2  SQL Server 2005 XML Capabilities

styleref "heading 1"  5

Hands-On Lab
Lab Manual

SQL Server™ 2005:

XML Capabilities
Information in this document is subject to change without notice. The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

2004 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, MS, Windows, Windows NT, MSDN, Active Directory, BizTalk, SQL Server, SharePoint, Outlook, PowerPoint, FrontPage, Visual Basic, Visual C++, Visual J++, Visual InterDev, Visual SourceSafe, Visual C#, Visual J#,  and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

SQL Server 2005 XML Capabilities
Objectives

After completing this lab, you will be able to:

· Store XML data in a table

· Use XML Schemas to validate the XML data that you store in SQL Server 2005
· Query XML data using a variety of mechanisms

· Modify XML data
Note

This lab focuses on the concepts in this module and as a result may not comply with Microsoft security recommendations. 

Note

The SQL Server 2005 labs are based on beta builds of the product. The intent of these labs is to provide you with a general feel of some of the planned features for the next release of SQL Server. As with all software development projects, the final version may differ from beta builds in both features and user interface. For the latest details on SQL Server 2005, please visit http://www.microsoft.com/sql/2005/.

Prerequisites 
Before working on this lab, you must have:

· Experience with T-SQL
· Knowledge about the difference between a workgroup and a domain.

· Experience with SQL Server 7.0 or SQL Server 2000
· An overall understanding of XML, XPath, XQuery, and XML Schemas
Estimated time to complete this lab: 60 minutes

Exercise 0 
Lab Setup 
· Log in using the Administrator user account. The password is pass@word1.

Exercise 1: 
Storing XML
By providing native support for XML, SQL Server 2005 not only allows you to store and retrieve XML data, but it also allows you to perform queries based on the contents of the XML, and to modify the XML in place. In this first exercise, you will see how you can create tables that store XML, and how you can retrieve XML data.
· Task 1: Open SQL Server Management Studio
1. Click Start | All Programs | Microsoft SQL Server 2005 | SQL Server Management Studio.
2. If you see a Connect to Server dialog box, confirm that the Server type is SQL Server and that Windows Authentication is selected for Authentication. For the Server name setting, type localhost, and click Connect.

3. Click File | Open | Project/Solution.

4. Navigate to C:\SQL Labs\Lab Projects\XML Lab.
5. Select XMLLab.ssmssln, and then click Open.

6. If you see a Connect to Server dialog box, confirm that the Server type is SQL Server and that Windows Authentication is selected for Authentication. For the Server name setting, type localhost, and click Connect.

Note

You can find the completed lab solution in C:\SQL Labs\Lab Projects\XML Lab Solution.
· Task 2: Create a table with an XML column

1. In the Solution Explorer, expand XMLLab, expand Queries, and then double-click StoringXML.sql.
2. Highlight (select) the following section of code, and press F5.  

USE AdventureWorks

GO

3. Highlight (select) the following code after the comment “-- Exercise 1, Task2: Create a table with an XML column”.

CREATE TABLE ProductDocs (ID INT IDENTITY PRIMARY KEY,

                          ProductDoc XML NOT NULL)

GO

7. Select this code, and press F5.
The ProductDoc column is designed to store an XML document or a fragment of an XML document.

· Task 3: Store XML in the table

1. Select the SQL statement in section “Exercise 1, Task 3, Step 1…,” and press F5 to execute it:

INSERT INTO ProductDocs VALUES('

    <Product>

        <ProductID>1</ProductID>

        <ProductName>Chai</ProductName>

        <SupplierID>1</SupplierID>

        <CategoryID>1</CategoryID>

        <QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>

        <UnitPrice>18.0000</UnitPrice>

        <UnitsInStock>39</UnitsInStock>

        <UnitsOnOrder>0</UnitsOnOrder>

        <ReorderLevel>10</ReorderLevel>

        <Discontinued>0</Discontinued>

    </Product>

')

Next, you will retrieve the XML that has just been inserted. This is done using a standard SQL SELECT statement.

2. Select the following SQL statement after the “Exercise 1, Task 3, Step 2…” comment:

SELECT ID,ProductDoc FROM ProductDocs WHERE ID = 1

GO

As you can see, XML can be retrieved from the database just like any other value.

Note

To view the full text of an XML data type column in the results grid, you can click the XML value, which appears as a hyperlink.

Exercise 2:
XML Schemas

In this exercise, you will store an XML Schema in SQL Server 2005, to validate the XML in a column.

Schemas allow XML to be validated against a known structure. Since schemas are stored in the database, the database can ensure that an XML document conforms to a given structure at the time that it is inserted.

· Task 1: Store a schema in SQL Server
1. In the Solution Explorer, double-click Schemas.sql.
2. If you see a Connect to Server dialog box, confirm that the Server type is SQL Server and that Windows Authentication is selected for Authentication. For the Server name setting, type localhost, and click Connect.
3. Highlight the following section of code, and press F5.  
USE AdventureWorks

GO

4. Select the SQL statement in section “Exercise 2, Task 1, Step 4…”, and press F5 to execute it.
CREATE XML SCHEMA COLLECTION ProductSchema AS '

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 


targetNamespace="http://www.microsoft.com/schemas/adventure-works/products" 


xmlns:prod="http://www.microsoft.com/schemas/adventure-works/products">


<xs:element name="Product">



<xs:complexType>




<xs:sequence>





<xs:element ref="prod:ProductID" />





<xs:element ref="prod:ProductName" />





<xs:element ref="prod:SupplierID" />





<xs:element ref="prod:CategoryID"  />





<xs:element ref="prod:QuantityPerUnit" />





<xs:element ref="prod:UnitPrice" />





<xs:element ref="prod:UnitsInStock" />





<xs:element ref="prod:UnitsOnOrder" />





<xs:element ref="prod:ReorderLevel" />





<xs:element ref="prod:Discontinued" />




</xs:sequence>



</xs:complexType>


</xs:element>

    <xs:element name="ProductID" type="xs:integer" />

    <xs:element name="ProductName" type="xs:string" />

    <xs:element name="SupplierID" type="xs:integer" />

    <xs:element name="CategoryID" type="xs:integer" />

    <xs:element name="QuantityPerUnit" type="xs:string" />

    <xs:element name="UnitPrice" type="xs:double" />

    <xs:element name="UnitsInStock" type="xs:integer" />

    <xs:element name="UnitsOnOrder" type="xs:integer" />

    <xs:element name="ReorderLevel" type="xs:integer" />

    <xs:element name="Discontinued" type="xs:boolean" />

</xs:schema>

'

SELECT * FROM sys.xml_namespaces

This code stores a Schema definition in SQL Server 2005. The SELECT statement will show you all of the schemas that are currently stored in the database.  

When you create XML columns, you can indicate that the data they contain must conform to a particular schema.

8. Select the SQL statement in section “Exercise 2, Task 1, Step 8…”, and press F5 to execute it:

DROP TABLE dbo.ProductDocs

GO

CREATE TABLE ProductDocs (


ID INT IDENTITY PRIMARY KEY,


ProductDoc XML(ProductSchema)



NOT NULL

)

GO
When XML data is inserted into the table, the schema collection you created is used to validate the data. If the data does not conform to the schema, it will be rejected.

· Task 2: Use the schema to validate XML

1. Select the SQL statement in section “Exercise 2, Task 2, Step 1 …”, and press F5 to execute it. This XML will return an error because it does not conform to the schema:

INSERT INTO ProductDocs VALUES('

    <Product xmlns=
"http://www.microsoft.com/schemas/adventure-works/products">

        <ProductID>1</ProductID>

        <SupplierID>1</SupplierID>

        <CategoryID>1</CategoryID>

        <QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>

        <UnitPrice>18.0000</UnitPrice>

        <UnitsInStock>39</UnitsInStock>

        <UnitsOnOrder>0</UnitsOnOrder>

        <ReorderLevel>10</ReorderLevel>

        <Discontinued>0</Discontinued>

    </Product>

')

This should return the following error:

.Net SqlClient Data Provider: Msg 6965, Level 16, State 1, Line 1

XML Validation: Invalid content,expected

element(s):http://www.microsoft.com/schemas/adventure-works/products:ProductName where element 'http://www.microsoft.com/schemas/adventure-works/products:SupplierID' was specified

The error is returned because the schema specifies that the XML must contain a “ProductName” element immediately following ProductID, and this XML document is missing that element.
2. Select the code in section “Exercise 2, Task 2, Step 2 …”, and press F5 to execute it:

INSERT INTO ProductDocs VALUES('

    <Product xmlns=
"http://www.microsoft.com/schemas/adventure-works/products">

        <ProductID>1</ProductID>

        <ProductName>Chai</ProductName>

        <SupplierID>1</SupplierID>

        <CategoryID>1</CategoryID>

        <QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>

        <UnitPrice>18.0000</UnitPrice>

        <UnitsInStock>39</UnitsInStock>

        <UnitsOnOrder>0</UnitsOnOrder>

        <ReorderLevel>10</ReorderLevel>

        <Discontinued>0</Discontinued>

    </Product>

')

This XML conforms to the schema, so it is inserted without error.
Exercise 3:
Server Side Querying

In this exercise, you will learn the various mechanisms that can be used to query the XML stored in SQL Server 2005. Storing XML is effective if you can perform queries on the contents of the XML itself. For example, if you are storing documents as XML, you may want to return only the headings, in order to build an outline.

· Task 1: Selecting XML

1. In the Solution Explorer, double-click Querying.sql.
2. If you see a Connect to Server dialog box, confirm that the Server type is SQL Server and that Windows Authentication is selected for Authentication. For the Server name setting, type localhost, and click Connect.
3. Highlight the following section of code, and press F5.  
USE AdventureWorks

GO

4. Type the following SQL statement in section “Exercise 3, Task 1, Step 4…”, and then select the statement and press F5 to execute it.
SELECT * FROM Sales.Individual WHERE CustomerID = 11000
5. The Demographics column should contain XML demographics data, like the following:

<IndividualSurvey xmlns=
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey">
  <TotalPurchaseYTD>8248.99</TotalPurchaseYTD>
  <DateFirstPurchase>2001-07-22Z</DateFirstPurchase>
  <BirthDate>1966-04-08Z</BirthDate>
  <MaritalStatus>M</MaritalStatus>
  <YearlyIncome>75001-100000</YearlyIncome>
  <Gender>M</Gender>
  <TotalChildren>2</TotalChildren>
  <NumberChildrenAtHome>0</NumberChildrenAtHome>
  <Education>Bachelors </Education>
  <Occupation>Professional</Occupation>
  <HomeOwnerFlag>1</HomeOwnerFlag>
  <NumberCarsOwned>0</NumberCarsOwned>
  <Hobby>Golf</Hobby>
  <Hobby>Watch TV</Hobby>
  <CommuteDistance>1-2 Miles</CommuteDistance>
</IndividualSurvey>
As you saw in Exercise 1, you can query a table, and retrieve the XML contained in a column. In addition, you can perform queries based on the actual contents of the XML.
· Task 2: Querying with XPath

1. Select the SQL statement in section “Exercise 3, Task 2, Step 1…”, and press F5 to execute it:

SELECT TOP 10 Demographics.query('


declare default element namespace=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey" 


/IndividualSurvey/YearlyIncome') 

FROM Sales.Individual
This query returns the YearlyIncome elements from the IndividualSurvey documents stored in the Individual table in the Sales relational schema. 

2. Select the SQL statement in section “Exercise 3, Task 2, Step 2 …”, and press F5 to execute it:

SELECT TOP 10 Demographics.value('


declare default element namespace = "http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey" 


(/IndividualSurvey/YearlyIncome)[1]', 


'varchar(250)') 

FROM Sales.Individual
The “[1]” is added at the end of the path expression in the value() method to explicitly indicate that the path expression returns a singleton.

The previous query returned the matching XML elements. This query returns only the text of those elements:

75001-100000

50001-75000

50001-75000

50001-75000

75001-100000

50001-75000

50001-75000

50001-75000

50001-75000

50001-75000  

3. Copy the SQL statement from section “Exercise 3, Task 2, Step 2…” into section “Exercise 3, Task 2, Step 3…”, and modify it to return each TotalChildren element.

4. Copy the SQL statement from section “Exercise 3, Task 2, Step 2 …” into section “Exercise 3, Task 2, Step 4…”, and modify it to return the value of each TotalChildren element.

You can also use XPath expressions to limit the results based on the contents of the XML.

5. Select the SQL statement in section “Exercise 3, Task 2, Step 6…”, and press F5 to execute it:

SELECT Demographics.value('


declare default element namespace = 
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey" 


(/IndividualSurvey/TotalChildren)[1][. > 1]', 


'varchar(250)') 

FROM Sales.Individual
You will retrieve a NULL for each row where the number of children is not greater than 1. To eliminate the NULLs, you can use the query or value method as part of the WHERE clause.

6. Select the SQL statement in section “Exercise 3, Task 2, Step 7…”, and press F5 to execute it:

SELECT TOP 10 Demographics.value('


declare default element namespace = 
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey" 


(/IndividualSurvey/TotalChildren)[1]', 


'varchar(250)') as TotalChildren

FROM Sales.Individual

WHERE Demographics.value('


declare default element namespace = 
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey" 


(/IndividualSurvey/TotalChildren)[1]', 


'int') > 1
This query limits the rows returned by using the XML value method in the WHERE clause. Note that the result in the WHERE clause is cast as an integer to facilitate numeric comparison. Rows that return NULL are stripped out.

7. Select the SQL statement in section “Exercise 3, Task 2, Step 8…”, and press F5 to execute it:

SELECT TOP 10 Demographics.value('


declare default element namespace = 
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey" 


(/IndividualSurvey/TotalChildren)[1]', 


'varchar(250)') as TotalChildren

FROM Sales.Individual

WHERE Demographics.exist('


declare default element namespace = 
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey" 


(/IndividualSurvey/TotalChildren)[1][. > 1]') = 1
In addition to using the query method to retrieve the element and the value method to retrieve the value of the element, you can use the exists method to test for the existence of an element.

One problem with the queries used up to this point is that you must repeat the query in both the SELECT and the WHERE clause. Using a traditional SQL sub-query, you can avoid this, and also eliminate the blank rows.

9. Select the SQL statement in section “Exercise 3, Task 2, Step 9…”, and press F5 to execute it: 
SELECT TotalChildren

FROM (SELECT Demographics.value('

             declare default element namespace = 
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey" 

             (/IndividualSurvey/TotalChildren)[1][. > 1]', 

             'varchar(250)') As TotalChildren

      FROM Sales.Individual) As A

WHERE TotalChildren IS NOT NULL
You have seen that there are a number of mechanisms that can be used to obtain the same results. By examining the execution plan and I/O statistics, you can determine if one offers better performance than the others.

· Task 3: Querying with XQuery

The Resume column of the JobCandidate table contains a resume stored as an XML document. The following is an example of such a resume:

<ns:Resume xmlns:ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume">

  <ns:Name>

    <ns:Name.Prefix />

    <ns:Name.First>Shai</ns:Name.First>

    <ns:Name.Middle />

    <ns:Name.Last>Bassli</ns:Name.Last>

    <ns:Name.Suffix />

  </ns:Name>

  <ns:Skills>

I am an experienced and versatile machinist who can operate a range of machinery personally as well as supervise the work of other machinists. I specialize in diagnostics and precision inspection, have expertise in reading blueprints, and am able to call on strong interpersonal and communication skills to guide the work of other production machinists whose work I am called upon to inspect. 

My degree in mechanical engineering affords me a better theoretical understanding and mathematical background than many other candidates in the machinist trade.

    </ns:Skills>

  <ns:Employment>

    <ns:Emp.StartDate>2000-06-01Z</ns:Emp.StartDate>

    <ns:Emp.EndDate>2002-09-30Z</ns:Emp.EndDate>

    <ns:Emp.OrgName>Wingtip Toys</ns:Emp.OrgName>

    <ns:Emp.JobTitle>Lead Machinist</ns:Emp.JobTitle>

    <ns:Emp.Responsibility> Supervised work of staff of four machinists. Coordinated all complex assembly and tooling activities, including production of tricycles and wagons.

Developed parts fabrication from sample parts, drawings and verbal orders.Worked with ISO9000 implementation.

        </ns:Emp.Responsibility>

    <ns:Emp.FunctionCategory>Production</ns:Emp.FunctionCategory>

    <ns:Emp.IndustryCategory>Manufacturing</ns:Emp.IndustryCategory>

    <ns:Emp.Location>

      <ns:Location>

        <ns:Loc.Country>US </ns:Loc.Country>

        <ns:Loc.State>MI </ns:Loc.State>

        <ns:Loc.City>Saginaw</ns:Loc.City>

      </ns:Location>

    </ns:Emp.Location>

  </ns:Employment>

  <ns:Employment>

    <ns:Emp.StartDate>1996-11-15Z</ns:Emp.StartDate>

    <ns:Emp.EndDate>2000-05-01Z</ns:Emp.EndDate>

    <ns:Emp.OrgName>Blue Yonder Airlines</ns:Emp.OrgName>

    <ns:Emp.JobTitle>Machinist</ns:Emp.JobTitle>

    <ns:Emp.Responsibility>Repaired and maintained a variety of production and fabrication machine tools.

Set up and operated machines to close tolerances. Used and wrote CNC machine programs. Trained extensively in computer-aided manufacturing.

        </ns:Emp.Responsibility>

    <ns:Emp.FunctionCategory>Production</ns:Emp.FunctionCategory>

    <ns:Emp.IndustryCategory>Manufacturing</ns:Emp.IndustryCategory>

    <ns:Emp.Location>

      <ns:Location>

        <ns:Loc.Country>US </ns:Loc.Country>

        <ns:Loc.State>IL </ns:Loc.State>

        <ns:Loc.City>Chicago</ns:Loc.City>

      </ns:Location>

    </ns:Emp.Location>

  </ns:Employment>

  <ns:Employment>

    <ns:Emp.StartDate>1994-06-10Z</ns:Emp.StartDate>

    <ns:Emp.EndDate>1996-07-22Z</ns:Emp.EndDate>

    <ns:Emp.OrgName>City Power and Light</ns:Emp.OrgName>

    <ns:Emp.JobTitle>Assistant Machinist</ns:Emp.JobTitle>

    <ns:Emp.Responsibility>Performed centerless grinding. Received training in manual mill and lathe machines, as well as micrometers and calipers.

Owned complete toolset.Worked extensive overtime on request. </ns:Emp.Responsibility>

    <ns:Emp.FunctionCategory>Production</ns:Emp.FunctionCategory>

    <ns:Emp.IndustryCategory>Manufacturing</ns:Emp.IndustryCategory>

    <ns:Emp.Location>

      <ns:Location>

        <ns:Loc.Country>US </ns:Loc.Country>

        <ns:Loc.State>IA </ns:Loc.State>

        <ns:Loc.City>Des Moines</ns:Loc.City>

      </ns:Location>

    </ns:Emp.Location>

  </ns:Employment>

  <ns:Education>

    <ns:Edu.Level>Bachelor</ns:Edu.Level>

    <ns:Edu.StartDate>1990-09-15Z</ns:Edu.StartDate>

    <ns:Edu.EndDate>1994-05-10Z</ns:Edu.EndDate>

    <ns:Edu.Degree>Bachelor of Science</ns:Edu.Degree>

    <ns:Edu.Major>Mechanical Engineering</ns:Edu.Major>

    <ns:Edu.Minor />

    <ns:Edu.GPA>3.2</ns:Edu.GPA>

    <ns:Edu.GPAScale>4</ns:Edu.GPAScale>

    <ns:Edu.School>Midwest State University</ns:Edu.School>

    <ns:Edu.Location>

      <ns:Location>

        <ns:Loc.Country>US </ns:Loc.Country>

        <ns:Loc.State>IA </ns:Loc.State>

        <ns:Loc.City>Ames</ns:Loc.City>

      </ns:Location>

    </ns:Edu.Location>

  </ns:Education>

  <ns:Address>

    <ns:Addr.Type>Home</ns:Addr.Type>

    <ns:Addr.Street>567 3rd Ave</ns:Addr.Street>

    <ns:Addr.Location>

      <ns:Location>

        <ns:Loc.Country>US </ns:Loc.Country>

        <ns:Loc.State>MI </ns:Loc.State>

        <ns:Loc.City>Saginaw</ns:Loc.City>

      </ns:Location>

    </ns:Addr.Location>

    <ns:Addr.PostalCode>53900</ns:Addr.PostalCode>

    <ns:Addr.Telephone>

      <ns:Telephone>

        <ns:Tel.Type>Voice</ns:Tel.Type>

        <ns:Tel.IntlCode>1</ns:Tel.IntlCode>

        <ns:Tel.AreaCode>276</ns:Tel.AreaCode>

        <ns:Tel.Number>555-0114</ns:Tel.Number>

      </ns:Telephone>

      <ns:Telephone>

        <ns:Tel.Type>Fax</ns:Tel.Type>

        <ns:Tel.IntlCode>1</ns:Tel.IntlCode>

        <ns:Tel.AreaCode>276</ns:Tel.AreaCode>

        <ns:Tel.Number>555-0132</ns:Tel.Number>

      </ns:Telephone>

    </ns:Addr.Telephone>

  </ns:Address>

  <ns:EMail>Shai@Example.com</ns:EMail>

  <ns:WebSite />

</ns:Resume>
The resume contains seven sections: name, employment, education, address, telephone, email, and Web site.

XQuery allow you to create complex SQL-like queries for an XML document. Using XQuery, you can retrieve information and perform transformations. Also, using the DML extensions to XQuery in SQL Server 2005, you can modify XML documents in-place.

1. Select the SQL statement in section “Exercise 3, Task 3, Step 1…”, and press F5 to execute it:

SELECT JobCandidateID, Resume.query('


declare default element namespace = 
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume" 


for $employer in /Resume/Employment/Emp.OrgName


return $employer


')

FROM HumanResources.JobCandidate
Using this query, you can retrieve just the employer names from the resume documents. However, XQuery allows you to perform queries that are much more complex than XPath queries, using a syntax that is often more readable. For example, in the following step, you will return job candidates’ employers in the manufacturing industry.

2. Select the SQL statement in section “Exercise 3, Task 3, Step 2”, and press F5 to execute it:

SELECT JobCandidateID, Resume.query('


declare default element namespace = 
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume" 


for $employer in /Resume/Employment


where data($employer/Emp.IndustryCategory) = "Manufacturing"


return $employer/Emp.OrgName


')

FROM HumanResources.JobCandidate
3. Copy the query from section “Exercise 3, Task 3, Step 2” to section “Exercise 3, Task 3, Step 3”. Modify the query so that it returns employers located in the city “Renton”.

You can also use XQuery to perform transformations on an XML document. In the next step, you will output the employer name in a custom element that you create as part of your XQuery.

4. Select the SQL statement in section “Exercise 3, Task 3, Step 4…”, and press F5 to execute it. This should produce results similar to the following output in the second column of the result set:

<EmployerName xmlns=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume">Wingtip Toys</EmployerName>

<EmployerName xmlns=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume">Blue Yonder Airlines</EmployerName>

<EmployerName xmlns=

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume">City Power and Light</EmployerName>

As you can see, the output contains the EmployerName element, which was not part of the input.

· Task 4: Creating XML Indexes

You can increase the performance of XML queries by creating an index on the XML column. In this exercise, you will work with a subset of the XML. This will save time, and give you a set of data that you can modify.

Select the SQL statement in section “Exercise 3, Task 4…”, and press F5 to execute it.
SELECT * INTO Individual1 FROM Sales.Individual 

WHERE CustomerID < 11100

ALTER TABLE Individual1 ADD PRIMARY KEY(CustomerID)

CREATE PRIMARY XML INDEX idx_Demographics ON Individual1(Demographics)
When you create an index, all the XML in the column is parsed, and a node table is created. The node table provides a way to improve the performance of XML searches.

· Task 5: Promoting nodes to columns

While you can query directly against the contents of an XML document, there is a significant performance penalty for doing so.

By promoting the TotalChildren element to its own column, you can dramatically reduce the number of reads.

1. Select the SQL Statement in section “Exercise 3, Task 5, Step 1”, and press F5 to execute it:

SELECT 


CustomerID, 


Demographics.value('

        declare default element namespace = 
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey" 


    (/IndividualSurvey/TotalChildren)[1]', 


    'int') As TotalChildren,


Demographics

INTO Individual2 

FROM Individual1

GO

CREATE INDEX idx_TotalChildren ON Individual2 (TotalChildren)
You can now query based on the new promoted TotalChildren column.

2. Select the SQL statements in section “Exercise 3, Task 5, Step 2”, and press F5 to execute it:

SELECT Demographics.value('



declare default element namespace = 
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey" 



(/IndividualSurvey/YearlyIncome)[1]', 



'varchar(20)') as YearlyIncome

FROM Individual2 

WHERE TotalChildren > 1
There are times when you do not know enough about the structure of an XML document to promote any nodes to columns. However, if you do know the structure of the document, and there are certain nodes that will be frequently queried, you should strongly consider using this optimization.
· Task 6: Modifying XML documents in place

You can use the Data Modification Language (DML) extensions to XQuery to modify an XML document in place.  

1. You can modify the contents of an element in an XML column. Select the SQL statement in section “Exercise 3, Task 6, Step 1…”, and press F5 to execute it:

UPDATE Individual1

SET Demographics.modify(

    ' declare default element namespace = 
"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey" 


replace value of (/IndividualSurvey/TotalPurchaseYTD)[1]


with 10')

WHERE CustomerID = 11000
This statement changes the value of an element in place. This is much more efficient than retrieving the entire XML document, making a small change, and then updating the entire XML field.

You can also delete nodes from an existing XML document.

2. Select the SQL Statement in section “Exercise 3, Task 6, Step 2…”, and press F5 to execute it.
UPDATE Individual1

SET Demographics.modify(

    ' declare default element namespace = "http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey" 


delete /IndividualSurvey/Hobby[2]')

WHERE CustomerID = 11000
This query deletes the second Hobby element for the specified individual. Again, it is significantly more efficient to modify an XML document in place, rather than extracting the entire document to make modifications.

Exercise 4:
XML DataType

In this exercise, you will learn to use the XML datatype.

· Task 1: Selecting XML

1. In the Solution Explorer, double-click XML Datatype.sql.
2. If you see a Connect to Server dialog box, confirm that the Server type is SQL Server and that Windows Authentication is selected for Authentication. For the Server name setting, type localhost, and click Connect.
3. Highlight the following section of code, and press F5.  
USE AdventureWorks

GO

4. Type the following SQL statement in section “Exercise 4, Task 1, Step 4…”, and then select the statement and press F5 to execute it:

SELECT * FROM Person.Address
In this exercise, you will be working with data from the Person.Address and HumanResources.Employee tables, so take a minute to become familiar with the columns.

5. Select the SQL statement in section “Exercise 4, Task 1, Step 5…”, and press F5 to execute it.
SELECT * FROM HumanResources.Employee
You can create variables of type XML, and store data in them. The data can come either from an XML column, or from the results of a FOR XML statement.

6. Select the SQL statement in section “Exercise 4, Task 1, Step 6…”, and press F5 to execute it:
DECLARE @x XML

SET @x = (SELECT * FROM Address WHERE AddressID = 1 FOR XML AUTO, 

ELEMENTS, TYPE)

SELECT @x

7. This should return the following results:
<Person.Address>

  <AddressID>1</AddressID>

  <AddressLine1>1970 Napa Ct.</AddressLine1>

  <City>Bothell</City>

  <StateProvinceID>79</StateProvinceID>

  <PostalCode>98011</PostalCode>

  <rowguid>9AADCB0D-36CF-483F-84D8-585C2D4EC6E9</rowguid>

  <ModifiedDate>1998-01-04T00:00:00</ModifiedDate>

</Person.Address>
The results of the FOR XML query were stored in an XML variable, and the contents of the variable were then output in XML format. The XML data type provides all of the functionality available for XML columns in tables. As a result, you can use any methods on this data type that you can on XML columns. In the following query, data is loaded into an XML variable, and the query method is used to output a specific XML document.

8. Select the SQL statement in section “Exercise 4, Task 1, Step 8…”, and press F5 to execute it:

DECLARE @x XML

SET @x = (SELECT TOP 50 City FROM Person.Address FOR XML AUTO, ELEMENTS, TYPE)

SELECT @x.query('


<Cities>


{



for $city in /Person.Address/City



return $city


}


</Cities>

')
This should return the following results:

<Cities>

  <City>Ottawa</City>

  <City>Burnaby</City>

  <City>Dunkerque</City>

 (lines deleted for brevity...)

  <City>Paris</City>

  <City>Versailles</City>

  <City>Croix</City>

</Cities>
Using a combination of XQuery and the XML datatype opens the door to powerful creation and manipulation of XML data in T-SQL code.

In addition, the FOR XML clause supports nested SQL statements, allowing you to join data from tables to create hierarchies.

9. Select the SQL statement in section “Exercise 4, Task 1, Step 9…”, and press F5 to execute it:

DECLARE @x XML

SET @x = (


SELECT *, (



SELECT * 



FROM Person.Address Address



WHERE Employee.AddressID = Address.AddressID



FOR XML AUTO, ELEMENTS, TYPE


) AS Addresses


FROM HumanResources.Employee Employee


WHERE EmployeeID = 1


FOR XML AUTO, ELEMENTS, TYPE

)

SELECT @x
This should return the following results:

<Employee>

  <EmployeeID>1</EmployeeID>

  <NationalIDNumber>14417807</NationalIDNumber>

  <ContactID>1209</ContactID>

  <LoginID>adventure-works\guyg</LoginID>

  <DepartmentID>7</DepartmentID>

  <ManagerID>16</ManagerID>

  <ShiftID>1</ShiftID>

  <Title>Production Technician - WC60</Title>

  <EmergencyContactID>1498</EmergencyContactID>

  <AddressID>61</AddressID>

  <BirthDate>1972-05-15T00:00:00</BirthDate>

  <MaritalStatus>M</MaritalStatus>

  <Gender>M</Gender>

  <HireDate>1996-07-31T00:00:00</HireDate>

  <SalariedFlag>0</SalariedFlag>

  <BaseRate>12.4500</BaseRate>

  <PayFrequency>1</PayFrequency>

  <VacationHours>21</VacationHours>

  <SickLeaveHours>30</SickLeaveHours>

  <CurrentFlag>1</CurrentFlag>

  <rowguid>AAE1D04A-C237-4974-B4D5-935247737718</rowguid>

  <ModifiedDate>1996-07-24T00:00:00</ModifiedDate>

  <Addresses>

    <Address>

      <AddressID>61</AddressID>

      <AddressLine1>7726 Driftwood Drive</AddressLine1>

      <City>Monroe</City>

      <StateProvinceID>79</StateProvinceID>

      <PostalCode>98272</PostalCode>

      <rowguid>07373E01-BD99-405A-996A-AB68984423C3</rowguid>

      <ModifiedDate>1996-07-24T00:00:00</ModifiedDate>

    </Address>

  </Addresses>

</Employee>






Last Saved: 9/13/2004 1:34:00 PM
Last Printed: 0/0/0000 0:00:00 AM

