Main = Prefix (", " Suffix)+;
 syntax Prefix = "Hello";
 syntax Suffix = "World";
}
which considers the following to all be valid input:
Hello, World
Hello, World, World
Hello, World, World, World
The use of the + operator indicates that the group of terms must match at least once.
[bookmark: _Toc205402395][bookmark: _Toc207477205][bookmark: _Toc209252033][bookmark: _Toc225215543]Character Processing
In the previous examples of the HelloLanguage, the pattern term for the comma separator included a trailing space. That trailing space was significant, as it allowed the input text to include a space after the comma:
Hello, World
More importantly, the pattern indicates that the space is not only allowed, but is required. That is, the following input is not valid:
Hello,World
Moreover, exactly one space is required, making this input invalid as well:
Hello, World
To allow any number of spaces to appear either before or after the comma, we could have written the rule like this:
syntax Main = 'Hello' ' '* ',' ' '* 'World';
While this is correct, in practice most languages have many places where secondary text such as whitespace or comments can be interleaved with constructs that are primary in the language. To simplify specifying such languages, a language may specify one or more named interleave patterns.
An interleave pattern specifies text streams that are not considered part of the primary flow of text. When processing input, the M processor implicitly injects interleave patterns between the terms in all syntax patterns. For example, consider this language:
language HelloLanguage {
 syntax Main = "Hello" "," "World";
 interleave Secondary = " "+;
}
This language now accepts any number of whitespace characters before or after the comma. That is,
Hello,World
Hello, World
Hello , World
are all valid with respect to this language.
Interleave patterns simplify defining languages that have secondary text like whitespace and comments. However, many languages have constructs in which such interleaving needs to be suppressed. To specify that a given rule is not subject to interleave processing, the rule is written as a token rule rather than a syntax rule.
Token rules identify the lowest level textual constructs in a language – by analogy token rules identify words and syntax rules identify sentences. Like syntax rules, token rules use patterns to identify sets of input values. Here’s a simple token rule:
token BinaryValueToken = ("0" | "1")+;
It identifies sequences of 0 and 1 characters much like this similar syntax rule:
syntax BinaryValueSyntax = ("0" | "1")+;
The main distinction between the two rules is that interleave patterns do not apply to token rules. That means that if the following interleave rule was in effect:
interleave IgnorableText = " "+;
then the following input value:
0 1011 1011
would be valid with respect to the BinaryValueSyntax rule but not with respect to the BinaryValueToken rule, as interleave patterns do not apply to token rules.
M provides a shorthand notation for expressing alternatives that consist of a range of Unicode characters. For example, the following rule:
token AtoF = "A" | "B" | "C" | "D" | "E" | "F";
can be rewritten using the range operator as follows:
token AtoF = "A".."F";
Ranges and alternation can compose to specify multiple non-contiguous ranges:
token AtoGnoD = "A".."C" | "E".."G";
which is equivalent to this longhand form:
token AtoGnoD = "A" | "B" | "C" | "E" | "F" | "G";
Note that the range operator only works with text literals that are exactly one character in length.
The patterns in token rules have a few additional features that are not valid in syntax rules. Specifically, token patterns can be negated to match anything not included in the set, by using the difference operator (-). The following example combines difference with any. Any matches any single character. The expression below matches any character that is not a vowel:
any - ('A'|'E'|'I'|'O'|'U')
Token rules are named and may be referred to by other rules:
token AorBorCorEorForG = (AorBorC | EorForG)+;
token AorBorC = 'A'..'C';
token EorForG = 'E'..'G';
Because token rules are processed before syntax rules, token rules cannot refer to syntax rules:
syntax X = "Hello";
token HelloGoodbye = X | "Goodbye"; // illegal
However, syntax rules may refer to token rules:
token X = "Hello";
syntax HelloGoodbye = X | "Goodbye"; // legal
The M processor treats all literals in syntax patterns as anonymous token rules. That means that the previous example is equivalent to the following:
token X = "Hello";
token temp = "Goodbye";
syntax HelloGoodbye = X | temp;
Operationally, the difference between token rules and syntax rules is when they are processed. Token rules are processed first against the raw character stream to produce a sequence of named tokens. The M processor then processes the language’s syntax rules against the token stream to determine whether the input is valid and optionally to produce structured data as output. The next section describes how that output is formed.
[bookmark: _Toc205402396][bookmark: _Toc207477206][bookmark: _Toc209252034][bookmark: _Toc225215544]Output
M processing transforms text into structured data. The shape and content of that data is determined by the syntax rules of the language being processed. Each syntax rule consists of a set of productions, each of which consists of a pattern and an optional projection. Patterns were discussed in the previous sections and describe a set of legal character sequences that are valid input. Projections describe how the information represented by that input should be produced.
Each production is like a function from text to structured data. The primary way to write projections is to use a simple construction syntax that produces graph-structured data suitable for programs and stores. For example, consider this rule:
syntax Rock =
 "Rock" => Item { Heavy { true }, Solid { true } } ;
This rule has one production that has a pattern that matches "Rock" and a projection that produces the following value (using a notation known as M graphs):
Item {
 Heavy { true },
 Solid { true }
}
Rules can contain more than one production in order to allow different input to produce very different output. Here’s an example of a rule that contains three productions with very different projections:
syntax Contents
 = "Rock" => Item { Heavy { true }, Solid { true } }
 | "Water" => Item { Consumable { true }, Solid { false } }
 | "Hamster" => Pet { Small { true }, Legs { 4 } } ;
When a rule with more than one production is processed, the input text is tested against all of the productions in the rule to determine whether the rule applies. If the input text matches the pattern from exactly one of the rule’s productions, then the corresponding projection is used to produce the result. In this example, when presented with the input text "Hamster", the rule would yield:
Pet {
 Small { true },
 Legs { 4 }
}
as a result.
To allow a syntax rule to match no matter what input it is presented with, a syntax rule may specify a production that uses the empty pattern, which will be selected if and only if none of the other productions in the rule match:
syntax Contents
 = "Rock" => Item { Heavy { true }, Solid { true } }
 | "Water" => Item { Consumable { true }, Solid { false } }
 | "Hamster" => Pet { Small { true }, Legs { 4 } }
 | empty => NoContent { } ;
When the production with the empty pattern is chosen, no input is consumed as part of the match.
To allow projections to use the input text that was used during pattern matching, pattern terms associate a variable name with individual pattern terms by prefixing the pattern with an identifier separated by a colon. These variable names are then made available to the projection. For example, consider this language:
language GradientLang {
 syntax Main
 = from:Color ", " to:Color => Gradient { Start { from }, End { to } } ;
 token Color
 = "Red" | "Green" | "Blue";
}
Given this input value:
Red, Blue
The M processor would produce this output:
Gradient {
 Start { "Red" },
 End { "Blue" }
}
Like all projection expressions we’ve looked at, literal values may appear in the output graph. The set of literal types supported by M and a couple examples follow:
· Text literals – "ABC", 'ABC'
· Integer literals – 25, -34
· Real literals – 0.0, -5.0E15
· Logical literals – true, false
· Null literal – null
The projections we’ve seen so far all attach a label to each graph node in the output (e.g., Gradient, Start, etc.). The label is optional and can be omitted:
syntax Naked = t1:First t2:Second => { t1, t2 };
The label can be an arbitrary string – to allow labels to be escaped, one uses the id operator:
syntax Fancy = t1:First t2:Second => id("Label with Spaces!"){ t1, t2 };
The id operator works with either literal strings or with variables that are bound to input text:
syntax Fancy = name:Name t1:First t2:Second => id(name){ t1, t2 };
Using id with variables allows the labeling of the output data to be driven dynamically from input text rather than statically defined in the language. This example works when the variable name is bound to a literal value. If the variable was bound to a structured node that was returned by another rule, that node’s label can be accessed using the labelof operator:
syntax Fancier p:Point => id(labelof(p)) { 1, 2, 3 };
The labelof operator returns a string that can be used both in the id operator as well as a node value.
The projection expressions shown so far have no notion of order. That is, this projection expression:
A { X { 100 }, Y { 200 } }
is semantically equivalent to this:
A { Y { 200 }, X { 100 } }
and implementations of M are not required to preserve the order specified by the projection. To indicate that order is significant and must be preserved, brackets are used rather than braces. This means that this projection expression:
A [X { 100 }, Y { 200 }]
is not semantically equivalent to this:
A [Y { 200 }, X { 100 }]
The use of brackets is common when the sequential nature of information is important and positional access is desired in downstream processing.
Sometimes it is useful to splice the nodes of a value together into a single collection. The valuesof operator will return the values of a node (labeled or unlabeled) as top-level values that are then combinable with other values as values of new node.
syntax ListOfA
 = a:A => [a]
 | list:ListOfA "," a:A => [valuesof(list), a];
Here, valuesof(list) returns the all the values of the list node, combinable with a to form a new list.
Productions that do not specify a projection get the default projection.
For example, consider this simple language that does not specify productions:
language GradientLanguage {
 syntax Main = Gradient | Color;
 syntax Gradient = from:Color " on " to:Color;
 token Color = "Red" | "Green" | "Blue";
}
When presented with the input "Blue on Green” the language processor returns the following output:
Main[Gradient ["Red", " on ", "Green"]]]
These default semantics allows grammars to be authored rapidly while still yielding understandable output. However, in practice explicit projection expressions provide language designers complete control over the shape and contents of the output.
[bookmark: _Toc225215545]Expressions
The easiest way to get started with M is to look at some values. M has intrinsic support for constructing values. The following is a legal value in M:
"Hello, world"
The quotation marks tell M that this is the text value Hello, world. M literals can also be numbers. The following literal:
1
is the numeric value one. Finally, there are two literals that represent logical values:
true
false
We’ve just seen examples of using literals to write down textual, numeric, and logical values. We can also use expressions to write down values that are computed.
An M expression applies an operator to zero or more operands to produce a result. An operator is either a built-in operator (e.g., +) or a user-defined function (which we’ll look at in Section 1.3.5). An operand is a value that is used by the operator to calculate the result of the expression, which is itself a value. Expressions nest, so the operands themselves can be expressions.
M defines two equality operators: equals, ==, and not equals, !=, both of which result in either true or false based on the equivalence/nonequivalence of the two operands. Here are some expressions that use the equality operators:
1 == 1
"Hello" != "hELLO"
true != false
All of these expressions will yield the value true when evaluated.
M defines the standard four relational operators less-than <, greater-than >, less-than-or-equal <=, and greater-than-or-equal >=, which work over numeric and textual values. M also defines the standard three logical operators: and &&, or ||, and not ! that combine logical values.
The following expressions show these operators in action:
1 < 4
1 == 1
1 < 4 != 1 > 4
!(1 + 1 == 3)
(1 + 1 == 3) || (2 + 2 < 10)
(1 + 1 == 2) && (2 + 2 < 10)
Again, all of these expressions yield the value true when evaluated.
[bookmark: _Toc190040157][bookmark: _Toc204157911][bookmark: _Toc206555949][bookmark: _Toc225215546]Collections
All of the values we saw in the previous section were simple values. In M, a simple value is a value that has no uniform way to be decomposed into constituent parts. While there are textual operators that allow you to extract substrings from a text value, those operators are specific to textual data and don’t work on numeric data. Similarly, any “bit-level” operations on binary values don’t apply to text or numeric data.
An M collection is a value that groups together zero or more elements which themselves are values. We can write down collections in expressions using an initializer, { }.
The following expressions each use an initializer to yield a collection value:
{ 1, 2 }
{ 1 }
{ }
As with simple values, the equivalence operators == and != are defined over collections. In M, two collections are considered equivalent if and only if each element has a distinct equivalent element in the other collection. That allows us to write the following equivalence expressions:
{ 1, 2 } == { 1, 2 }
{ 1, 2 } != { 1 }
both of which are true.
The elements of a collection can consist of different kinds of values:
{ true, "Hello" }
and these values can be the result of arbitrary calculation:
{ 1 + 2, 99 – 3, 4 < 9 }
which is equivalent to the collection:
{ 3, 96, true }
The order of elements in a collection is not significant. That means that the following expression is also true:
{ 1, 2 } == { 2, 1 }
Finally, collections can contain duplicate elements, which are significant. That makes the following expression:
{ 1, 2, 2 } != { 1, 2 }
also true.
M defines a set of built-in operators that are specific to collections. The most important of which is the in operator which tests whether a given value is an element of the collection. The result of the in operator is a logical value that indicates whether the value is or is not an element of the collection. For example, these expressions:
1 in { 1, 2, 3 }
!(1 in { "Hello", 9 })
both result in true.
M defines a Count member on collections that calculates the number of elements in a collection. This use of that operator:
{ 1, 2, 2, 3 }.Count
results in the value 4. The postfix # operator returns the count of a collection, so
{ 1, 2, 2, 3 }# == { 1, 2, 2, 3 }.Count
returns true.
As noted earlier, M collections may contain duplicates. You can apply the Distinct member to get a version of the collection with any duplicates removed:
{ 1, 2, 3, 1 }.Distinct == { 1, 2, 3 }
The result of Distinct is not just a collection but is also a set, i.e. a collection of distinct elements.
M also defines set union "|" and set intersection "&" operators, which also yield sets:
({ 1, 2, 3, 1 } | { 1, 2, 4 }) == { 1, 2, 3, 4 }
({ 1, 2, 3, 1 } & { 1, 2, 4 }) == { 1, 2 }
Note that union and intersection always return collections that are sets, even when applied to collections that contain duplicates.
M defines the subset and superset using <= and >=. Again these operations convert collections to sets. The following expressions evaluate to true.
{ 1, 2 } <= { 1, 2, 3 }
{ "Hello", "World" } >= { "World" }
{ 1, 2, 1 } <= { 1, 2, 3 }
Arguably the most commonly used collection operator is the where operator. The where operator applies a logical expression (called the predicate) to each element in a collection (called the domain) and results in a new collection that consists of only the elements for which the predicate holds true. To allow the element to be used in the predicate, the where operator introduces the symbol value to stand in for the specific element being tested.
For example, consider this expression that uses a where operator:
{ 1, 2, 3, 4, 5, 6 } where value > 3
In this example, the domain is the collection { 1, 2, 3, 4, 5, 6 } and the predicate is the expression value > 3. Note that the identifier value is available only within the scope of the predicate expression. The result of this expression is the collection { 4, 5, 6 }.
M supports a richer set of query comprehensions using a syntax similar to that of Language Integrated Query (LINQ). For example, the where example just shown can be written in long form as follows:
from value in { 1, 2, 3, 4, 5, 6 } where value > 3 select value
In general, M supports the LINQ operators with these significant exceptions:
1. ElementAt/First/Last/Range/Skip are not supported – M collections are unordered and do not support positional access to elements.
2. Reverse is not supported– again, position is not significant on M collections.
3. Take/TakeWhile/Single – these operators do not exist in M.
4. Choose selects an arbitrary element.
5. ToArray/ToDictionary/ToList – there are no corresponding CLR types in M.
6. Cast – typing works differently in M – you can achieve the same effect using a where operator.
While the where operator allows elements to be accessed based on a calculation over the values of each element. There are situations where it would be much more convenient to simply assign names to each element and then access the element values by its assigned name. M defines a distinct kind of value called an entity for just this purpose.
[bookmark: _Toc182939065][bookmark: _Toc182939372][bookmark: _Toc182941819][bookmark: _Toc190040158][bookmark: _Toc204157912][bookmark: _Toc206555950][bookmark: _Toc225215547]Entities
An entity consists of zero or more name-value pairs called fields. Entities can be constructed in M using an initializer. Here’s a simple entity value:
{ X = 100, Y = 200 }
This entity has two fields: one named X with the value of 100, the other named Y with the value of 200.
Entity initializers can use arbitrary expressions as field values:
{ X = 50 + 50, Y = 300 - 100 }
And the names of members can be arbitrary Unicode text:
{ @[Horizontal Coordinate] = 100, @[Vertical Coordinate] = 200 }
If the member name matches the Identifer pattern, it can be written without the surrounding @[]. An identifier must begin with an upper or lowercase letter or "_" and be followed by a sequence of letters, digits, "_", and "$".
Here are a few examples:
HelloWorld = 1 // matches the Identifier pattern
@[Hello World] = 1 // doesn’t match identifier pattern – escape it
_HelloWorld = 1 // matches the Identifier pattern
A = 1 // matches the Identifier pattern
@[1] = 1 // doesn’t match identifier pattern – escape it
It is always legal to use @[] to escape symbolic names; however, most of the examples in this document use names that don’t require escaping and therefore do not use escaping syntax for readability.
M imposes no limitations on the values of entity members. It is legal for the value of an entity member to refer to another entity:
{ TopLeft { X = 100, Y = 200 }, BottomRight { X = 400, Y = 100 } }
or a collection:
{ LotteryPicks { 1, 18, 25, 32, 55, 61 }, Odds = 0.00000001 }
or a collection of entities:
{
 Color = "Red",
 Path {
 { X = 100, Y = 100 },
 { X = 200, Y = 200 },
 { X = 300, Y = 100 },
 { X = 300, Y = 100 },
 }
}
This last example illustrates that entity values are legal for use as elements in collections.
Entity initializers are useful for constructing new entity values. M defines the dot, ".", operator over entities for accessing the value of a given member. For example, this expression:
{ X = 100, Y = 200 }.X
yields the value of the X member, which in this case is 100. The result of the dot operator is just a value that is subject to subsequent operations. For example, this expression:
{ Center { X = 100, Y = 200 }, Radius = 3 }.Center.Y
yields the value 200.
[bookmark: _Toc190040159][bookmark: _Toc204157913][bookmark: _Toc206555951][bookmark: _Toc225215548]Types
Expressions give us a great way to write down how to calculate values based on other values. Often, we want to write down how to categorize values for the purposes of validation or allocation. In M, we categorize values using types.
An M type describes a collection of acceptable or conformant values. We use types to constrain which values may appear in a particular context (e.g., an operand, a storage location).
With a few notable exceptions, M allows types to be used as collections. For example, we can use the in operator to test whether a value conforms to a given type. The following expressions are true:
1 in Number
"Hello, world" in Text
Note that the names of the built-in types are available directly in the M language. We can introduce new names for types using type declarations. For example, this type declaration introduces the type name My Text as a synonym for the Text simple type:
type 2[My Text] : Text;
With this type name now available, we can write the following:
"Hello, world" in @[My Text]
Note that the name of the type @[My Text] contains spaces and is subject to the same escaping rules as the member names in entities.
While it is moderately useful to introduce your own names for an existing type, it’s far more useful to apply a predicate to the underlying type:
type SmallText : Text where value.Count < 7;
In this example, we’ve constrained the universe of possible Text values to those in which the value contains less than seven characters. That means that the following holds true:
"Terse" in SmallText
!("Verbose" in SmallText)
Type declarations compose:
type TinyText : SmallText where value.Count < 6;
The preceding is equivalent to the following:
type TinyText : Text where value.Count < 6;
It’s important to note that the name of the type exists so an M declaration or expression can refer to it. We can assign any number of names to the same type (e.g., Text where value.Count < 7) and a given value either conforms to all of them or to none of them. For example, consider this example:
type A : Number where value < 100;
type B : Number where value < 100;
Given these two type definitions, both of the following expressions will evaluate to true:
1 in A
1 in B
If we introduce the following third type:
type C : Number where value > 0;
we can also state this:
1 in C
In M types are sets of values and it is possible to define a new type by explicitly enumerating those values.
type PrimaryColors { "Red", "Blue", "Yellow" }
This is how an enumeration is defined in M. Any type in M is a collection of values. For example the types Logical and Integer8 defined below could be defined as the collections:
{ true, false }
{-128, -127, ..., -1, 0, 1, ..., 127}
A general principle of M is that a given value may conform to any number of types. This is a departure from the way many object-based systems work, in which a value is bound to a specific type at initialization-time and is a member of the finite set of supertypes that were specified when the type was defined.
One last type related operation bears discussion –the type ascription operator ":". The type ascription operator asserts that a given value conforms to a specific type.
In general, when we see values in expressions, M has some notion of the expected type of that value based on the declared result type for the operator or function being applied. For example, the result of the logical and operator "&&" is declared to be conformant with type Logical.
It is occasionally useful (or even required) to apply additional constraints to a given value – typically to use that value in another context that has differing requirements.
For example, consider the following simple type definition:
type SuperPositive : Number where value > 5;
And let’s now assume that there’s a function named CalcIt that is declared to accept a value of type SuperPositive as an operand. We’d like M to allow expressions like this:
CalcIt(20)
CalcIt(42 + 99)
and prohibit expressions like this:
CalcIt(-1)
CalcIt(4)
In fact, M does exactly what we want for these four examples. This is because these expressions express their operands in terms of simple built-in operators over constants. All of the information needed to determine the validity of the expressions is readily and cheaply available the moment the M source text for the expression is encountered.
However, if the expression draws upon dynamic sources of data or user-defined functions, we must use the type ascription operator to assert that a value will conform to a given type.
To understand how the type ascription operator works with values, let’s assume that there is a second function, GetVowelCount, that is declared to accept an operand of type Text and return a value of type Number that indicates the number of vowels in the operand.
Since we can’t know based on the declaration of GetVowelCount whether its results will be greater than five or not, the following expression is not a legal M expression:
CalcIt(GetVowelCount(someTextVariable))
Because GetVowelCount’s declared result type Number includes values that do not conform to the declared operand type of CalcIt which is SuperPositive, M assumes that this expression was written in error and will refuse to even attempt to evaluate the expression.
When we rewrite this expression to the following legal expression using the type ascription operator:
CalcIt(GetVowelCount(someTextVariable) : SuperPositive)
we are telling M that we have enough understanding of the GetVowelCount function to know that we’ll always get a value that conforms to the type SuperPositive. In short, we’re telling M we know what we’re doing.
But what if we don’t? What if we misjudged how the GetVowelCount function works and a particular evaluation results in a negative number? Because the CalcIt function was declared to only accept values that conform to SuperPositive, the system will ensure that all values passed to it are greater than five. To ensure this constraint is never violated, the system may need to inject a dynamic constraint test that has a potential to fail when evaluated. This failure will not occur when the M source text is first processed (as was the case with CalcIt(-1)) – rather it will occur when the expression is actually evaluated.
Here’s the general principle at play.
M implementations will typically attempt to report any constraint violations before the first expression is evaluated. This is called static enforcement and implementations will manifest this much like a syntax error. However, as we’ve seen, some constraints can only be enforced against live data and therefore require dynamic enforcement.
In general, the M philosophy is to make it easy for the user to write down their intention and put the burden on the M implementation to “make it work.” However, to allow a particular M program to be used in diverse environments, a fully featured M implementation should be configurable to reject M program that rely on dynamic enforcement for correctness in order to reduce the performance and operational costs of dynamic constraint violations.
[bookmark: _Toc190040160][bookmark: _Toc204157914][bookmark: _Toc206555952][bookmark: _Toc225215549]Collection types
M defines a type constructor for specifying collection types. The collection type constructor restricts the type and count of elements a collection may contain. All collection types are restrictions over the intrinsic type Collection, which all collection values conform to:
{ } in Collection
{ 1, false } in Collection
! ("Hello" in Collection)
The last example is interesting, in that it illustrates that the collection types do not overlap with the simple types. There is no value that conforms to both a collection type and a simple type.
A collection type constructor specifies both the type of element and the acceptable element count. The element count is typically specified using one of the three operators:
T* - zero or more Ts
T+ - one or more Ts
T#m..n – between m and n Ts.
The collection type constructors can either use operators or be written longhand as a constraint over the intrinsic type Collection:
type SomeNumbers : Number+;
type TwoToFourNumbers : Number#2..4;
type ThreeNumbers : Number#3;
type FourOrMoreNumbers : Number#4..;
These types describe the same sets of values as these longhand definitions:
type SomeNumbers : Number where value.Count >=
;
type TwoToFourNumbers : Number where value.Count >= 2
 && value.Count <= 4;
type ThreeNumbers : Number where value.Count == 3;
type FourOrMoreNumbers : Number where value.Count >= 4;
Independent of which form is used to declare the types, we can now assert the following hold:
!({ } in TwoToFourNumbers)
!({ "One", "Two", "Three" } in TwoToFourNumbers)
{ 1, 2, 3 } in TwoToFourNumbers
{ 1, 2, 3 } in ThreeNumbers
{ 1, 2, 3, 4, 5 } in FourOrMoreNumbers
The collection type constructors compose with the where operator, allowing the following type check to succeed:
{ 1, 2 } in (Number where value < 3)* where value.Count % 2 == 0
Note that the where inside the parentheses applies to elements of the collection, and the where outside the parentheses operator applies to the collection itself.
[bookmark: _Toc206555953][bookmark: _Toc225215550][bookmark: _Toc190040161][bookmark: _Toc204157915]Nullable types
We have seen many useful values: 42, "Hello", {1,2,3}. The distinguished value null serves as a place holder for some other value that is not known. A type with null in the value space is called a nullable type. The value null can be added to the value space of a type with an explicit union of the type and a collection containing null or using the postfix operator ?. The following expressions are true:
! (null in Integer)
null in Integer?
null in (Integer | { null })
The ?? operator converts between a null value and known value:
null ?? 1 == 1
3 ?? 1 == 3
Arithmetic operations on a null operand return null:
1 + null == null
null * 3 == null
Logical operators, conditional, and constraints require non nullable operands.
[bookmark: _Toc206555954][bookmark: _Toc225215551]Entity types
Just as we can use the collection type constructors to specify what kinds of collections are valid in a given context, we can do the same for entities using entity types.
An entity type declares the expected members for a set of entity values. The members of an entity type can be declared either as fields or as computed values. The value of a field is stored; a computed value is evaluated. All entity types are restrictions over the Entity type.
Here is the simplest entity type:
type MyEntity : Language.Entity;
The type MyEntity does not declare any fields. In M, entity types are open in that entity values that conform to the type may contain fields whose names are not declared in the type. That means that the following type test:
{ X = 100, Y = 200 } in MyEntity
will evaluate to true, as the MyEntity type says nothing about fields named X and Y.
Most entity types contain one or more field declarations. At a minimum, a field declaration states the name of the expected field:
type Point { X; Y; }
This type definition describes the set of entities that contain at least fields named X and Y irrespective of the values of those fields. That means that the following type tests will all evaluate to true:
{ X = 100, Y = 200 } in Point
{ X = 100, Y = 200, Z = 300 } in Point // more fields than expected OK
! ({ X = 100 } in Point) // not enough fields – not OK
{ X = true, Y = "Hello, world" } in Point
The last example demonstrates that the Point type does not constrain the values of the X and Y fields – any value is allowed. We can write a new type that constrains the values of X and Y to numeric values:
type NumericPoint {
 X : Number;
 Y : Number where value > 0;
}
Note that we’re using type ascription syntax to assert that the value of the X and Y fields must conform to the type Number. With this in place, the following expressions all evaluate to true:
{ X = 100, Y = 200 } in NumericPoint
{ X = 100, Y = 200, Z = 300 } in NumericPoint
! ({ X = true, Y = "Hello, world" } in NumericPoint)
! ({ X = 0, Y = 0 } in NumericPoint)
As we saw in the discussion of simple types, the name of the type exists only so that M declarations and expressions can refer to it. That is why both of the following type tests succeed:
{ X = 100, Y = 200 } in NumericPoint
{ X = 100, Y = 200 } in Point
even though the definitions of NumericPoint and Point are independent.
[bookmark: _Toc190040162][bookmark: _Toc204157916][bookmark: _Toc206555955][bookmark: _Toc225215552]Declaring fields
Fields are named units of storage that hold values. M allows you to initialize the value of a field as part of an entity initializer. However, M does not specify any mechanism for changing the value of a field once it is initialized. In M, we assume that any changes to field values happen outside the scope of M.
A field declaration can indicate that there is a default value for the field. Field declarations that have a default value do not require conformant entities to have a corresponding field specified (we sometimes call such field declarations optional fields). For example, consider this type definition:
type Point3d {
 X : Number;
 Y : Number;
 Z = -1 : Number; // default value of negative one
}
Because the Z field has a default value, the following type test will succeed:
{ X = 100, Y = 200 } in Point3d
Moreover, if we apply a type ascription operator to the value:
({ X = 100, Y = 200 } : Point3d)
we can now access the Z field like this:
({ X = 100, Y = 200 } : Point3d).Z
This expression will yield the value -1.
If a field declaration does not have a corresponding default value, conformant entities must specify a value for that field. Default values are typically written down using the explicit syntax shown for the Z field of Point3d. If the type of a field is either nullable or a zero-to-many collection, then there is an implicit default value for the declaring field of null for optional and {} for the collection.
For example, consider this type:
type PointND {
 X : Number;
 Y : Number;
 Z : Number?; // Z is optional
 BeyondZ : Number*; // BeyondZ is optional too
}
Again, the following type test will succeed:
{ X = 100, Y = 200 } in PointND
and ascribing the PointND to the value will allow us to get these defaults:
({ X = 100, Y = 200 } : PointND).Z == null
({ X = 100, Y = 200 } : PointND).BeyondZ == { }
The choice of using a nullable type vs. an explicit default value to model optional fields typically comes down to style.
[bookmark: _Ref181565183][bookmark: _Ref181565193][bookmark: _Ref181565194][bookmark: _Toc190040163][bookmark: _Toc204157917][bookmark: _Toc206555956][bookmark: _Toc225215553]Declaring computed values
Calculated values are named expressions whose values are computed rather than stored. Here’s an example of a type that declares a computed value, IsHigh:
type PointPlus {
 X : Number;
 Y : Number;
// a computed value
 IsHigh() : Logical { Y > 0 }
}
Note that unlike field declarations which end in a semicolon, computed value declarations end with the expression surrounded by braces.
Like field declarations, a computed value declaration may omit the type ascription, as this example does:
type PointPlus {
 X : Number;
 Y : Number;
// a computed value with no type ascription
 InMagicQuadrant() { IsHigh && X > 0 }
 IsHigh() : Logical { Y > 0 }
}
When no type is explicitly ascribed to a computed value, M will infer the type automatically based on the declared result type of the underlying expression. In this example, because the logical-and operator used in the expression was declared as returning a Logical, the InMagicQuadrant computed value also is ascribed to yield a Logical value.
The two computed values we just defined and used didn’t require any additional information to calculate their results other than the entity value itself. A computed value may optionally declare a list of named parameters whose actual values must be specified when using the computed value in an expression. Here’s an example of a computed value that requires parameters:
type PointPlus {
 X : Number;
 Y : Number;
 // a computed value that requires a parameter
 WithinBounds(radius : Number) : Logical {
 X * X + Y * Y <= radius * radius
 }
 InMagicQuadrant() { IsHigh && X > 0 }
 IsHigh() : Logical { Y > 0 }
}
To use this computed value in an expression, one must provide values for the parameters:
({ X = 100, Y = 200 } : PointPlus).WithinBounds(50)
When calculating the value of WithinBounds, M will bind the value 50 to the symbol radius – this will cause the WithinBounds computed value to evaluate to false.
It is useful to note that both computed values and default values for fields are part of the type definition, not part of the values that conform to the type. For example, consider these three type definitions:
type Point {
 X : Number;
 Y : Number;
}
type RichPoint {
 X : Number;
 Y : Number;
 Z = -1 : Number;
 IsHigh() : Logical { X < Y }
}
type WeirdPoint {
 X : Number;
 Y : Number;
 Z = 42 : Number;
 IsHigh() : Logical { false }
}
Because RichPoint and WeirdPoint only have two required fields (X and Y), we can state the following:
{ X=1, Y=2 } in RichPoint
{ X=1, Y=2 } in WeirdPoint
However, the IsHigh computed value is only available when we ascribe one of these two types to the entity value:
({ X=1, Y=2 } : RichPoint).IsHigh == true
({ X=1, Y=2 } : WeirdPoint).IsHigh == false
Because IsHigh is purely part of the type and not the value, when we chain the ascription like this:
(({ X=1, Y=2 } : RichPoint) : WeirdPoint).IsHigh == false
The outer-most ascription that determines which function is called.
A similar principle is at play with respect to how default values work. Again, the default value is part of the type, not the entity value. When we write the following expression:
({ X=1, Y=2 } : RichPoint).Z == -1
the underlying entity value still only contains two field values (1 and 2 for X and Y respectively). Where default values differ from computed values is when we chain ascriptions. Consider this expression:
(({ X=1, Y=2 } : RichPoint) : WeirdPoint).Z == -1
Because the RichPoint ascription is applied first, the resultant entity has a field named Z whose value is -1, however, there is no storage allocated for the value (it’s part of the type’s interpretation of the value). When we apply the WeirdPoint ascription, we’re applying it to the result of the first ascription, which does have a field named Z, so that value is used to specify the value for Z – the default value specified by WeirdPoint is not needed.
[bookmark: _Toc190040164][bookmark: _Toc204157918][bookmark: _Toc206555957][bookmark: _Toc225215554]Constraints on entity types
Like all types, a constraint may be applied to an entity type using the where operator. Consider the following type definition:
type HighPoint {
 X : Number;
 Y : Number;
} where X < Y;
In this example, all values that conform to the type HighPoint are guaranteed to have an X value that is less than the Y value. That means that the following expressions:
{ X = 100, Y = 200 } in HighPoint
! ({ X = 300, Y = 200 } in HighPoint)
both evaluate to true.
Now consider the following type definitions:
type Point {
 X : Number;
 Y : Number;
}
type Visual {
 Opacity : Number;
}
type VisualPoint {
 DotSize : Number;
} where value in Point && value in Visual;
The third type, VisualPoint, names the set of entity values that have at least the numeric fields X, Y, Opacity, and DotSize.
Because it is a common desire to factor member declarations into smaller pieces that can be easily composed, M provides explicit syntax support for this. We can rewrite the VisualPoint type definition using that syntax:
type VisualPoint : Point, Visual {
 DotSize : Number;
}
To be clear, this is just shorthand for the long-hand definition above that used a constraint expression. Both of these definitions are equivalent to this even longer-hand definition:
type VisualPoint {
 X : Number;
 Y : Number;
 Opacity : Number;
 DotSize : Number;
}
Again, the names of the types are just ways to refer to types – the values themselves have no record of the type names used to describe them.
[bookmark: _Toc204157919][bookmark: _Toc206555958][bookmark: _Toc225215555][bookmark: _Toc190040165]Queries
M extends LINQ query comprehensions with several features to make authoring simple queries more concise. The keywords, where and select are available as binary infix operators. Also, indexers are automatically added to strongly typed collections. These features allow common queries to be authored more compactly as illustrated below.
[bookmark: _Toc204157920][bookmark: _Toc206555959][bookmark: _Toc225215556]Filtering
Filtering extracts elements from an existing collection. Consider the following collection:
People {
 { First = "Mary", Last = "Smith", Age = 24 },
 { First = "John", Last = "Doe", Age = 32 },
 { First = "Dave", Last = "Smith", Age = 32 },
}
This query extracts people with Age == 32 from the People collection:
from p in People
where p.Age == 32
select p
An equivalent query can be written with either of the following expressions:
People where value.Age == 32
People.Age(32)
The where operator takes a collection on the left and a Logical expression on the right. The where operator introduces a keyword identifier value into the scope of the Logical expression that is bound to each member of the collection. The resulting collection contains the members for which the expression is true. The expression:
Collection where Expression
is exactly equivalent to:
from value in Collection
where Expression
select value
Collection types gain indexer members that correspond to the fields of their corresponding element type. That is, this:
Collection . Field (Expression)
is equivalent to:
from value in Collection
where Field == Expression
select value
[bookmark: _Toc204157921][bookmark: _Toc206555960][bookmark: _Toc225215557]Selection
Select is also available as an infix operator. Consider the following simple query:
 from p in People
 select p.First + p.Last
This computes the select expression over each member of the collection and returns the result. Using the infix select it can be written equivalently as:
People select value.First + value.Last
The select operator takes a collection on the left and an arbitrary expression on the right. As with where, select introduces the keyword identifier value that ranges over each element in the collection. The select operator maps the expression over each element in the collection and returns the result. The expression:
Collection select Expression
Is exactly equivalent to:
from value in Collection
select Expression
A trivial use of the select operator is to extract a single field:
People select value.First
Collections are augmented with accessors to fields which can be extracted directly. For example People.First yields a new collection containing all the first names and People.Last yields a collection with all the last names.
[bookmark: _Toc204157922][bookmark: _Toc206555961][bookmark: _Toc225215558]Modules
All of the examples shown so far have been “loose M” that is taken out of context. To write a legal M program, all source text must appear in the context of a module definition. A module defines a top-level namespace for any type names that are defined. A module also defines a scope for defining extents that will store actual values, as well as computed values.
Here is a simple module definition:
module Geometry {
 // declare a type
 type Point {
 X : Integer; Y : Integer;
 }
 // declare some extents
 Points : Point*;
 Origin : Point;

 // declare a computed value
 TotalPointCount { Points.Count + 1; }
}
In this example, the module defines one type named Geometry.Point. This type describes what point values will look like, but doesn’t mention any locations where those values can be stored.
This example also includes two module-scoped extents (Points and Origin). Module-scoped field declarations are identical in syntax to those used in entity types. However, fields declared in an entity type simply name the potential for storage once an extent has been determined; in contrast fields declared at module-scope name actual storage that must be mapped by an implementation in order to load and interpret the module.
Modules may refer to declarations in other modules by using an import directive to name the module containing the referenced declarations. For a declaration to be referenced by other modules, the declaration must be explicitly exported using an export directive.
Consider this module:
module MyModule {
 import HerModule; // declares HerType

 export MyType1;
 export MyExtent1;

 type MyType1 : Logical*;
 type MyType2 : HerType;
 MyExtent1 : Number*;
 MyExtent2 : HerType;
}
Note that only MyType1 and MyExtent1 are visible to other modules. This makes the following definition of HerModule legal:
module HerModule {
 import MyModule; // declares MyType1 and MyExtent1
 export HerType;

 type HerType : Text where value.Count < 100;
 type Private : Number where !(value in MyExtent1);
 SomeStorage : MyType1;
}
As this example shows, modules may have circular dependencies.
[bookmark: _Toc204157924][bookmark: _Toc206555962][bookmark: _Toc225215559]Lexical Structure
[bookmark: _Toc54350179][bookmark: _Toc181526388][bookmark: _Toc181589125][bookmark: _Toc204157925][bookmark: _Toc206555963][bookmark: _Toc225215560]Programs
An M program consists of one or more source files, known formally as compilation units. A compilation unit file is an ordered sequence of Unicode characters. Compilation units typically have a one-to-one correspondence with files in a file system, but this correspondence is not required. For maximal portability, it is recommended that files in a file system be encoded with the UTF-8 encoding.
[bookmark: _Toc200925455][bookmark: _Toc54350180][bookmark: _Toc181526389][bookmark: _Toc181589126][bookmark: _Toc204157926][bookmark: _Toc206555964][bookmark: _Toc225215561]Grammars
This specification presents the syntax of the M programming language using two grammars. The lexical grammar defines how Unicode characters are combined to form line terminators, white space, comments, tokens, and pre-processing directives. The syntactic grammar defines how the tokens resulting from the lexical grammar are combined to form M programs.
[bookmark: _Toc54350181][bookmark: _Toc181526390][bookmark: _Toc181589127][bookmark: _Toc204157927][bookmark: _Toc206555965][bookmark: _Toc225215562]Grammar notation
The lexical and syntactic grammars are presented using grammar productions. Each grammar production defines a non-terminal symbol and the possible expansions of that non-terminal symbol into sequences of non-terminal or terminal symbols. In grammar productions, NonTerminal symbols are shown in italic type, and terminal symbols are shown in a fixed-width font.
The first line of a grammar production is the name of the non-terminal symbol being defined, followed by a colon. Each successive indented line contains a possible expansion of the non-terminal given as a sequence of non-terminal or terminal symbols. For example, the production:
IdentifierVerbatim:
@[IdentifierVerbatimCharacters]
defines an IdentifierVerbatim to consist of the token "@[", followed by IdentifierVerbatimCharacters, followed by the token "]".
When there is more than one possible expansion of a non-terminal symbol, the alternatives are listed on separate lines. For example, the production:
DecimalDigits:
DecimalDigit
DecimalDigits DecimalDigit
defines DecimalDigits to either consist of a DecimalDigit or consist of DecimalDigits followed by a DecimalDigit. In other words, the definition is recursive and specifies that decimal digits list consists of one or more decimal digits.
A subscripted suffix "opt" is used to indicate an optional symbol. The production:
DecimalLiteral:
IntegerLiteral . DecimalDigit DecimalDigitsopt
is shorthand for:
DecimalLiteral:
IntegerLiteral . DecimalDigit
IntegerLiteral . DecimalDigit DecimalDigits
and defines an DecimalLiteral to consist of an IntegerLiteral followed by a "." a DecimalDigit and by optional DecimalDigits.
Alternatives are normally listed on separate lines, though in cases where there are many alternatives, the phrase "one of" may precede a list of expansions given on a single line. This is simply shorthand for listing each of the alternatives on a separate line. For example, the production:
Sign: one of
+ -
is shorthand for:
Sign:
+
-
Conversely, exclusions are designated with the phrase "none of". For example, the production
TextSimple: none of
"
\
NewLineCharacter
permits all characters except ‘"’, ‘\’, and new line characters.
[bookmark: _Ref503069266][bookmark: _Toc54350182][bookmark: _Toc181526391][bookmark: _Toc181589128][bookmark: _Toc204157928][bookmark: _Toc206555966][bookmark: _Toc225215563]Lexical grammar
The lexical grammar of M is presented in 2.3. The terminal symbols of the lexical grammar are the characters of the Unicode character set, and the lexical grammar specifies how characters are combined to form tokens, white space, and comments (§2.3.2).
Every source file in an M program must conform to the Input production of the lexical grammar.
[bookmark: _Ref503069282][bookmark: _Toc54350183][bookmark: _Toc181526392][bookmark: _Toc181589129][bookmark: _Toc204157929][bookmark: _Toc206555967][bookmark: _Toc225215564]Syntactic grammar
The syntactic grammar of M is presented in the chapters and appendices that follow this chapter. The terminal symbols of the syntactic grammar are the tokens defined by the lexical grammar, and the syntactic grammar specifies how tokens are combined to form M programs.
Every source file in an M program must conform to the CompilationUnit production of the syntactic grammar.
[bookmark: _Ref503147908][bookmark: _Toc54350184][bookmark: _Toc181526393][bookmark: _Toc181589130][bookmark: _Toc204157930][bookmark: _Toc206555968][bookmark: _Toc225215565]Lexical analysis
The Input production defines the lexical structure of an M source file. Each source file in an M program must conform to this lexical grammar production.
Input:
InputSectionopt
InputSection:
InputSectionPart
InputSection InputSectionPart
InputSectionPart:
InputElementsopt NewLine
InputElements:
InputElement
InputElements InputElement
InputElement:
Whitespace
Comment
Token
Four basic elements make up the lexical structure of an M source file: line terminators, white space, comments, and tokens. Of these basic elements, only tokens are significant in the syntactic grammar of an M program.
The lexical processing of an M source file consists of reducing the file into a sequence of tokens which becomes the input to the syntactic analysis. Line terminators, white space, and comments can serve to separate tokens, but otherwise these lexical elements have no impact on the syntactic structure of an M program.
When several lexical grammar productions match a sequence of characters in a source file, the lexical processing always forms the longest possible lexical element. For example, the character sequence // is processed as the beginning of a single-line comment because that lexical element is longer than a single / token.
[bookmark: _Ref503086478][bookmark: _Toc54350185][bookmark: _Toc181526394][bookmark: _Toc181589131][bookmark: _Toc204157931][bookmark: _Toc206555969][bookmark: _Toc225215566]Line terminators
Line terminators divide the characters of an M source file into lines.
NewLine:
NewLineCharacter
U+000D U+000A
NewLineCharacter:
U+000A // Line Feed
U+000D // Carriage Return
U+0085 // Next Line
U+2028 // Line Separator
U+2029 // Paragraph Separator
For compatibility with source code editing tools that add end-of-file markers, and to enable a source file to be viewed as a sequence of properly terminated lines, the following transformations are applied, in order, to every compilation unit:
If the last character of the source file is a Control-Z character (U+001A), this character is deleted.
A carriage-return character (U+000D) is added to the end of the source file if that source file is non-empty and if the last character of the source file is not a carriage return (U+000D), a line feed (U+000A), a line separator (U+2028), or a paragraph separator (U+2029).
[bookmark: _Ref503086494][bookmark: _Toc54350186][bookmark: _Toc181526395][bookmark: _Toc181589132][bookmark: _Toc204157932][bookmark: _Toc206555970][bookmark: _Toc225215567]Comments
Two forms of comments are supported: single-line comments and delimited comments. Single-line comments start with the characters // and extend to the end of the source line. Delimited comments start with the characters /* and end with the characters */. Delimited comments may span multiple lines.
Comment:
CommentDelimited
CommentLine
CommentDelimited:
/* CommentDelimitedContentsopt */
CommentDelimitedContent:
none of */
CommentDelimitedContents:
CommentDelimitedContent
CommentDelimitedContents CommentDelimitedContent
CommentLine:
// CommentLineContentsopt
CommentLineContent: none of
NewLineCharacter
CommentLineContents:
CommentLineContent
CommentLineContents CommentLineContent
Comments do not nest. The character sequences /* and */ have no special meaning within a // comment, and the character sequences // and /* have no special meaning within a delimited comment.
Comments are not processed within Text literals.
The example
// This defines a
// Person entity
//
type Person {
 Name : Text;
 Age : Number;
}
shows three single-line comments.
The example
/* This defines a
 Person entity
*/
type Person {
 Name : Text;
 Age : Number;
}
includes one delimited comment.
[bookmark: _Toc182195071][bookmark: _Toc182195072][bookmark: _Toc182195073][bookmark: _Toc182195074][bookmark: _Toc182195075][bookmark: _Toc182195076][bookmark: _Toc182195077][bookmark: _Toc182195078][bookmark: _Ref54348988][bookmark: _Ref54349111][bookmark: _Toc54350187][bookmark: _Toc181526396][bookmark: _Toc181589133][bookmark: _Toc204157933][bookmark: _Toc206555971][bookmark: _Toc225215568][bookmark: _Ref462576650][bookmark: _Toc495484358]Whitespace
Whitespace is defined as any character with Unicode class Zs (which includes the space character) as well as the horizontal tab character, the vertical tab character, and the form feed character.
Whitespace:
WhitespaceCharacters
WhitespaceCharacter:
U+0009 // Horizontal Tab
U+000B // Vertical Tab
U+000C // Form Feed
U+0020 // Space
NewLineCharacter
WhitespaceCharacters:
WhitespaceCharacter
WhitespaceCharacters WhitespaceCharacter
[bookmark: _Toc182195080][bookmark: _Ref54349021][bookmark: _Ref54349034][bookmark: _Ref54349094][bookmark: _Ref54349215][bookmark: _Ref54349244][bookmark: _Ref54349256][bookmark: _Toc54350188][bookmark: _Toc181526397][bookmark: _Toc181589134][bookmark: _Toc204157934][bookmark: _Toc206555972][bookmark: _Toc225215569]Tokens
There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space and comments are not tokens, though they act as separators for tokens.
[bookmark: _Ref462576198][bookmark: _Toc495484360]Token:
Identifier
Keyword
Literal
OperatorOrPunctuator
[bookmark: _Ref503695357][bookmark: _Toc54350190][bookmark: _Toc181526399][bookmark: _Toc181589136][bookmark: _Toc204157935][bookmark: _Toc206555973][bookmark: _Toc225215570]Identifiers
A regular identifier begins with a letter or underscore and then any sequence of letter, underscore, dollar sign, or digit. An escaped identifier is enclosed in square brackets. It contains any sequence of Text literal characters.
Identifier:
IdentifierBegin IdentifierCharactersopt
IdentifierVerbatim
IdentifierBegin:
_
Letter
IdentifierCharacter:
IdentifierBegin
$
DecimalDigit
IdentifierCharacters:
IdentifierCharacter
IdentifierCharacters IdentifierCharacter
IdentifierVerbatim:
@[IdentifierVerbatimCharacters]
IdentifierVerbatimCharacter:
none of]
IdentifierVerbatimEscape
IdentifierVerbatimCharacters:
IdentifierVerbatimCharacter
IdentifierVerbatimCharacters IdentifierVerbatimCharacter
IdentifierVerbatimEscape:
\\
\]
Letter:
a..z
A..Z
DecimalDigit:
0..9
DecimalDigits:
DecimalDigit
DecimalDigits DecimalDigit
[bookmark: _Toc445782957][bookmark: _Ref462576223][bookmark: _Toc495484361][bookmark: _Toc54350191][bookmark: _Toc181526400][bookmark: _Toc181589137][bookmark: _Toc204157936][bookmark: _Toc206555974][bookmark: _Toc225215571]Keywords
A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier except when escaped with @[].
Keyword:
any
accumulate
by
empty
equals
error
export
false
final
from
group
id
identity
import
in
interleave
join
language
labelof
left
let
module
null
precedence
right
select
syntax
token
true
type
unique
value
valuesof
where
The following keywords are reserved for future use:
checkpoint identifier nest override new virtual partial
[bookmark: _Toc445782958][bookmark: _Ref449414802][bookmark: _Ref449414818][bookmark: _Ref450668500][bookmark: _Ref462576210][bookmark: _Ref493141195][bookmark: _Toc495484362][bookmark: _Toc54350192][bookmark: _Toc181526401][bookmark: _Toc181589138][bookmark: _Toc204157937][bookmark: _Ref206550206][bookmark: _Toc206555975][bookmark: _Toc225215572]Literals
A literal is a source code representation of a value.
Literal:
DecimalLiteral
IntegerLiteral
ScientificLiteral
DateTimeLiteral
DateTimeOffsetLiteral
TimeLiteral
TextLiteral
BinaryLiteral
GuidLiteral
LogicalLiteral
NullLiteral
[bookmark: _Toc445782959][bookmark: _Toc495484363][bookmark: _Toc54350193]Literals may be ascribed with a type to override the default type ascription.
[bookmark: _Toc181526402][bookmark: _Toc181589139][bookmark: _Toc204157938][bookmark: _Toc206555976][bookmark: _Toc225215573]Decimal literals
Decimal literals are used to write fixed-point or exact number values.
DecimalLiteral:
IntegerLiteralopt . DecimalDigit DecimalDigitsopt
Decimal literals default to the smallest standard library type that that can contain the value. Examples of decimal literal follow:
99.999
.1
1.0
[bookmark: _Toc445782960][bookmark: _Ref462394190][bookmark: _Ref462413171][bookmark: _Ref462414137][bookmark: _Ref493143520][bookmark: _Toc495484364][bookmark: _Toc54350194][bookmark: _Toc181526404][bookmark: _Toc181589141][bookmark: _Toc204157939][bookmark: _Toc206555977][bookmark: _Toc225215574]Integer literals
Integer literals are used to write integral values.
IntegerLiteral:
DecimalDigits
[bookmark: _Toc445782961]Integer literals default to the smallest precision type that can contain the value, starting with Integer32.
Examples of integer literal follow:
0
123
999999999999999999999999999999
[bookmark: _Toc181526406][bookmark: _Toc181589143][bookmark: _Toc204157940][bookmark: _Toc206555978][bookmark: _Toc225215575]Scientific literals
Scientific literals are used to write values floating-point or inexact numbers.
ScientificLiteral:
DecimalLiteral e Signopt DecimalDigit DecimalDigitsopt
DecimalLiteral E Signopt DecimalDigit DecimalDigitsopt
Sign: one of
+ -
Scientific literals default to the smallest precision type that can contain the value, starting with Double.
Examples of scientific literal follow:
.31416e+1
9.9999e-1
0.0E0
[bookmark: _Toc204157941][bookmark: _Toc206555979][bookmark: _Toc225215576][bookmark: _Toc181526408][bookmark: _Toc181589144]Date literals
Date literals are used to write a date independent of a specific time of day.
DateLiteral:
Signopt DateYear - DateMonth - DateDay
The tokens of a DateLiteral must not have whitespace.
DateDay: one of
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31
DateMonth: one of
01 02 03 04 05 06 07 08 09 10 11 12
DateYear:
DecimalDigit DecimalDigit DecimalDigit DecimalDigit
The type of a DateLiteral is Date.
· 0001-01-01 is the representation of January1st, 1 AD.
· There is no year 0, therefore ‘0000’ is not a valid Date Time
· -0001 is the representation of January1st, 1 BC.
Examples of date literal follow:
0001-01-01
2008-08-14
-1184-03-01
[bookmark: _Toc204157942][bookmark: _Toc206555980][bookmark: _Toc225215577]DateTime literals
DateTime literals are used to write a time of day on a specific date independent of time zone.
DateTimeLiteral:
DateLiteral T TimeLiteral
The type of a DateTime literal is DateTime.
Example of date time literal follow:
2008-08-14T13:13:00
0001-01-01T00:00:00
2005-05-19T20:05:00
[bookmark: _Toc225215578][bookmark: _Toc204157943][bookmark: _Toc206555981]DateTimeOffset literals
DateTimeOffset literals are used to write a time of day on a specific date within a specific time zone.
DateTimeOffsetLiteral:
DateLiteral T TimeLiteral TimeZoneLiteral
TimeZoneLiteral:
Sign TimeHourMinute
Z
Sign:
+
-
The type of a DateTimeOffset literal is DateTimeOffset.
Example of date time literal follow:
2008-08-14T13:13:00+6:00
0001-01-01T00:00:00-3:00
2005-05-19T20:05:00Z
[bookmark: _Toc225215579]Time literals
TimeLiteral:
 TimeHourMinute : TimeSecond
TimeHourMinute:
TimeHour : TimeMinute
TimeHour: one of
00 01 02 03 04 05 06 07 08 09 10 11
12 13 14 15 16 17 18 19 20 21 22 23
TimeMinute:
0 DecimalDigit
1 DecimalDigit
2 DecimalDigit
3 DecimalDigit
4 DecimalDigit
5 DecimalDigit
TimeSecond:
0 DecimalDigit TimeSecondDecimalPartopt
1 DecimalDigit TimeSecondDecimalPartopt
2 DecimalDigit TimeSecondDecimalPartopt
3 DecimalDigit TimeSecondDecimalPartopt
4 DecimalDigit TimeSecondDecimalPartopt
5 DecimalDigit TimeSecondDecimalPartopt
60 TimeSecondDecimalPartopt
TimeSecondDecimalPart:
. DecimalDigits
Examples of time literal follow:
11:30:00
01:01:01.111
13:13:00
[bookmark: _Toc445782963][bookmark: _Ref467581683][bookmark: _Toc495484367][bookmark: _Ref496248424][bookmark: _Ref503695412][bookmark: _Toc54350197][bookmark: _Toc181526411][bookmark: _Toc181589147][bookmark: _Toc204157945][bookmark: _Toc206555983][bookmark: _Toc225215580]Text literals
[bookmark: _Toc445782964]M supports two forms of Text literals: regular Text literals and verbatim Text literals. However, M does not syntactically distinguish single characters. Either single character text literals or multiple character sequences can be delimited with single or double quotes. The following are all Text literals.
'a'
"Hello"
"a"
'Hello'
A regular Text literal consists of zero or more characters enclosed in single or double quotes and may include both simple escape sequences (such as \t for the tab character), and hexadecimal and Unicode escape sequences.
A verbatim Text literal consists of an @ character followed by a single-quote or double-quote character, zero or more characters, and a matching close quote character. A simple example is @"hello". In a verbatim Text literal, the characters between the delimiters are interpreted exactly as they occur in the compilation unit, the only exception being a QuoteEscapeSequence. In particular, simple escape sequences, and hexadecimal and Unicode escape sequences are not processed in verbatim Text literals. A verbatim Text literal may span multiple lines.
TextLiteral:
' SingleQuotedCharacters '
" DoubleQuotedCharacters "
@ ' SingleQuotedVerbatimCharactersopt '
@ " DoubleQuotedVerbatimCharactersopt "

SingleQuotedCharacters:
SingleQuotedCharacter
SingleQuotedCharacters SingleQuotedCharacter
SingleQuotedCharacter:
SingleQuotedCharacterSimple
CharacterEscapeSimple
CharacterEscapeUnicode
SingleQuotedCharacterSimple: none of
'
\
NewLineCharacter

SingleQuotedVerbatimCharacters:
SingleQuotedVerbatimCharacter
SingleQuotedVerbatimCharacters SingleQuotedVerbatimCharacter
SingleQuotedVerbatimCharacter:
none of '
SingleQuotedVerbatimCharacterEscape
SingleQuotedVerbatimCharacterEscape:
" "

DoubleQuotedCharacter:
DoubleQuotedCharacterSimple
CharacterEscape
DoubleQuotedCharacters:
DoubleQuotedCharacter
DoubleQuotedCharacters DoubleQuotedCharacter
DoubleQuotedCharacterSimple: none of
"
\
NewLineCharacter

DoubleQuotedVerbatimCharacter:
none of "
DoubleQuotedVerbatimCharacterEscape
DoubleQuotedVerbatimCharacters:
DoubleQuotedVerbatimCharacter
DoubleQuotedVerbatimCharacters DoubleQuotedVerbatimCharacter
DoubleQuotedVerbatimCharacterEscape:
" "

CharacterEscape:
CharacterEscapeSimple
CharacterEscapeUnicode
CharacterEscapeSimple:
\ CharacterEscapeSimpleCharacter
CharacterEscapeSimpleCharacter: one of
' " \ 0 a b f n r t v
CharacterEscapeUnicode:
\u HexDigit HexDigit HexDigit HexDigit
\U HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit
A hexadecimal escape sequence represents a single Unicode character, with the value formed by the hexadecimal number following the prefix.
If the value represented by a character literal is greater than U+FFFF, a compile-time error occurs.
A Unicode character escape sequence in a character literal must be in the range U+0000 to U+FFFF.
A simple escape sequence represents a Unicode character encoding, as described in the table below.

	Escape sequence
	Character name
	Unicode encoding

	\'
	Single quote
	0x0027

	\"
	Double quote
	0x0022

	\\
	Backslash
	0x005C

	\0
	Null
	0x0000

	\a
	Alert
	0x0007

	\b
	Backspace
	0x0008

	\f
	Form feed
	0x000C

	\n
	New line
	0x000A

	\r
	Carriage return
	0x000D

	\t
	Horizontal tab
	0x0009

	\v
	Vertical tab
	0x000B

Unicode characters with code points above 0x10FFFF are not supported.
Multiple translations are not performed. For instance, the Text literal \u005Cu005C is equivalent to \u005C rather than \. The Unicode value U+005C is the character \.
The type of a Text literal is Text.
Examples of text literal follow:
'a'
'\u2323'
'\x2323'
"Hello World"
@"""Hello World"""
"\u2323"
[bookmark: _Toc181526412][bookmark: _Toc181589148][bookmark: _Toc204157946][bookmark: _Toc206555984][bookmark: _Toc225215581][bookmark: _Toc495484369][bookmark: _Toc54350199]Logical literals
Logical literals are used to write logical values.
LogicalLiteral: one of
true false
The type of a Logical literal is Logical.
Examples of logical literal:
true
false
[bookmark: _Toc181526413][bookmark: _Toc181589149][bookmark: _Toc204157947][bookmark: _Toc206555985][bookmark: _Toc225215582]Binary literals
Binary literals are used to write binary values.
BinaryLiteral:
0x HexDigitsopt
0X HexDigitsopt
HexDigit: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C M E F
HexDigits:
HexDigit HexDigit
HexDigits HexDigit HexDigit
The type of a Binary literal is to Binary.
[bookmark: _Toc204157948][bookmark: _Toc181526414][bookmark: _Toc181589150]Examples of binary literal follow:
0x00
0XFF
0x01
0x00
0x1234
[bookmark: _Toc206555986][bookmark: _Toc225215583]Null literal
The null literal is equal to no other value.
NullLiteral:
null
The type of a null literal is Null.
An example of the null literal follows:
null
[bookmark: _Toc204157949][bookmark: _Toc206555987][bookmark: _Toc225215584]Guid literals
GuidLiteral:
#[X X X X X X X X - X X X X - X X X X - X X X X - X X X X X X X X X X X X]
X:
HexDigit
The type of a Guid literal is Guid.
Examples of Guid literal follows:
#[a0ee7e0f-c6ac-4c63-b57f-816a5259595a]
#[7fbc28ba-8205-45ca-983e-ece117f7a776]
#[a05e63ca-25de-43a6-bf70-0bc04d40a000]
[bookmark: _Toc204157950][bookmark: _Toc206555988][bookmark: _Toc225215585]Operators and punctuators
There are several kinds of operators and punctuators. Operators are used in expressions to describe operations involving one or more operands. For example, the expression a + b uses the + operator to add the two operands a and b. Punctuators are for grouping and separating.
OperatorOrPunctuator: one of
[] () . , : ; ? = < > <= >= == != + - * / % & | ! && || ~
<< >> { } # .. @ ' " ??
[bookmark: _Ref503080079][bookmark: _Toc174237320][bookmark: _Toc204157951][bookmark: _Toc206555989][bookmark: _Toc225215586]Pre-processing directives
Pre-processing directives provide the ability to conditionally skip sections of source files, to report error and warning conditions, and to delineate distinct regions of source code as a separate pre-processing step.
PPDirective:
PPDeclaration
PPConditional
The following pre-processing directives are available:
#define which is used to define conditional compilation symbols.
#if, #else, and #endif, which are used to conditionally skip sections of source code.
A pre-processing directive always occupies a separate line of source code and always begins with a # character and a pre-processing directive name. White space may not occur before the # character and between the # character and the directive name.
A source line containing a #define, #if, #else, or #endif directive may end with a single-line comment. Delimited comments (the /* */ style of comments) are not permitted on source lines containing pre-processing directives. All #define directives have to appear before the first #if directive.
Pre-processing directives are neither tokens nor part of the syntactic grammar of M. However, pre-processing directives can be used to include or exclude sequences of tokens and can in that way affect the meaning of an M program. For example, after pre-processing the source text:
#define A
type C
{
#if A
 F {}
#else
 G {}
#endif
#if B
 H {}
#else
 I {}
#endif
}
results in the exact same sequence of tokens as the source text:
type C
{
 F {}
 I {}
}
Thus, whereas lexically, the two programs are quite different, syntactically, they are identical.
[bookmark: _Ref520376673][bookmark: _Toc174237321][bookmark: _Toc204157952][bookmark: _Toc206555990][bookmark: _Toc225215587]Conditional compilation symbols
The conditional compilation functionality provided by the #if, #else, and #endif directives is controlled through pre-processing expressions and conditional compilation symbols.
ConditionalSymbol:
Any IdentifierOrKeyword except true or false
A conditional compilation symbol has two possible states: defined or undefined. At the beginning of the lexical processing of a source file, a conditional compilation symbol is undefined unless it has been explicitly defined by an external mechanism (such as a command-line compiler option). A #define directive may only occur outside a conditional compilation block. When a #define directive is processed, the conditional compilation symbol named in that directive becomes defined in that source file. The symbol remains defined until the end of the compilation unit is reached. An implication of this is that #define directives in one source file have no effect on other compilation units processed in the same compilation episode.
When referenced in a pre-processing expression, a defined conditional compilation symbol has the Logical value true, and an undefined conditional compilation symbol has the Logical value false. There is no requirement that conditional compilation symbols be explicitly declared before they are referenced in pre-processing expressions. Instead, undeclared symbols are simply undefined and thus have the value false.
Conditional compilation symbols can only be referenced in pre-processing expressions and have no effect after pre-processing.
[bookmark: _Ref12424370][bookmark: _Toc174237322][bookmark: _Toc204157953][bookmark: _Toc206555991][bookmark: _Toc225215588]Pre-processing expressions
Pre-processing expressions can occur in #if directives. The only operator is !.
PPExpression:
ConditionalSymbol
! Whitespaceopt ConditionalSymbol
PPPrimaryExpression:
ConditionalSymbol
Evaluation of a pre-processing expression always yields a Logical value. The value of a symbol preceded by the ! operator is the logical negation of the value of the symbol (as defined in the preceding section).
[bookmark: _Ref503236455][bookmark: _Toc174237323][bookmark: _Toc204157954][bookmark: _Toc206555992][bookmark: _Toc225215589]Declaration directives
The declaration directives are used to define or undefine conditional compilation symbols.
PPDeclaration:
define Whitespace ConditionalSymbol PPNewLine
PPNewLine:
Whitespaceopt SingleLineCommentopt NewLine
The processing of a #define directive causes the given conditional compilation symbol to become defined, starting with the source line that follows the directive.
A #define may define a conditional compilation symbol that is already defined. The example below defines a conditional compilation symbol A and then defines it again.
#define A
#define A
[bookmark: _Ref503236525][bookmark: _Toc174237324][bookmark: _Toc204157955][bookmark: _Toc206555993][bookmark: _Toc225215590]Conditional compilation directives
The conditional compilation directives are used to conditionally include or exclude portions of a source file.
PPConditional:
PPIfSection PPElseSectionopt PPEndif
PPIfSection:
#if Whitespace PPExpression PPNewLine ConditionalSectionopt
PPElseSection:
#else PPNewLine ConditionalSectionopt
PPEndif:
#endif PPNewLine
ConditionalSection:
InputSection
SkippedSection
SkippedSection:
SkippedSectionPart
SkippedSection SkippedSectionPart
SkippedSectionPart:
SkippedCharactersopt NewLine
PPDirective
SkippedCharacters:
Whitespaceopt NotNumberSign InputCharactersopt
NotNumberSign:
Any InputCharacter except #
As indicated by the syntax, conditional compilation directives must be written as sets consisting of, in order, an #if directive, zero or one #else directive, and an #endif directive. Between the directives are conditional sections of source code. Each section is controlled by the immediately preceding directive. A conditional section may itself contain nested conditional compilation directives provided these directives form complete sets.
A PPConditional selects at most one of the contained ConditionalSections for normal lexical processing:
The PPExpression of the #if directives is evaluated. If it yields true, the ConditionalSection of the corresponding directive is selected.
If the PPExpression yields false, and if an #else directive is present, the ConditionalSection of the #else directive is selected.
Otherwise, no ConditionalSection is selected.
The selected ConditionalSection, if any, is processed as a normal InputSection: the source code contained in the section must adhere to the lexical grammar; tokens are generated from the source code in the section; and pre-processing directives in the section have the prescribed effects.
The remaining ConditionalSections, if any, are processed as SkippedSections: except for pre-processing directives, the source code in the section need not adhere to the lexical grammar; no tokens are generated from the source code in the section; and pre-processing directives in the section must be lexically correct but are not otherwise processed. Within a ConditionalSection that is being processed as a Skipped-Section, any nested ConditionalSections (contained in nested #if...#endif) are also processed as SkippedSections.
Except for pre-processing directives, skipped source code is not subject to lexical analysis. For example, the following is valid despite the unterminated comment in the #else section:
#define Debug // Debugging on
type Purchase
{
 ExtendedPrice {
#if Debug
 Price * Quantity;
#else
 /* Unterminated comment!
#endif
 }
}
Note, that pre-processing directives are required to be lexically correct even in skipped sections of source code.
Pre-processing directives are processed when they appear inside multi-line input elements. For example, the program:
#define Debug
type Hello
{
 World = @"hello,
#if Debug
 world
#else
 Nebraska
#endif
 ";
 }
}
assigns the world field the value:
hello,
 world
In order to place an M program in a text value, some convention must be adopted for encoding the preprocessing directives (and the quote symbols). For example, the program:
#define Debug
type Hello
{
 World = @"hello,
##if Debug
 world
##else
 Nebraska
##endif
 ";
 }
}
assigns the world field the value:
hello,
##if Debug
 world
##else
 Nebraska
##endif
[bookmark: _Toc209252061][bookmark: _Toc225215591][bookmark: _Ref197128985][bookmark: _Ref197161099][bookmark: _Ref197161104][bookmark: _Toc204157956][bookmark: _Toc206555994][bookmark: _Ref463497488][bookmark: _Toc54350255][bookmark: _Toc181526415][bookmark: _Toc181589151]Text Pattern Expressions
Text pattern expressions perform operations on the sets of possible text values that one or more terms recognize.
[bookmark: _Toc209252062][bookmark: _Toc225215592]Primary Expressions
A primary expression can be:
· A text literal
· A reference to a syntax or token rule
· An expression indicating a repeated sequence of primary expressions of a specified length
· An expression indicating any of a continuous range of characters
· An inline sequence of pattern declarations
The following grammar reflects this structure.
Primary:
ReferencePrimary
TextLiteral
RepetitionPrimary
CharacterClassPrimary
InlineRulePrimary
AnyPrimary
[bookmark: _Toc209252063][bookmark: _Toc225215593]Character Class
A character class is a compact syntax for a range of continuous characters. This expression requires that the text literals be of length 1 and that the Unicode offset of the right operand be greater than that of the left.
CharacterClassPrimary:
TextLiteral .. TextLiteral
The expression "0".."9" is equivalent to:
"0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
[bookmark: _Toc209252064][bookmark: _Toc225215594]References
A reference primary is the name of another rule possibly with arguments for parameterized rules. All rules defined within the same language can be accessed without qualification. The protocol to access rules defined in a different language within the same module are defined in §6.2. The protocol to access rules defined in a different module are defined in §10.3.
ReferencePrimary:
GrammarReference
GrammarReference:
Identifier
GrammarReference . Identifier
GrammarReference . Identifier (TypeArguments)
Identifier (TypeArguments)
TypeArguments:
PrimaryExpression
TypeArguments , PrimaryExpression
Note that whitespace between a rule name and its arguments list is significant to discriminate between a reference to a parameterized rule and a reference without parameters and an inline rule. In a reference to a parameterized rule, no whitespace is permitted between the identifier and the arguments.
[bookmark: _Toc209252065][bookmark: _Toc225215595]Repetition operators
The repetition operators recognize a primary expression repeated a specified number of times. The number of repetitions can be stated as a (possibly open) integer range or using one of the Kleene operators, ?, +, *.
RepetitionPrimary:
Primary Range
Primary CollectionRanges
Range:
?
*
+
CollectionRanges:
IntegerLiteral
IntegerLiteral .. IntegerLiteralopt
The left operand of .. must be greater than zero and less than the right operand of .., if present.
	"A"#5
	recognizes exactly 5 "A"s
	"AAAAA"

	"A"#2..4
	recognizes from 2 to 4 "A"s
	"AA", "AAA", "AAAA"

	"A"#3..
	recognizes 3 or more "A"s
	"AAA", "AAAA", "AAAAA", . . .

The Kleene operators can be defined in terms of the collection range operator:
"A"? is equivalent to "A"#0..1
"A"+ is equivalent to "A"1..
"A"* is equivalent to "A"#0..
[bookmark: _Toc209252066][bookmark: _Toc225215596]Inline Rules
An inline rule is a means to group pattern declarations together as a term.
InlineRulePrimary:
(ProductionDeclarations)
An inline rule is typically used in conjunction with a range operator:
"A" ("," "A")* recognizes 1 or more "A"s separated by commas.
Although syntactically legal, variable bindings within inline rules are not accessible within the constructor of the containing production. Inline rules are described further in §5.4.
[bookmark: _Toc209252067][bookmark: _Toc225215597]Any
The any term is a wildcard that matches any text value of length 1.
Any:
any
"1", "z", and "*" all match any.
[bookmark: _Toc209252068][bookmark: _Ref220212146][bookmark: _Toc225215598][bookmark: _Ref225215796]Error
The error production enables error recover. Consider the following example:
module HelloWorld {
 language HelloWorld {
 syntax Main
 = HelloList;
 token Hello
 = "Hello";
 checkpoint syntax HelloList
 = Hello
 | HelloList "," Hello
 | HelloList "," error;
 }
}
The language recognizes the text "Hello,Hello,Hello" as expected and produces the following default output:
Main[
 HelloList[
 HelloList[
 HelloList[
 Hello
],
 ,,
 Hello
],
 ,,
 Hello
]
]
The text "Hello,hello,Hello" is not in the language because the second "h" is not capitalized (and case sensitivity is true). However, rather than stop at "h", the language processor matches "h" to the error token, then matches "e" to the error token, etc. Until it reaches the comma. At this point the text conforms to the language and normal processing can continue. The language process reports the position of the errors and produces the following output:
Main[
 HelloList[
 HelloList[
 HelloList[
 Hello
],
 error["hello"],
],
 ,,
 Hello
]
]
Hello occurs twice instead of three times as above and the text the error token matched is returned as error["hello"].
[bookmark: _Toc209252069][bookmark: _Toc225215599]Term Operators
A primary term expression can be thought of as the set of possible text values that it recognizes. The term operators perform the standard set difference, intersection, and negation operations on these sets. (Pattern declarations perform the union operation with |.)
TextPatternExpression:
Difference
Difference:
Intersect
Difference - Intersect
Intersect:
Inverse
Intersect & Inverse
Inverse:
Primary
^ Primary
Inverse requires every value in the set of possible text values to be of length 1.
("11" | "12") – ("12" | "13") recognizes "11".
("11" | "12") & ("12" | "13") recognizes "12".
^("11" | "12") is an error.
^("1" | "2") recognizes any text value of length 1 other than "1" or "2".
[bookmark: _Ref207599494][bookmark: _Toc209252070][bookmark: _Toc225215600]Productions
A production is a pattern and an optional constructor. Each production is a scope. The pattern may establish variable bindings which can be referenced in the constructor. A production can be qualified with a precedence that is used to resolve a tie if two productions match the same text (See §4.4.1).
ProductionDeclaration:
ProductionPrecedenceopt PatternDeclaration Constructoropt
Constructor
=> TermConstructor
ProductionPrecedence:
precedence IntegerLiteral :
[bookmark: _Toc209252071][bookmark: _Toc225215601]Pattern Declaration
A pattern declaration is a sequence of term declarations or the built-in pattern empty which matches "".
PatternDeclaration:	
empty
TermDeclarationsopt
TermDeclarations:
TermDeclaration
TermDeclarations TermDeclaration
[bookmark: _Toc209252072][bookmark: _Toc225215602]Term Declaration
A term declaration consists of a pattern expression with an optional variable binding, precedence and attributes. The built-in term error is used for error recovery and discussed in §3.1.6.
TermDeclaration:
error
Attributesopt TermPrecedenceopt VariableBindingopt TextPatternExpression
VariableBinding:
Name :
TermPrecedence:
left (IntegerLiteral)
right (IntegerLiteral)
A variable associates a name with the output from a term which can be used in the constructor. Precedence is discussed in §4.4.2.
The error term is used to facilitate error recovery. This is described in §3.1.6.
[bookmark: _Toc209252073][bookmark: _Toc225215603]Constructors
A term constructor is the syntax for defining the output of a production. A node in a term constructor can be:
· An atom consisting of
· A literal
· A reference to another term
· An operation on a reference
· A ordered collection of successors with an optional label
· An unordered collection of successors with an optional label
The following grammar mirrors this structure.
TermConstructor:
TopLevelNode
Node:
Atom
OrderedTerm
UnorderedTerm
TopLevelNode:
TopLevelAtom
OrderedTerm
UnorderedTerm
Nodes:
Node
Nodes , Node
OrderedTerm:
Labelopt [Nodesopt]
UnorderedTerm:
Labelopt { Nodesopt }
Label:
Identifier
id (Atom)
Atom:
TopLevelAtom
valuesof (VariableReference)
TopLevelAtom:
TextLiteral
DecimalLiteral
LogicalLiteral
IntegerLiteral
NullLiteral
VariableReference
labelof (VariableReference)
VariableReference:
Identifier
Each production defines a scope. The variables referenced in a constructor must be defined within the same production's pattern. Variables defined in other productions in the same rule cannot be referenced. The same variable name can be used across alternatives in the same rule.
Consider three alternatives for encoding the output of the same production. First, the default constructor (See §4.3.2):
module Expression {
 language Expression {
 token Digits = ("0".."9")+;
 syntax Main = E;
 syntax E
 = Digits
 | E "+" E ;
 }
}
Processing the text "1+2" yields:
Main[E[E[1], +, E[2]]]
This output reflects the structure of the grammar and may not be the most useful form for further processing. The second alternative cleans the output up considerably:
module Expression {
 language Expression {
 token Digits = ("0".."9")+;
 syntax Main
 = e:E => e;
 syntax E
 = d:Digits => d
 | l:E "+" r:E => Add[l,r] ;
 }
}
Processing the text "1+2" with this language yields:
Add[1, 2]
This grammar uses three common patterns.
· Productions with a single term are passed through. This is done for the single production in Main and the first production in E.
· A label, Add, is used to designate the operator.
· Position is used to distinguish the left and right operand.
The third alternative uses a record like structure to give the operands names:
module Expression {
 language Expression {
 token Digits = ("0".."9")+;
 syntax Main
 = e:E => e;
 syntax E
 = d:Digits => d
 | l:E "+" r:E => Add{Left{l},Right{r}} ;
 }
}
Processing the text "1+2" with this language yields:
Add{Left{1}, Right{2}}
Although somewhat more verbose than the prior alternative, this output does not rely on ordering and forces consumers to explicitly name Left or Right operands. Although either option works, this has proven to be more flexible and less error prone.
[bookmark: _Toc209252074][bookmark: _Toc225215604]Constructor operators
Constructor operators allow a constructor to use a variable reference as a label, extract the successors of a variable reference or extract the label of a variable reference.
Consider generalizing the example above to support multiple operators. This could be done by adding a new production for each operator -, *, /, ^. Alternatively a single rule can be established to match these operators and the output of that rule can be used as a label using id:
module Expression {
 language Expression {
 token Digits = ("0".."9")+;
 syntax Main
 = e:E => e;
 syntax Op
 = "+" => "Add"
 | "-" => "Subtract"
 | "*" => "Multiply"
 | "/" => "Divide" ;
 syntax E
 = d:Digits => d
 | l:E o:Op r:E => id(o){Left[l],Right[r]} ;
 }
}
Processing the text "1+2" with this language yields the same result as above. Processing
"1 / 2" yields:
Divide{Left{1}, Right{2}}
This language illustrates the id operator. See §4.4.2 for a more realistic expression grammar.
The valuesof operator extract the successors of a variable reference. It is used to flatten nested output structures. Consider the language:
module Digits {
 language Digits {
 syntax Main = DigitList ;
 token Digit = "0".."9";
 syntax DigitList
 = Digit
 | DigitList "," Digit ;
 }
}
Processing the text "1, 2, 3" with this language yields:
Main[
 DigitList[
 DigitList[
 DigitList[
 1
],
 ,,
 2
],
 ,,
 3
]
]
The following grammar uses valuesof and the pass through pattern above to simplify the output:
module Digits {
 language Digits {
 syntax Main = dl:DigitList => dl ;
 token Digit = "0".."9";
 syntax DigitList
 = d:Digit => DigitList[d]
 | dl:DigitList "," d:Digit => DigitList[valuesof(dl),d] ;
 }
}
Processing the text "1, 2, 3" with this language yields:
DigitList[1, 2, 3]
This output represents the same information more concisely.
[bookmark: _Ref207678220][bookmark: _Toc209252075][bookmark: _Toc225215605]Default Constructor
If a constructor is not defined for a production the language process defines a default constructor. For a given production, the default projection is formed as follows:
(1) The label for the result is the name of the production’s rule.
(2) The successors of the result are an ordered sequence constructed from each term in the pattern.
(3) * and ? create an unlabeled sequence with the elements.
(4) () results in an anonymous definition.
a. If it contains constructors (a:A => a), then the output is the output of the constructor.
b. If there are no constructors, then the default rule applied on the anonymous definition and the output is enclosed in square brackets [A’s result]
(5) Token rules do not permit a constructor to be specified and output text values.
(6) Interleave rules do not permit a constructor to be specified and do not produce output.
Consider the following language:
module ThreeDigits {
 language ThreeDigits {
 token Digit = "0".."9";
 syntax Main
 = Digit Digit Digit ;
 }
}
Given the text "123" the default output of the language processor follows:
Main[
 1,
 2,
 3
]
[bookmark: _Toc209252076][bookmark: _Toc225215606]Precedence
The M language processor is tolerant of such ambiguity as it is recognizing subsequences of text. However, it is an error to produce more than one output for an entire text value. Precedence qualifiers on productions or terms determine which of the several outputs should be returned.
[bookmark: _Ref207626332][bookmark: _Toc209252077][bookmark: _Toc225215607]Production Precedence
Consider the classic dangling else problem as represented in the following language:
module IfThenElse {
 language IfThenElse {
 syntax Main = S;
 syntax S
 = empty
 | "if" E "then" S
 | "if" E "then" S "else" S;
 syntax E = empty;
 interleave Whitespace = " ";
 }
}
Given the input "if then if then else", two different output are possible. Either the else binds to the first if-then:
if
then
 if
 then
else
Or it binds to the second if-then:
if
then
 if
 then
 else
The following language produces the output immediately above, binding the else to the second if-then.
module IfThenElse {
 language IfThenElse {
 syntax Main = S;
 syntax S
 = empty
 | precedence 2: "if" E "then" S
 | precedence 1: "if" E "then" S "else" S;
 syntax E = empty;
 interleave Whitespace = " ";
 }
}
Switching the precedence values produces the first output.
[bookmark: _Ref207626734][bookmark: _Toc209252078][bookmark: _Toc225215608]Term Precedence
Consider a simple expression language which recognizes:
2 + 3 + 4
5 * 6 * 7
2 + 3 * 4
2 ^ 3 ^ 4
The result of these expressions can depend on the order in which the operators are reduced. 2 + 3 + 4 yields 9 whether 2 + 3 is evaluated first or 3 + 4 is evaluated first. Likewise, 5 * 6 * 7 yields 210 regardless of the order of evaluation.
However, this is not the case for 2 + 3 * 4. If 2 + 3 is evaluated first yielding 5, 5 * 4 yields 20. While if 3 * 4 is evaluated first yielding 12, 2 + 12 yields 14. This difference manifests itself in the output of the following grammar:
module Expression {
 language Expression {
 token Digits = ("0".."9")+;
 syntax Main = e:E => e;
 syntax E
 = d:Digits => d
 | "(" e:E ")" => e
 | l:E "^" r:E => Exp[l,r]
 | l:E "*" r:E => Mult[l,r]
 | l:E "+" r:E => Add[l,r];
 interleave Whitespace = " ";
 }
}
"2 + 3 * 4" can result in two outputs:
Mult[Add[2, 3], 4]
Add[2, Mult[3, 4]]
According to the rules we all learned in school, the result of this expression is 14 because multiplication is performed before addition. This is expressed in M by assigning "*" a higher precedence than "+". In this case the result of an expression changed with the order of evaluation of different operators.
The order of evaluation of a single operator can matter as well. Consider 2 ^ 3 ^ 4. This could result in either 8 ^ 4 or 2 ^ 81. In term of output, there are two possibilities:
Exp[Exp[2, 3], 4]
Exp[2, Exp[3, 4]]
In this case the issue is not which of several different operators to evaluate first but which in a sequence of operators to evaluate first, the leftmost or the right most. The rule in this case is less well established but most languages choose to evaluate the rightmost "^" first yielding 2 ^ 81 in this example.
The following grammar implements these rules using term precedence qualifiers. Term precedence qualifiers may only be applied to literals or references to token rules.
module Expression {
 language Expression {
 token Digits = ("0".."9")+;
 syntax Main = E;
 syntax E
 = d:Digits => d
 | "(" e:E ")" => e
 | l:E right(3) "^" r:E => Exp[l,r]
 | l:E left(2) "*" r:E => Mult[l,r]
 | l:E left(1) "+" r:E => Add[l,r];
 interleave Whitespace = " ";
 }
}
"^" is qualified with right(3). right indicates that the rightmost in a sequence should be grouped together first. 3 is the highest precedence, so "^" will be grouped most strongly.
[bookmark: _Toc209252079][bookmark: _Toc225215609]Rules
A rule is a named collection of alternative productions. There are three kinds of rules: syntax, token, and interleave. A text value conforms to a rule if it conforms to any one of the productions in the rule. If a text value conforms to more than one production in the rule, then the rule is ambiguous. The three different kinds of rules differ in how they treat ambiguity and how they handle their output.
RuleDeclaration:
Attributesopt MemberModifieropt Kind Name RuleParametersopt RuleBodyopt ;
Kind:
token
syntax
interleave
MemberModifier:
final
RuleBody:
= ProductionDeclarations
ProductionDeclarations:
ProductionDeclaration
ProductionDeclarations | ProductionDeclaration
The rule Main below recognizes the two text values "Hello" and "Goodbye".
module HelloGoodby {
 language HelloGoodbye {
 syntax Main
 = "Hello"
 | "Goodbye";
 }
}
[bookmark: _Ref207597551][bookmark: _Toc209252080][bookmark: _Toc225215610]Token Rules
Token rules recognize a restricted family of languages. However, token rules can be negated, intersected and subtracted which is not the case for syntax rules. Attempting to perform these operations on a syntax rule results in an error. The output from a token rule is the text matched by the token. No constructor may be defined.
[bookmark: _Toc209252081][bookmark: _Toc225215611]Final Modifier
Token rules do not permit precedence directives in the rule body. They have a built in protocol to deal with ambiguous productions. A language processor attempts to match all tokens in the language against a text value starting with the first character, then the first two, etc. If two or more productions within the same token or two different tokens can match the beginning of a text value, a token rule will choose the production with the longest match. If all matches are exactly the same length, the language processor will choose a token rule marked final if present. If no token rule is marked final, all the matches succeed and the language processor evaluates whether each alternative is recognized in a larger context. The language processor retains all of the matches and begins attempting to match a new token starting with the first character that has not already been matched.
[bookmark: _Ref207703928][bookmark: _Toc209252083][bookmark: _Toc225215612]Syntax Rules
Syntax rules recognize all languages that M is capable of defining. The Main start rule must be a syntax rule. Syntax rules allow all precedence directives and may have constructors.
[bookmark: _Toc209252084][bookmark: _Toc225215613]Interleave Rules
An interleave rule recognizes the same family of languages as a token rule and also cannot have constructors. Further, interleave rules cannot have parameters and the name of an interleave rule cannot be references.
Text that matches an interleave rule is excluded from further processing.
The following example demonstrates whitespace handling with an interleave rule:
module HelloWorld {
 language HelloWorld {
 syntax Main =
 = Hello World;
 token Hello
 = "Hello";
 token World
 = "World";
 interleave Whitespace
 = " ";
 }
}
This language recognizes the text value "Hello World". It also recognizes "Hello World",
" Hello World", "Hello World ", and "HelloWorld". It does not recognize
"He llo World" because "He" does not match any token.
[bookmark: _Ref209055667][bookmark: _Toc209252085][bookmark: _Toc225215614]Inline Rules
An inline rule is an anonymous rule embedded within the pattern of a production. The inline rule is processed as any other rule however it cannot be reused since it does not have a name. Variables defined within an inline rule are scoped to their productions as usual. A variable may be bound to the output of an inline rule as with any pattern.
In the following Example1 and Example2 recognize the same language and produce the same output. Example1 uses a named rule AppleOrOrange while Example2 states the same rule inline.
module Example {
 language Example1 {
 syntax Main
 = aos:AppleOrOrange*
 => aos;

 syntax AppleOrOrange
 = "Apple" => Apple{}
 | "Orange" => Orange{};
 }

 language Example2 {
 syntax Main
 = aos:("Apple" => Apple{} | "Orange" => Orange{})*
 => aos;
 }
}
[bookmark: _Toc209252086][bookmark: _Toc225215615]Rule Parameters
A rule may define parameters which can be used within the body of the rule.
RuleParameters:
(RuleParameterList)
RuleParameterList:
RuleParameter
RuleParameterList , RuleParameter
RuleParameter:
Identifier
A single rule identifier may have multiple definitions with different numbers of parameters. The following example uses List(Content,Separator) to define List(Content) with a default separator of ",".
module HelloWorld {
 language HelloWorld {
 syntax Main
 = List(Hello);
 token Hello
 = "Hello";
 syntax List(Content, Separator)
 = Content
 | List(Content,Separator) Separator Content;

 syntax List(Content) = List(Content, ",");
 }
}
This language will recognize "Hello", "Hello,Hello", "Hello,Hello,Hello", etc.
[bookmark: _Ref207703952][bookmark: _Toc209252087][bookmark: _Toc225215616]Languages
A language is a named collection of rules for imposing structure on text.
LanguageDeclaration:
Attributesopt language Name LanguageBody
LanguageBody:
{ RuleDeclarationsopt }
RuleDeclarations:
RuleDeclaration
RuleDeclarations RuleDeclaration
The language that follows recognizes the single text value "Hello World":
module HelloWorld {
 language HelloWorld {
 syntax Main
 = "Hello World";
 }
}
[bookmark: _Toc209252088][bookmark: _Toc225215617]Main Rule
A language may consist of any number of rules. The following language recognizes the single text value "Hello World":
module HelloWorld {
 language HelloWorld {
 syntax Main
 = Hello Whitespace World;
 token Hello
 = "Hello";
 token World
 = "World";
 token Whitespace
 = " ";
 }
}
The three rules Hello, World, and Whitespace recognize the three single text values "Hello", "World", and " " respectively. The rule Main combines these three rules in sequence. The difference between syntax and token rules is described in §5.1.
Main is the distinguished start rule for a language. A language recognizes a text value if and only if Main recognizes a value. Also, the output for Main is the output for the language.
[bookmark: _Ref207689529][bookmark: _Toc209252089][bookmark: _Toc225215618]Cross-language rule references
Rules are members of a language. A language can use rules defined in another language using member access notation. The HelloWorld language recognizes the single text value "Hello World" using rules defined in the Words language:
module HelloWorld {

 language Words {
 token Hello
 = "Hello";
 token World
 = "World";
 }

 language HelloWorld {
 syntax Main
 = Words.Hello Whitespace Words.World;
 token Whitespace =
 = " ";
 }
}
All rules defined within the same module are accessible in this way. Rules defined in other modules must be exported and imported as defined in §10.3.
[bookmark: _Toc225215619]Types
The types of the M language are divided into two main categories: intrinsic types and derived types. An intrinsic type is a type that cannot be defined using M language constructs but rather is defined entirely in the M Language Specification. An intrinsic type (e.g. Number, Entity, Collection) may name a super-type as part of its specification. Values are an instance of exactly one intrinsic type, and conform to the specification of that one intrinsic type and all of its super-types.
A derived type (e.g. Integer32, Person, Cars) is a type whose definition is constructed in M source text using the type constructors that are provided in the language. A derived type is defined as a constraint over another type, which creates an explicit subtyping relationship. Values conform to any number of derived types simply by virtue of satisfying the derived type’s constraint. There is no explicit affiliation between a value and a derived type – rather a given value that conforms to a derived type’s constraint may be interpreted as that type or any other derived type using type ascription.
[bookmark: _Toc204157957][bookmark: _Toc206555995][bookmark: _Toc225215620]Type declaration
M offers a broad range of options in defining types. Any expression that returns a collection can be declared as a type. The type predicates for entities and collections are expressions and fit this form. A type declaration may explicitly enumerate its members or be composed of other types.
The syntax for a type declaration follows:
TypeDeclaration:
type Identifier ;
type Identifier InitializationExpression ;opt
type Identifier EntityTypeExpression ;opt
type Identifier EntityTypeExpression where WhereExpressions ;
type Identifier : Expression ;
type Identifier : TypeReferences ;
type Identifier : TypeReferences EntityTypeExpression ;opt
type Identifier : TypeReferences EntityTypeExpression where WhereExpressions;
The Identifier in a type declaration introduces a new symbol into the module level scope.
TypeReference:
QualifiedIdentifier
TypeReferences:
TypeReference
TypeReferences , TypeReference
The QualifiedIdentifier in TypeReference must either refer to a type declaration available within the current scope (§9.2.1).
The declaration:
type SomeNewType;
declares a new type SomeNewType with no constraints. Any value satisfies this type.
The following example explicitly enumerates the values of type PrimaryColors and uses it in the EntityExpression which defines the type Car.
type PrimaryColors {"Red", "Blue", "Yellow"}

type Car {
 Make : Text;
 Model : Text;
 Color : PrimaryColors;
}
These common cases do not require a colon between the declaration name and the definition.
Type declarations can be built up from expressions that return collections. The type PrimaryColors above could be constructed from singleton sets.
type PrimaryColors2 : {"Red"} | {"Blue"} | {"Yellow"}
Since the expression {"Red"} | {"Blue"} | {"Yellow"} == {"Red", "Blue", "Yellow"} the two declarations are equivalent.
However an expression which does not return a collection is not a semantically valid type.
type NonSense : 1 + 1;
is a syntactically valid declaration, but not useful as a type since no value of X would ever satisfy, the following expression because 2 is not a collection.
X in 2
Entity types may be composed as well. Consider the following two distinct types:
type Vehicle {
 Owner : Text;
 Registration : Text;
}

type HasWheels {
 Wheels : Integer32;
}
The type Vehicle requires that instances have Owner and Registration fields. The type HasWheels requires instances have a Wheels field. These two types can be combined into a new type Car that requires Owner, Registration, and Wheels fields.
type Car : Vehicle & HasWheels;
In this usage, ampersand requires that Car meet all the requirements of both arguments.
This definition of Car can be further restricted since cars have 4 wheels. Such restrictions can be specified with a constraint (§9.15.1).
type Car2 : Vehicle & HasWheels where value.Wheels == 4;
It is common to extend types with additional fields and restrict values. M provides the following syntax to simplify this case.
type Car3 : Vehicle {
 Wheels : Integer32;
} where value.Wheels == 4;
[bookmark: _Toc204157958][bookmark: _Toc206555997][bookmark: _Toc225215621]Subtyping
M is a structurally typed language rather than a nominally typed language like C++ or C#. A structural type is a specification for a set of values. Two types are equivalent if the exact same collection of values conforms to both regardless of the name of the types.
It is not required that a type be named to be used. A type expression is allowed wherever a type reference is required. Types in M are simply expressions that return collections.
If every value that conforms to type A also conforms to type B, we say that A is a subtype of B (and that B is a super-type of A). Subtyping is transitive, that is, if A is a subtype of B and B is a subtype of C, then A is a subtype of C (and C is a super-type of A). Subtyping is reflexive, that is, A is a (vacuous) subtype of A (and A is a super-type of A).
[bookmark: _Toc204157959][bookmark: _Ref206494241][bookmark: _Toc206555998][bookmark: _Toc225215622]Operators
Types are considered collections of all values that satisfy the type predicate. For that reason, any operation on a collection (§7.6.2) can be applied to a type and a type can be manipulated with expressions like any other collection value.
The relational operators (<, >, <=, >=, ==, !=) compare the value spaces of two types and return a Logical value. For example, the operator <= on types computes the subtype relation.
(Car <= Vehicle) == true
(Car <= HasWheels) == true
(Car <= Colors) == false
The where constraint restricts the value space of a type to those elements satisfying the right operand's logical expression.
The following binary operations take Collection as a left operand.
	Operator
	Right Operand
	Return

	&, |
	Collection
	Collection

The union and intersection operators (|, &) operate on the type's value spaces. Intersection, &, can be thought of as specialization, restriction, or subtyping. Union, |, can be thought of as generalization or inducing a supertype.
The following postfix operators take types as a left operand.
	Operator
	Return

	?
	Type

	+ *
	Type

	#m..n
	Type

? is a postfix operator that adds null to the value space of its operand. T? is equivalent to
T | { null }
The multiplicities lift a type to a collection of that type with the appropriate cardinality. For example:
Date* // A collection of any number of dates
Person+ // A collection of one or more people
Wheel#2..4 // A collection of two to four wheels
[bookmark: _Toc204157960][bookmark: _Toc206555999][bookmark: _Toc225215623]Intrinsic Types
The following table lists the intrinsic types that are defined as part of the M Language Specification:
	Type
	Super Type
	Description

	Any
	
	All values.

	General
	Any
	All simple values.

	Number
	General
	Any numeric value.

	Decimal
	Number
	A fixed-point or exact number.

	Integer
	Decimal
	A signed, integral value.

	Unsigned
	Integer
	An unsigned, integral value.

	Scientific
	Number
	A floating-point or exact number.

	Date
	General
	A calendar date.

	DateTime
	General
	A calendar date and time of day.

	DateTimeOffset
	General
	A calendar date, time of day and time zone.

	Time
	General
	A time of day and time zone.

	Text
	General
	A sequence of Characters.

	Character
	General
	A single Unicode character of text.

	Logical
	General
	A logical flag.

	Binary
	General
	A sequence of binary octets.

	Guid
	General
	A globally unique identifier.

	Byte
	General
	A single binary octet.

	Collection
	Any
	An unordered group of (potentially duplicate) values.

	Entity
	Any
	A collection of labeled values.

	Null
	Any
	Contains the single value null.

[bookmark: _Toc204157961][bookmark: _Toc206556000][bookmark: _Toc225215624]Any
All values are members of this type.
The following binary operations take Any as a left operand.
	Operator
	Right Operand
	Return

	in, !in
	Collection
	Logical

The in operator returns true if some member of the right operand is equal (==) to the left operand. The !in operator returns true if the in operator would return false.
[bookmark: _Toc204157962][bookmark: _Toc206556001][bookmark: _Toc225215625]General
All values that are not members of Entity or Collection (or null) are members of this type. It has no additional operators beyond those defined on Any.
[bookmark: _Toc204157963][bookmark: _Ref206477818][bookmark: _Toc206556002][bookmark: _Toc225215626]Number
Number is an abstract type with four subtypes enumerated below. Each of these subtypes is further refined to a type with a precision. A type of a smaller precision may always be converted to the same type of a larger precision. Converting from a larger precision to a smaller precision tests for overflow at runtime.
The arithmetic operations (+, -, *, /, %) defined above are specialized to return the most specific type of its operands (e.g. Integer8 + Integer8 returns Integer8, Decimal9 + Decimal38 returns Decimal38)
	Type
	Precision

	Integer
	Integer8

	
	Integer16

	
	Integer32

	
	Integer64

	Unsigned
	Unsigned8

	
	Unsigned16

	
	Unsigned32

	
	Unsigned64

	Decimal
	Decimal9

	
	Decimal19

	
	Decimal28

	
	Decimal38

	Scientific
	Single

	
	Double

[bookmark: _Ref206551050][bookmark: _Toc206556003][bookmark: _Toc225215627]Operators
The following unary operations take Number as a right operand.
	Operator
	Return

	+, -
	Number

The following binary operations take Number as a left operand.
	Operator
	Right Operand
	Return

	+, -
	Number
	Number

	*, /, %
	Number
	Number

	>, <, <=, >=, ==, !=
	Number
	Logical

The following operations may cause underflow and overflow errors:
The predefined unary - operator
The predefined +, -, *, and / binary operators
Explicit numeric conversions from one Number type to another
The following operations may cause a divide-by-zero error:
The predefined / and % binary operators
[bookmark: _Toc206556004][bookmark: _Toc225215628][bookmark: _Toc204157964]AutoNumber
Unique numbers can be generated with the AutoNumber computed value. This is a special form for ensuring unique identities. Consider the following example:
type Person {
 Id : Integer32 = AutoNumber();
 Name : Text;
 Age : Integer32;
 Spouse : Person;
} where identity Id;

People : Person*;
Each instance of Person will receive an Id value that is unique for each extent that contains Person instances.
AutoNumber has a number of restrictions. The default value should not be overridden and AutoNumber may only be used on identity fields.
[bookmark: _Ref206477822][bookmark: _Toc206556005][bookmark: _Toc225215629]Text
The representation of text is implementation dependent.
The following postfix operator takes Text as a left operand.
	Operator
	Return

	#
	Unsigned

The postfix # operator returns the count of characters in a Text string.
The following binary operations take Text as a left operand.
	Operator
	Right Operand
	Return

	+
	Text
	Text

	>, <, <=, >=, ==, !=
	Text
	Logical

The binary + operator concatenates two Text strings.
The relational operators perform a lexicographic comparison on the Text strings and return a Logical value.
[bookmark: _Toc204157965][bookmark: _Toc206556006][bookmark: _Toc225215630]Members
The following members are defined on Text.
Count() : Unsigned;
Like(pattern : Text) : Logical;
PatternIndex(pattern : Text) : Integer;
Count provides the number of characters in the text.
Like returns true if the input is matched by the pattern.
PatternIndex returns the starting position of the pattern in the text or -1 if the pattern is not found.
The pattern is of the following form:
Pattern
PatternElement
Pattern PatternElement
PatternElement
NormalCharacter
-
%
[NormalCharacter - NormalCharacter]
[^ NormalCharacter - NormalCharacter]
Dash matches any single character. Percent matches zero or more characters. A character range matches any single character in the range. And an excluded character range matches any character not in the range.
[bookmark: _Toc206556007][bookmark: _Toc225215631][bookmark: _Toc204157966]Declaration
The # qualifier is overloaded on Text declarations to constrain the length of the text field. The expression
Text#N;
is equivalent to
Text where value.Count == N;
[bookmark: _Toc204157967][bookmark: _Ref206495213][bookmark: _Ref206551059][bookmark: _Toc206556009][bookmark: _Toc225215632]Logical
The following unary operator takes Logical as an operand.
	Operator
	Return

	!
	Logical

The following binary operations take Logical as a left operand.
	Operator
	Right Operand
	Return

	&&, ||
	Logical
	Logical

	==, !=
	Logical
	Logical

The following ternary operator takes Logical as a right operand.
	Operator
	Middle Operand
	Left Operand
	Return

	? :
	Any
	Any
	Any

[bookmark: _Toc204157968][bookmark: _Toc225215633][bookmark: _Ref206495127][bookmark: _Toc206556010]Binary
Binary defines one member Count which returns the number of bytes in the binary value. The following expression returns true.
\x3333.Count == 2
The following unary operator takes Binary as a right operand.
	Operator
	Return

	~
	Binary

The ~ operator computes the bitwise negation of its operand.
The following binary operations take Binary as a left operand.
	Operator
	Right Operand
	Return

	<<, >>
	Integer
	Binary

	==, !=
	Logical
	Logical

	&, |, ^
	Binary
	Binary

The left shift operator << discards n high-order bits, shifts remaining bits left, and zeros the low-order empty bit positions. Similarly, the right shift operator >> discards n low-order bits, shifts remaining bits right, and zeros the high-order empty bit positions. The result of left shift and right shift has the same length as the left operand.
The bitwise and (&), bitwise exclusive or (^), and bitwise or (|) operators implicitly convert their operands to the same length. The smaller operand is padded with zeros on the left.
The precedence of the bitwise and, or, and exclusive or is lower than it is in many other languages.
[bookmark: _Toc204157970][bookmark: _Toc206556011][bookmark: _Toc225215634]Guid
The following binary operations take Guid as a left operand.
	Operator
	Right Operand
	Return

	==, !=
	Guid
	Logical

Guids are created with the system defined NewGuid computed value.
NewGuid() : Guid;
[bookmark: _Toc204157971][bookmark: _Ref206477827][bookmark: _Toc206556012][bookmark: _Toc225215635]Date
The following binary operations take Date as a left operand:
	Operator
	Right Operand
	Return

	+
	Time
	DateTime

	>, <, <=, >=, ==, !=
	Date
	Logical

[bookmark: _Toc204157972][bookmark: _Toc206556013][bookmark: _Toc225215636][bookmark: _Toc204157973][bookmark: _Ref206477830][bookmark: _Toc206556014]DateTime
The following binary operations take DateTime as a left operand:
	Operator
	Right Operand
	Return

	>, <, <=, >=, ==, !=
	DateTime
	Logical

[bookmark: _Toc225215637]DateTimeOffset
The following binary operations take DateTime as a left operand:
	Operator
	Right Operand
	Return

	>, <, <=, >=, ==, !=
	DateTimeOffset
	Logical

[bookmark: _Toc225215638]Time
The following binary operations take Time as a left operand.
	Operator
	Right Operand
	Return

	+
	Date
	DateTime

	>, <, <=, >=, ==, !=
	Time
	Logical

[bookmark: _Toc204157974][bookmark: _Ref206550527][bookmark: _Toc206556015][bookmark: _Toc225215639]Entity
An EntityTypeExpression specifies the members for a set of entity values (commonly referred to as entities). Those members can be either fields or computed values.
Entity types are distinct from extents. The definition of an entity type does not imply allocation of storage. Storage is allocated when an extent of entity type is declared within a module.
The fields of an entity can be assigned default values and the values can be constrained with expressions. The names of all fields must be distinct.
[bookmark: _Ref197126984][bookmark: _Toc204157975][bookmark: _Toc206556016][bookmark: _Toc225215640]Declaration
The following syntax defines a collection of all possible instances that satisfy the structure and constraint.
EntityTypeExpression:
{ EntityMemberDeclarations }
EntityMemberDeclarations:
EntityMemberDeclaration
EntityMemberDeclarations EntityMemberDeclaration
EntityMemberDeclaration:
FieldDeclaration
ComputedValueDeclaration
Entity declarations share FieldDeclaration and ComputedValueDeclaration with module. An entity type which through intersection or refinement results in two default values for the same named field is an error.
[bookmark: _Ref206494393][bookmark: _Toc206556017][bookmark: _Toc225215641][bookmark: _Toc204157976]Identity
The identity constraint controls the representation of identity. If it is specified the selected fields are used to represent the identity. If no identity constraint is specified, the entity cannot be referenced or compared. Placing the identity constraint on a field makes that field initialize only. It cannot be updated.
The identity constraint may be specified either on entity declarations or on extent declarations. The identity constraint requires that the elements in the constraint are unique within each extent (not across extents) as with the unique constraint. An identity declaration on a derived type supersedes that of any types it derives from. As a result, there can be only one identity constraint on an entity or an extent.
Consider the following example:
type Container {
 Id : Integer32;
 Capacity: Integer32;
} where identity Id;

CoffeeCups : Container* { {Id = 1, Capacity = 12} }
WaterBottles : Container* { {Id = 1, Capacity = 12} }

EqualityTest() {
 from c in CoffeeCups
 from w in WaterBottles
 where c == w
 select "Never"
}
It is legal for the two extents to contain instances whose Id fields are equal. Having the same Id field does not equate the instances. The computed value EqualityTest will always return the empty collection because identity is relative to an extent.
An implementation of M may restrict the types of fields used to form identity.	
[bookmark: _Toc206556018][bookmark: _Toc225215642]Operators
The following binary operations take Entity as a left operand.
	Operator
	Right Operand
	Return

	==, !=
	Entity
	Logical

The equality operations on entities compare identity (shallow equal). == returns true if both operands refer to an instance with the same identity in the same collection.
[bookmark: _Toc204157977][bookmark: _Toc206556019][bookmark: _Toc225215643][bookmark: _Toc181526421][bookmark: _Toc181589157][bookmark: _Toc180290654][bookmark: _Toc181526494][bookmark: _Toc181589211]Members
The following member is defined on all entities:
FieldNames() : Text*;
FieldNames returns the string names of each label in an instance. This member is not affected by ascription and does not return names of computed values or missing default values.
[bookmark: _Toc204157979][bookmark: _Toc206556020][bookmark: _Toc225215644]Indexer
Entities have a default indexer that accepts field name as text and returns the value of the field if present or null.
{Name = "Bob"}("Name") == "Bob"
{Name = "Bob"}("Age") == null
The indexer accesses the underlying instance data without interpretation by the type. This allows the indexer to access field values that may be hidden by a computed value. Consider:
type Hider {
 Name() : Text { "Hides instance values" };
}
Given the above declaration, the following two expressions would evaluate to true.
({Name = "Underlying value"} : Hider).Name == "Hides instance values"
({Name = "Underlying value"} : Hider)("Name") == "Underlying value"
[bookmark: _Toc206556021][bookmark: _Toc225215645]Ascription
An entity defines a constraint over a set of values. An entity type can be ascribed to any value which satisfy its constraint. Ascribing an entity type allows the computed values defined in the entity to be applied to the value.
Consider the following two entities and two instances (the square root (SQRT) and absolute value (ABS) functions must be provided by a library, they are not intrinsic).
type PointOnPlane {
 X : Single;
 Y : Single;
 DistanceFromOrigin : Single { SQRT(X * X + Y * Y) }
}

type PointOnLine {
 X : Single;
 Y : Single;
 DistanceFromOrigin : Single { ABS(X) * SQRT(2) }
} where X == Y;

Point1 = {X=1, Y=1};
Point2 = {X=0, Y=1};
Both entities define fields X and Y and an computed value DistanceFromOrigin although the implementation of the computed value differs. The first entity, PointOnPlane, allows any X,Y combination—the entire X,Y plane. The second entity, PointOnLine, has a constraint that restricts the values that can be members of the type.
Point1 is a member of both PointOnPlane and PointOnLine. Both declarations of DistanceFromOrigin are valid and yield the same result
Point2 can be ascribed PointOnPlane, but not of PointOnLine since the constraint X == Y is not satisfied. This prevents the alternative declaration of DistanceFromOrigin from producing an incorrect result.
[bookmark: _Toc225215646]Constructor
A ComputedValueDeclaration with the same name as an entity type declaration is a constructor rather than a member. The formal parameters of a constructor are field names of the entity. Actual parameters are bound to the corresponding fields in a new entity instance. A constructor declaration need not specify a body.
Consider the following example:
type Person {
 Name : Text;
 Age : Integer32;
 Person(Name,Age);
}

People : Person*
{
 Person("John", 23),
 Person("Mary", 22)
}
The extent People will contain two elements with Name fields equal to "John" and "Mary".
[bookmark: _Toc204157982][bookmark: _Toc206556022][bookmark: _Toc225215647]Collections
Collections are unordered and may contain elements which are equal. M provides operators to construct strongly typed collections and in some cases defined below escalates members on elements to members on the collection.
[bookmark: _Toc204157983][bookmark: _Toc206556023][bookmark: _Toc225215648]Declaration
New collection types are defined by a type constructor and a multiplicity (+, *, #m..n).
	Type Expression
	Multiplicity

	TypeReference *
	Zero to Many

	TypeReference +
	One to Many

	TypeReference # N
	Exactly N

	TypeReference # Low .. High
	From the Low bound to High bound

	TypeReference # Low ..
	From the Low bount to any number

[bookmark: _Toc181526495][bookmark: _Toc181589212][bookmark: _Toc177300690][bookmark: _Toc180290655]The default value for a collection type is the empty collection, written {}. The one-to-many multiplicity constraint forbids an empty collection, so must have at least one member on initialization.
[bookmark: _Ref204139447][bookmark: _Toc204157984][bookmark: _Toc206556024][bookmark: _Toc225215649]Operators
The following postfix unary operator takes Collection as a left operand.
	Operator
	Return

	#
	Unsigned

The following binary operations take Collection as a left operand.
	Operator
	Right Operand
	Return

	>, <, <=, >=, ==, !=
	Collection
	Logical

	Where
	Logical
	Collection

	Select
	Any
	Collection

	&, |, \
	Collection
	Collection

[bookmark: _Toc204157985][bookmark: _Toc181526496][bookmark: _Toc181589213]For the operators that return a collection, the inferred element type of the resulting collection is the most specific type which the elements of both operands may be converted to.
[bookmark: _Toc206556025][bookmark: _Toc225215650]Members
The following members are defined on all collections:
Choose() : Any;	
Count() : Unsigned;	
Distinct() : Collection;	
Choose picks an arbitrary element from a collection. The return type is the element type. The result of calling Choose on an empty collection is undefined.
Count returns the total number of elements in a collection. The return type is a Number.
Distinct removes all duplicates in a collection. The return type is the same as the collection.
The following members are defined on collections of type Logical*:
All() : Logical;		
Exists() : Logical;
All returns false if false is an element of the collection and true otherwise. Exists returns true if true is an element of the collection and false otherwise.
The following members are defined on collections that are subtypes of Number*:
Average() : Scientific;
Maximum() : Number;
Minimum() : Number;
Sum() : Number;
Maximum, Minimum, and Sum are specialized to return the element type of the collection.
Average computes the Sum of the collection and divides that by the Count.
Maximum returns the largest value in the collection.
Minimum returns the smallest value in the collection.
Sum returns the arithmetic summation of the values in the collection.
[bookmark: _Toc204157986][bookmark: _Toc206556026][bookmark: _Toc225215651]Indexers
A collection may be accessed using language generated indexers of two kinds, selectors and projectors. A selector extracts members of a collection with a member that matches a value. A projector extracts all values of a field from a collection. Both of these operations can be accomplished with query expressions; however, this notation is more compact.
[bookmark: _Toc204157987][bookmark: _Toc206556027][bookmark: _Toc225215652]Selectors
The compiler will generate indexers for all fields of Person for Person*.
Consider the following example:
type Person {
 Id : Integer64 = AutoNumber();
 Name : Text;
 HairColor : Text;
} where identity Id, unique Name;

People : Person* {
 {Name = "Mary", HairColor = "Brown"},
 {Name = "John", HairColor = "Brown"},
 {Name = "Fritz", HairColor = "Blue"}
};
 Consider the following expressions:
People.Name("Mary")
evaluates to:
{{Name = "Mary", HairColor = "Brown" }}

People.Name("Bill")
evaluates to:
{}

People.HairColor("Brown")
evaluates to:
{
 {Name = "Mary", HairColor = "Brown" },
 {Name = "John", HairColor = "Brown"}
}

// Assuming the Fritz record was assigned the Id 123
People.Id(123)
evaluates to:
{{Name = "Fritz", HairColor = "Blue"}}
The expression:
Collection.MemberField(Expression)
is equivalent to:
from c in Collection
where c.MemberField == Expression
select c
The identity auto indexer is special in that it is also an indexer directly on the collection, so the following expression is legal:
People(123) == {{Name = "Fritz", HairColor = "Blue"}}
If the designer chose a different representation for identity, it would be the default indexer as shown in the following variant of the above example:
type Person {
 Name : Text;
 HairColor : Text;
} where identity Name;

People("Mary") == {{Name = "Mary", HairColor = "Brown" }}
Assuming the identity constraint for a collection is defined using the following pattern:
identity(IdField1, IdField2, ...)
the following expression
Collection (Expression1, Expression2, ...)
is equivalent to:
(from c in Collection
where c.IdentityField1 == Expression1, c.IdField2 == Expression2, ...
select c).Choose
[bookmark: _Toc204157988][bookmark: _Toc206556028][bookmark: _Toc225215653]Projectors
Projectors return the values 0f one field from each member of a collection.
Again, consider the following example:
type Person {
 Id : Integer64 = AutoNumber();
 Name : Text;
 HairColor : Text;
} where identity Id, unique Name;

People : Person* {
 {Name = "Mary", HairColor = "Brown"},
 {Name = "John", HairColor = "Brown"},
 {Name = "Fritz", HairColor = "Blue"}
}
The following expressions all evaluate to true:
People.Name == {"Mary", "John", "Fritz"}
People.HairColor == {"Brown", "Brown", "Blue"}
People.HairColor.Distinct == {"Brown", "Blue"}
Note that the returned collection may have duplicates. To obtain a duplicate free collection, use Distinct.
The expression:
Collection.MemberField
is equivalent to:
from c in Collection
select c.MemberField
In the event that the identifier for the projector is equal to a member on collection, the projector is not added. Specifically, Choose, Count, and Distinct will not be added as projectors.
[bookmark: _Toc204157989][bookmark: _Toc206556029][bookmark: _Toc225215654]Uniqueness
Collections in M may contain multiple copies of the same element. The constraint unique value limits the number of elements in a collection to 1. No two elements in the collection will return true for ==.
The unique constraint may also take an expression or a comma separated list of expressions. In this case, the constraint will ensure no two elements are equal on every expression in the list.
[bookmark: _Toc204157990][bookmark: _Toc206556030][bookmark: _Toc225215655]Null
Null is a type with a single value null. It is used in conjunction with other types to add null to the value space and make a nullable type. Nullable types can be specified with the postfix operator ? or with a union of the type and Null.
The type below has two nullable fields, SSN and Spouse.
type Person {
 Name : Text;
 SSN : Text?;
 Spouse : Person | Null;
}
Nullability is idempotent. T?? is the same as T? Collections cannot be made nullable therefore T*? is not a legal type. Elements of collections can be nullable so T?* is a legal type.
Except as noted binary operations defined to take a left operand of T, right operand of S and return type of R are lifted to accept T?, S? and return R?. If either actual operand is null, the operation will return null. Logical operations && and || are not lifted.
The following binary operations take Null as a left operand.
	Operator
	Right Operand
	Return

	== !=
	Null
	Logical

	??
	Any
	Any

The return type of ?? is specialized to the type for the left operand without the null value. The type of the right operand must be compatible with the type of the left operand.
The default value of type Null is null.
[bookmark: _Toc204157991][bookmark: _Toc206556031][bookmark: _Toc225215656]Computed and Stored Values
M provides two primary means for values to come into existence: computed values and stored values (a.k.a. fields). Computed and stored values may occur with both module and entity declarations and are scoped by their container.
A computed value is derived from evaluating an expression. In contrast, a field stores a value and the contents of the field may change over time[footnoteRef:2]. [2: M currently provides no language constructs for mutating the contents of a field. However, implementations are likely to provide out-of-band mechanism for update.]

[bookmark: _Ref197129054][bookmark: _Toc204157992][bookmark: _Toc206556032][bookmark: _Toc225215657]Computed Value Declaration
A ComputedValueDeclaration binds a name to an expression that is used to compute the resultant value.
ComputedValueDeclaration:
Identifier FormalParameters ReturnTypeopt ExpressionBody
extern Identifer FormalParameters ReturnType ;
FormalParameters:
(Parametersopt)
Parameters:
Parameter
Parameters , Parameter
Parameter:
Identifier TypeAscriptionopt
ReturnType:
TypeAscription
ExpressionBody:
{ Expression ;opt }
If the type of a parameter or the ReturnType is not explicitly specified, the parameter or return type will be implicitly inferred from the ExpressionBody. For example, the following two ComputedValueDeclarations have the same meaning:
Add(x : Integer32, y : Integer32) { x + y }
Add(x : Integer32, y : Integer32) : Integer32 { x + y }
ComputedValueDeclaration introduces the formal parameters into scope. It is an error to have more than one formal parameter with the same Identifier.
[bookmark: _Toc204157993][bookmark: _Toc206556033][bookmark: _Toc225215658]Overloading
An entity may define multiple computed values with the same name. In this case, selection is determined based on the number of arguments. It is an error to define two computed values with the same name and the same number of arguments.
Within a module or an entity the names of computed values and extents or fields must be disjoint.
[bookmark: _Ref197129036][bookmark: _Toc204157994][bookmark: _Toc206556034][bookmark: _Toc225215659]Fields
A field is a storage location. A field declaration specifies the name of the field and optionally a type ascription which constrains values in the field to be of the ascribed type. An initial value may be defined by either equating the field with an Expression or using an InitializationExpression (§9.3).
If an initializer is present without a TypeAscription, the type of the field is the type of the initializer. If both an initializer and TypeAscription are present, then the initializer must conform to the TypeAscription.
FieldDeclaration:
DottedIdentifer TypeAscriptionopt = Expression ;
DottedIdentifier TypeAscriptionopt InitializationExpression ;opt
DottedIdentifers TypeAscriptionopt ;
extern Identifier TypeAscription ;
DottedIdentifiers:
DottedIdentifier
DottedIdentifiers , DottedIdentifier
DottedIdentifer:
IdentifierPath
. IdentifierPath
IdentifierPath:
Identifier
IdentifierPath . Identifier
[bookmark: _Toc200925528][bookmark: _Toc200765860][bookmark: _Toc200770216][bookmark: _Toc200925529][bookmark: _Toc200765861][bookmark: _Toc200770217][bookmark: _Toc200925530][bookmark: _Toc200765862][bookmark: _Toc200770218][bookmark: _Toc200925531][bookmark: _Toc200765863][bookmark: _Toc200770219][bookmark: _Toc200925532][bookmark: _Toc225215660][bookmark: _Toc445783004][bookmark: _Toc54350322][bookmark: _Toc181526423][bookmark: _Toc181589159][bookmark: _Toc204157997][bookmark: _Ref206550566][bookmark: _Toc206556035]External Declarations
The extern feature allows an M author to declare the ‘shape’ or signature of some construct, while the implementation a runtime not defined in M. Only module level fields (extents) and computed values may be marked extern.
The M language defines a keyword, extern which can be applied to computed value or extent declarations. When applied to a computed value declaration, that declaration must explicitly specify a return type and must not provide a body for the computed value. When applied to an extent declaration, that declaration must specify a type.
module Microsoft.Samples
{
extern Add (x:Integer32, y:Integer32) : Integer32;
extern HostName() : Text;

extern People : {
		Id : Integer32 = AutoNumber;
		Name : Text;
		Age : Integer16;
}* where identity Id;
}
A declaration marked with extern can be referred to anywhere such a declaration could be referred to if it were not marked extern. That is, marking a declaration as extern does not affect where that declaration can be referred to in M. Unless an extern declaration is explicitly exported, it may only be used by the declaring module.
[bookmark: _Toc225215661]Expressions
An expression is a sequence of operators and operands. This chapter defines the syntax, order of evaluation of operands and operators, and meaning of expressions.
[bookmark: _Ref465590476][bookmark: _Toc54350325][bookmark: _Toc181526426][bookmark: _Toc181589162][bookmark: _Toc204157998][bookmark: _Toc206556036][bookmark: _Toc225215662][bookmark: _Toc445783005][bookmark: _Ref449406927]Operators
Expressions are constructed from operands and operators. The operators of an expression indicate which operations to apply to the operands. Examples of operators include +, -, *, and /. Examples of operands include literals, fields, and expressions.
There are the following kinds of operators:
Unary operators take one operand and use prefix notation such as –x.
Binary operators take two operands and use infix notation such as x + y.
Ternary operator. Only one ternary operator, ?:, exists; it takes three operands and uses infix notation (c? x: y).
Query comprehensions
Precedence determines how operators are grouped with operands. Unless otherwise specified, the order of evaluation of operands is undefined.
A single syntactic operator may have different meanings depending on the type of its operands. That is, an operator may be overloaded. In this case, the meaning and the return type is determined by selecting the most specific super type for both operands for which a meaning and return type are specified in §3.
[bookmark: _Ref461355228][bookmark: _Toc54350326][bookmark: _Toc181526427][bookmark: _Toc181589163][bookmark: _Toc204157999][bookmark: _Toc206556037][bookmark: _Toc225215663][bookmark: _Ref448036412][bookmark: _Toc54350349][bookmark: _Toc181526439][bookmark: _Toc181589180][bookmark: _Toc181526431][bookmark: _Toc181589173]Operator precedence and associativity
Precedence and associativity determine how operators and operands are grouped together. For example, the expression x + y * z is evaluated as x + (y * z) because the * operator has higher precedence than +. The following table summarizes all operators in order of precedence from highest to lowest:
	Category
	Operators

	Primary
	x.y f(x)

	Unary
	+ - ! ~ # identity unique

	Multiplicity (unary postfix)
	? + * #

	Multiplicative
	* / %

	Additive
	+ -

	Shift
	<< >>

	Relational and type testing
	< > <= >= in x:T

	Equality
	== !=

	Logical And (conjunction)
	&&

	Logical Or (disjunction)
	||

	Null Coalescing
	??

	Conditional
	?:

	Query Comprehension
	from join let where select group by accumulate

	Where
	where

	Select
	select

	Bitwise And, Intersection
	&

	Bitwise Exclusive Or
	^

	Bitwise Or, Union
	|

When an operand occurs between two operators with the same precedence, the associativity of the operators controls the order in which the operations are performed. All binary operators are left associative, that is, operations are performed left to right. For example, x + y + z is evaluated as (x + y) + z.
Precedence and associativity can be controlled using parentheses. For example, x + y * z first multiplies y by z and then adds the result to x, but (x + y) * z first adds x and y and then multiplies the result by z.
[bookmark: _Toc204158000][bookmark: _Toc206556038][bookmark: _Toc225215664]Member access
A MemberAccessExpression takes an expression which resolves to a scope as the left operand and a symbol as the right operand. Evaluating the expression returns the value bound to the symbol in the scope.
MemberAccessExpression:
PrimaryExpression . MemberName
MemberName:
Identifier
A MemberAccessExpression consists of a PrimaryExpression, followed by a "." token, followed by a member selector. Consider the following MemberAccessExpression:
{Name = "Bill", Age = 23}.Age
The member access operator looks up the symbol Age in the scope defined by the instance:
{Name = "Bill", Age = 23}
[bookmark: _Toc181589171][bookmark: _Toc204158001][bookmark: _Toc206556039][bookmark: _Ref212275186][bookmark: _Toc225215665]Symbol lookup
A symbol lookup is the process whereby the meaning of a name in a context is determined. A symbol lookup may occur as part of evaluating a SimpleName or a MemberAccess in an expression.
M is a lexically scoped language. Scopes introduce symbols and may nest and an inner scope may introduce a symbol which hides a symbol in an outer scope. Initially a symbol is resolved against the lexically innermost scope. If no matching symbol is found in the innermost scope, lookup proceeds in the containing scope. This process continues until the outermost scope is reached which is always a module.
The following are examples of scopes:
An entity definition.
A module.
A field definition.
The left hand side of a where expression.
A query expression.
A member lookup of a name N in a type T is processed as follows: The set of all accessible members named N declared in T and the base types of T is constructed. If no members named N exist and are accessible, then the lookup produces no match.
[bookmark: _Toc180290659][bookmark: _Toc181526501][bookmark: _Toc181589218]Field declarations override lexical scoping to prevent the type of a declaration binding to the declaration itself. The ascribed type of a field declaration must not be the declaration itself; however, the declaration may be used in a constraint. Consider the following example:
type A;
type B {
[bookmark: _Toc204157996] A : A;
}
The lexically enclosing scope for the type ascription of the field declaration A is the entity declaration B. With no exception, the type ascription A would bind to the field declaration in a circular reference which is an error. The exception allows lexical lookup to skip the field declaration in this case.
A declaration may be used within a constraint on the ascribed type as in the following example:
type Node {
 Label : Text;
 Parent : Node;
}
Nodes : (Node where value.Parent in Nodes)*;
The right operand of the in clause stipulates that the Parent field of a node must be within the collection being defined, Nodes.
[bookmark: _Toc204158002][bookmark: _Ref205163757][bookmark: _Toc206556040][bookmark: _Toc225215666]Initializers
Entity types and collections use a common initialization syntax.
An InitializationExpression constructs a new instance of a collection or entity.
InitializationExpression:
{ ElementInitializersopt }
{ ElementInitializers , }
ElementInitializer:
LeadingDottedIdentifier TypeAscriptionopt = Expression
LeadingDottedIdentifer TypeAscriptionopt InitializationExpression
ElementInitializers:
ElementInitializer
ElementInitializers , ElementInitializer
LeadingDottedIdentifier:
DottedIdentifier
. DottedIdentifier
[bookmark: _Toc204158003][bookmark: _Toc206556041][bookmark: _Toc225215667]Collection Initializer
The following example initializes the extent SmallNumbers to the collection of values 1, 2, 3, 4.
SmallNumbers { 1, 2, 3, 4 }
[bookmark: _Toc198348651][bookmark: _Toc204158004][bookmark: _Toc206556042][bookmark: _Toc225215668]Enumeration Initializer
The following example initializes three extents: Colors, Makes, and Cars. Although there is no intrinsic enumeration type in the M language, the first two extents are used as enumerations.
Colors { Red = "Red", Blue = "Blue", Yellow = "Yellow" }
Makes { Ford = "Ford", Chevy = "Chevrolet" }
Cars {
 { Make = Makes.Ford, Color = Colors.Blue }
 { Make = Makes.Chevy, Color = Colors.Red }
}
[bookmark: _Toc204158005][bookmark: _Toc206556043][bookmark: _Toc225215669]Reference Initializer
M provides labeled collections to construct instances which reference each other. Consider the following type Person and extent People:
type Person {
 Id : Integer32 = AutoNumber();
 Name : Text;
 Age : Integer32;
 Spouse : Person;
} where identity Id;

People : (Person where value.Spouse in People)*;
The Spouse field references another Person. One way to initialize this structure is to explicitly assign the identity of each instance:
People {
 { Id = 0, Name = "Jack", Age = 23, Spouse = 1 },
 { Id = 1, Name = "Jill", Age = 25, Spouse = 0 },
}
This assumes that the values 0 and 1 are not already used in the Person extent and exposes unnecessary implementation details. M provides label values to initialize references without explicit manipulation of identity values. Consider the following example which initializes the same structure as above:
People {
 Jack { Name = "Jack", Age = 23, Spouse = Jill },
 Jill { Name = "Jill", Age = 25, Spouse = Jack },
}
The label Jack introduces an identifier which can be used to reference the instance. This allows the first instance, Jack, to reference the second instance, Jill, as a spouse and vice versa.
[bookmark: _Toc204158006][bookmark: _Toc206556044][bookmark: _Toc225215670]Non Local Initialization
It is frequently useful to initialize a value in another structure. In the following example computers have zero to many boards. This relationship is implemented as a reference from Board to Computer.
type Computer {
 Id : Integer32 = AutoNumber();
 Processor : Text;
} where identity Id;

type Board {
 Id : Integer32 = AutoNumber();
 Kind : Text;
 Computer : Computer;
} where identity Id;

Boards : (Board where value.Computer in Computers)*;
Computers : Computer*;
Creating an instance of a computer requires initializing both the computer and the boards. This can be initialized "bottom up" as follows:
Computers {
 MyPC { Processor = "x86"}
}

Boards {
 { Kind = "Graphics", Computer = Computers.MyPC },
 { Kind = "Sound", Computer = Computers.MyPC },
 { Kind = "Network", Computer = Computers.MyPC },
}
Using non local initialization, this same structure can be initialized "top down" as follows:
Computers {
 MyPC { Processor = "x86",
 .Boards {
 { Kind = "Graphics", Computer = MyPC },
 { Kind = "Sound", Computer = MyPC },
 { Kind = "Network", Computer = MyPC },
 }
 }
}
The dot prefix to the Boards label (.Boards) does not introduce a new label into the current scope. Rather, it looks up the symbol at the extent scope and adds the content to that extent.
[bookmark: _Toc200765872][bookmark: _Toc200770228][bookmark: _Toc200925541][bookmark: _Toc200765873][bookmark: _Toc200770229][bookmark: _Toc200925542][bookmark: _Toc200765874][bookmark: _Toc200770230][bookmark: _Toc200925543][bookmark: _Toc200765875][bookmark: _Toc200770231][bookmark: _Toc200925544][bookmark: _Toc200765876][bookmark: _Toc200770232][bookmark: _Toc200925545][bookmark: _Toc200765877][bookmark: _Toc200770233][bookmark: _Toc200925546][bookmark: _Toc200765878][bookmark: _Toc200770234][bookmark: _Toc200925547][bookmark: _Toc200765879][bookmark: _Toc200770235][bookmark: _Toc200925548][bookmark: _Toc200765880][bookmark: _Toc200770236][bookmark: _Toc200925549][bookmark: _Toc200765881][bookmark: _Toc200770237][bookmark: _Toc200925550][bookmark: _Toc200765882][bookmark: _Toc200770238][bookmark: _Toc200925551][bookmark: _Toc200765883][bookmark: _Toc200770239][bookmark: _Toc200925552][bookmark: _Ref450459806][bookmark: _Toc54350342][bookmark: _Toc181526434][bookmark: _Toc181589175][bookmark: _Toc204158007][bookmark: _Toc206556045][bookmark: _Toc225215671]Invocation Expression
The Identifier in an InvocationExpression resolves to a computed value declaration of the same name and arity. Evaluating an invocation expression causes each argument to be evaluated. The result of each argument is bound to the formal parameter in the corresponding position. The result of evaluating the body of the computed value declaration is the value of the invocation expression.
InvocationExpression:
Identifier InvocationExpressionArguments
InvocationExpressionArguments:
(Argumentsopt)
Arguments:
Argument
Arguments , Argument
Argument:
Expression
[bookmark: _Ref450882425][bookmark: _Ref486766991][bookmark: _Ref486767029][bookmark: _Toc54350344][bookmark: _Toc181526435][bookmark: _Toc181589176][bookmark: _Toc204158008][bookmark: _Toc206556046][bookmark: _Toc225215672]Primary expressions
The following rules define the grammar for primary expressions.
PrimaryExpression:
PrimaryCreationExpression
PrimaryCreationExpression:
Literal
SimpleName
ParenthesizedExpression
MemberAccessExpression
InvocationExpression
InitializationExpression
EntityTypeExpression
ContextVariable
InfoOfExpression

Literal is defined in §2.4.3. EntityTypeExpression is defined in §7.5. The remaining non terminals are defined in this section, §8.3.
[bookmark: _Ref451236352][bookmark: _Ref493143521][bookmark: _Ref493143522][bookmark: _Toc54350346][bookmark: _Toc181526437][bookmark: _Toc181589178][bookmark: _Toc204158009][bookmark: _Toc206556047][bookmark: _Toc225215673]Simple names
A SimpleName consists of a single identifier.
SimpleName:
Identifier
In the expression:
Person.Age
Both Person and Age are SimpleNames.
[bookmark: _Ref469547105][bookmark: _Toc54350348][bookmark: _Toc181526438][bookmark: _Toc181589179][bookmark: _Toc204158010][bookmark: _Toc206556048][bookmark: _Toc225215674]Parenthesized expressions
A ParenthesizedExpression consists of an Expression enclosed in parentheses.
ParenthesizedExpression:
(Expression)
A ParenthesizedExpression is evaluated by evaluating the Expression within the parentheses.
[bookmark: _Toc206556049][bookmark: _Toc225215675][bookmark: _Toc204158011][bookmark: _Toc54350403][bookmark: _Toc181526466][bookmark: _Toc181589183][bookmark: _Toc445783015][bookmark: _Ref448212555][bookmark: _Ref449414776][bookmark: _Ref457446073]Context variable
The following rules define the grammar for context variables.
ContextVariable
value
Value is defined in §9.15.1.
[bookmark: _Toc225215676][bookmark: _Toc206556050]Infoof operator
The infoof is used to obtain the entry in Language.Catalog (§12) for a symbol. The infoof operator is a special form, not a computed value. The symbol must be visible in the current scope and is resolved using normal symbol resolution rules. On evaluation, rather than returning the value the symbol represents, infoof returns the metadata for the symbol itself.
InfoOfOperator:
infoof (DottedIdentifer)
Examples:
module Test {
 import Language.Catalog;

 type Person {
 Name : Text;
 Age : Integer;
 }

 People : Person*;

 Children() { People where Age < 18 }

 Documentation : {
 About : Language.Catalog.Declaration,
 Description : Text
 }*;

 Documentation {
 {
 About = infoof(Person).Declaration,
 Description = "Describes people"
 },
 {
 About = infoof(People).Declaration,
 Description = "Contains people"
 },
 {
 About = infoof(Children).Declaration,
 Description = "Extracts young people"
 },
 }
}
The following table defines the classes of symbols that are resolved with infoof and the resulting entry in Language.Catalog.
	Symbol
	Language.Catalog

	ComputedValue
	ComputedValues

	Extent
	Extents

	Language
	Languages

	Module
	Modules

	Type
	Types

[bookmark: _Toc225215677]Unary operators
The following rules define the grammar for unary operators.
UnaryExpression:
PrimaryExpression
+ PrimaryExpression
- PrimaryExpression
! PrimaryExpression
~ PrimaryExpression
PrimaryExpression #
IdentityExpression
UniqueExpression
IdentityExpression:
identity Identifier
identity (Identifiers)
UniqueExpression:
unique Identifier
unique (Identifiers)
[bookmark: _Toc204158012]The identity constraint is discussed in §7.5.2.
The type rules for unary operators are defined in Number §7.4.3.1, Logical §7.4.5, Binary §7.4.6, and Collection §7.6.2.
Examples of unary operators follow:
+1
-2
!true
~0x00
{1,2,3}#
identity Id
unique Name
[bookmark: _Toc204158020][bookmark: _Toc206556051][bookmark: _Toc225215678]Multiplicity
The following rules define the grammar for multiplicity operators.
MultiplicityExpression:
UnaryExpression
UnaryExpression ?
UnaryExpression +
UnaryExpression *
UnaryExpression # IntegralRange
IntegralRange:
IntegerLiteral
IntegerLiteral ..
IntegerLiteral .. IntegerLiteral
The type rules for multiplicity operators are defined in type operators §7.3.
Examples of multiplicity expressions follow:
Integer32?
Text#2..4
{Name : Text; Age : Integer32}*
[bookmark: _Toc206556052][bookmark: _Toc225215679]Arithmetic operators
The following rules define the grammar for arithmetic operators.
AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression
MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression * MultiplicityExpression
MultiplicativeExpression / MultiplicityExpression
MultiplicativeExpression % MultiplicityExpression
The type rules on arithmetic operators are defined in Number §7.4.3, Text §7.4.4, Date §7.4.8, Time §7.4.9.
Examples of arithmetic operators follow:
1 + 1
2 * 3
"Hello " + "World"
[bookmark: _Toc204158013][bookmark: _Toc206556053][bookmark: _Toc225215680]Shift operators
The following rules define the grammar for shift operators.
ShiftExpression:
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
The type rules on shift operators are defined in Binary §7.4.6.
[bookmark: _Toc204158014][bookmark: _Toc206556054][bookmark: _Toc225215681]Relational and type-testing operators
The following rules define the grammar for relational and type testing operators.
RelationalExpression:
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression in ShiftExpression
RelationalExpression : ShiftExpression
The type rules on relational and type-testing operators are throughout §3.
[bookmark: _Toc204158015][bookmark: _Toc206556055][bookmark: _Toc225215682]Equality operators
The following rules define the grammar for equality operators.
EqualityExpression:
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression
The type rules on equality operators are throughout §3.
[bookmark: _Toc204158016][bookmark: _Toc206556056][bookmark: _Toc225215683]Logical operators
The following rules define the grammar for logical operators.
LogicalAndExpression:
EqualityExpression
LogicalAndExpression && EqualityExpression
LogicalOrExpression:
LogicalAndExpression
LogicalOrExpression || LogicalAndExpression
The type rules on logical operators are defined in Logical §7.4.5.
[bookmark: _Toc445783013][bookmark: _Ref461974823][bookmark: _Ref463366835][bookmark: _Ref470173328][bookmark: _Ref529352704][bookmark: _Toc54350398][bookmark: _Toc204158017][bookmark: _Toc206556057][bookmark: _Toc225215684][bookmark: _Toc181589170]Conditional operators
There are two conditional operators coalesce and conditional.
[bookmark: _Toc204158018][bookmark: _Toc206556058][bookmark: _Toc225215685][bookmark: _Toc174237569]Coalescing operator
The ?? operator is called the null coalescing operator.
NullCoalescingExpression:
LogicalOrExpression
LogicalOrExpression ?? NullCoalescingExpression
A null coalescing expression of the form a ?? b requires a to be nullable. If a is not null, the result of a ?? b is a; otherwise, the result is b. The operation evaluates b only if a is null.
b must be of the same type as a without the value null.
[bookmark: _Toc204158019][bookmark: _Toc206556059][bookmark: _Toc225215686]Conditional operator
The ?: operator is called the conditional operator. It is at times also called the ternary operator.
ConditionalExpression:
NullCoalescingExpression
NullCoalescingExpression ? Expression : Expression
A conditional expression of the form b ? x : y first evaluates the condition b. Then, if b is true, x is evaluated and becomes the result of the operation. Otherwise, y is evaluated and becomes the result of the operation. A conditional expression never evaluates both x and y.
The conditional operator is right-associative, meaning that operations are grouped from right to left. For example, an expression of the form a ? b : c ? d : e is evaluated as a ? b : (c ? d : e).
The first operand of the ?: operator must be an expression of a type that can be implicitly converted to Logical otherwise a compile-time error occurs. The middle and left operands must be of compatible types. The result of the conditional is the least specific type.
[bookmark: _Toc134598367][bookmark: _Toc181526475][bookmark: _Toc181589192][bookmark: _Toc204158021][bookmark: _Toc206556060][bookmark: _Toc225215687]Query expressions
Query expressions provide a language integrated syntax for queries that is similar to relational and hierarchical query languages such as Transact SQL and XQuery.
A query expression begins with a from clause and ends with either a select, group or accumulate clause. The initial from clause can be followed by zero or more from, let, or where clauses. Each from clause is a scope that introduces one or more iteration identifiers ranging over a sequence or a join of multiple sequences. Each let clause computes a value and introduces an identifier representing that value, and each where clause is a filter that excludes items from the result that do not satisfy the Logical expression. The final select, accumulate or group clause specifies the shape of the result in terms of the iteration identifiers(s).
QueryExpression:
ConditionalExpression
QueryFromClause QueryBody
QueryBody:
QueryBodyClausesopt QueryConstructor
QueryBodyClauses:
QueryBodyClause
QueryBodyClauses QueryBodyClause
QueryBodyClause:
QueryFromClause
QueryLetClause
QueryWhereClause
QueryJoinClause
QueryConstructor:
QuerySelectClause
QueryGroupClause
QueryAccumulateClause
QueryFromClause:
from Identifier in ConditionalExpression
QueryLetClause:
let Identifier = ConditionalExpression
QueryJoinClause:
join Identifier in Expression on Expression equals ConditionalExpression
QueryWhereClause:
where ConditionalExpression
QuerySelectClause:
select ConditionalExpression
QueryGroupClause:
group Expression by ConditionalExpression
QueryAccumulateClause:
QueryLetClause accumulate ConditionalExpression
The accumulate keyword generalizes Sum, Min, Max et cetera. Its purpose is to repeatedly apply an expression to each element in a collection and accumulate the result. Consider the following fragment:
from c in CollectionExpression
let a = Expression
accumulate Expression
As an example, the following M code sums the elements in the collection Numbers:
from n in Numbers
let i = 0
accumulate i + n
The following computes minimum of a collection of Integer32*:
from n in Integers
let i = MaxInteger32
accumulate i < n ? i : n
The following computes the maximum of a collection of Integer32*:
from n in Integers
let i = MinInteger32
accumulate i > n ? i : n
The following returns false if a collection contains false and true otherwise:
from b in TruthValues
let r = true
accumulate b && r
The following returns true if a collection contains true and false otherwise:
from b in TruthValues
let r = false
accumulate b || r
[bookmark: _Toc204158030][bookmark: _Ref206550835][bookmark: _Toc206556061][bookmark: _Toc225215688]Compact query expressions
There are two compact forms for query expressions the binary infix where and select.
[bookmark: _Ref204132360][bookmark: _Ref204132362][bookmark: _Toc204158031][bookmark: _Toc206556062][bookmark: _Toc225215689]Where operator
The infix where operation filters elements from a collection that match a predicate.
WhereExpression:
QueryExpression
QueryExpression where WhereExpressions
WhereExpressions:
WhereExpression
WhereExpressions , WhereExpression
The WhereExpression introduces the identifier value into the scope of the right hand side to refer to an element of the collection on the left. The right hand side may also use any other identifiers that are in lexical scope.
The following example uses value to filter the Numbers collection:
OneToTen : Number where value > 0 && value <= 10;
When used over a collection type, value refers to the collection:
SmallCollection : Number* where value.Count == 2;

SmallCollectionOneToTen : (Number where value > 0 && value <=10)*
 where value.Count < 10;
Formalizing this convention:
QueryExpression where Expression
Is a compact syntax for the following expression:
from value in QueryExpression
where Expression
select value
[bookmark: _Toc204158032][bookmark: _Toc206556063][bookmark: _Toc225215690]Select operator
The select operator applies an expression to every element in a collection and returns the results in a new collection.
SelectExpression:
WhereExpression
WhereExpression select Expression
The SelectExpression introduces the identifier value into the scope of the right hand side to refer to an element of the collection on the left. The right hand side may also use any other identifiers that are in lexical scope.
Examples of the select operator follow:
{1, 2, 3} select value * 2
People select value.Name
{{}, {1}, {1,1}} select value#
[bookmark: _Toc204158033][bookmark: _Toc206556064][bookmark: _Toc225215691]Binary and Collection operators
The following rules define the grammar for binary and collection operators.
InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression
ExclusiveOrExpression:
AndExpression
ExclusiveOrExpression ^ AndExpression
AndExpression:
SelectExpression
AndExpression & SelectExpression
The type rules on binary and collection operators are defined in Binary §7.4.6, and Collection §7.6.2.
[bookmark: _Toc204158034][bookmark: _Toc206556065][bookmark: _Toc225215692]Expressions
An expression is a sequence of operands and operators. Applying the operator to the operand yields a value.
[bookmark: _Ref461975442][bookmark: _Toc54350404][bookmark: _Toc181526467][bookmark: _Toc181589184]Expression:
InclusiveOrExpression
[bookmark: _Toc181526476][bookmark: _Toc181589193][bookmark: _Toc204158037][bookmark: _Toc206556066][bookmark: _Toc225215693]Module
A module is a scope which contains declarations of types (§3), extents (§8.2), and computed values (§8.1). Modules override lexical scoping to import symbols which have been exported from another module.
[bookmark: _Toc204158038][bookmark: _Toc206556067][bookmark: _Toc225215694]Compilation Unit
Several modules may be contained within a CompilationUnit, typically a text file.
CompilationUnit:
ModuleDeclarationList
ModuleDeclarationList:
ModuleDeclaration
ModuleDeclarationList ModuleDeclaration
[bookmark: _Ref197126952][bookmark: _Toc204158039][bookmark: _Toc206556068][bookmark: _Toc225215695]Module Declaration
[bookmark: _Toc181526486][bookmark: _Toc181589203]A ModuleDeclaration is a named container/scope for type declarations, field declarations, and computed value declarations.
ModuleDeclaration:
module QualifiedIdentifer ModuleBody ;opt
QualifiedIdentifier:
Identifier
QualifiedIdentifier . Identifier
ModuleBody:
{ ImportDirectives ExportDirectives ModuleMemberDeclarations }
ModuleMemberDeclarations:
empty
ModuleMemberDeclarations ModuleMemberDeclaration
ModuleMemberDeclaration:
LanguageDeclaration
FieldDeclaration
ComputedValueDeclaration
TypeDeclaration
Each ModuleDeclaration has a QualifiedIdentifier that uniquely qualifies the declarations contained by the module.
Each ModuleMemberDeclaration may be referenced either by its Identifier or by its fully qualified name by concatenating the QualifiedIdentifier of the ModuleDeclaration with the Identifier of the ModuleMemberDeclaration (separated by a period).
For example, given the following ModuleDeclaration:
module PeopleData {
 Names : Text*;
}
The fully qualified name of the field is PeopleData.Names, or using escaped identifiers, @[PeopleData].@[Names]. It is always legal to use a fully qualified name where the name of a declaration is expected.
Modules are not hierarchical or nested. That is, there is no implied relationship between modules whose QualifiedIdentifier share a common prefix.
For example, consider these two declarations:
module A {
 N : Number;
}
module A.B {
 NPlusOne : { N + 1 }
}
Module A.B is in error, as it does not contain a declaration for the identifier N. That is, the members of Module A are not implicitly imported into Module A.B.
[bookmark: _Toc204158040][bookmark: _Toc206556069][bookmark: _Ref220211888][bookmark: _Ref220211901][bookmark: _Ref220213347][bookmark: _Ref220213355][bookmark: _Toc225215696]Inter-Module Dependencies
M uses ImportDirectives and ExportDirectives to explicitly control which declarations may be used across module boundaries.
ExportDirectives:
empty
ExportDirectives ExportDirective
ExportDirective:
export Identifiers;
ImportDirectives:
empty
ImportDirectives ImportDirective
ImportDirective:
import ImportModules ;
import QualifiedIdentifier { ImportMembers } ;
ImportMember:
Identifier ImportAliasopt
ImportMembers:
ImportMember
ImportMembers , ImportMember
ImportModule:
QualifiedIdentifier ImportAliasopt
ImportModules:
ImportModule
ImportModules , ImportModule
ImportAlias:
as Identifier
A ModuleDeclaration contains zero or more ExportDirectives, each of which makes a ModuleMemberDeclaration available to declarations outside of the current module.
A ModuleDeclaration contains zero or more ImportDirectives, each of which names a ModuleDeclaration whose declarations may be referenced by the current module.
A ModuleMemberDeclaration may only reference declarations in the current module and declarations that have an explicit ImportDirective in the current module.
An ImportDirective is not transitive, that is, importing module A does not import the modules that A imports.
For example, consider this ModuleDeclaration:
module People.Types {
 export Person;

 SecretNumber : Number;
 type Person { FirstName : Text; Age : Number; }
}
The field People.Types.SecretNumber may only be referenced from within the module People.Types. The type People.Types.Person may be referenced in any module that has an ImportDirective for module People.Types, as shown in this example:
module People.Data {
 import People.Types;
 export Names;

 Names : Text*;
 Friends : People.Types.Person*;
}
The example above used the fully qualified name to refer to People.Types.Person. An ImportDirective may also specify an ImportAlias that provides a replacement Identifier for the imported declaration:
module People.Data {
 import People.Types as pt;
 export Names;

 Names : Text*;
 Friends : pt.Person*;
}
An ImportAlias replaces the name of the imported declaration. That means that the following is an error:
module People.Data {
 import People.Types as pt;
 export Names;

 Names : Text*;
 Friends : People.Types.Person*;
}
It is legal for two or more ImportDirectives to import the same declaration, provided they specify distinct aliases. For a given module, at most one ImportDirective may use a given alias.
If an ImportDirective imports a module without specifying an alias, the declarations in the imported module may be referenced without the qualification of the module name. That means the following is also legal:
module People.Data {
 import People.Types;
 export Names;

 Names : Text*;
 Friends : Person*;
}
When two modules contain same-named declarations, there is a potential for ambiguity. The potential for ambiguity is not an error – ambiguity errors are detected lazily as part of resolving references.
Consider the following two modules:
module A {
 export X;
 X : Number;
}
module B {
 export X;
 X : Number;
}
It is legal to import both modules either with or without providing an alias:
module C {
 import A, B;
 Y { 1 + 2 }
}
This is legal because ambiguity is only an error for references, not declarations. That means that the following is a compile-time error:
module C {
 import A, B;
 Y { X + 2 } // error: unqualified identifier X is ambiguous
}
This example can be made legal either by fully qualifying the reference to X:
module C {
 import A, B;
 Y { A.X + 2 } // no error
}
or by adding an alias to one or both of the ImportDirectives:
module C {
 import A;
 import B as bb;
 Y { X + 2 } // no error, refers to A.X
 Z { bb.X + 2 } // no error, refers to B.X
}
Because module names may contain periods, there is a potential ambiguity when module names share a common prefix. Consider these two modules:
module A {
 export Z, B;
 type Z { C : Number; }
 B : Z;
}
module A.B {
 export C;
 C : Number;
}
If a module imports both of these modules, the QualifiedIdentifier A.B.C is inherently ambiguous, as it could either refer to the C field in module A.B or to the C field of the B field of module A. To disambiguate, one must use an alias to break the tie:
module F {
 import A;
 import A.B as ab;
 G { ab.C } // returns the C field of module A.B
 H { A.B.C } // returns the C field of the B field of module A
}
An ImportDirective may either import all exported declarations from a module or only one of them. The latter is enabled by specifying an ImportMember as part of the directive. For example, Module Plot2D imports only Point2D and PointPolar from the Module Geometry:
module Geometry {
 export Point2D, Point2DPolar, Point3D;
 type Point2D { X : Number; Y : Number; }
 type Point2DPolar { R : Number; T : Number; }
 type Point3D : Point2D { Z : Number; }
}
module Plot2D {
 import Geometry {Point2D, Point2DPolar};
 Points : Point2D*;
 PointsPolar : Point2DPolar*;
}
An ImportDirective that contains an ImportMember only imports the named declarations from that module. This means that the following is a compilation error because module Plot3D references Point3D which is not imported from module Geometry:
module Plot3D {
 import Geometry {Point2D};
 Points : Point3D*;
}
An ImportDirective that contains an ImportTarget and an ImportAlias assign the replacement name to the imported type, field, or computed value declaration.
[bookmark: _Toc204158041][bookmark: _Toc206556070][bookmark: _Toc225215697]Compilation Episode
Multiple compilation units may contribute declarations to a module of the same name.
The types and computed values of a module are sealed by a compilation episode. A subsequent compilation episode may not contribute additional types or computed values. Initial values for module level field declarations may be contributed in subsequent compilation episodes.
Each fragment must explicitly import the symbols used within that fragment and may only export symbols defined within that fragment.
[bookmark: _Toc206556071][bookmark: _Toc225215698]Storage
All dynamic storage in M is modeled as module-scoped FieldDeclarations called extents. The declaration of an extent may be spread across multiple sections of program text. Consider the following example:
// catalog.m
module Catalog {
 type Product {
 Name : Text;
 Price : Decimal9;
 Product(Name,Price);
 }

 Products : Product*;
}

// groceries.m
module Catalog {
 Products {
 Product("Soap", 1.29),
 Product("Tuna", 2.49)
 }
}

// hardware.m
module Catalog {
 Products {
 Product("Lightbulb", 0.99),
 Product("Screwdriver", 5.99)
 }
}
The resulting Products extent will contain:
{
 Product("Soap", 1.29),
 Product("Tuna", 2.49),
 Product("Lightbulb", 0.99),
 Product("Screwdriver", 5.99)
}
The mapping of module-scoped FieldDeclarations to physical storage is implementation-specific and outside the scope of this specification.
[bookmark: _Toc209252094][bookmark: _Toc225215699][bookmark: _Toc206556072]Attributes
Attributes provide metadata which can be used to interpret the language feature they modify.
AttributeSections:
AttributeSection
AttributeSections AttributeSection
AttributeSection:
@{ Nodes }
[bookmark: _Ref207607231][bookmark: _Toc209252095][bookmark: _Toc225215700]Case Insensitive
The CaseSensitive attribute controls whether tokens are matched with our without case sensitivity. The default value is true. The following language recognizes "Hello World", "HELLO World", and "hELLO WorLD".
module HelloWorld {
 @{CaseInsensitive[true]}
 language HelloWorld {
 syntax Main
 = Hello World;
 token Hello
 = "Hello";
 token World
 = "World";
 interleave Whitespace
 = " ";
 }
}
[bookmark: _Toc225215701]Classification

The classification annotation drives colorization in language services processors. The followgin classifications are supported:
@Classificaiton{"ClassificationKind"}
ClassificationKinds
Comment
Delimiter
Identifier
Keyword
Literal
Operator
String
Text
Unknown
Whitespace
An example follows:
@Classification{"Operator"} token Plus = "+";
@Classificaiton{"Keyword"} token ModuleToken = "module";
@Classificaiton{"Delimiter"} token Comma = ",";
[bookmark: _Toc225215702]FormatScope
@FormatScope{"Open"}
@FormatScope{"Close"}
[bookmark: _Toc225215703]Nest
@Nest{}
[bookmark: _Ref224364508][bookmark: _Toc225215704]Catalog
module Language.Catalog
{
 export CollectionTypes;
 export ComputedValues;
 export ConstantKinds;
 export Constants;
 export Declarations;
 export EntityTypes;
 export ExpressionKinds;
 export Expressions;
 export Extents;
 export Fields;
 export IdentityFields;
 export Imports;
 export IntrinsicTypes;
 export Languages;
 export MembershipConstraints;
 export Parameters;
 export Types;
 export UniqueConstraints;

 CollectionTypes : {
 Base : Types;
 MinimumCount : Integer64 = 0;
 MaximumCount : Integer64? = null;
 ElementType : Types;
 }* where identity(Base);

 ComputedValues : {
 Id : Integer32 = AutoNumber;
 ComputedValueBase : Declarations;
 ReturnType : Types;
 Body : Text?;
 }* where identity(Id);

 Constants : {
 Expression : Expressions;
 ConstantKind : ConstantKinds;
 Value : General;
 }* where identity(Expression);

 type ConstantKinds : Text where value in {
 "Null","Binary","DateTime","DateTimeOffset","Decimal","Guid","Integer",
 "Logical","Scientific","Text","Time","Unsigned" };

 // Root of the things M authors can declare (types, extents, computed values,languages)
 Declarations : {
 Id : Integer32 = AutoNumber;
 Name : Text;
 DefinedIn : Modules;
 HasSyntheticName : Logical = false;
 Exported : Logical = false;
 Kind : Text where value in { "Type", "Extent", "ComputedValue", "Language" };
 }* where identity(Id);

 EntityTypes : {
 Base : Types;
 Nullable : Logical = false;
 }* where identity(Base);

 Extents : {
 Declaration : Declarations;
 ExtentType : Types;
 }* where identity(Declaration);

 Expressions : {
 Id : Integer32 = AutoNumber;
 ExpressionType : Types;
 ExpressionKind : ExpressionKinds;
 }* where identity(Id);

 type ExpressionKinds : Text where value in {
 "Coalesce","Conditional","Constant","GraphExpressionSymbolo","Invocation",
 "MemberAccess","SelectExpressionSymbol","TypeAscription","TypeReference",
 "VariableReference","WhereExpressionSymbol","FromExpressionSymbol",
 "IntoExpressionSymbol","JoinExpressionSymbol","LetExpressionSymbol"
 };

 Fields : {
 Id : Integer32 = AutoNumber;
 Name : Text;
 Position : Integer16; // Position of field in entity declaration
 FieldType : Types; // Type of this field
 AutoGenerated : (Text where value in { "Identity", "IdSequence", "NewGuid" })?;
 EntityType : EntityTypes; // EntityType that this field belongs to
 }* where identity(Id),unique(Position,EntityType);

 IdentityFields : {
 Id : Integer32 = AutoNumber;
 EntityType : EntityTypes;
 Position : Integer16; // Position in the identity constraint declaration
 Field : Fields;
 }* where identity(Id),unique(EntityType,Position),unique(Field);

 Imports : {
 Id : Integer32 = AutoNumber;
 ImportingModule : Modules;
 Kind : Text where value in { "Module", "Member" };
 }* where identity(Id);

 ModuleImports : ({
 Id : Imports;
 Module : Modules;
 } where identity(Id), value.Module.Id != value.Id.ImportingModule.Id)*;

 MemberImports : ({
 Id : Imports;
 Member : Declarations where value.HasSyntheticName == false;
 } where identity(Id), value.Member.DefinedIn.Id != value.Id.ImportingModule.Id)*;

 IntrinsicTypes : {
 Base : Types;
 Nullable : Logical = false;
 // Min/Max are used to record length constraints on Text/Binary, range constraints on integer numerics, nonsensical for Logical, Guid
 Min : Integer64 = 0;
 Max : Integer64?;
 }* where identity(Base);

 Languages : {
 Declaration : Declarations;
 // TODO: Other aspects of Languages
 }* where identity(Declaration);

 MembershipConstraints : {
 Id : Integer32 = AutoNumber;
 Kind : Text where value in { "In", "Subset", "Superset" };
 TargetExtent : Extents;
 }* where identity(Id);

 Modules : {
 Id : Integer32 = AutoNumber;
 // TODO: Figure out if 400 characters is long enough for a module name
 Name : Text where value.Count <=400;
 }* where identity(Id),unique(Name);

 Parameters : {
 Id : Integer32 = AutoNumber;
 ComputedValue : ComputedValues;
 Position : Integer16;
 // TODO: Figure out if 400 characters is long enough for a parameter name
 Name : Text where value.Count <=400;
 ParameterType : Types;
 }* where identity(Id),unique(ComputedValue,Position),unique(ComputedValue,Name);

 Types : {
 Declaration : Declarations;
 BuiltInType : Text; // Named of standard library type upon which this type is based.
 MembershipConstraint : MembershipConstraints?;
 ConstraintExpression : Text?;
 }* where identity(Declaration);

 UniqueConstraints : {
 Id : Integer32 = AutoNumber;
 CollectionType : CollectionTypes;
 }* where identity(Id);

 UniqueFields : {
 Id : Integer32 = AutoNumber;
 UniqueConstraint : UniqueConstraints;
 Position : Integer16; // Position in the unique constraint declaration
 Field : Fields;
 }* where identity(Id),unique(UniqueConstraint,Position);
}
[bookmark: _Toc225215705]SQL Mapping
“M” compiles to Transact-SQL when using the /t:TSql10 switch of the compiler. This document describes the SQL the “M” compiler emits for all supported syntax, and calls out what “M” features are unsupported in SQL compilation.
[bookmark: _Toc208296268][bookmark: _Toc208841194][bookmark: _Toc225215706]Basic Types
Scalar “M” types translate to scalar SQL types with the following mapping. “Constraint” is used when the SQL type does not perfectly represent the “M” type—for example, when it allows a larger range of values than the corresponding “M” type. In these cases a CHECK constraint will be emitted on the table restricting the range of the value.

	“M” Type
	SQL Type
	Constraint

	Integer8
	smallint
	-128 … 127

	Integer16
	smallint
	

	Integer32
	int
	

	Integer64
	bigint
	

	Unsigned8
	tinyint
	

	Unsigned16
	int
	0 … 65535

	Unsigned32
	bigint
	0 … 4294967295

	Decimal9
	decimal(9,6)
	

	Decimal19
	decimal(19,6)
	

	Decimal28
	decimal(28,6)
	

	Decimal38
	decimal(38,6)
	

	Single
	float(24)
	

	Double
	float(53)
	

	DateTime
	datetime
	

	Date
	date
	

	Time
	time
	

	Logical
	bit
	

	Character
	nchar(1)
	

	Text
	nvarchar(max)
	

	Text#n
	nvarchar(n)
	

	Text where value.Count <= n
	nvarchar(n)
	

	Byte
	tinyint
	

	Binary
	varbinary(max)
	

	Guid
	uniqueidentifier
	

	General
	sql_variant
	

[bookmark: _Toc208841195][bookmark: _Toc225215707]Unsupported Scalar Types
No other scalar types are supported. The unsupported scalar types are:

	Type

	Scientific

	Unsigned

	Integer

	Decimal

	Number

	Unsigned64

[bookmark: _Toc208296269][bookmark: _Toc208841196][bookmark: _Toc225215708]Modules

“M”->SQL translates “M” "modules" to SQL "schemas." Dots in module names are translated directly to schema names. All tables, functions and views generated from extents and computed values defined in a module are placed within that schema.

	
	M Example
	SQL Example

	Module
	module M {
 MyInt : Integer32;
}
	create schema [M];

create table [M].[MyInt]
(
 [Item] int not null
);

	Dotted Module
	module M.N {
 MyInt : Integer32;
}
	create schema [M.N];

create table [M.N].[MyInt]
(
 [Item] int not null
);

Module imports and exports are purely “M” constructs and have no effect on the SQL output by “M”->SQL.
[bookmark: _Toc208296271][bookmark: _Toc208841197][bookmark: _Toc225215709]Extents
[bookmark: _Toc208296272][bookmark: _Toc208841198][bookmark: _Toc225215710]Extents -> Tables
“M” extents are simply storage specifiers ("MyInts : Integer32*" means "MyInts is a place where I can hold a bunch of integers.") “M”->SQL compilation translates extents into tables with the same name.

“M”->SQL supports extents with four different flavors: Scalar, collection of Scalar, Entity and collection of Entity. All supported extents are converted to SQL tables. The translation of “M” scalar types to SQL scalar types is covered in Basic Types.

SQL tables for entities have columns of the same name as the entity fields:

	Type
	M Example
	SQL Example

	Entity*
	module M {
 type Foo {
 i : Integer32;
 j : Text;
 }
 Foos : Foo*;
}
	create table [M].[Foos] (
 [i] int not null,
 [j] nvarchar(max) not null
);

	Entity
	module M {
 type Foo {
 i : Integer32;
 j : Text;
 }
 AFoo : Foo;
}
	create table [M].[AFoo] (
 [i] int not null,
 [j] nvarchar(max) not null
);

SQL tables for scalars have one column named "Item":
	Scalar
	module M {
 AnInt : Integer32;
}

	create table [M].[AnInt]
(
 [Item] int not null
);

	Scalar*
	module M {
 CollectionOfStrings : Text*;
}
	create table [M].[CollectionOfStrings]
(
 [Item] nvarchar(max) not null
);

As you can see from the “Scalar” and “Entity” examples, tables created to hold exactly one value look the same as tables that hold many values. “M” assumes you will always have exactly one row in such tables. Currently it does not create constraints to enforce this (but it should and will).

“M”->SQL does not presently support collections of collections (such as GroupsOfPeople : (Person*)*).
[bookmark: _Toc208296273][bookmark: _Toc208841199][bookmark: _Toc225215711]Identity columns
“M” entities can have one or more identity fields specified that make up a unique key for the entity. This identity is the basis for entity relationships (one-to-one, one-to-many and many-to-many relationships).

“M”->SQL supports single- or multiple-field identities, and will create a primary key containing those columns. “M”->SQL supports any type for identity (except unconstrained Text--see below). It also supports the identity autonumbering scheme of SQL.

“M”->SQL explicitly specifies the “clustered” keyword for the primary key even though it is the default for SQL. The clustered index is the index in which the data for the table is actually stored (so that you can look it up very quickly when you use the primary key to look it up).

	
	M Example
	SQL Example

	Simple Identity
	module M {
 type Person {
 PersonId : Integer32;
 Name : Text;
 } where identity PersonId;
 People : Person*;
}
	create table [M].[People]
(
 [PersonId] int not null,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([PersonId])
);

	Autonumbering Identity
	module M {
 type Person {
 PersonId : Integer32 = AutoNumber();
 Name : Text;
 } where identity PersonId;
 People : Person*;
}
	create table [M].[People]
(
 [PersonId] int not null identity,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([PersonId])
);

	Guid identity
	module M {
 type Person {
 PersonId : Guid = NewGuid();
 Name : Text;
 } where identity PersonId;
 People : Person*;
}
	create table [M].[People]
(
 [PersonId] uniqueidentifier not null default newid(),
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([PersonId])
);

	Multiple field identity
	module M {
 type Person {
 FirstName : Text#100;
 LastName : Text#100;
 } where identity(FirstName,LastName);
 People : Person*;
}
	create table [M].[People]
(
 [FirstName] nvarchar(100) not null,
 [LastName] nvarchar(100) not null,
 constraint [PK_People] primary key clustered ([FirstName], [LastName])
);

Unconstrained Text field identities are not supported because SQL cannot create a primary key for them. In order to use a Text field as an identity, constrain its length like so: "Name : Text#50".

Collection fields and nullable fields are presently unsupported as part of a primary key.

Primary keys that would take more than 900 bytes to store are presently unsupported due to limitations in SQL and will print an error.
[bookmark: _Toc208296274][bookmark: _Toc208841200][bookmark: _Toc225215712]Entity References: One-To-One and One-To-Many
One-to-one and one-to-many relationships in “M” are modeled using entity references. To implement the one-to-many pattern, you place an entity reference to the Parent in the child extent (OtherTable : OtherType). To implement one-to-one, you place an entity reference from one of the extents to the other (OtherTable : OtherType). Both look the same in “M”. (To enforce the 1:1 relationship, a unique constraint can be used.)

“M”->SQL implements entity references with a column with the same type as entity's identity column, and a foreign key from the referencing table to the referenced table. Trees are simply self-referencing one-to-many relationships.

	
	M Example
	SQL Example

	One-to-many
	module M {
 type Person {
 Id : Integer32
 = AutoNumber();
 Name : Text;
 } where identity Id;
 People : Person*;

 type TaxReturn {
 Id : Integer32;
 Year : Integer16;
 Citizen : Person where value in People;
 } where identity Id;
 TaxReturns : TaxReturn*;
}
	create table [M].[People]
(
 [Id] int not null identity,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([Id])
);
go

create table [M].[TaxReturns]
(
 [Id] int not null,
 [Citizen] int not null,
 [Year] smallint not null,
 constraint [PK_TaxReturns] primary key clustered ([Id]),
 constraint [FK_TaxReturns_Citizen_M_People] foreign key ([Citizen]) references [M].[People] ([Id])
);

	Tree
	module M {
 type Person {
 PersonId : Integer32 = AutoNumber();
 Name : Text;
 Mother : Person? where value in People;
 } where identity PersonId;
 People : Person*;
}
	create table [M].[People]
(
 [PersonId] int not null identity,
 [Mother] int null,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([PersonId]),
 constraint [FK_People_Mother_M_People] foreign key ([Mother]) references [M].[People] ([PersonId])
);

	One-to-one
	module M {
 type Person {
 PersonId : Integer32
 = AutoNumber();
 Name : Text;
 } where identity PersonId;
 People : Person*;

 type CurrentSession {
 Person : Person where value in People;
 StartTime : Time;
 } where unique Person;
 CurrentSessions : CurrentSession*;
}
	create table [M].[People]
(
 [PersonId] int not null identity,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([PersonId])
);

create table [M].[CurrentSessions]
(
 [Person] int not null,
 [StartTime] time not null,
 constraint [Unique_CurrentSessions_Person] unique ([Person]),
 constraint [FK_CurrentSessions_Person_People] foreign key ([Person]) references [M].[People] ([PersonId])
);

	References to entities with multiple identity fields
	module M {
 type Person {
 FirstName : Text#100;
 LastName : Text#100;
 Mother : Person where value in People;
 } where identity(FirstName,LastName);
 People : Person*;
}
	create table [M].[People]
(
 [FirstName] nvarchar(100) not null,
 [LastName] nvarchar(100) not null,
 [Mother_FirstName] nvarchar(max) not null,
 [Mother_LastName] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([FirstName], [LastName]),
 constraint [FK_People_Mother_FirstName_Mother_LastName_M_People] foreign key ([Mother_FirstName], [Mother_LastName]) references [M].[People] ([FirstName], [LastName])
);

“M”->SQL will generate an error if you have an entity reference without a membership constraint ("where value in OtherExtent" or some variant thereof).
[bookmark: _Toc208296275][bookmark: _Toc208841201][bookmark: _Toc225215713]Many-To-Many Relationships
“M”->SQL supports one-to-many (and one to one) relationships using collection fields. Unlike other entity fields, collection fields do not translate directly to a column in the underlying SQL table. Instead, a many-to-many "child table" is created with the name "<Extent>_<Field>", with a parent id and an "Item" column to hold the values. If the parent has a multi-column primary key, the parent reference in the child table will be multi-column as well.

For collections of entities, the “Item” column(s) of the child table will be a foreign key to the storage in the same manner as a one-to-many relationship.

The child table has “on delete cascade” specified, so that if you delete a row in the parent table, corresponding rows in the child table will also be deleted.

	
	M Example
	SQL Example

	Many-to-many scalars
	module M {
 type Person {
 PersonId : Integer32;
 Name : Text;
 EmailAddresses : Text*;
 };
 People : Person*;
}
	create table [M].[People]
(
 [PersonId] int not null,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([PersonId])
);

create table [M].[People_EmailAddresses]
(
 [_Id] bigint not null identity,
 [People_Id] int not null,
 [Item] nvarchar(max) not null,
 constraint [PK_People_EmailAddresses] primary key clustered ([_Id]),

 constraint [FK_People_EmailAddresses_People_Id_People] foreign key ([People_Id]) references [M].[People] ([PersonId]) on delete cascade
);

	Many-to-many entities
	module M {
 type Person {
 PersonId : Integer32;
 Name : Text;
 Addresses : Address*;
 } where identity PersonId;
 People : Person* where item.Addresses <= Addresses;

 type Address {
 AddressId : Integer32;
 Street : Text;
 ZipCode : Integer32;
 } where identity AddressId;
 Addresses : Address*;
}
	create table [M].[People]
(
 [PersonId] int not null,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([PersonId])
);

create table [M].[Addresses]
(
 [AddressId] int not null,
 [Street] nvarchar(max) not null,
 [ZipCode] int not null,
 constraint [PK_Addresses] primary key clustered ([AddressId])
);

create table [M].[People_Addresses]
(
 [_Id] bigint not null identity,
 [People_Id] int not null,
 [Item] int not null,

 constraint [PK_People_Addresses] primary key clustered ([_Id]),

 constraint [FK_People_Addresses_People_Id_People] foreign key ([People_Id]) references [M].[People] ([PersonId]) on delete cascade,

 constraint [FK_People_Addresses_Item_] foreign key ([Item]) references [M].[Addresses] ([AddressId])
);

	Many-to-many entities referring to table with multiple identity fields
	module M {
 type Person {
 FirstName : Text#100;
 LastName : Text#100;
 Friends : People*;
 } where identity(FirstName, LastName);
 People : Person*;
}
	create table [M].[People]
(
 [FirstName] nvarchar(100) not null,
 [LastName] nvarchar(100) not null,
 constraint [PK_People] primary key clustered ([FirstName], [LastName])
);

create table [M].[People_Friends]
(
 [_Id] bigint not null identity,
 [People_FirstName] nvarchar(max) not null,
 [People_LastName] nvarchar(max) not null,
 [Item_FirstName] nvarchar(max) not null,
 [Item_LastName] nvarchar(max) not null,

 constraint [PK_People_Friends] primary key clustered ([_Id]),

 constraint [FK_People_Friends_People_FirstName_People_LastName_M_People] foreign key ([People_FirstName], [People_LastName]) references [M].[People] ([FirstName], [LastName]) on delete cascade,

 constraint [FK_People_Friends_Item_FirstName_Item_LastName_M_People] foreign key ([Item_FirstName], [Item_LastName]) references [M].[People] ([FirstName], [LastName])
);

	Many-to-many scalars where parent table has multiple identity fields
	module M {
 type Person {
 FirstName : Text#100;
 LastName : Text#100;
 EmailAddresses : Text*;
 } where identity(FirstName, LastName);
 People : Person*;
}
	create table [M].[People]
(
 [PersonId] int not null,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([PersonId])
);

create table [M].[People_EmailAddresses]
(
 [_Id] bigint not null identity,
 [People_FirstName] nvarchar(max) not null,
 [People_LastName] nvarchar(max) not null,
 [Item] nvarchar(max) not null,
 constraint [PK_People_EmailAddresses] primary key clustered ([_Id]),
 constraint [FK_People_EmailAddresses_People_FirstName_People_LastName_M_People] foreign key ([People_FirstName], [People_LastName]) references [M].[People] ([FirstName], [LastName]) on delete cascade
);

Collection fields are only supported if the containing entity has an identity field (so that we can map to the parent ID).
[bookmark: _Toc208841202][bookmark: _Toc225215714]Default Values
Fields can have default values in “M”, for example "MyGuid : Guid = NewGuid()" or "Z : Integer32 = 0." “M”->SQL translates simple constant defaults into the “default” keyword for a column. Anything more complex (references to columns, subqueries, math operators) is presently unsupported.

This means that you can do an "insert into" into the table without specifying those values, and they will be replaced with their defaults.

	
	M Example
	SQL Example

	Simple Default
	module M {
 type Person {
 PersonId : Integer32;
 Name : Text;
 IsAlive : Logical = true;
 } where identity PersonId;
 People : Person*;
}
	create table [M].[People]
(
 [PersonId] int not null,
 [IsAlive] bit not null default 1,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([PersonId])
);

	Autonumbering Identity
	module M {
 type Person {
 PersonId : Integer32 = AutoNumber();
 Name : Text;
 } where identity PersonId;
 People : Person*;
}
	create table [M].[People]
(
 [PersonId] int not null identity,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([PersonId])
);

The “AutoNumber()” default, only specifiable on an integer identity field, will cause the field type to be “identity.”

 “M”->SQL cannot presently handle default values for collection or entity columns. Additionally, default values that refer to collection or entity columns in the same extent will not work.
[bookmark: _Toc208296277][bookmark: _Toc208841203][bookmark: _Toc225215715]Constraints
Aside from membership and identity constraints, all "where" constraints on a type are translated in “M”->SQL as CHECK constraints. In order to allow a richer set of expressions, CHECK constraints are always placed in a function returning a Logical value.

Before check constraints are created, identity and foreign key constraints are removed from the expression (i.e. they will not be turned into check constraints). It does this by breaking up the expression by &&’s. So if the “M” has a constraint like:"where identity(Id) && Address in Addresses && Age > 10", "Age > 10" will be turned into a check constraint, but the first two will not because they are identity and foreign key constraints, respectively.

	
	M Example
	SQL Example

	Column Constraint
	module M {
 type Person {
 Gender : Text where value == "M" || value == "F";
 };
 People : Person*;
}
	create function [M].[People_check_1]
(
 @Gender as nvarchar(max)
)
returns bit as
 begin
 return case
 when @Gender = N'M' or @Gender = N'F' then 1
 else 0
end

 end
go

create table [M].[People]
(
 [Gender] nvarchar(max) not null,
 check ([M].[People_check_1]([Gender]) = 1)
);

	Extent Constraint
	module M {
 type Person {
 Gender : Text;
 } where value.Gender == "M" || value.Gender == "F";
 People : Person*;
}
	create function [M].[People_check_1]
(
 @Gender as nvarchar(max)
)
returns bit as
 begin
 return case
 when @Gender = N'M' or @Gender = N'F' then 1
 else 0
end

 end
go

create table [M].[People]
(
 [Gender] nvarchar(max) not null,
 check ([M].[People_check_1]([Gender]) = 1)
);

	Unique Constraint
	module M {
 type Person {
 FirstName : Text#100;
 LastName : Text#100;
 Gender : Text;
 } where unique (FirstName, LastName);
 People : Person*;
}
	create table [M].[People]
(
 [FirstName] nvarchar(100) not null,
 [Gender] nvarchar(max) not null,
 [LastName] nvarchar(100) not null,
 constraint [Unique_People_FirstName_LastName] unique ([FirstName], [LastName])
);

	Identity constraint
	module M {
 type Person {
 PersonId : Integer32
 = AutoNumber();
 Name : Text;
 } where identity PersonId;
 People : Person*;
}
	create table [M].[People]
(
 [PersonId] int not null identity,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([PersonId])
);

	Foreign key constraint
	module M {
 type Person {
 PersonId : Integer32
 = AutoNumber();
 Name : Text;
 } where identity PersonId;
 People : Person*;

 type CurrentSession {
 Person : Person where value in People;
 StartTime : Time;
 };
 CurrentSessions : CurrentSession*;
}
	create table [M].[People]
(
 [PersonId] int not null identity,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([PersonId])
);

create table [M].[CurrentSessions]
(
 [Person] int not null,
 [StartTime] time not null,
 constraint [FK_CurrentSessions_Person_People] foreign key ([Person]) references [M].[People] ([PersonId])
);

[bookmark: _Toc208296278][bookmark: _Toc208841204][bookmark: _Toc225215716] Computed Value Fields
Computed values inside an extent (computed columns in SQL-speak) are not presently supported in SQL translation.
[bookmark: _Toc208296279][bookmark: _Toc208841205][bookmark: _Toc225215717]Extent Initialization
Extents can have one or more initializers in “M”, that state the data that needs to be in the table. “M”->SQL translates these initializers into insert statements. Nested entity and collection initializers are supported.

When values that have defaults are not filled in, the corresponding SQL INSERT is not filled in either, and SQL fills in the values itself.

	
	M Example
	SQL Example

	Scalar
	module M {
 SingleInt : Integer32 = 10;
}
	create table [M].[SingleInt]
(
 [Item] int not null
);

insert into [M].[SingleInt] ([Item])
 values (10);

	Scalar Collection
	module M {
 Ints : Integer32* { 10, 20 };
}
	create table [M].[Ints]
(
 [Item] int not null
);

insert into [M].[Ints] ([Item])
 values (10);

insert into [M].[Ints] ([Item])
 values (20);

	Entity
	module M {
 type Foo {
 i : Integer32;
 j : Text = "initial value";
 };
 SingleFoo : Foo { i = 10 };
}
	create table [M].[SingleFoo]
(
 [i] int not null,
 [j] nvarchar(max) not null default N'initial value'
);

insert into [M].[SingleFoo] ([i])
 values (10);

	Entity Collection
	module M {
 type Foo {
 i : Integer32;
 j : Text = "initial value";
 };
 Foos : Foo* {
 { i = 10, j = "hi" },
 { i = 1 }
 };
}
	create table [M].[Foos]
(
 [i] int not null,
 [j] nvarchar(max) not null default N'initial value'
);

insert into [M].[Foos] ([i], [j])
 values (10, N'hi');

insert into [M].[Foos] ([i])
 values (1);

	Nested Entity Reference
	module M {
 type Bar {
 Id : Integer32 = AutoNumber();
 x : Integer32;
 y : Text = "initial value";
 } where identity(Id);
 type Foo {
 i : Integer32;
 bar : Bar;
 };
 Bars : Bar*;
 Foos : Foo* where item.bar in Bars {
 { i = 10, bar = { x = 10 } },
 { i = 1, bar = { x = 20, y = "hi" } }
 };
}
	create table [M].[Bars]
(
 [Id] int not null identity,
 [x] int not null,
 [y] nvarchar(max) not null default N'initial value',
 constraint [PK_Bars] primary key clustered ([Id])
);

create table [M].[Foos]
(
 [bar] int not null,
 [i] int not null,
 constraint [FK_Foos_bar_M_Bars] foreign key ([bar]) references [M].[Bars] ([Id])
);

insert into [M].[Bars] ([x])
 values (10);
declare @M_Bars_Id0 bigint = @@identity;

insert into [M].[Bars] ([x], [y])
 values (20, N'hi');
declare @M_Bars_Id1 bigint = @@identity;

insert into [M].[Foos] ([i], [bar])
 values (10, @M_Bars_Id0);

insert into [M].[Foos] ([i], [bar])
 values (1, @M_Bars_Id1);

	Nested Entity Collection Reference
	module M {
 type Bar {
 Id : Integer32 = AutoNumber();
 x : Integer32;
 y : Text = "initial value";
 } where identity(Id);
 type Foo {
 Id : Integer32 = AutoNumber();
 i : Integer32; bars : Bar*;
 } where identity(Id);
 Bars : Bar*;
 Foos : Foo* where item.bars <= Bars {
 { i = 10, bars = { { x = 10 }, { x = 100, y = "lo" } }},
 { i = 1, bars = { { x = 20, y = "hi" } }}
 };
}
	create table [M].[Bars]
(
 [Id] int not null identity,
 [x] int not null,
 [y] nvarchar(max) not null default N'initial value',
 constraint [PK_Bars] primary key clustered ([Id])
);

create table [M].[Foos]
(
 [Id] int not null identity,
 [i] int not null,
 constraint [PK_Foos] primary key clustered ([Id])
);

create table [M].[Foos_bars]
(
 [_Id] bigint not null identity,
 [Foos_Id] int not null,
 [Item] int not null,
 constraint [PK_Foos_bars] primary key clustered ([_Id]),
 constraint [FK_Foos_bars_Foos_Id_M_Foos] foreign key ([Foos_Id]) references [M].[Foos] ([Id]) on delete cascade,
 constraint [FK_Foos_bars_Item_M_Bars] foreign key ([Item]) references [M].[Bars] ([Id])
);
go

insert into [M].[Bars] ([x])
 values (10);
declare @M_Bars_Id0 bigint = @@identity;

insert into [M].[Bars] ([x], [y])
 values (100, N'lo');
declare @M_Bars_Id1 bigint = @@identity;

insert into [M].[Bars] ([x], [y])
 values (20, N'hi');
declare @M_Bars_Id2 bigint = @@identity;

insert into [M].[Foos] ([i])
 values (10);
declare @M_Foos_Id0 bigint = @@identity;

insert into [M].[Foos] ([i])
 values (1);
declare @M_Foos_Id1 bigint = @@identity;

insert into [M].[Foos_bars] ([Item], [Foos_Id])
 values (@M_Bars_Id0, @M_Foos_Id0);

insert into [M].[Foos_bars] ([Item], [Foos_Id])
 values (@M_Bars_Id1, @M_Foos_Id0);

insert into [M].[Foos_bars] ([Item], [Foos_Id])
 values (@M_Bars_Id2, @M_Foos_Id1);

Any depth of nested entity reference is supported.

Initialization of nested entities and entity references is currently unsupported when the referenced / nested entity is part of an extent with multi-field identity.
[bookmark: _Toc208296280][bookmark: _Toc208841206][bookmark: _Toc225215718]Labeled Extent Initialization
When inserting instances, you can label the instances and refer to them in other insert statements or in expressions. Labeled scalars are translated as constants wherever they are seen. Labeled entities:

	
	M Example
	SQL Example

	Labeled Scalar
	module M {
 Ints : Integer32* { A { 10 }, B { 20 } };
 MoreInts : Integer32* { Ints.B, Ints.A };
 F() { Ints.A + Ints.B }
}
	create table [M].[Ints]
(
 [Item] int not null
);

create table [M].[MoreInts]
(
 [Item] int not null
);

create function [M].[F]
(
)
returns int as
 begin
 return 10 + 20
 end

insert into [M].[Ints] ([Item])
 values (10)
;

insert into [M].[Ints] ([Item])
 values (20)
;

insert into [M].[MoreInts] ([Item])
 values (20)
;

insert into [M].[MoreInts] ([Item])
 values (10);

	Labeled Entity
	module M {
 type Person {
 Id : Integer32 = AutoNumber();
 Name : Text;
 Mother : People?;
 } where identity(Id);
 People : Person* {
 Jack { Name = "Jack", Mother = Jane },
 Jane { Name = "Jane" },
 John { Name = "John", Mother = Jane },
 Manfred { Name = "Manfred", Mother = Martha },
 Martha { Name = "Martha" },
 };
}
	create table [M].[People]
(
 [Id] int not null identity,
 [Mother] int null,
 [Name] nvarchar(max) not null,
 constraint [PK_People] primary key clustered ([Id]),
 constraint [FK_People_Mother_M_People] foreign key ([Mother]) references [M].[People] ([Id])
);

insert into [M].[People] ([Name])
 values (N'Jane');
declare @M_People_Id1 bigint = @@identity;

insert into [M].[People] ([Name], [Mother])
 values (N'Jack', @M_People_Id1);

insert into [M].[People] ([Name], [Mother])
 values (N'John', @M_People_Id1);

insert into [M].[People] ([Name])
 values (N'Martha');
declare @M_People_Id4 bigint = @@identity;

insert into [M].[People] ([Name], [Mother])
 values (N'Manfred', @M_People_Id4);

References to labeled entities are not currently supported in computed values or constraints.
References to labeled entities with multiple identity fields are presently unsupported.
[bookmark: _Toc208296270][bookmark: _Toc208841207][bookmark: _Toc225215719]Identifiers and Collisions
All views, functions, tables, columns, constraints, and triggers created in “M” have names that are supposed to be similar to the underlying table. However, SQL only supports 128-character names. If the name of an identifier would be longer than 128 characters, it is truncated to 128 characters.

Identifier collisions are also detected and disambiguated. It is possible for conflicts between autogenerated names to For example in the following “M”, it can create a conflict between the autogenerated join table and the declared "People_Addresses" extent:

module M {
 type Address {
 Id : Integer32;
 Street : Text;
 City : Text;
 State : Text;
 } where identity Id;
 type Person {
 Id : Integer32;
 Name : Text;
 Addresses : Address*;
 } where identity Id;
 People : Person* where item.Addresses <= Addresses;
 Addresses : Address*;
 People_Addresses : Integer32;
}

When collisions are detected, a number is appended to the database object in question. These two objects would be named “People_Addresses” and “People_Addresses1.” How these numbers will be assigned is presently undefined.
[bookmark: _Toc208296281][bookmark: _Toc208841208][bookmark: _Toc225215720]Computed Values
 Computed Values in “M” represent "functions," expressions or queries that can be reused.

This section only covers module-level computed values. Computed Columns are covered in Extents (and are not presently supported). Computed Values can have a range of expressions. Translation of expressions is covered in Expressions; we will only include rudimentary expressions here.

“M”->SQL will translate Computed Values into scalar functions, table-valued functions, or views, depending on their most probable usage in SQL (based on the return type and parameters to the function):
· Scalar functions are created when the Computed Value return type is scalar (which allows you to use them like “SELECT Module.Function(2) + 1”).
· Views are created when the Computed Value has no parameters the return type is an entity or a collection (which allows you to use them like “SELECT * FROM Module.View”).
· Table-valued functions are created when the Computed Value has parameters and the return type is an entity or a collection (which allows you to use them like “SELECT * FROM Module.Function(10)”

	
	M Example
	SQL Example

	View
	module M {
 type Foo { i : Integer32; }
 Foos : Foo*;
 BigFoos() : Foo* { Foos where value.i > 100 }
}
	create view [M].[BigFoos]
as
 select [t0].[i]
 from (select [i] as [i]
 from [M].[Foos]) as [t0]
 where [t0].[i] > 100;

	Scalar Function
	module M {
 MyInt : Integer32;
 DoubleMyInt() : Integer32 { MyInt * 2 }
}
	create function [M].[DoubleMyInt]
(
)
returns int as
 begin
 return (select [Item] as [Item]
from [M].[MyInt]) * 2
 end

	Scalar Function
	module M {
 Square(x : Integer32) : Integer32 { x * x }
}
	create function [M].[Square]
(
 @x as int
)
returns int as
 begin
 return @x * @x
 end

	Table Valued Function
	module M {
 type Foo { i : Integer32; }
 Foos : Foo*;
 BigFoos(minValue : Integer32) : Foo* { Foos where value.i > minValue }
}
	create function [M].[BigFoos]
(
 @minValue as int
)
returns table
 as return (
 select [t0].[i]
 from (select [i] as [i]
 from [M].[Foos]) as [t0]
 where [t0].[i] > @minValue
)

“M”->SQL does not presently support entity and collection parameters to Computed Values. Only scalars are supported in parameters.
[bookmark: _Toc208296282][bookmark: _Toc208841209][bookmark: _Toc225215721]Query Return Types
For table-valued functions and views, the returned rowset will have the same set of columns that the corresponding table would have. So any SQL query you can do on a table of type T, you can do the same thing with a view or function returning type T. See the beginning of the Extents section for the way various types are represented in tables.
[bookmark: _Toc208296283][bookmark: _Toc208841210][bookmark: _Toc225215722]Overloading
“M”->SQL does not presently support “M” function overloading.

[bookmark: _Toc208296284][bookmark: _Toc208841211][bookmark: _Toc225215723]Expressions
 “M”->SQL can translate most “M” expressions including operators (*, /, +, -), queries ("from person in People where person.Age >= 21"), constants and initializers ("astring", { 1, 2, 3 }), and things like member access and function calls (person.Age).

These expressions can be used in several different contexts, including computed values, constraints, default values, initializers. We will not talk about those contexts except where expressions behave differently or do not work—more complete information about those contexts can be found in the Extents and Computed Values sections.

“M” supports a wide range of expressions over a wide range of types, but “M”->SQL only supports expressions that return scalars, entities and collections of scalars or entities (the same set of types that are supported by extent -> table translation).
[bookmark: _Toc208296285][bookmark: _Toc208841212][bookmark: _Toc225215724]Composition
Expressions are composable--the result of one expression can be used in another expression. This document will talk about the way in which individual expressions are turned into SQL, but will only call out particularly interesting compositions.

So when we say:

A + B -> A + B
A.Count -> LEN(A)

We mean that any “M” expression that can fit into A and B, so if you see MyString.Count + 10, the translated SQL will look like (LEN(MyString)) + 10.

Query expressions are similarly composed:

A | B -> A UNION B

Will take the SQL query expression for A and the SQL query expression for B and place them into those slots. So if you say "Foos | Bars", it will turn into "(SELECT * FROM Foos) UNION (SELECT * FROM Bars)".
[bookmark: _Toc208296286][bookmark: _Toc208841213][bookmark: _Toc225215725]Constants
The majority of constants are translated verbatim. Here is a list of “M” literals and examples of their SQL equivalents:

	M Type
	M Example
	SQL Example

	Decimal
	1234.567
	1234.567

	Integer
	1234
	1234

	Scientific
	1234.567e+89
	1.234567E+92

	Date
	2008-05-04
	'2008-05-04'

	DateTime
	2008-05-04T18:27:36
	'2008-05-04T18:27:36'

	Time
	18:27:36
	Not yet implemented

	Character
	'c'
	N'c'

	Text
	"little bunny 'fufu'"
	N'little bunny ''fufu'''

	Logical
	true
false
	1
0

	Binary
	0x01200340
	0x01200340

	Null
	null
	null

	Guid
	#[12345678-1234-1234-1234-123456789012]
	'12345678-1234-1234-1234-123456789012'

[bookmark: _Toc208296287][bookmark: _Toc208841214][bookmark: _Toc225215726]Numeric Expressions
Numeric values have a small number of operators that can act upon them. These operators generally translate verbatim to SQL.

	Operator
	M Example
	SQL Example

	*, /, +, -, %
	A op B
	A op B

	+, - (unary)
	op A
	op A

	<, >, >=, <=
	A op B
	A op B

	==
	A == B
	A = B

	!=
	A != B
	A <> B

Exceptions:
Integer8/16/32/64 and Unsigned8/16/32 divide. These translate to “convert(decimal(x,6), A) / convert(decimal(x,6), B)” (where x is replaced by the smallest possible decimal value that can represent the entire range of values for the concrete integer type).
Single and Double modulo operators are unsupported.
[bookmark: _Toc208296288][bookmark: _Toc208841215][bookmark: _Toc225215727]String Expressions
	Operator
	M Example
	SQL Example

	Count
	A#
A.Count
	LEN(A)

	Concatenation
	A + B
	A + B

	Comparison
	A < B
A <= B
A > B
A >= B
A == B
A != B
	A < B
A <= B
A > B
A >= B
A = B
A <> B

	Like
	A.Like(B)
	Not currently implemented

	PatternIndex
	A.PatternIndex(B)
	Not currently implemented

[bookmark: _Toc208296289][bookmark: _Toc208841216][bookmark: _Toc225215728]Date Expressions
These expressions are defined on Date, DateTime and Time.

	Operator
	M Example
	SQL Example

	Addition
	A + B
	A + convert(datetime, B)

	Equality
	A == B
	A = B

	Inequality
	A != B
	A <> B

	Relational
	A <= B
A >= B
A < B
A > B
	A <= B
A >= B
A < B
A > B

Exceptions:
DateTime addition is not defined in “M” and is therefore not implemented.
[bookmark: _Toc208296290][bookmark: _Toc208841217][bookmark: _Toc225215729] Binary Expressions
	Operator
	M Example
	SQL Example

	~
	~A
	Not currently implemented

	&, ^, |
	A op B
	Not currently implemented

	==
	A == B
	A = B

	!=
	A != B
	A <> B

	<<, >>
	A op B
	Not currently implemented

[bookmark: _Toc208296291][bookmark: _Toc208841218][bookmark: _Toc225215730] Byte Expressions
	Operator
	M Example
	SQL Example

	~
	~A
	~A

	&, ^, |
	A op B
	A op B

	==
	A == B
	A = B

	!=
	A != B
	A <> B

	<<, >>
	A op B
	Not currently implemented

[bookmark: _Toc208296292][bookmark: _Toc208841219][bookmark: _Toc225215731]Guid Expressions
	Operator
	M Example
	SQL Example

	~
	~A
	Not currently implemented

	&, ^, |
	A op B
	Not currently implemented

	==
	A == B
	A = B

	!=
	A != B
	A <> B

	<<, >>
	A op B
	Not currently implemented

[bookmark: _Toc208296293][bookmark: _Toc208841220][bookmark: _Toc225215732] Logical Expressions
	Operator
	M Example
	SQL Example

	Not
	! A
	not A

	And
	A && B
	A and B

	Or
	A || B
	A or B

	Equal
	A == B
	A = B

	Not Equal
	A != B
	A <> B

[bookmark: _Toc208296294][bookmark: _Toc208841221][bookmark: _Toc225215733]Conditionals
	Operator
	M Example
	SQL Example

	Conditional
	A ? B : C
	Not currently implemented

	Coalesce
	A ?? B
	case
 when A is null then B
 else A
end

[bookmark: _Toc208296295]
Exceptions:
Entity types: The coalesce operator currently does not support entity types.
Collection types: Collection types are not nullable and cannot be used in the coalesce operator.
[bookmark: _Toc208841222][bookmark: _Toc225215734]Nullable Expressions
The == and != operators in “M” have the semantic that null == null and null != 1. In SQL, both of these return “unknown,” a third truth value we do not support in “M”. In order to get the “M” semantics, when one side of an operator is a nullable type (for example, F(a : Integer32?, b : Integer32?) { a == b }), we generate special case logic that checks for null values to ensure that null == null and null != 1 turn out true.

This applies to all supported scalar types. We do not presently support equality comparison of entities, so nullable entity comparison is unsupported as well.

Nullable comparison operators (<, >, <=, >=) operating on nullable integers actually return Logical?: 1 <= 2 is true, 2 <= 1 is false, null <= null is null, and 1 <= null is null. This applies to all supported numeric types.

	Operator
	M Example
	SQL Example

	Nullable ==
	A == B
	(A is null and B is null) or
(A is not null and B is not null and A = B)

	Nullable !=
	A != B
	(A is null and B is not null) or
(A is not null and B is null) or
(A is not null and B is not null and A <> B)

	Nullable Comparison
	A < B
A > B
A <= B
A >= B
	Case
 when A is null or B is null then null
 when A <comparison op> B then 1
 else 0
end

[bookmark: _Toc208296296][bookmark: _Toc208841223][bookmark: _Toc225215735]Explicit Conversion
	Operator
	M Example
	SQL Example

	Cast
	A : T
	convert(SQL type of T, A)

[bookmark: _Toc208296297]
Exceptions:
Entity and collection types: Explicit casts (Expression : Type) are not presently supported for entity or collection types.
[bookmark: _Toc225215736]Implicit Conversion
“M” allows Logical values to intermingle with other Scalars, but SQL does not support that. Logical expressions like == cannot be stored directly in a table, or returned as a scalar or as the result of a query. We use "bit" for that instead, and therefore have to translate the result of == into a "1" or "0." Likewise, Logical values stored in tables as "bit"s cannot be used directly in logical expressions like NOT, AND and OR (or where clauses of queries), so we have to use expr == 1. So where necessary, expression conversion will automatically convert between these two:

	Operation
	M Example
	SQL Example

	Scalar -> Logical
	module M {
 type Person { Name : Text; IsOld : Logical; }
 People : Person*;
 OldPeople { People where value.IsOld }
}
	create table [M].[People]
(
 [IsOld] bit not null,
 [Name] nvarchar(max) not null
);

create view [M].[OldPeople]
as
 select [t0].[Name], [t0].[IsOld]
 from (select [IsOld] as [IsOld], [Name] as [Name]
 from [M].[People]) as [t0]
 where (select [t0].[IsOld] as [Item]) = 1;

	 Scalar -> Logical
	module M {
 NegateIt(x : Logical) : Logical { ! x }
}
	create function [M].[NegateIt]
(
 @x as bit
)
returns bit as
 begin
 return case
 when not @x = 1 then 1
 else 0
end

 end

[bookmark: _Toc208296298][bookmark: _Toc208841224][bookmark: _Toc225215737] Global References
“M”->SQL translates computed values and extents into functions, views, and tables. Expressions are capable of referencing them as well. When an extent is used as an expression, the expression always means "get all the data out of this expression."

	Type
	M Example
	SQL Example

	Table
	module M {
 type Foo {
 i : Integer32;
 j : Integer32;
 }
 Foos : Foo*;
 FooExpression() : Foo* { Foos }
}
	create table [M].[Foos]
(
 [i] int not null,
 [j] int not null
);

create view [M].[FooExpression]
(
 [i],
 [j]
)
as
 select [i] as [i], [j] as [j]
 from [M].[Foos];

	View
	module M {
 type Foo {
 i : Integer32;
 j : Integer32;
 }
 Foos : Foo*;
 FooView() : Foo* { Foos }
 FooExpression() : Foo* { FooView }
}
	create table [M].[Foos]
(
 [i] int not null,
 [j] int not null
);

create view [M].[FooView]
(
 [i],
 [j]
)
as
 select [i] as [i], [j] as [j]
 from [M].[Foos];

create view [M].[FooExpression]
(
 [i],
 [j]
)
as
 select [i] as [i], [j] as [j]
 from [M].[FooView];

	Table Valued Function
	module M {
 type Foo {
 i : Integer32;
 j : Integer32;
 }
 Foos : Foo*;
 FooFunction(x : Integer32) : Foo* { Foos where value.i > 10 }
 FooExpression() : Foo* { FooFunction(10) }
}
	create table [M].[Foos]
(
 [i] int not null,
 [j] int not null
);
go

create function [M].[FooFunction]
(
 @x as int
)
returns table
 as return (
 select [$value].[i] as [i], [$value].[j] as [j]
 from [M].[Foos] as [$value]
 where [$value].[i] > 10
)
go

create view [M].[FooExpression]
(
 [i],
 [j]
)
as
 select [i] as [i], [j] as [j]
 from [M].[FooFunction](10);

	Scalar Function
	module M {
 Square(x : Integer32) : Integer32 { x * x }
 Cube(x : Integer32) : Integer32 { Square(x) * x }
}
	create function [M].[Square]
(
 @x as int
)
returns int as
 begin
 return @x * @x
 end

create function [M].[Cube]
(
 @x as int
)
returns int as
 begin
 return [M].[Square](@x) * @x
 end

[bookmark: _Toc208296299][bookmark: _Toc208841225][bookmark: _Toc225215738] Collection Expressions
Collection expressions are expressions which work on collections.

	Operation
	M Example
	SQL Example

	Subset
	A <= B
	not exists (A except B)

	Superset
	A >= B
	not exists (B except A)

	Strict Subset
	A < B
	not exists (A except B) and exists (B except A)

	Strict Superset
	A > B
	not exists (B except A) and exists (A except B)

	Equal
	A == B
	not exists (A except B) and not exists (B except A)

	Not equal
	A != B
	exists (A except B) or exists (B except A)

	in
	A in B
	A in B

	Union
	A | B
	A union B

	Intersection
	A & B
	A intersect B

	Where
	A where B
	Equivalent to “from value in A where B select value”

	Select
	A select B
	Equivalent to “from value in A select B”

	Choose
	A.Choose
	Not currently implemented

	Count
	A#
A.Count
	Not currently implemented

	Distinct
	A.Distinct
	Not currently implemented

[bookmark: _Toc208296300]
Exceptions:
Entity types from different tables: Set comparison (subset, equal, etc.), in and intersection are not presently supported when used over entity types that come from different tables.
Entity types with different fields: Union is presently unsupported when used over entity types with different sets of fields (but they may come from different tables).

[bookmark: _Toc225215739]Entity collections only:
	Operation
	M Example
	SQL Example

	Projector
	A.field
	Equivalent to “from value in A select value.field”

	Selector
	A.field(B)
	Equivalent to “from value in A where value.field = B select value”

	Table Selector
	A(B)
	Not currently implemented

Selectors are presently unsupported when the field is an entity type.
[bookmark: _Toc208296301][bookmark: _Toc225215740]Logical collections only:
	Operation
	M Example
	SQL Example

	All
	A.All
	Not currently implemented

	Exists
	A.Exists
	Not currently implemented

[bookmark: _Toc208296302][bookmark: _Toc225215741]Numeric collections only:
	Operation
	M Example
	SQL Example

	Average
	A.Average
	Not currently implemented

	Maximum
	A.Maximum
	Not currently implemented

	Minimum
	A.Minimum
	Not currently implemented

	Sum
	A.Sum
	Not currently implemented

[bookmark: _Toc208296303][bookmark: _Toc225215742]Queries
There is also a more complex and feature-rich query syntax for collections, the "from …" statement. It has a number of clauses, each of which translates roughly separately from the others.

Query modifiers:
	Modifier
	M Example
	SQL Example

	from
	from ident in A
from identA in A from identB in B
	select … from A as ident
select … from A as identA
 cross join B as identB

	join
	join ident in A on B equals C
	Not currently implemented

	join … into
	Join ident in A on B equals C into ident2
	Not currently implemented

	where
	where A
where A where B
	select … where A
select … where A and B

	let
	let A = B
	Not currently implemented

“from” expressions bring “ident” into scope as a variable. For scalar collections, future references to “ident” will resolve as [ident].[Item]. For entity collections, references to “ident” will resolve as (select [ident].<column1>, [ident].<column2, …)

Join supports comparison of scalars and entities with identity, but not collections or other entities.

Result gatherers are the terminus of a query. They can be “select”, “group” or “accumulate.” “group” and “accumulate” are presently unsupported.
Select
The general form of “select” is as follows:
	Operation
	M Example
	SQL Example

	Select
	select A
	select t0.a, t0.b, …
 from (<from clauses)
 cross apply A as t0
 <where clauses>

The CROSS APPLY may be optimized out in simple cases (such as anonymous entities).

So to put it all together, this query:

module M {
	type Foo { Id : Integer32; i : Integer32; } where identity(Id);
	Foos : Foo*;
	type Bar { Id : Integer32; j : Integer32; } where identity(Id);
	Bars : Bar*;
	F() { from foo in Foos from bar in Bars where foo.i == bar.j select { i = foo.i, j = bar.j } }
}

Translates to this:

 select [t0].[i] as [i], [t0].[Id] as [Id]
 from [M].[Foos] as [foo] -- from foo in Foos
 cross join [M].[Bars] as [bar] -- from bar in Bars
 cross apply (select [foo].[i] as [i], [bar].[j] as [j]) as [t0] -- select { i = foo.i, j = bar.j }
 where [foo].[i] = [bar].[j]; -- where foo.i == bar.j

Which is then optimized to this:

select [foo].[i] as [i], [bar].[j] as [j] -- select { i = foo.i, j = bar.j }
 from [M].[Foos] as [foo] -- from foo in Foos
 cross join [M].[Bars] as [bar] -- from bar in Bars
 where [foo].[i] = [bar].[j] -- where foo.i == bar.j

Select does not support collections on the right side of the select.

Continuations
Query continuations allow you to chain two queries together, storing the result of the first query in a variable that can be used in the second query.
	Operation
	M Example
	SQL Example

	into
	Query1 into var Query2
	Not currently implemented

[bookmark: _Toc208296304][bookmark: _Toc208841226][bookmark: _Toc225215743]Entity Expressions
Entities in “M” are a single collection of field / value pairs (in “M”->SQL parlance, a row in a table).

	Operation
	M Example
	SQL Example

	Equality
	A == B
	<ID field of A> = <ID field of B>

	Inequality
	A != B
	<ID field of A> <> <ID field of B>

	Field names
	A.FieldNames
	Not currently implemented

	Indexer
	A(B)
	Not currently implemented

	Cast
	A : B
	Not currently implemented

[bookmark: _Toc208296305][bookmark: _Toc208841227][bookmark: _Toc225215744] Member Access
Member access in “M” operates over a single entity. It has several permutations depending on the type of the field you are accessing.

	Operation
	M Example
	SQL Example

	Member Access: Scalar
	A.field
	select field as [Item] from A

	Member Access: Scalar Collection
	A.field
	Not currently implemented

	Member Access: Entity
	A.field
	select <entity columns>
 from <entity storage table> as [t0]
 inner join A as [t1] on [t1].field = [t0].[Id];
(For entities with multiple identity fields, the “on” statement compares multiple columns.)

	Member Access: Entity Collection
	A.field
	Not currently implemented

Entity and entity collection member access retrieves the entities, including all of their fields, from the table where the entities are stored. A full example:
	Member Access: Entity
	module M {
 type Foo {
 Id : Integer32;
 bar : Bar;
 i : Integer32;
 } where identity(Id);
 type Bar {
 Id : Integer32;
 j : Integer32;
 } where identity(Id);
 Bars : Bar*;
 SingleFoo : Foo
 where value.bar in Bars;
 F() { SingleFoo.bar }
}

	create table [M].[Bars]
(
 [Id] int not null,
 [j] int not null,
 constraint [PK_Bars] primary key clustered ([Id])
);

create table [M].[SingleFoo]
(
 [Id] int not null,
 [bar] int not null,
 [i] int not null,
 constraint [PK_SingleFoo] primary key clustered ([Id]),
 constraint [FK_SingleFoo_bar_M_Bars] foreign key ([bar]) references [M].[Bars] ([Id])
);

create view [M].[F]
(
 [Id],
 [j]
)
as
 select [t0].[Id] as [Id], [t0].[j] as [j]
 from [M].[Bars] as [t0]
 inner join [M].[SingleFoo] as [t1] on [t1].[bar] = [t0].[Id];

Member access to Computed Columns is not presently supported, due to the lack of support for the computed columns themselves.
[bookmark: _Toc208296306][bookmark: _Toc208841228][bookmark: _Toc225215745]Anonymous Collections
“M” supports the creation of anonymous collections in an expression (such as { 1, 2, 4, 8, 16 }). This is supported using queries and UNION ALL so that the collections can be returned from views and used anywhere expressions can be used.

	Type
	M Example
	SQL Example

	Scalar collection
	module M {
 Thirty : Integer32 = 30;
 V() { { 1, 10, 3, Thirty, 2, 20, 20 } }
}
	create table [M].[Thirty]
(
 [Item] int not null
);

create view [M].[V]
as
 select 1 as [Item]
 union all
 select 10 as [Item]
 union all
 select 3 as [Item]
 union all
 select [Item] as [Item]
 from [M].[Thirty]
 union all
 select 2 as [Item]
 union all
 select 20 as [Item]
 union all
 select 20 as [Item];

	Entity collection
	module M
{
 SingleA : {
 i : Integer32;
 j : Text;
 } { i = 100, j = "hundred" };
 V() {
 {
 { i = 20, j = "twenty" },
 SingleA,
 { i = 10, j = "ten" },
 { i = 20, j = "twenty" }
 }
 }
}

	create table [M].[SingleA]
(
 [i] int not null,
 [j] nvarchar(max) not null
);

insert into [M].[SingleA] ([i], [j])
 values (100, N'hundred');

create view [M].[V]
as
 select 20 as [i], N'twenty' as [j]
 union all
 select [i] as [i], [j] as [j]
 from [M].[SingleA]
 union all
 select 10 as [i], N'ten' as [j]
 union all
 select 20 as [i], N'twenty' as [j];

	Empty collection
	module M
{
 V() : Integer32* { { } }
}
	create view [M].[V]
as
 select 1
 where 1 = 0;

 “M”->SQL does not yet support anonymous collections with entities of different types (different sets of columns) or collections of collections.
[bookmark: _Toc208296307][bookmark: _Toc208841229][bookmark: _Toc225215746]Anonymous Entities
“M” supports the creation of simple entities in an expression (i.e. an anonymous group of name/value pairs). This is typically used in the right side of a "from … select" query.

“M”->SQL supports these by creating a SELECT statement, naming each field with the given name. If you put an entity reference as a column, that id of that entity will be assigned to the field.

	Type
	M Example
	SQL Example

	Entity with scalars
	module M {
 type Foo { i : Integer32; j : Integer32; }
 Foos : Foo*;
 SelectFoos() { from foo in Foos select { x = foo.i+1, y = foo.j+1, combo = foo.i+foo.j } }
}
	create table [M].[Foos]
(
 [i] int not null,
 [j] int not null
);

create view [M].[SelectFoos]
as
 select [t0].[i] + 1 as [x], [t0].[j] + 1 as [y], [t0].[i] + [t0].[j] as [combo]
 from (select [i] as [i], [j] as [j]
 from [M].[Foos]) as [t0];

“M”->SQL does not support collection fields or entity fields referring to extents without identity constraints (see Extents - Identity for information on the latter)
[bookmark: _Toc208296308][bookmark: _Toc208841230][bookmark: _Toc225215747]Global built-in functions
 ”M”->SQL only presently supports one global built-in function:
	M Example
	SQL Example

	NewGuid()
	NEWID()

[bookmark: _Toc208296309][bookmark: _Toc208841231][bookmark: _Toc225215748]Other Things
 There are “M” constructs that have no translation in “M”->SQL. "type", "import" and "export" have no corresponding meaning in SQL. They are merely used to create the tables, views or functions, and are then thrown away.
[bookmark: _Toc225215749]Glossary
	ambiguity
	An ambiguity results when the language processor cannot uniquely determine which of several constructors to run for a given segment of text because the segment is recognised by more than one production. The competing productions do not have to be in the same rule. Ambiguites are resolved by refactoring the grammar and applying precedence directives.

	abstract
	An abstract type describes properties common to many other types, but cannot itself be represented.

	alias
	An alias is a local name for a symbol defined in another module. An alias may be specified on an import.

	apply
	A computed value is applied to its arguments to yield a new value.

	arity
	Arity is the number of arguments a computed value requires.

	ascribe
	Ascribing a type to a value requires that the value conform to the type and exposes the behaviors defined on that type.

	binding
	A pattern may be ascribed with a named variable scoped to the production. When that pattern matches a section of text, that section of text is bound to the variable for use the constructor.

	collection
	A collection is a container for zero or more values. The values in a collection are called elements. The same value may occur in a collection multiple times but have no order. This is also known as a bag or multiset.

	comment
	A comment is a sequence of characters in a compilation unit that is excluded from semantic analysis.

	compilation unit
	A compilation unit is an ordered sequence of Unicode characters that conform to the lexical and grammatical requirements.

	concrete
	A concrete type can be represented.

	conflict
	A conflict results whenever the language processor faces a choice in what action to take on a section of text. There are two sorts of conflicts: shift-reduce and reduce-reduce. Not all conflicts result in ambiguities because some conflicts are resolved by applying predicence directives and some conflics are local. A local conflict means that the language processor faces multiple choices on a section of text, but in a larger context the only one collection of choices recognizes the text.

	conform
	Text conforms to a language if the text matches the Main rule.

	constraint
	A constraint is a logical test to determine if an element is a member of a collection.

	constructor
	A constructor defines the output for a production.

	context-free
	Context-free is a term from computer science to designate a class of languages. All languages in this class can be written with a single non-terminal on the left hand side of the rule and can be recognized with a push down automaton.

	declaration
	A declaration binds a symbol to a type or computed value.

	default
	A default is a value to be used unless no other is specified.

	derived
	A derived type is constraint over some other type.

	dynamic
	A dynamic quality is any quality which is not static.

	element
	An element is a value in a collection.

	entity
	An entity is a set of labeled values.

	export
	An export makes a symbol visible outside the module in which it was declared in. It is not visible within another module unless it is imported.

	expression
	An expression is a sequence of Unicode characters that conforms to the Expression production in the grammar. In general it consists of an operator and one or more operands. Applying the operator to the operand yields a new value.

	extent
	An extent is a location which holds a value at the module scope.

	field
	A field is a location which holds a value at the entity scope.

	grammar
	A grammar is a set of rules which determine if a sequence of characters conform to a language. As used in the specification these rules are context-free.

	identifier
	An identifier is a symbolic name for use in a program. Type names, formal parameters, module names, and names of computed values are all examples of identifiers.

	identity
	Identity is a value that implies equality between entities. The identity value can be used as a surrogate for the entity itself as in a reference.

	import
	An import brings a symbol defined in another module into scope in the current module. An import may be aliased.

	initializer
	An initializer in an expression that returns a collection or entity value.

	instance
	An instance is a value that conforms to an entity type.

	interleave
	Designating a rule interleave separates the sections of text recognized by the rule from normal language processing. These are used to define insignificant whitespace and comment rules.

	intrinsic
	Intrinsic definitions are part of the language and cannot be added to or extended by a library.

	language
	A language is a collection of rules potentially with a designated Main rule. If the language has a Main rule, and a text value matches that rule, then the text value conforms to the language or is recognized by the language. In this case, the output of the rule is the output of the language.

	lexical
	A lexical rule determines if a sequence of characters conform to a language. As used in this specification lexical rules are regular expressions and ambiguity is resolved by taking the longest match.

	library
	A library is an informal name for a commonly used collection of declarations.

	literal
	A literal is a sequence of characters that represent a simple value.

	member
	A member is a field or computed value within an entity scope.

	module
	A module is a container of extents, type, language and computed value declarations.

	nominal type
	Values in a nominal type system names the types they are members of. Also, subtypes name their and supertypes.

	null
	The value null is a distinct value that is used as a place holder.

	operand
	An operand is an expression used as an argument to an operator.

	operator
	An operator is a character or sequence of characters that is used in an expression to denote a computed value.

	overloading
	Overloading is giving the same symbol multiple interpretations within the same scope. The only form of overloading in M is on the number of arguments to a computed value.

	parser
	A parser is a language processor.

	pattern
	A pattern occurs on the left side of a production and recognizes text and potentially binds the text to a variable.

	precedence
	Precidence is a statement of preference between to choices available to the language processor.

	prefix
	A prefix is a section of a text value from the beginning of the value to an arbitrary point. Both the empty value and the whole text value are prefixes of a text value.

	pre-processing
	Pre-processing includes or excludes portions of a compilation unit as determined by preprocessing directives.

	production
	A production consists of a pattern and an optional constructor.

	program
	A program is a collection of compilation units which conform to the lexical, grammatical, and semantic rules of the language.

	projector
	A projector yields a new collection with one member from all the elements in a source collection.

	query
	A query is an expression which yields a new collection from one or more input collections.

	recognise
	A language recognizes a text value if it matches the Main rule.

	reduce-reduce
	A reduce-reduce conflict occurs if two rules match the same section of text. It may be resolved using precedence.

	reference
	A reference holds the identity value of another entity.

	regular
	Regular is a term from computer science for a class of languages. It is a subclass of the context free languages in which the rules are tail recursive and can be recognized by a finite-state automation.

	representation
	A representation is a storage format for a value. Typically a representation will restrict precision or stipulate an encoding.

	rule
	A rule is a collection of productions with an optional name. There are three forms of rules, syntax, token, and interleave.

	scope
	Scope is the range in which a symbol is defined within the source text.

	scope
	A scope is a container for symbol declarations. In M scopes are lexical which means they can be determines from the block structure of the language (unless otherwise specified).

	selector
	A selector yields a new collection containing all the elements of a source collection with a member equal to a value given as an argument.

	set
	A collection of distinct elements.

	shift-reduce
	A shift-reduce conflict occurs when the language processor can take different actions on two productions or within a single production. It may be resolved using precedence.

	start rule
	The start rule is the first rule a language processor attempts to match when recognizing a text value. The start rule for M is named Main.

	static
	A static quality is any quality which can be determined by reviewing the source text alone.

	storage
	A location that holds a value (see field and extent).

	structural type
	A type whose membership is determined by satisfying a structural pattern and possibly other constraints.

	subtype
	A subtype, S, is a type that permits only values of some other type, T.

	supertype
	A super type, T, is a type that permits all of the values of some other type, S.

	symbol
	A symbol is an identifier in the source text. Symbols are defined within scopes. Modules control the visibility of symbols.

	syntax
	Syntax is used in two ways. In the general sense, syntax is the rules that define a langage. In M, syntax is used to designate a rule which defines a context-free language.

	token
	Token is used to designate a rule which defines a regular language. It is also used to name the sections of a text value recognised by such a rule.

	type
	A type is a predicate over values that yields a collection.

	unique
	An element is unique within a collection if no other element is equal it.

	value
	Syntactically, a value is and expression constructed solely from literals and initializers. It contains no variable reverences, computed values or operators. Conceptually a value is any abstract notion that can be represented in this way.

	variable
	A variable is a symbolic name for value.

	abstract
	An abstract type describes properties common to many other types, but cannot itself be represented.

	alias
	An alias is a local name for a symbol defined in another module. An alias may be specified on an import.

	apply
	A computed value is applied to its arguments to yield a new value.

	arity
	Arity is the number of arguments a computed value requires.

	ascribe
	Ascribing a type to a value requires that the value conform to the type and exposes the behaviors defined on that type.

	collection
	A collection is a container for zero or more values. The values in a collection are called elements. The same value may occur in a collection multiple times but have no order. This is also known as a bag or multiset.

	comment
	A comment is a sequence of characters in a compilation unit that is excluded from semantic analysis.

	compilation unit
	A compilation unit is an ordered sequence of Unicode characters that conform to the lexical and grammatical requirements.

	concrete
	A concrete type can be represented.

	constraint
	A constraint is a logical test to determine if an element is a member of a collection.

	declaration
	A declaration binds a symbol to a type or computed value.

	default
	A default is a value to be used unless no other is specified.

	derived
	A derived type is constraint over some other type.

	dynamic
	A dynamic quality is any quality which is not static.

	element
	An element is a value in a collection.

	entity
	An entity is a set of labeled values.

	export
	An export makes an identifier declared within a module available outside of the module.

	expression
	An expression is a sequence of Unicode characters that conforms to the Expression production in the grammar. In general it consists of an operator and one or more operands. Applying the operator to the operand yields a new value.

	extent
	An extent is a location which holds a value at the module scope.

	field
	A field is a location which holds a value at the entity scope.

	grammar
	A grammar is a set of rules which determine if a sequence of characters conform to a language. As used in the specification these rules are context-free.

	identifier
	An identifier is a symbolic name for use in a program. Type names, formal parameters, module names, and names of computed values are all examples of identifiers.

	identity
	Identity is a value that implies equality between entities. The identity value can be used as a surrogate for the entity itself as in a reference.

	import
	An import brings a symbol defined in another module into scope in the current module. An import may be aliased.

	initializer
	An initializer in an expression that returns a collection or entity value.

	instance
	An instance is a value that conforms to an entity type.

	intrinsic
	Intrinsic definitions are part of the language and cannot be added to or extended by a library.

	lexical
	A lexical rule determines if a sequence of characters conform to a language. As used in this specification lexical rules are regular expressions and ambiguity is resolved by taking the longest match.

	library
	A library is an informal name for a commonly used collection of declarations.

	literal
	A literal is a sequence of characters that represent a simple value.

	member
	A member is a field or computed value within an entity scope.

	module
	A module is a container of extents, type and computed value declarations.

	nominal type
	Values in a nominal type system names the types they are members of. Also, subtypes name their and supertypes.

	null
	The value null is a distinct value that is used as a place holder.

	operand
	An operand is an expression used as an argument to an operator.

	operator
	An operator is a character or sequence of characters that is used in an expression to denote a computed value.

	overloading
	Overloading is giving the same symbol multiple interpretations within the same scope. The only form of overloading in M is on the number of arguments to a computed value.

	pre-processing
	Pre-processing includes or excludes portions of a compilation unit as determined by preprocessing directives.

	program
	A program is a collection of compilation units which conform to the lexical, grammatical, and semantic rules of the language.

	projector
	A projector yields a new collection with one member from all the elements in a source collection.

	query
	A query is an expression which yields a new collection from one or more input collections.

	reference
	A reference holds the identity value of another entity.

	representation
	A representation is a storage format for a value. Typically a representation will restrict precision or stipulate an encoding.

	scope
	A scope is a container for symbol declarations. In M scopes are lexical which means they can be determines from the block structure of the language (unless otherwise specified).

	selector
	A selector yields a new collection containing all the elements of a source collection with a member equal to a value given as an argument.

	set
	A collection of distinct elements.

	static
	A static quality is any quality which can be determined by reviewing the source text alone.

	storage
	A location that holds a value (see field and extent).

	structural type
	A type whose membership is determined by satisfying a structural pattern and possibly other constraints.

	subtype
	A subtype, S, is a type that permits only values of some other type, T.

	supertype
	A super type, T, is a type that permits all of the values of some other type, S.

	symbol
	Symbol is a synonym for identifier. They can be used interchangeably.

	type
	A type is a predicate over values that yields a collection.

	unique
	An element is unique within a collection if no other element is equal it.

	value
	Syntactically, a value is and expression constructed solely from literals and initializers. It contains no variable reverences, computed values or operators. Conceptually a value is any abstract notion that can be represented in this way.

