
[image: f:\dsbuildroot\wswemdmain\1033\Art\OM2007R2Logo\OM2007R2Logo.gif]

Cross Platform Management Pack Authoring Guide for Operations Manager 2007 R2
Microsoft Corporation
Published: June 2009
Send suggestions and comments about this document to momdocs@microsoft.com.

Copyright
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.
This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.
 Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.
© 2009 Microsoft Corporation. All rights reserved.
Microsoft, Active Directory, ActiveSync, Internet Explorer, JScript, SharePoint, SQL Server, Visio, Visual Basic, Visual Studio, Win32, Windows, Windows PowerShell, Windows Server, and Windows Vista are trademarks of the Microsoft group of companies.
All other trademarks are property of their respective owners.
Revision History

	Release Date
	Changes

	June 2009
	Original release of this documentation

Contents
Cross Platform Management Pack Authoring Guide	5
Intended Audience for the Cross Platform Management Pack Authoring Guide	8
Getting Started with the Cross Platform Management Pack Authoring Guide	8
Management Pack Elements	10
Understanding Management Pack Operations	12
Considerations when Authoring or Modifying a Management Pack	13
Management Pack Tasks	14
Required Management Pack Definitions	15
Enable Application Discovery	19
Use a Script to Monitor an Application	29
Create Tasks	37
Create a Recovery Task	40
Monitor an Application's Health	41
Create a Health Rollup	49
Monitor Performance Data	50
Collect and View Performance Data	59
Create a Performance Rollup	64

[bookmark: _Toc235267455][bookmark: z88f0dd329d324226aa433a41917d010d]Cross Platform Management Pack Authoring Guide
Welcome to the Cross Platform Management Pack Authoring Guide for use with Microsoft System Center Operations Manager 2007 R2. System administrators of Windows-based, UNIX-based, and Linux-based platforms can use this document as a guide to how to create and use management packs to manage their computer systems. Because Operations Manager 2007 R2 extends monitoring support to UNIX-based and Linux-based servers, organizations can monitor and manage their cross-platform environments from a unified management console. The key to how to configure and run Operations Manager is the management pack, an XML-based file that defines the objects that Operations Manager will discover and monitor and the information that will be collected about these objects.
By using Operations Manager 2007 R2, system administrators of UNIX-based and Linux-based servers can now monitor the health of key system attributes, including the following:
	File systems and network interfaces.
	Critical processes (for example, syslog, cron, and others).
	Key configurations (for example, resolution of host name and correct configuration of Web Services Management components).
	Core system attributes (for example, the health of system memory and processors).
In This Section
Intended Audience for the Cross Platform Management Pack Authoring Guide
	Describes the expectations and the minimum knowledge that are required to implement a cross platform management pack.

Getting Started with the Cross Platform Management Pack Authoring Guide
	Provides information on the structure and workflow of a management pack.

Management Pack Tasks
	Describes typical administrative tasks and how to implement those tasks by using a management pack.

Reference
Online Training
	TechNet Virtual Lab: System Center Operations Manager 2007- Introduction (http://go.microsoft.com/fwlink/?linkid=152883)
	TechNet Virtual Lab: System Center Operations Manager 2007- Advanced Topics (http://go.microsoft.com/fwlink/?linkid=152884)
	HOW TO: Use XML to Create a Basic Management Pack with Discovery for a Windows-based Computer (http://go.microsoft.com/fwlink/?linkid=150433)
Published Documentation
	Operations Manager 2007 Management Pack Authoring Guide (http://go.microsoft.com/fwlink/?linkid=150417)
	System Center Operations Manager 2007 Unleashed. (includes CD-ROM), Meyler, Kerrie, et al., Sams, 2008, p. 1385
Online Resources
	Operations Manager Cross Platform and Interop Solutions (http://go.microsoft.com/fwlink/?linkid=144278)
	Microsoft.Unix.Computer: Team blog for System Center Cross Platform and Interop (http://go.microsoft.com/fwlink/?linkid=152885)
	Operations Manager Web site (http://go.microsoft.com/fwlink/?linkid=108041)
	System Center Web site (http://go.microsoft.com/fwlink/?linkid=118294)
	TechNet Webcast: Successfully Monitor UNIX and Linux Alongside Your Windows Infrastructure with Operations Manager 2007 R2 (Level 300) (http://go.microsoft.com/fwlink/?linkid=150435)
Related Sections
Management Pack Elements
	Description of the basic structure of a management pack.

Understanding Management Pack Operations
	Description of the workflow of a management pack.

Considerations when Authoring or Modifying a Management Pack
	Tips and tricks for successfully building a management pack.

Required Management Pack Definitions
	Description of the minimum information needed when building a management pack.

Enable Application Discovery
	Instructions on how to implement application discovery by using a management pack.

Use a Script to Monitor an Application
	Instructions on how to use a management pack to monitor an application.

Create Tasks
	Instructions on how to create tasks by using a management pack.

Create a Recovery Task
	Instructions on how to create a recovery task.

Monitor an Application's Health
	Instructions on how to monitor the health state of an application by using a management pack.

Create a Health Rollup
	Instructions on how to build a health rollup.

Monitor Performance Data
	Instructions on how to monitor performance data by using a management pack.

Collect and View Performance Data
	Instructions on how to collect and then view performance data by using a management pack.

Create a Performance Rollup
	Instructions on how to create a performance rollup.

[bookmark: _Toc235267456][bookmark: z83d1b3d4d16d4c3891f1d7c70cfbf4ca]Intended Audience for the Cross Platform Management Pack Authoring Guide
This document focuses on providing information to quickly implement a management pack for use with UNIX-based and Linux-based computers. This guidance is for system administrators who want to use new and existing scripts and who want to manage and monitor UNIX-based and Linux-based computers through the application of management packs.

Details of how to deploy and install Operations Manager 2007 R2 are described in the document Deploying Operations Manager 2007 (http://go.microsoft.com/fwlink/?linkid=131514).
You do not need previous experience with building management packs to use this guide, but be aware that the concepts described in the management pack authoring guide are not covered in depth in this document. See the Microsoft Operations Manager 2007 Management Pack Authoring Guide (http://go.microsoft.com/fwlink/?linkid=150417) for a broader understanding of management packs and their role in managing systems and infrastructure.
This document focuses on two categories of individuals who might need to create a management pack: Operations Manager administrators and UNIX or Linux administrators. Familiarity with XML is helpful, but it is not required. Suggestions for resources are at the end of this guide.
Operations Manager Administrators
System Center Operations Manager administrators are familiar with a previous version of Operations Manager, but they are new to Operations Manager 2007 R2. Additionally, this might be an administrator’s introduction to UNIX and Linux operating systems. This administrator is familiar with the network and devices present within the infrastructure but will need to learn basic navigation tools and basic editing tools within the UNIX or Linux environment.
UNIX and Linux Administrators
 UNIX or Linux administrators are familiar with the UNIX or Linux systems they manage, but they might have limited experience administering Windows-based computers and no previous experience as an Operations Manager administrator. This administrator is familiar with the network and devices present within the infrastructure. UNIX or Linux administrators will need to learn basic navigation and editing within the Windows environment.
[bookmark: _Toc235267457][bookmark: z0e97f1ada0044132819ccf21beda1e13]Getting Started with the Cross Platform Management Pack Authoring Guide
This topic covers the features, content, and required tools of the Cross Platform Management Pack Authoring Guide.
Cross Platform Authoring Guide Features
The sample management pack provided with the Cross Platform Management Pack Authoring Guide contains the following:
	A discovery rule that determines whether the Sample Application exists on a computer
	A script monitor that verifies the version of a script
	A recovery task that deploys a new copy of the script if the verification fails
	A health monitor that executes a script and evaluates results
	A performance collection rule that collects performance data and then stores the information in the Operations Manager database
	A performance monitor that creates an alert if the application performance falls outside of a specified boundary
This management pack also has the following components:
	View folder
	Performance view
	Dependency rollups for system availability and system performance
	Display strings
Cross Platform Authoring Guide Contents
The Cross Platform Management Pack Authoring Guide consists of the following items:

	Authoring Guide Content
	Description

	The Cross Platform Management Pack Authoring Guide for Operations Manager 2007 R2
	This guide

	Microsoft.SCX.Authoring.Guide.xml
	The complete sample management pack

	SampleAppHealth.sh
	Bash script to simulate application health

	SampleAppPerf.sh
	Bash script to simulate performance data

Required Tools
To develop a management pack, the following tools must be available:
	Successful installation of Microsoft System Center Operations Manager 2007 R2
	Successful installation of System Center Core Library Management Pack
	Successful deployment of Operations Manager management group that contains at least one UNIX-based or Linux-based computer
	An XML editor, such as Microsoft Visual Studio
Because this guide focuses on how to create the management pack directly in XML, an XML editor is strongly recommended. The procedures in this guide provide instructions that use the Microsoft Visual Studio XML editor. You can download a free version of Visual Studio from the Visual Studio Express Downloads page (http://go.microsoft.com/fwlink/?Linkid=136819).
XML Notepad is also available at http://go.microsoft.com/fwlink/?Linkid=148395.
[bookmark: _Toc235267458][bookmark: z78f5609214a74c319eec6afc5c6e82ce]Management Pack Elements
The following topic describes the structure of a management pack and each of the major sections within it.
Structure of a Management Pack
The Operations Manager schema is divided into eight major sections. In XML, the basic structure of a management pack looks like the following code example:

<ManagementPack>
 <Manifest/>
 <TypeDefinitions/>
 <Monitoring/>
 <Templates/>
 <PresentationTypes/>
 <Presentation/>
 <Reporting/>
 <LanguagePacks/>
</ManagementPack>

Manifest
The <Manifest> contains the basic identity of the management pack. Each management pack must begin with a section called the Manifest, which has three parts: the Identity, the Name, and the References.
For more information about the <Manifest>, see Manifest Detail (http://go.microsoft.com/fwlink/?linkid=152032).
Type Definitions
The <TypeDefinitions> of the management pack file describe the base monitor classes. For UNIX and Linux unit monitors, there is no default hosting relationship; the hosting relationship must be explicitly defined.
For more information about type definitions, see Type Definitions Detail (http://go.microsoft.com/fwlink/?linkid=152031).
Monitoring
The <Monitoring> section of the management pack contains:
	Rules
	Monitors
	Overrides
For more information about monitoring, see Monitoring Detail (http://go.microsoft.com/fwlink/?linkid=152029).
Templates
<Templates> are not covered in this guide. For more information about templates, see Template Detail (http://go.microsoft.com/fwlink/?linkid=152030).
Presentation Types
<PresentationTypes> are not covered in this document. For more information about presentation types, see Presentation Type Detail (http://go.microsoft.com/fwlink/?linkid=152027).
Presentation
<Presentation> contains:
	Views
	Folders
	Folder Items
 The presentation section contains text formatting, folder relationships, and identifiers for strings. These items define the views that you see in the Operations Manager console at the top of the monitoring pane folder list. These views disappear if the management pack is deleted.
Presentation is not covered in depth in this document. For more information about presentation, see Presentation Detail (http://go.microsoft.com/fwlink/?linkid=152020).
Language Packs
The <LanguagePacks> section contains the friendly names for the management pack name and the folders displayed in the Operations Manager console. Language Packs contain:
	Display Strings
	Knowledge Articles
Display Strings contain the names for objects and references in the management pack. This section often contains human-readable information in which the actual rules, monitors, and overrides contain GUIDs. Knowledge Articles contain the description and troubleshooting information for the management pack.
Language Packs are not covered in depth in this guide. For more information about Language Packs, see Language Packs Detail (http://go.microsoft.com/fwlink/?linkid=150432).
[bookmark: _Toc235267459][bookmark: z30ff64b6b6044b9fa718bd5514586131]Understanding Management Pack Operations
If you are familiar with Operations Manager 2007 SP1 and have experience in creating or customizing management packs, this information in this topic will be familiar to you. This topic highlights the terminology and relationships between the various elements within a management pack to help administrators who are new to Operations Manager get started. Details of Operations Manager 2007 R2 Model-Based design are not covered in this document. To gain a fuller understanding of how service modeling and health modeling interact to describe the state of your environment, see the chapter about Operations Manager 2007 Key Concepts (http://go.microsoft.com/fwlink/?linkid=150428) in the Microsoft Operations Manager 2007 Management Pack Authoring Guide (http://go.microsoft.com/fwlink/?linkid=150417).
Management Pack
A management pack is the physical file (or files) that contain the rules, monitors, tasks, views, and reports that are used to describe the application, service or hardware. A management pack tells Operations Manager how to discover and monitor an object in the system environment. Operations Manager is typically not aware of anything in its environment unless the appropriate management pack is imported.
In the case of cross-platform systems, Operations Manager cannot discover, monitor, or perform tasks on any UNIX or Linux systems until the management pack for the specific operating system is installed. There are multiple parts in the monitoring process that are briefly described in the following sections.
Rules
Rules collect data. Information from rules is collected and stored in the Operations Manager database to generate reports.
Monitors
Monitors collect data from an actively running computer or process. The data is evaluated to calculate the state of a computer and change the state of the computer as appropriate. An alert can be triggered on the change in state of the computer, based on monitor settings. Monitor-collected data is not stored in the Operations Manager database.
Alerts
Alerts are notifications that are triggered by a change in the state of a computer or process by a monitor evaluation. An alert occurs for an actionable situation. You can think of alerts as to-do items for the administrator.
Tasks
A task is one or more actions to be taken as the result of an alert. Tasks can also be executed on demand.
Health
The health model describes how the health states of those pieces affect the health of the entire application. The health model is a collection of monitors that represent different aspects of the object type. There are security monitors, availability monitors, performance monitors, and so on, that are all aspects of the health of a particular model. Default entity health consists of Availability, Performance, Security, and Configuration.
[bookmark: _Toc235267460][bookmark: z00fb614f60ad4540ba747e8b4eebb8ce]Considerations when Authoring or Modifying a Management Pack
The following is general guidance and recommendations on building management packs for use with UNIX-based and Linux-based computers.
Getting the Latest Management Pack and Documentation
You can obtain the latest version of the Cross Platform Management Pack Authoring Guide from the System Center Operations Manager 2007 R2 Catalog (http://go.microsoft.com/fwlink/?linkid=82105) in the Technical Library.
Saving Customizations
Most management packs are sealed so that the original settings cannot be changed in the management pack file. However, you can create and save customizations, such as overrides or new monitoring objects, to a different management pack. By default, Operations Manager 2007 R2 saves all customizations to the default management pack. It is a best practice not to write any custom rules, monitors, groups, views, or overrides to the default management pack. Instead, create a separate management pack for customizations.
The process of exporting customizations simplifies the move from test and preproduction environments to the production environment. For example, instead of exporting a default management pack that contains customizations from multiple management packs, export a single customized management pack and maintain all customizations in a single location.
For more information about sealed and unsealed management packs, see Management Pack Formats (http://go.microsoft.com/fwlink/?linkid=108355). For more information about management pack customizations and the default management pack, see About Management Packs in Operations Manager 2007 (http://go.microsoft.com/fwlink/?linkid=108356) and Create a New Management Pack for Customizations (http://go.microsoft.com/fwlink/?LinkID=152033).
Naming Conventions
For management packs, ID naming conventions are part of a larger discussion around classes, class types, and inheritance. A detailed explanation of Management Pack Classes and Relationships (http://go.microsoft.com/fwlink/?linkid=152876) is in the System Center Operations Manager 2007 topic, Authoring in Operations Manager 2007 R2.
As an aid to understanding the sample management pack, a brief explanation of naming conventions is appropriate. For example; a monitor ID might be named <CompanyName>.<DescriptiveName>.Monitor. You can then use the <CompanyName>.<DescriptiveName> root name to describe the various other classes and class types that are associated with this object. The Unit Monitor Type is then <CompanyName>.<DescriptiveName>.MonitorType, the string resource is <CompanyName>.<DescriptiveName>.AlertMessage, and so on. By using this system, you can more easily see the relationships among the various objects that are defined within a management pack.
Monitor Intervals
When you create new monitors, it is important to keep the monitoring intervals the same as those of other monitors. Failure to follow this guideline can create very high load on the UNIX-based or Linux-based server because Operations Manager relies on the health service to minimize the number of monitors and rules in memory and to reduce the number of calls to the agent. For example, when you monitor two processes, it does not make sense to retrieve the process list twice. If the monitoring intervals are the same, Operations Manager only retrieves the list once and delivers it to both monitors. The same guidance applies to Swap Space monitoring. Keep intervals to 300 seconds, which is the interval that all other rules and monitors use. If monitors must be run more often than 300 seconds, remember that this will affect the CPU and I/O usage on the UNIX-based or Linux-based server.
For more information about Workflows and monitor intervals, see Management Pack Workflows (http://go.microsoft.com/fwlink/?linkid=152034).
Incrementing Versions
Whenever you modify the management pack, remember to increment the version number in the manifest section every time you import a newer version of the management pack to the Operations Manager console.
Reference Library Versions
Management pack support for UNIX-based and Linux-based systems is a feature that is found only in Operations Manager 2007 R2. The <References> subsection within the <Manifest> section of the management pack must reference the correct library version. Operations Manager 2007 R2 libraries are version 6.0.7221.0, and Operations Manager Cross Platform 2007 R2 libraries are version 6.1.7000.256.
[bookmark: _Toc235267461][bookmark: z8be36aa7a1654f15b58b83dc27885380]Management Pack Tasks
This topic describes the scenarios that are covered in the Cross Platform Management Pack Authoring Guide.
Administrative Scenario
This guide and the sample files that are provided describe the steps to deploy and monitor rules, alerts, scripts, and performance counters on a UNIX-based or Linux-based computer. The samples presented are generic and apply to all supported operating systems.
The scenario is separated into several parts to show you how to write a customized management pack. Objectives include the following:
	Discover if a file or script exists on a UNIX-based or Linux-based computer.
	Verify and repair a file or script.
	Monitor an application by using new or existing scripts.
	Monitor the Health of an application.
	Collect and report Performance Data.
The scenarios can be deployed as is, without any modifications. They are intended to be used as a starting point for creating custom discoveries, monitors, rules, and alerts.
This guide describes how to create a basic management pack with a discovery. A simple script is put on the system to simulate the health status of an application or service that exists on the UNIX-based or Linux-based server. The system that hosts the script is discovered for health monitoring. Next, the management pack validates that the script is current by comparing the MD5 hash of the file to a known, valid script. A recovery task then updates the old or corrupted script to the current version. When the script is validated, the script is executed and reports the results to StdErr. A monitor is then added to evaluate the system health based on the script results. Finally, a rule is created to collect performance data, and a monitor is created to generate an alert on a state change and notify the administrator for corrective action.
[bookmark: _Toc235267462][bookmark: zbfa682d6f9b04a498a7f58a155170136]Required Management Pack Definitions
The following topic describes the management pack root element. It also includes sample code that illustrates the basic framework of a management pack, and a procedure that provides instructions on how to import the sample management pack in to Operations Manager.
Management Pack Root Element
The first line of every management pack is the root element, <ManagementPack>. This element defines the namespaces for the management pack and contains all the sections that are necessary to describe the functionality. For more information about the declarations for a management pack, see the System Center Operations Manager 2007 documentation for ManagementPack Members (http://go.microsoft.com/fwlink/?linkid=150718).
Manifest
The first section within the management pack is called <Manifest>. <Manifest> is the only required section of the management pack and contains three parts: identity, name, and references. Identity and Name make up the unique identifier for the management pack. Notice that the references subsection points to the management packs that are required for this management pack to function correctly.
Microsoft.Unix.Library contains support for UNIX-based and Linux-based servers. The Microsoft.SystemCenter.WSManagement.Library provides support for the Web Service Management standard for remotely exchanging management data with any computer device that implements the protocol. The Microsoft Operations Manager 2007 Management Pack Module Reference (http://go.microsoft.com/fwlink/?linkid=150729) provides additional information about these management packs.
This following XML represents the basic starting point for building a management pack.

<ManagementPack ContentReadable="true" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
 <Manifest>
 <Identity>
 <ID>Microsoft.SCX.Authoring.Guide</ID>
 <Version>6.1.7000.001</Version>
 </Identity>
 <Name>Microsoft System Center Cross Platform Management Pack Authoring Guide Sample</Name>
 <References>
 <Reference Alias="SCDW">
 <ID>Microsoft.SystemCenter.DataWarehouse.Library</ID>
 <Version>6.0.7221.0</Version>
 <PublicKeyToken>31bf3856ad364e35</PublicKeyToken>
 </Reference>
 <Reference Alias="ReportLibrary">
 <ID>Microsoft.SystemCenter.DataWarehouse.Report.Library</ID>
 <Version>6.0.7221.0</Version>
 <PublicKeyToken>31bf3856ad364e35</PublicKeyToken>
 </Reference>
 <Reference Alias="SC">
 <ID>Microsoft.SystemCenter.Library</ID>
 <Version>6.0.7221.0</Version>
 <PublicKeyToken>31bf3856ad364e35</PublicKeyToken>
 </Reference>
 <Reference Alias="WSM">
 <ID>Microsoft.SystemCenter.WSManagement.Library</ID>
 <Version>6.0.7221.0</Version>
 <PublicKeyToken>31bf3856ad364e35</PublicKeyToken>
 </Reference>
 <Reference Alias="Unix">
 <ID>Microsoft.Unix.Library</ID>
 <Version>6.1.7000.256</Version>
 <PublicKeyToken>31bf3856ad364e35</PublicKeyToken>
 </Reference>
 <Reference Alias="Windows">
 <ID>Microsoft.Windows.Library</ID>
 <Version>6.0.7221.0</Version>
 <PublicKeyToken>31bf3856ad364e35</PublicKeyToken>
 </Reference>
 <Reference Alias="SystemHealth">
 <ID>System.Health.Library</ID>
 <Version>6.0.7221.0</Version>
 <PublicKeyToken>31bf3856ad364e35</PublicKeyToken>
 </Reference>
 <Reference Alias="System">
 <ID>System.Library</ID>
 <Version>6.0.7221.0</Version>
 <PublicKeyToken>31bf3856ad364e35</PublicKeyToken>
 </Reference>
 <Reference Alias="SystemPerf">
 <ID>System.Performance.Library</ID>
 <Version>6.0.7221.0</Version>
 <PublicKeyToken>31bf3856ad364e35</PublicKeyToken>
 </Reference>
 </References>
 </Manifest>
 <TypeDefinitions/>
 <Monitoring>
 <Discoveries/>
 <Rules/>
 <Tasks/>
 <Monitors/>
 <Recoveries/>
 </Monitoring>
 <Templates/>
 <PresentationTypes/>
 <Presentation/>
 <Reporting/>
 <LanguagePacks/>
</ManagementPack>
Save the full text of this XML example as Microsoft.SCX.Authoring.Guide.xml in an unformatted file by using your editor of choice. Notice that the Identity section’s ID has a value identical to the file name. This name match is required and allows Operations Manager to locate the referenced management pack on the file system. You must change both the file name and the Identity ID when you customize the name of this management pack.
Import the management pack to understand the importing process and to validate that this management pack is correct.
[image:]Import a management pack
	1.	Start Operations Manager.
2.	From the Administration Node, right-click Management Packs, and then select Import Management Packs. Notice that the Import Management Packs Wizard starts.
3.	Select Add, add from disk.
4.	Select newly created management pack: Microsoft.SCX.Authoring.Guide.xml.
5.	Add to Import List.
6.	Notice the Status details dialog box; it reports whether any previous versions of the management pack are installed. Only later versions of a management pack can be imported.
7.	Select Install; the import process should begin immediately.
8.	When the import is complete, select Close.

For additional instructions about how to import a management pack, see How to Import a Management Pack in Operations Manager 2007 R2 (http://go.microsoft.com/fwlink/?linkid=98348).
 Notice that some sections in the code example have been expanded to contain empty subsections. This is to help identify the locations for XML described in later topics. Refer to the sample management pack to confirm correct placement of code examples.
In the references subsection, there are references to common Operations Manager management packs. You will always reference these management packs for any cross-platform monitoring. There are additional management packs available for specific operating systems.
The references of particular note for UNIX-based or Linux-based servers are the reference for the UNIX library and the WSMAN Library:

 <Reference Alias="Unix">
 <ID>Microsoft.Unix.Library</ID>
 <Version>6.0.6278.0</Version>
 <PublicKeyToken>31bf3856ad364e35</PublicKeyToken>
 </Reference>

and

 <Reference Alias="WSM">
 <ID>Microsoft.SystemCenter.WSManagement.Library</ID>
 <Version>6.0.7221.0</Version>
 <PublicKeyToken>31bf3856ad364e35</PublicKeyToken>
 </Reference>

The Microsoft.Unix.Library contains generic UNIX and Linux management pack support, including the method ProbeAction. The Microsoft.SystemCenter.WSManagement.Library contains Web services management support to enable communication with the computers within an Operations Manager management group.
[bookmark: _Toc235267463][bookmark: zc9d75d8560b6499285b529c4abb2e6dd]Enable Application Discovery
The following topic describes the rule, data source, and module implementation necessary to perform discovery by using a management pack.
Discovery
Discovery is accomplished by using criteria that are based on the application structure and hosting relationships. In this topic, Operations Manager management pack contains a type of monitor called discovery. This monitor discovers a file, which is also a script. This script is later run to evaluate the availability of an application. It is possible to discover the application’s executable file, but typically, launching an application executable file does not provide any measureable information on health or availability.
Create a Discovery
When it is defined in a management pack, a discovery runs on every computer in the Operations Manager management group. In this case, an instance of the Microsoft.SCX.Sample.Application class is created only when the required script exists on the computer.
Notice that, in the discovery that is defined in the following code example, the <DiscoveryClass> is of a <TypeId> equivalent to Microsoft.SCX.Sample.Application and that the <DataSource> that is named <DS> has a <TypeID> of Microsoft.Unix.WSMan.TimedCommandExecution.DiscoveryData. The discovery class and data source are described in detail in following sections.
Within the data source definition, the <InvokeAction> named <ExecuteCommand> is defined. The <Input> for the invoke action includes the literal command line ls /tmp/SampleAppHealth.sh. In simple terms: the discovery performs the command ls with a parameter for a file in a specific directory on the system and stops if the time-out period is exceeded. The results from this command are passed to StdErr.

 <Discoveries>
 <Discovery ID="Microsoft.SCX.SampleApp.Discovery" Enabled="true" Target="Unix!Microsoft.Unix.Computer" ConfirmDelivery="false" Remotable="true" Priority="Normal">
 <Category>Discovery</Category>
 <DiscoveryTypes>
 <DiscoveryClass TypeID="Microsoft.SCX.Sample.Application" />
 </DiscoveryTypes>
 <DataSource ID="DS" TypeID="Microsoft.Unix.WSMan.TimedCommandExecution.DiscoveryData">
 <IntervalSeconds>30</IntervalSeconds>
 <SyncTime />
 <TargetSystem>$Target/Property[Type="Unix!Microsoft.Unix.Computer"]/NetworkName$</TargetSystem>
 <Uri>http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem?__cimnamespace=root/scx</Uri>
 <Selector />
 <InvokeAction>ExecuteCommand</InvokeAction>
 <Input><![CDATA[<p:ExecuteCommand_INPUT xmlns:p="http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem"><p:command>ls /tmp/SampleAppHealth.sh</p:command><p:timeout>10</p:timeout></p:ExecuteCommand_INPUT>]]></Input>
 <FilterProperty>//*[local-name()="StdErr"]</FilterProperty>
 <FilterValue>No such file or directory</FilterValue>
 <ClassId>$MPElement[Name="Microsoft.SCX.Sample.Application"]$</ClassId>
 <InstanceSettings>
 <Settings>
 <Setting>
 <Name>$MPElement[Name="Unix!Microsoft.Unix.Computer"]/PrincipalName$</Name>
 <Value>$Target/Property[Type="Unix!Microsoft.Unix.Computer"]/PrincipalName$</Value>
 </Setting>
 <Setting>
 <Name>$MPElement[Name="Microsoft.SCX.Sample.Application"]/DisplayName$</Name>
 <Value>Microsoft System Center Cross Platform Sample Application</Value>
 </Setting>
 </Settings>
 </InstanceSettings>
 </DataSource>
 </Discovery>
 </Discoveries>

In the Microsoft.SCX.Authoring.Guide.xml file that was created earlier, replace the </Discoveries> subsection under monitoring with the preceding XML.
Define a Class and Hosting Relationship
The next step in the discovery process is to define a class for the application and a hosting relationship for that class.
In the <EntityTypes> subsection, within the TypeDefinitions section, there is a place to define multiple <ClassTypes>. Define an individual <ClassType> to represent the sample application to be observed. Here it is named Microsoft.SCX.Sample.Application. This sample application matches a base class that is defined in the Microsoft.Unix.Library management pack, named Unix.ApplicationComponent.
For every <ClassType>, a <RelationshipType> must be defined that states where the class is to be hosted. In this case, a UNIX-based or Linux-based computer is the host. The base class is defined in the System.Hosting management pack. An individual <RelationshipType> is defined in <RelationshipTypes>, within the <EntityTypes> subsection, and within the <TypeDefinitions> section. Notice that the <Target> attribute matches the name of the <ClassType> that was defined earlier.
These definitions describe a class that has the following attributes:
	An ID that is unique within the management pack.
	A specialization of the UNIX Application Component class.
	An external class, which can be referenced by other management packs if the management pack is sealed.
	The class is hosted by another class (instances cannot exist without a host).
The following code example shows the XML:

<TypeDefinitions>
 <EntityTypes>
 <ClassTypes>
 <ClassType ID="Microsoft.SCX.Sample.Application" Accessibility="Public" Abstract="false" Base="Unix!Microsoft.Unix.ApplicationComponent" Hosted="true" Singleton="false">
 <Property ID="DisplayName" Type="string" Key="false" CaseSensitive="false" Length="256" MinLength="0" />
 </ClassType>
 </ClassTypes>
 <RelationshipTypes>
 <RelationshipType ID="Microsoft.Unix.ComputerHostsSampleApplication" Accessibility="Public" Abstract="false" Base="System!System.Hosting">
 <Source>Unix!Microsoft.Unix.Computer</Source>
 <Target>Microsoft.SCX.Sample.Application</Target>
 </RelationshipType>
 </RelationshipTypes>
 </EntityTypes>

 <ModuleTypes />

 <MonitorTypes />

</TypeDefinitions>

In the Microsoft.SCX.Authoring.Guide.xml file that was created earlier, replace <TypeDefinitions/> with the preceding XML.
Define Data Source
In the discovery definition, <DataSource> references a <DataSourceModuleType> called Microsoft.Unix.WSMan.TimedCommandExecution.DiscoveryData, which must be defined.
All the attributes in this <DataSourceModuleType> are defined within <Configuration>. There are two attributes that can be changed. These modifiable attributes are defined in <OverrideableParameters> and are <IntervalSeconds> and <SyncTime>. Recall from the preceding discovery definition that <IntervalSeconds> is given a value of 30 seconds and <SyncTime> is left empty. Initial values for <OverrideableParameters> are set in discovery. <OverrideableParameters> can also be modified through the Operations console.
Because this is a discovery, you must make sure that the output is of the correct type. The last line before the closing tag, </DataSourceModuleType>, is an <OutputType> that is defined as System!System.Discovery.Data.

 <ModuleTypes>
 <DataSourceModuleType ID="Microsoft.Unix.WSMan.TimedCommandExecution.DiscoveryData" Accessibility="Public" Batching="false">
 <Configuration>
 <IncludeSchemaTypes>
 <SchemaType>System!System.Discovery.MapperSchema</SchemaType>
 </IncludeSchemaTypes>
 <xsd:element name="IntervalSeconds" type="xsd:integer" />
 <xsd:element name="SyncTime" type="xsd:string" />
 <xsd:element name="TargetSystem" type="xsd:string" />
 <xsd:element name="Uri" type="xsd:string" />
 <xsd:element name="Selector" type="xsd:string" minOccurs="0" maxOccurs="1" />
 <xsd:element name="InvokeAction" type="xsd:string" />
 <xsd:element name="Input" type="xsd:string" />
 <xsd:element name="FilterProperty" type="xsd:string" />
 <xsd:element name="FilterValue" type="xsd:string" />
 <xsd:element name="ClassId" type="xsd:string" />
 <xsd:element name="InstanceSettings" minOccurs="0" maxOccurs="1" type="SettingsType" />
 </Configuration>
 <OverrideableParameters>
 <OverrideableParameter ID="IntervalSeconds" Selector="$Config/IntervalSeconds$" ParameterType="int" />
 <OverrideableParameter ID="SyncTime" Selector="$Config/SyncTime$" ParameterType="string" />
 </OverrideableParameters>

 <ModuleImplementation />

 <OutputType>System!System.Discovery.Data</OutputType>
 </DataSourceModuleType>
 </ModuleTypes>

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, replace <ModuleTypes/> in the TypeDefinitions section with the preceding XML. The module implementation details are described in the following section.
Module Implementation
The module implementation is defined within the data source module type section. Five <MemberModules> are defined: the <DataSource>, the <ProbeAction> and three <ConditionDectection> elements. Probe action is used in cross-platform management and is defined in Microsoft.Unix.Library. Scheduler is based on the Operations Manager Simple Scheduler. Scheduler takes two parameters, interval seconds and the sync time that is defined in the discovery Microsoft.SCX.SampleApp.Discovery. Five parameters are passed to probe action: the target system, the uri, the selector that was defined earlier in the data source module type Microsoft.Unix.WSMan.TimedCommandExecution.DiscoveryData, and the invoke action and input, which are defined in the discovery Microsoft.SCX.SampleApp.Discovery.
The condition detection elements are <ErrorFilter>, <Filter>, and <Mapper>. Error filter receives any WS-Management errors, which validate that a connection to the computer exists. Filter takes the results from the probe action and checks that the filter value, which is defined in discovery as “No such file or directory”, does not match. In this case, there is no need for a complex parsing of the probe action result. The file is either there or it is not. The filter succeeds if the result is anything other than “No such file or directory”. Mapper describes how to map the data of the class instance, class ID, and instance setting.
Composition describes the order in which to execute each of the member modules. When the discovery is run, the composition in the data source module type describes when and how to perform the actions. The scheduler determines when the probe action is to be run. After the probe action is run, the results are checked by the error filter to make sure that a valid connection exists. Then, the filter is checked to make sure that the file is present. Finally, if the file is present, mapper takes the validated discovery and maps the class ID and instance settings.

 <ModuleImplementation Isolation="Any">
 <Composite>
 <MemberModules>
 <DataSource ID="Scheduler" TypeID="System!System.SimpleScheduler">
 <IntervalSeconds>$Config/IntervalSeconds$</IntervalSeconds>
 <SyncTime>$Config/SyncTime$</SyncTime>
 </DataSource>
 <ProbeAction ID="Invoke" TypeID="Unix!Microsoft.Unix.WSMan.Invoke.ProbeAction">
 <TargetSystem>$Config/TargetSystem$</TargetSystem>
 <Uri>$Config/Uri$</Uri>
 <Selector>$Config/Selector$</Selector>
 <InvokeAction>$Config/InvokeAction$</InvokeAction>
 <Input>$Config/Input$</Input>
 </ProbeAction>
 <ConditionDetection ID="ErrorFilter" TypeID="System!System.ExpressionFilter">
 <Expression>
 <Not>
 <Expression>
 <Exists>
 <ValueExpression>
 <XPathQuery Type="String">WsManData/ErrorCode</XPathQuery>
 </ValueExpression>
 </Exists>
 </Expression>
 </Not>
 </Expression>
 </ConditionDetection>
 <ConditionDetection ID="Filter" TypeID="System!System.ExpressionFilter">
 <Expression>
 <RegExExpression>
 <ValueExpression>
 <XPathQuery Type="String">$Config/FilterProperty$</XPathQuery>
 </ValueExpression>
 <Operator>DoesNotContainSubstring</Operator>
 <Pattern>$Config/FilterValue$</Pattern>
 </RegExExpression>
 </Expression>
 </ConditionDetection>
 <ConditionDetection ID="Mapper" TypeID="System!System.Discovery.ClassSnapshotDataMapper">
 <ClassId>$Config/ClassId$</ClassId>
 <InstanceSettings>$Config/InstanceSettings$</InstanceSettings>
 </ConditionDetection>
 </MemberModules>
 <Composition>
 <Node ID="Mapper">
 <Node ID="Filter">
 <Node ID="ErrorFilter">
 <Node ID="Invoke">
 <Node ID="Scheduler" />
 </Node>
 </Node>
 </Node>
 </Node>
 </Composition>
 </Composite>
 </ModuleImplementation>

In the Microsoft.SCX.Authoring.Guide.xml file that was created earlier, replace <ModuleImplementation/>, in the DataSourceModuleType for Microsoft.Unix.WSMan.TimedCommandExecution.DiscoveryData, with the preceding XML code example.
Observe Discovery
To observe the discovery function within Operations Manager, save the file Microsoft.SCX.Authoring.Guide.xml and import the management pack into the management group, as described in Required Management Pack Definitions.
Initially, verify that an instance of the class is not discovered because the script that is defined in the discovery is not present on the computer. Wait approximately 30 seconds for configuration to be sent to the UNIX-based or Linux-based computer that you are monitoring. Open the System Center Operations console and go to the discovered Inventory view in the monitoring node. This view shows all discovered instances of a particular type.
[image:]Change the target type
	1.	Right-click the computer name and select Change Target Type.
2.	Select Microsoft.SCX.Sample.Application.
3.	Click OK.

There should be no objects in the list view because nothing has been discovered.
To observe a successful discovery, copy the SampleAppHealth.sh script file to the /tmp folder on the UNIX-based or Linux-based computer. This script simulates the monitoring of the health of an application or service. In this case, this script echoes a value to StdErr, but it might be checking to see if an application or a file exists. Change the permissions of the script by executing the chmod command, as follows: chmod 755 SampleAppHealth.sh

[image:]Install the sample scripts
	1.	Create a SampleScripts folder at the root level of the Operations Manager management server (%SYSTEMDRIVE%).
2.	Copy the SampleAppHealth.sh and SampleAppPerf.sh scripts to the SampleScripts folder.
3.	Copy the SampleAppHealth.sh and SampleAppPerf.sh scripts to the /tmp folder on the UNIX-based or Linux-based computer.
4.	On the UNIX-based or Linux-based computer, change the permissions of the files by using the chmod 755 filename for both files.
5.	 Wait approximately 30 seconds, and then refresh the view by pressing F5. An instance of the class will appear.
6.	Open the properties of this object by right-clicking the computer name and then selecting properties. The name, path, and display name properties are displayed.
7.	Notice that the state is “Not Monitored” and that there is an empty circle. This occurs because only a discovery has been created, but no monitoring, rules, or alerts currently exist.
8.	For another view from the monitoring node, select Unix/Linux Servers. The computer state is healthy and the circle has a green check mark. This view shows overall health.
9.	Right-click the computer name, and then select Open: Diagram View. A new view is opened.

The health of the computer is determined by the active monitors that are targeted at the system: File System, Network and Operating System. The Microsoft.SCX.Sample.Application is targeted but is not active and currently does not report health information for the computer.
Customizing Discovery
Every discovery must have the following objects defined in the management pack:
	Discovery monitor
	Class
	Hosting relationship
	Data source
To reuse this sample discovery, there are two locations in which to make changes. Both are in the discovery monitor, Microsoft.SCX.SampleApp.Discovery.
Currently <IntervalSeconds> is set to 30 seconds. In an actual production environment, this value would typically be set to one hour (3600 seconds). Setting <IntervalSeconds> for a longer period might reduce load on the network, but it also means that it might take as long as the maximum <IntervalSeconds> for any new computer to be discovered. For the purposes of this authoring guide, the interval is short.
<IntervalSeconds>30</IntervalSeconds>

The input for the <InvokeAction> is wrapped with CDATA tags and in XML format following the CIM schema. Change the value of command to change the location or name of the file that is used for discovery. The UNIX command to list directory contents is ls. The path to the file is /tmp, defaulting to the system root as the path parent. The file that is used in this example is a BASH script.

<Input>
 <![CDATA[
 <p:ExecuteCommand_INPUT xmlns:p="http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem">
 <p:command>ls /tmp/SampleAppHealth.sh</p:command>
 <p:timeout>10</p:timeout>
 </p:ExecuteCommand_INPUT>
]]>
</Input>

The file that is used for discovery can be a text file or a script. It is useful to use a script that can also be executed to provide additional system information. In the next topic on monitoring, the output of this script will be used to simulate application health.
[bookmark: _Toc235267464][bookmark: zea65848fe35c4215a0668118a9d36b27]Use a Script to Monitor an Application
This topic describes monitoring and how to implement it in your sample management pack.
Monitoring
When an application is discovered, Operations Manager loads the appropriate monitors, tasks, and alerts into the Operations Manager agent that is deployed on the managed computer. Each monitor checks on some aspect of an application or component. Every monitor defines a set of states and can only be in a single state at any time. Typically, a monitor has a unique workflow for each state that the monitor type declares. The workflows for a monitor type define how the state will be set when the monitor is reset by the user or by a recovery task. They also define the action to take on first initialization.
For performance reasons, it is not advisable to run all monitors on every system within a management group. Monitoring activity should be targeted by using discovery that allows for the identification of appropriate monitoring targets.
The first monitor created in this sample management pack discovers a script that is used for health monitoring. The monitor validates that the file is uncorrupted, and that it is the correct version.
Sample Health Script
The script that is used in this sample is a Bash script. Bash is the default shell on most Linux-based systems and can be run on most UNIX operating systems. The script, SampleAppHealth.sh, which simulates application availability, is quite simple and illustrates the process of collecting system information. In many cases, UNIX and Linux administrators have existing scripts that collect data, and they can easily customize this monitor to support an existing script.
The script is as follows:

#!/bin/bash

Change the value to:
0 - Health
1 - Warning
2 - Critical

echo 0 1>&2

The necessary code is the first and last lines. Every line between those two lines is a comment that indicates the warning level values. To change this script to illustrate each of the error conditions, change the first numeral (in this case “0”) to the warning level that you want. The 1 represents standard output, which usually is the console, and 2 represents output to standard error. The code echo 0 1>&2 takes the output to standard output, and redirects it to standard error.
Create a Monitor
This monitor is a check of the MD5 hash value of the script to ensure it is the most up to date version. MD5, also known as Message-Digest algorithm 5, is a widely used hash function that takes an arbitrary block of data and returns a fixed-size bit string or checksum. MD5 is commonly used to check the integrity of files. This monitor targets the Microsoft.SCX.Sample.Application that was previously discovered. The <ParentMonitorID> is defined to create a relationship of this monitor to the system-defined monitor that reports overall System Health. When this monitor reports an error, this status will be reflected in the overall health for that system.
<OperationalStates> defines all the states for this monitor. This monitor has two states, Error and OK. <AlertSettings> describes the attributes for an alert, including which of the defined states will generate an alert. <AlertOnState> defines which of the monitor states produces an alert. When <AutoResolve> is set to true, which indicates that an alert has been triggered, the monitor will initiate corrective action without requiring administrative intervention. The corrective action can be defined in a recovery task with the name of Microsoft.SCX.Authoring.Guide.CheckMd5Script.Recovery. If no recovery task is defined, no action is taken. Information about how to create a recovery task is in the Create a Recovery Task topic.
<AlertSettings> includes an attribute for <AlertMessage>. The <AlertMessage> will be discussed in further detail in the presentation and languages section later in this topic.
Finally, the command that identifies the MD5 hash is defined in <Command>, the hash value for the correct version of the script is defined in <Md5>, and the <Interval> is set to 30 seconds. Every time that the script is modified, the value for Md5 must be updated and a new management pack must be imported into Operations Manager.

 <Monitors>
 <UnitMonitor ID="Microsoft.SCX.Authoring.Guide.CheckMd5Script.Monitor" Accessibility="Public" Enabled="true" Target="Microsoft.SCX.Sample.Application" ParentMonitorID="SystemHealth!System.Health.AvailabilityState" Remotable="true" Priority="Normal" TypeID="Microsoft.SCX.Authoring.Guide.CheckMD5Script.MonitorType" ConfirmDelivery="false">
 <Category>PerformanceHealth</Category>
 <AlertSettings AlertMessage="Microsoft.SCX.Authoring.Guide.CheckMd5Script.AlertMessage">
 <AlertOnState>Error</AlertOnState>
 <AutoResolve>true</AutoResolve>
 <AlertPriority>Normal</AlertPriority>
 <AlertSeverity>Error</AlertSeverity>
 <AlertParameters>
 <AlertParameter1>$Data/Context/Md5$</AlertParameter1>
 </AlertParameters>
 </AlertSettings>
 <OperationalStates>
 <OperationalState ID="Error" MonitorTypeStateID="Error" HealthState="Error" />
 <OperationalState ID="OK" MonitorTypeStateID="OK" HealthState="Success" />
 </OperationalStates>
 <Configuration>
 <TargetSystem>$Target/Host/Property[Type="Unix!Microsoft.Unix.Computer"]/NetworkName$</TargetSystem>
 <Command>md5sum /tmp/SampleAppHealth.sh</Command>
 <Md5>4f00fdbe0f3b89d4046f5d98152a1cf6</Md5>
 <Interval>30</Interval>
 </Configuration>
 </UnitMonitor>
 </Monitors>

In the Microsoft.SCX.Authoring.Guide.xml file, replace the </Monitors> subsection under Monitoring with the preceding XML.
Define the Unit Monitor Type
As in the <DataSourceModuleType> of the previously defined discovery, all the attributes necessary for this monitor are defined within configuration and the modifiable attributes are defined in OverrideableParameters.
The <MonitorImplementation> is almost identical in layout to the <ModuleImplementation> described for the <DataSourceModuleType>. Again, there is a <Scheduler> to determine when to run the monitor and a <ProbeAction> to execute the monitor. This <ProbeAction> is formatted similarly to the discovery’s <DataSourceModuleType>. The $Config/Command$ takes the value passed from Microsoft.SCX.Authoring.Guide.CheckMd5Script.Monitor, which is defined as overrideable in the configuration subsection. There is also a condition and a regular detection. The condition is the check performed in each of the regular detections. As in discovery, the regular detection actions are executed from deepest-level node to the top-level node. Determine what the hash value is for the script and verify that it either does or does not match the hash code expected.
When you make and save modifications to the SampleAppHealth.sh script, verify the new MD5 hash value and then update the MD5 value by changing the overwriteable value in the monitor that is found in the Operations console. If you do not do this, Operations Manager will report an alert.

 <MonitorTypes>
 <UnitMonitorType
ID="Microsoft.SCX.Authoring.Guide.CheckMD5Script.MonitorType" Accessibility="Public">
 <MonitorTypeStates>
 <MonitorTypeState ID="Error" NoDetection="false" />
 <MonitorTypeState ID="OK" NoDetection="false" />
 </MonitorTypeStates>
 <Configuration>
 <xsd:element name="TargetSystem" type="xsd:string" />
 <xsd:element name="Command" type="xsd:string" />
 <xsd:element name="Md5" type="xsd:string" />
 <xsd:element name="Interval" type="xsd:unsignedInt" />
 </Configuration>
 <OverrideableParameters>
 <OverrideableParameter ID="Command" Selector="$Config/Command$" ParameterType="string" />
 <OverrideableParameter ID="Md5" Selector="$Config/Md5$" ParameterType="string" />
 <OverrideableParameter ID="Interval" Selector="$Config/Interval$" ParameterType="int" />
 </OverrideableParameters>
 <MonitorImplementation>
 <MemberModules>
 <DataSource ID="Scheduler" TypeID="System!System.Scheduler">
 <Scheduler>
 <SimpleReccuringSchedule>
 <Interval Unit="Seconds">$Config/Interval$</Interval>
 <SyncTime />
 </SimpleReccuringSchedule>
 <ExcludeDates />
 </Scheduler>
 </DataSource>
 <ProbeAction ID="RunScript" TypeID="Unix!Microsoft.Unix.WSMan.Invoke.ProbeAction">
 <TargetSystem>$config/TargetSystem$</TargetSystem>
 <Uri>http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem?__cimnamespace=root/scx</Uri>
 <Selector />
 <InvokeAction>ExecuteCommand</InvokeAction>
 <Input><![CDATA[<p:ExecuteCommand_INPUT xmlns:p="http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem"><p:command>$Config/Command$</p:command><p:timeout>10</p:timeout></p:ExecuteCommand_INPUT>]]></Input>
 </ProbeAction>
 <ConditionDetection ID="CDOK" TypeID="System!System.ExpressionFilter">
 <Expression>
 <RegExExpression>
 <ValueExpression>
 <XPathQuery Type="Double">//*[local-name()="StdOut"]</XPathQuery>
 </ValueExpression>
 <Operator>ContainsSubstring</Operator>
 <Pattern>$Config/Md5$</Pattern>
 </RegExExpression>
 </Expression>
 </ConditionDetection>
 <ConditionDetection ID="CDError" TypeID="System!System.ExpressionFilter">
 <Expression>
 <RegExExpression>
 <ValueExpression>
 <XPathQuery Type="Double">//*[local-name()="StdOut"]</XPathQuery>
 </ValueExpression>
 <Operator>DoesNotContainSubstring</Operator>
 <Pattern>$Config/Md5$</Pattern>
 </RegExExpression>
 </Expression>
 </ConditionDetection>
 </MemberModules>
 <RegularDetections>
 <RegularDetection MonitorTypeStateID="OK">
 <Node ID="CDOK">
 <Node ID="RunScript">
 <Node ID="Scheduler" />
 </Node>
 </Node>
 </RegularDetection>
 <RegularDetection MonitorTypeStateID="Error">
 <Node ID="CDError">
 <Node ID="RunScript">
 <Node ID="Scheduler" />
 </Node>
 </Node>
 </RegularDetection>
 </RegularDetections>
 </MonitorImplementation>
 </UnitMonitorType>
 </MonitorTypes>

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, replace the <MonitorTypes /> subsection with the preceding XML.
Presentation and Language
Previously, there has been no focus on the labels that Operations console uses for folder and script objects. The presentation and language sections contain this information within the management pack. The presentation section describes how strings and content will be presented. This information can include fonts, sort order, color, and any attribute associated with the display of data. Minimally, for a monitor to run, all string resource references must be defined. For this monitor, the string resource Microsoft.SCX.Authoring.Guide.CheckMd5Script.AlertMessage must be described.

<Presentation>
 <StringResources>
 <StringResource ID="Microsoft.SCX.Authoring.Guide.CheckMd5Script.AlertMessage" />
 </StringResources>
</Presentation>

In the Microsoft.SCX.Authoring.Guide.xml file, replace the <Presentations/> section with the preceding XML.
All strings that are referenced by a string resource are defined in language pack. Language pack allows for multiple language support, although for this guide, only English strings are provided. If a display string is not defined, the default behavior is to display nothing.

 <LanguagePacks>
 <LanguagePack ID="ENU" IsDefault="true">
 <DisplayStrings>
 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.CheckMd5Script.AlertMessage">
 <Name>Sample App MD5 Hash Alert</Name>
 <Description>MD5 hash value of script does not match latest version.</Description>
 </DisplayString>
 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.CheckMd5Script.Monitor">
 <Name>Sample App MD5 Hash Monitor</Name>
 <Description />
 </DisplayString>
 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.CheckMd5Script.Monitor" SubElementID="Error">
 <Name>Error</Name>
 <Description />
 </DisplayString>
 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.CheckMd5Script.Monitor" SubElementID="OK">
 <Name>OK</Name>
 <Description />
 </DisplayString>
 </DisplayStrings>
 </LanguagePack>
 </LanguagePacks>
In the Microsoft.SCX.Authoring.Guide.xml file, replace the <LanguagePacks/> section with the preceding XML.
Observing the Monitor
If this monitor fails, a state change will occur. This state change will trigger the execution of a recovery task, as described in the Create a Recovery Task topic.
To observe the monitor function within Operations Manager, save the file, Microsoft.SCX.Authoring.Guide.xml, and import the management pack into the Operations Manager management group, as described in the Required Management Pack Definitions topic. Remember to increment the version in the manifest section and then import the management pack into the Operations console.
From the earlier discovery, the SampleAppHealth.sh script should still be in the /tmp folder on the UNIX-based or Linux-based server. If not, follow the instructions for putting the scripts on the UNIX-based or Linux-based computer that are found in the Enable Application Discovery topic.
[image:]Observe System Health from Diagram View
	1.	From the Monitoring Node, select Unix/Linux Servers.
2.	Right-click the server name.
3.	Select Open: Diagram View.
4.	A new view is opened.

Health of the computer is determined by the active monitors that are targeted at the system; File System, Network, Operating System, and now Microsoft.SCX.Sample.Application, which is targeted and active. By adding the monitor, the Application now has Health data to report.
[image:]Observe Health Explorer
	1.	Right-click Microsoft.SCX.Sample.Application in the Diagram window.
2.	Select Health Explorer.

 The Entity Health has a green circle with a check next to it. This view is showing overall Health. Expand the Health Explorer Tree to view the Sample App MD5 Hash Monitor and observer the circle next to the monitor also has a green check mark.
[image:]Modify the SampleAppHealth.sh script in the /tmp directory
	1.	Edit the file; add an extra character to the script and save file.
2.	Return to the Health Explorer window.
3.	Wait 30 seconds, and then press F5.

Notice that there is a red circle with an X next to the monitor and that the Entity Health also shows a red circle with an X. The computer is now in an unhealthy state.
It is possible to manually replace the monitored script with a correct version; however, it is also possible to create a task to initiate the update on demand and to create a recovery task to restore a computer from an unhealthy state automatically. The next topics cover the method of creating both a task and a recovery task.
Monitor Customization
Every monitor requires the following:
	A target, typically a discovered computer or network device
	A monitor definition
	An associated unit-monitor type
	String resource definitions and literal strings
Minimally, you can customize this sample monitor by changing the configuration values in the unit monitor for Microsoft.SCX.Authoring.Guide.CheckMd5Script.Monitor. The three attributes (command, Md5, and interval) all contain strings. A different validation method or file location can be inserted. Any updates to the script will require that the Md5 value be updated. The interval can be changed to something more appropriate in a production environment. Usually, scripts do not change frequently, so an interval of either 24 hours (86,400 seconds) or one week (604,800 seconds) is appropriate, depending on the required frequency of script updates.
To customize this monitor to provide the same validation process for a new application, create a new discovery, define a new unit monitor with the target matching the new discovery, update the command to point to the new script, and update the Md5 value. Because the validation process is identical, you do not have to change the monitor type or any of the alert messages.
[bookmark: _Toc235267465][bookmark: z4a65234e154b4ea5a4396059a18de20c]Create Tasks
This topic provides information on how to create a management pack task that replaces a file on a managed server.
Create a Task to Replace a File
This topic describes how to create a task that updates the script to a known version on demand, which allows the administrator to easily correct an alert on any system that is being monitored.
This task uses Secure File Transfer Protocol (SFTP) to perform the transfer. The source file points to a folder and file that are located on the Operations Manager management server. The target file points to the location of the file on the monitored server.
Notice that the authentication that is used is coming from the action account that is configured in Operations Manager as the Run As account. You do not have to include any additional Run As notation within a workflow.

 <Tasks>
 <Task ID="Microsoft.SCX.Authoring.Guide.CopyScript.Task" Accessibility="Internal" Enabled="true" Target="Unix!Microsoft.Unix.Computer" Timeout="300" Remotable="true">
 <Category>Custom</Category>
 <WriteAction ID="sftp" TypeID="Unix!Microsoft.Unix.SFTPTransfer.WriteAction">
 <Host>$Target/Property[Type="Unix!Microsoft.Unix.Computer"]/PrincipalName$</Host>
 <Port>>$Host/Property[Type="Unix!Microsoft.Unix.Computer"]/SSHPort$</Port>
 <UserName>$RunAs[Name="Unix!Microsoft.Unix.ActionAccount"]/UserName$</UserName>
 <Password>$RunAs[Name="Unix!Microsoft.Unix.ActionAccount"]/Password$</Password>
 <SourceFile>C:\SampleScripts\SampleAppHealth.sh</SourceFile>
 <TargetFile>/tmp/SampleAppHealth.sh</TargetFile>
 </WriteAction>
 </Task>
 </Tasks>

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, replace the preceding XML in the <Tasks/> subsection under the <Monitoring> section.
Save the file Microsoft.SCX.Authoring.Guide.xml and import the updated management pack into the management group, as described in the Required Management Pack Definitions topic.
Invoking a Task
To observe the computer that is being monitored, the health of the sample application and the available tasks, navigate to the Diagram View for the computer by following the instructions that are described in the Enable Application Discovery topic. On the right side of the Diagram View is a list of actions. Look for the list of Unix Computer Tasks. There should be a task that is named Microsoft.XCS.Authoring.Guide.CopyScript.Task. Click the task to open the Run Task dialog box. Click Run to start the task. The Diagram View should update the System Health to healthy the next that is that time the monitor runs.
Customizing a Task
Tasks can perform most of the individual actions that are handled by a monitor, on demand. This can be useful while you are isolating problems.
Below is a task equivalent to the discovery monitor that is described earlier. Notice that the probe action is identical to the one used in the discovery.

 <Task ID="Microsoft.SCX.Authoring.Guide.CheckFile.Task" Accessibility="Internal" Enabled="true" Target="Unix!Microsoft.Unix.Computer" Timeout="300" Remotable="true">
 <Category>Maintenance</Category>
 <ProbeAction ID="RunScript" TypeID="Unix!Microsoft.Unix.WSMan.Invoke.ProbeAction">
 <TargetSystem>$Target/Property[Type="Unix!Microsoft.Unix.Computer"]/PrincipalName$</TargetSystem>
 <Uri>http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem?__cimnamespace=root/scx</Uri>
 <Selector />
 <InvokeAction>ExecuteCommand</InvokeAction>
 <Input><![CDATA[<p:ExecuteCommand_INPUT xmlns:p="http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem"><p:command>ls /tmp/SampleAppHealth.sh</p:command><p:timeout>10</p:timeout></p:ExecuteCommand_INPUT>]]></Input>
 </ProbeAction>
 </Task>

The following task returns the MD5 hash of a target file. Notice that the probe action is identical to the earlier script monitor. When it is targeted correctly, this task is useful when you update the script monitor with a new hash value for a new replacement file.

 <Task ID="Microsoft.SCX.Authoring.Guide.GetMD5Script.Task" Accessibility="Internal" Enabled="true" Target="Unix!Microsoft.Unix.Computer" Timeout="300" Remotable="true">
 <Category>Maintenance</Category>
 <ProbeAction ID="RunScript" TypeID="Unix!Microsoft.Unix.WSMan.Invoke.ProbeAction">
 <TargetSystem>$Target/Property[Type="Unix!Microsoft.Unix.Computer"]/PrincipalName$</TargetSystem>
 <Uri>http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem?__cimnamespace=root/scx</Uri>
 <Selector />
 <InvokeAction>ExecuteCommand</InvokeAction>
 <Input><![CDATA[<p:ExecuteCommand_INPUT xmlns:p="http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem"><p:command>md5sum /tmp/SampleAppHealth.sh</p:command><p:timeout>10</p:timeout></p:ExecuteCommand_INPUT>]]></Input>
 </ProbeAction>
 </Task>

[bookmark: _Toc235267466][bookmark: z82ea31d4aeeb4629876540aeff6c6935]Create a Recovery Task
Not all alerts require direct administrative attention to resolve. For example, you can easily deploy an updated script across all computers by using a recovery task. A task can be initiated automatically from a monitor that detects the problem.
Creating a Recovery Task to Replace a File
When the Sample Health Script fails MD5 validation, a recovery task can be triggered to automatically deploy a new copy of the script.

 <Recoveries>
 <Recovery ID="Microsoft.SCX.Authoring.Guide.CheckMd5Script.Recovery" Accessibility="Public" Enabled="true" Target="Microsoft.SCX.Sample.Application" Monitor="Microsoft.SCX.Authoring.Guide.CheckMd5Script.Monitor" ResetMonitor="false" ExecuteOnState="Error" Remotable="true" Timeout="300">
 <Category>Maintenance</Category>
 <WriteAction ID="CopyScript" TypeID="Unix!Microsoft.Unix.SFTPTransfer.WriteAction">
 <Host>$Target/Host/Property[Type="Unix!Microsoft.Unix.Computer"]/PrincipalName$</Host>
 <Port>>$Host/Property[Type="Unix!Microsoft.Unix.Computer"]/SSHPort$</Port>
 <UserName>$RunAs[Name="Unix!Microsoft.Unix.ActionAccount"]/UserName$</UserName>
 <Password>$RunAs[Name="Unix!Microsoft.Unix.ActionAccount"]/Password$</Password>
 <SourceFile>C:\SampleScripts\SampleAppHealth.sh</SourceFile>
 <TargetFile>/tmp/SampleAppHealth.sh</TargetFile>
 <TimeoutSeconds>30</TimeoutSeconds>
 </WriteAction>
 </Recovery>
 </Recoveries>

The recovery task goes into the monitoring section, immediately following the monitors subsection.
A write action is performed to copy the script in the C:\SampleScripts\ directory on the Operations Manager management server. This is then copied to the /tmp directory on the targeted system. When this task is run, the associated Health Monitor is run, again confirming that the script is valid and then performing the Health script evaluation.
Recovery requires that a display string be added to the language packs section.

 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.CheckMd5Script.Recovery">
 <Name>MD5 Hash Recovery Task</Name>
 <Description />
 </DisplayString>
The MD5 value that is found in the Monitor must be updated to correspond to the new hash value or the MD5 validation continues to fail.
Save the file as Microsoft.SCX.Authoring.Guide.xml and then import the updated management pack into the management group, as described in Required Management Pack Definitions topic.
Customization of Recovery
 This recovery is identical to the task that is defined in the Create Tasks topic, except that the recovery is invoked automatically when the parameter for AutoResolve in the script monitor is set to true. See the Use a Script to Monitor an Application topic for additional information.
[bookmark: _Toc235267467][bookmark: zd5698f6d47e94a388f6d9606e08725c8]Monitor an Application's Health
This topic describes a monitor that uses a script to evaluate an application’s health.
Executing a Script by Using a Monitor
This monitor discovers health by executing a script and using the results stored in StdErr. The Health state changes if a warning or critical state is detected, and then an alert is fired.
So far, we’ve taken steps to discover the application by identifying the existence of the script, to validate the script, and to take a corrective action if the script is invalid. The preliminary steps are all in place, and it is now appropriate to run the script to determine application health.
Start by defining the monitor for the sample application’s health. The discovered Microsoft.SCX.Sample.Application is the target, and just as in the check Md5 script monitor, the parent monitor is System.Health.AvailabilityState. The alert settings identify the alert message label that is defined in the Presentation and Language Packs sections in the management pack. The monitor alerts on an error and attempts to auto resolve.

<UnitMonitor ID="Microsoft.SCX.Authoring.Guide.GetSampleAppHealth.Monitor" Accessibility="Public" Enabled="true" Target="Microsoft.SCX.Sample.Application" ParentMonitorID="SystemHealth!System.Health.AvailabilityState" Remotable="true" Priority="Normal" TypeID="Microsoft.SCX.Authoring.Guide.RunScript.MonitorType" ConfirmDelivery="false">
 <Category>PerformanceHealth</Category>
 <AlertSettings AlertMessage="Microsoft.SCX.Authoring.Guide.RunScript.AlertMessage">
 <AlertOnState>Error</AlertOnState>
 <AutoResolve>true</AutoResolve>
 <AlertPriority>Normal</AlertPriority>
 <AlertSeverity>Error</AlertSeverity>
 </AlertSettings>
 <OperationalStates>
 <OperationalState ID="Warning" MonitorTypeStateID="Warning" HealthState="Warning" />
 <OperationalState ID="Error" MonitorTypeStateID="Error" HealthState="Error" />
 <OperationalState ID="OK" MonitorTypeStateID="OK" HealthState="Success" />
 </OperationalStates>
 <Configuration>
 <TargetSystem>$Target/Host/Property[Type="Unix!Microsoft.Unix.Computer"]/NetworkName$</TargetSystem>
 <Command>sh /tmp/SampleAppHealth.sh</Command>
 <Interval>30</Interval>
 </Configuration>
 </UnitMonitor>
As with the previous script monitor, all the attributes necessary for this monitor are defined within the configuration, and the modifiable attributes are defined in overrideable parameters.
There is a scheduler to determine when to run the monitor and a probe action to execute the monitor. The $Config/Command$ takes the value that is passed in from Microsoft.SCX.Authoring.Guide.GetSampleAppHealth.Monitor, and that is defined as overrideable in the configuration subsection. There is also a condition and a regular detection. The condition is the check that is performed in each of the regular detections. As in discovery, the regular detection actions are executed from deepest-level node to the top-level node. The action determines the hash value for the script and verifies if it matches the expected hash code.

 <UnitMonitorType ID="Microsoft.SCX.Authoring.Guide.RunScript.MonitorType" Accessibility="Public">
 <MonitorTypeStates>
 <MonitorTypeState ID="Warning" NoDetection="false" />
 <MonitorTypeState ID="Error" NoDetection="false" />
 <MonitorTypeState ID="OK" NoDetection="false" />
 </MonitorTypeStates>
 <Configuration>
 <xsd:element name="TargetSystem" type="xsd:string" />
 <xsd:element name="Command" type="xsd:string" />
 <xsd:element name="Interval" type="xsd:unsignedInt" />
 </Configuration>
 <OverrideableParameters>
 <OverrideableParameter ID="Command" Selector="$Config/Command$" ParameterType="string" />
 <OverrideableParameter ID="Interval" Selector="$Config/Interval$" ParameterType="int" />
 </OverrideableParameters>
 <MonitorImplementation>
 <MemberModules>
 <DataSource ID="Scheduler" TypeID="System!System.Scheduler">
 <Scheduler>
 <SimpleReccuringSchedule>
 <Interval Unit="Seconds">$Config/Interval$</Interval>
 <SyncTime />
 </SimpleReccuringSchedule>
 <ExcludeDates />
 </Scheduler>
 </DataSource>
 <ProbeAction ID="RunScript" TypeID="Unix!Microsoft.Unix.WSMan.Invoke.ProbeAction">
 <TargetSystem>$config/TargetSystem$</TargetSystem>
 <Uri>http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem?__cimnamespace=root/scx</Uri>
 <Selector />
 <InvokeAction>ExecuteCommand</InvokeAction>
 <Input><![CDATA[<p:ExecuteCommand_INPUT xmlns:p="http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem"><p:command>$Config/Command$</p:command><p:timeout>10</p:timeout></p:ExecuteCommand_INPUT>]]></Input>
 </ProbeAction>
 <ConditionDetection ID="CDOK" TypeID="System!System.ExpressionFilter">
 <Expression>
 <SimpleExpression>
 <ValueExpression>
 <XPathQuery Type="Double">//*[local-name()="StdErr"]</XPathQuery>
 </ValueExpression>
 <Operator>Equal</Operator>
 <ValueExpression>
 <Value Type="Double">0</Value>
 </ValueExpression>
 </SimpleExpression>
 </Expression>
 </ConditionDetection>
 <ConditionDetection ID="CDWarning" TypeID="System!System.ExpressionFilter">
 <Expression>
 <SimpleExpression>
 <ValueExpression>
 <XPathQuery Type="Double">//*[local-name()="StdErr"]</XPathQuery>
 </ValueExpression>
 <Operator>Equal</Operator>
 <ValueExpression>
 <Value Type="Double">1</Value>
 </ValueExpression>
 </SimpleExpression>
 </Expression>
 </ConditionDetection>
 <ConditionDetection ID="CDError" TypeID="System!System.ExpressionFilter">
 <Expression>
 <SimpleExpression>
 <ValueExpression>
 <XPathQuery Type="Double">//*[local-name()="StdErr"]</XPathQuery>
 </ValueExpression>
 <Operator>Equal</Operator>
 <ValueExpression>
 <Value Type="Double">2</Value>
 </ValueExpression>
 </SimpleExpression>
 </Expression>
 </ConditionDetection>
 </MemberModules>
 <RegularDetections>
 <RegularDetection MonitorTypeStateID="OK">
 <Node ID="CDOK">
 <Node ID="RunScript">
 <Node ID="Scheduler" />
 </Node>
 </Node>
 </RegularDetection>
 <RegularDetection MonitorTypeStateID="Warning">
 <Node ID="CDWarning">
 <Node ID="RunScript">
 <Node ID="Scheduler" />
 </Node>
 </Node>
 </RegularDetection>
 <RegularDetection MonitorTypeStateID="Error">
 <Node ID="CDError">
 <Node ID="RunScript">
 <Node ID="Scheduler" />
 </Node>
 </Node>
 </RegularDetection>
 </RegularDetections>
 </MonitorImplementation>
 </UnitMonitorType>
Add a string resource to the presentation section.

 <StringResource ID="Microsoft.SCX.Authoring.Guide.RunScript.AlertMessage" />

Add display string information to the Language Packs section. In most cases, a description is not required, although the alert message generates an error in the Operations console if the description field is blank.

 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.GetSampleAppHealth.Monitor">
 <Name>Sample App Health Monitor</Name>
 <Description />
 </DisplayString>
 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.GetSampleAppHealth.Monitor" SubElementID="Error">
 <Name>Error</Name>
 <Description />
 </DisplayString>
 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.GetSampleAppHealth.Monitor" SubElementID="OK">
 <Name>OK</Name>
 <Description />
 </DisplayString>
 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.GetSampleAppHealth.Monitor" SubElementID="Warning">
 <Name>Warning</Name>
 <Description />
 </DisplayString>
 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.RunScript.AlertMessage">
 <Name>Sample App Health Alert</Name>
 <Description>Application is not healthy</Description>
 </DisplayString>

Again, observe that there are overrideable parameters defined: the command and probe execution interval. A scheduler is defined to determine when to run the monitor, a probe action to run the monitor, and then the condition and regular detections. In this case, the monitor examines StdErr to retrieve the results of the probe action. Because there are three possible results, you must evaluate a regular detection that corresponds to each result.
Based on the evaluation results, the state of the Health monitor is updated. If there is a change to the monitor, the Health status is updated and an alert is triggered.
In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, replace the above XML code in the sections noted.
Save the file Microsoft.SCX.Authoring.Guide.xml file and then import the updated management pack into the management group as described in Required Management Pack Definitions.
Monitor Health Results
For the purposes of observing the Health monitor, turn off the Microsoft.SCX.Authoring.Guide.CheckMd5Script.Monitor monitor by setting the <Enabled> flag to false. This allows modifications to SampleAppHealth.sh without generating additional alerts.
[image:]Observe Health Results
	1.	Modify SampleAppHealth.sh to generate a critical alert. echo 2 1>&2.
2.	In the Operations console, go to the Monitoring node.
3.	Click Active Alerts.
4.	Wait the specified configuration interval, which is usually no more than 30 seconds. An alert should appear in the list of active alerts.
5.	Double-click Sample App Health Alert to view the properties dialog box. The severity should be reported as critical.

Modify SampleAppHealth.sh to generate a warning echo 1 1>&2. Return to the Operations console and observe the Active Alerts node. The alert for Sample App Health should disappear. Open a Diagram View of the monitored computer. Observe that the Sample Application is reporting a warning. Based on the Alert Settings, this monitor generates an alert on an error state but not on a warning state.
In the management pack, enable the Microsoft.SCX.Authoring.Guide.CheckMd5Script.Monitor by setting the Enabled attribute to true. Increment the version number, save, and import the management pack. Changes to SampleAppHealth.sh report the Health state, and at the same time, the Check MD5 script automatically restores SampleAppHealth.sh.
Add a Task
Depending on the configuration interval, it might be useful to have a task to get an immediate report on the Health of the monitored application. The probe action, invoke action, and input are identical to the Get Sample App Health monitor.

 <Task ID="Microsoft.SCX.Authoring.Guide.GetSampleAppHealth.Task" Accessibility="Internal" Enabled="true" Target="Unix!Microsoft.Unix.Computer" Timeout="300" Remotable="true">
 <Category>Maintenance</Category>
 <ProbeAction ID="RunScript" TypeID="Unix!Microsoft.Unix.WSMan.Invoke.ProbeAction">
 <TargetSystem>$Target/Property[Type="Unix!Microsoft.Unix.Computer"]/PrincipalName$</TargetSystem>
 <Uri>http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem?__cimnamespace=root/scx</Uri>
 <Selector />
 <InvokeAction>ExecuteCommand</InvokeAction>
 <Input><![CDATA[<p:ExecuteCommand_INPUT xmlns:p="http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem"><p:command>sh /tmp/SampleAppHealth.sh</p:command><p:timeout>10</p:timeout></p:ExecuteCommand_INPUT>]]></Input>
 </ProbeAction>
 </Task>
In the Microsoft.SCX.Authoring.Guide.xml file that was created earlier, insert the task in the tasks subsection under the monitoring section.
Save the Microsoft.SCX.Authoring.Guide.xml file and import the updated management pack into the management group as described in Required Components of every management pack.
Monitor Customization
Customization of this monitor is similar to the Check MD5 Script Monitor. The three attributes Command, Md5, and Interval in the configuration values of the <UnitMonitor> can be modified. The configuration interval should be increased from 30 seconds to a larger interval. Depending on the importance of the application, an interval from five minutes to 30 minutes is more appropriate.
To customize this monitor, execute a script for a different application, and if needed, create a new discovery, define a new unit monitor with the target matching the new discovery, and then update the command to use a new script. It might also be appropriate to monitor the physical script, as discussed earlier.
[bookmark: _Toc235267468][bookmark: z89144ec6cfaa46f49490b95d7ddc8f10]Create a Health Rollup
In this topic, the Health rollup is introduced. Sample code is provided so that you can add this functionality to your management pack.
Relate Application Health to Overall System Health
The previous topic describes how to monitor the health of an application. This information is specific to the application. It is useful to relate the Health status of the application to the Health status of the monitored computer.
Create a Monitor Health Rollup
A Health rollup, also known as a dependency monitor, is used to share the Health status of related objects according to an algorithm. The algorithms in Operations Manager 2007 R2 for dependency monitors are as follows:
	Worst Of – reports the worst health state of any member monitor
	Best Of – reports the best health state of any member monitor
	Percentage Of – reports the health state of the collection of member monitors when the percentage of members exceeds the specified threshold
For more information about dependency monitor elements, see Management Packs, Rules, Monitors, and Tasks and Their Relation to Models (http://go.microsoft.com/fwlink/?linkid=152365).

<DependencyMonitor ID="Microsoft.SCX.Authoring.Guide.Computer.SampleAppAvailabilityRollup" Accessibility="Public" Enabled="true" Target="Unix!Microsoft.Unix.Computer" ParentMonitorID="SystemHealth!System.Health.AvailabilityState" Remotable="true" Priority="Normal" RelationshipType="Microsoft.Unix.ComputerHostsSampleApplication" MemberMonitor="SystemHealth!System.Health.AvailabilityState">
 <Category>AvailabilityHealth</Category>
 <Algorithm>WorstOf</Algorithm>
 </DependencyMonitor>

The dependency monitor follows the unit monitors in the monitors section of the management pack. Before you add this code to the management pack and import it into Operations Manager, take a moment to observe the Health Explorer in the Operations console
Observe Health Rollup Interaction
To observe the Health rollup before you add the dependency monitor, open the Operations console. Open the Health Explorer view for the monitored server. A tree diagram of availability, configuration, and performance are displayed. Expand the availability node to make sure that the hardware, the operating system, and the UNIX heartbeat monitors are currently installed and monitoring the server. If any of these monitors report an error, the Health state rolls up to the top level and reports that the computer was not healthy.
Add the dependency monitor code to the monitors section in the management pack, increment the version, save the file, and import the management pack into Operations Manager. Refresh the Health Explorer. Expand the availability node. The Microsoft.SCX.Authoring.Guide.Computer.SampleAppAvailabilityRollup should now be included. Continue to expand the tree until the Sample App Health Monitor and the Sample App MD5 Hash Monitor are visible. Modify SampleAppHealth.sh so that a critical state is reported.
Wait a few moments and refresh the Health Explorer. Observe that the Sample App Health Monitor and the Sample App MD5 Hash Monitor are both reporting an unhealthy state and now the monitored computer is also reporting an unhealthy state. Wait a few moments longer until the recovery task executes, performs a corrective action, and returns the computer to a healthy state.
[bookmark: _Toc235267469][bookmark: z3380fc0eaf7b4be091394d494e0f8d86]Monitor Performance Data
This topic describes data collection and guides you through the process of collecting performance-based data on a monitored system.
Performance Data Collection
There are circumstances in which it is appropriate to collect data as reference information when troubleshooting or performing capacity planning. This data can be accessed by using monitors and alerts to report current status. This data can also be collected over a longer period of time for historical analysis by using a rule. This topic describes how to report immediate changes in performance by using a monitor and alert. The following sections within this topic describe how to collect this performance data and store it to evaluate results over a period of time.
Sample Performance Script
 To simulate performance, the Bash script SampleAppPerf.sh is run. This script simulates application performance by creating a random number to standard output. This script is only for demonstrating rules and monitoring.
The script contains the following:

#!/bin/bash

number=$RANDOM
echo $number
A random value from 0 to 32767 is assigned to the variable number and then value is sent to standard output. The script is located in the \tmp directory on the UNIX-based or Linux-based computer that is being monitored.
Unit Monitor
A Unit Monitor is created to monitor the performance data simulated by SampleAppPerf.sh. The Parent monitor ID is SystemHealth!System.Health.PerformanceState, and it defines the collection of monitors that are used in the performance dependency monitor that is described in the Collect and View Performance Data topic. The Type ID is Microsoft.SCX.Authoring.Guide.SampleAppPerf.Threshold.MonitorType and is defined in the Unit Monitor Type in a later code example. The alert message is defined, and it generates an alert in an error state. The monitor attempts to self-resolve if a recovery task is defined. There are two states; either the application is over threshold or underthreshold. The threshold is set to 30000. The interval is set to run the monitor, and therefore the script, every 30 seconds.

 <UnitMonitor ID="Microsoft.SCX.Authoring.Guide.SampleAppPerf.Monitor" Accessibility="Public" Enabled="true" Target="Microsoft.SCX.Sample.Application" ParentMonitorID="SystemHealth!System.Health.PerformanceState" Remotable="true" Priority="Normal" TypeID="Microsoft.SCX.Authoring.Guide.SampleAppPerf.Threshold.MonitorType" ConfirmDelivery="false">
 <Category>PerformanceHealth</Category>
 <AlertSettings AlertMessage="Microsoft.SCX.Authoring.Guide.SampleAppPerf.AlertMessage">
 <AlertOnState>Error</AlertOnState>
 <AutoResolve>true</AutoResolve>
 <AlertPriority>Normal</AlertPriority>
 <AlertSeverity>Error</AlertSeverity>
 </AlertSettings>
 <OperationalStates>
 <OperationalState ID="OverThreshold" MonitorTypeStateID="OverThreshold" HealthState="Error" />
 <OperationalState ID="UnderThreshold" MonitorTypeStateID="UnderThreshold" HealthState="Success" />
 </OperationalStates>
 <Configuration>
 <IntervalSeconds>30</IntervalSeconds>
 <TargetSystem>$Target/Host/Property[Type="Unix!Microsoft.Unix.Computer"]/NetworkName$</TargetSystem>
 <Command>sh /tmp/SampleAppPerf.sh</Command>
 <ObjectName>SampleApp</ObjectName>
 <CounterName>SampleValue</CounterName>
 <InstanceName>$Target/Property[Type="Microsoft.SCX.Sample.Application"]/DisplayName$</InstanceName>
 <Value>$Data///*[local-name()="StdOut"]$</Value>
 <Threshold>30000</Threshold>
 </Configuration>
 </UnitMonitor>

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, insert the preceding XML in the <Monitors> subsection under the <Monitoring> section.
Add the UnitMonitorType
As in earlier monitors, all the attributes for this monitor are defined within Configuration, and the Modifiable attributes are defined in OverrideableParameters. Again, there is a scheduler to determine when to run the monitor and a ProbeAction to execute the monitor. The $Config/Command$ takes the value that is passed in from Microsoft.SCX.Authoring.Guide.SampleAppPerf.Monitor and defined as Overrideable in the <Configuration> subsection. The Condition is the check that is performed in each of the Regular Detections. The Regular Detection actions are executed from deepest-level node to the top-level node. You should determine what the hash value is for the script and verify whether it matches the hash code that you expect.

 <UnitMonitorType ID="Microsoft.SCX.Authoring.Guide.SampleAppPerf.Threshold.MonitorType" Accessibility="Public">
 <MonitorTypeStates>
 <MonitorTypeState ID="UnderThreshold" NoDetection="false" />
 <MonitorTypeState ID="OverThreshold" NoDetection="false" />
 </MonitorTypeStates>
 <Configuration>
 <xsd:element name="IntervalSeconds" type="xsd:integer" />
 <xsd:element name="TargetSystem" type="xsd:string" />
 <xsd:element name="Command" type="xsd:string" />
 <xsd:element name="ObjectName" type="xsd:string" />
 <xsd:element name="CounterName" type="xsd:string" />
 <xsd:element name="InstanceName" type="xsd:string" />
 <xsd:element name="Value" type="xsd:string" />
 <xsd:element name="Threshold" type="xsd:double" />
 </Configuration>
 <OverrideableParameters>
 <OverrideableParameter ID="IntervalSeconds" Selector="$Config/IntervalSeconds$" ParameterType="int" />
 <OverrideableParameter ID="Threshold" Selector="$Config/Threshold$" ParameterType="double" />
 </OverrideableParameters>
 <MonitorImplementation>
 <MemberModules>
 <DataSource ID="DS" TypeID="Microsoft.SCX.Authoring.Guide.ScriptBased.PerfCounterProvider">
 <IntervalSeconds>$Config/IntervalSeconds$</IntervalSeconds>
 <TargetSystem>$Config/TargetSystem$</TargetSystem>
 <Uri>http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem?__cimnamespace=root/scx</Uri>
 <Selector />
 <InvokeAction>ExecuteCommand</InvokeAction>
 <Input><![CDATA[<p:ExecuteCommand_INPUT xmlns:p="http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem"><p:command>$Config/Command$</p:command><p:timeout>10</p:timeout></p:ExecuteCommand_INPUT>]]></Input>
 <ObjectName>$Config/ObjectName$</ObjectName>
 <CounterName>$Config/CounterName$</CounterName>
 <InstanceName>$Config/InstanceName$</InstanceName>
 <Value>$Config/Value$</Value>
 </DataSource>
 <ConditionDetection ID="CDUnderThreshold" TypeID="System!System.ExpressionFilter">
 <Expression>
 <SimpleExpression>
 <ValueExpression>
 <XPathQuery Type="Double">Value</XPathQuery>
 </ValueExpression>
 <Operator>Less</Operator>
 <ValueExpression>
 <Value Type="Double">$Config/Threshold$</Value>
 </ValueExpression>
 </SimpleExpression>
 </Expression>
 </ConditionDetection>
 <ConditionDetection ID="CDOverThreshold" TypeID="System!System.ExpressionFilter">
 <Expression>
 <SimpleExpression>
 <ValueExpression>
 <XPathQuery Type="Double">Value</XPathQuery>
 </ValueExpression>
 <Operator>GreaterEqual</Operator>
 <ValueExpression>
 <Value Type="Double">$Config/Threshold$</Value>
 </ValueExpression>
 </SimpleExpression>
 </Expression>
 </ConditionDetection>
 </MemberModules>
 <RegularDetections>
 <RegularDetection MonitorTypeStateID="UnderThreshold">
 <Node ID="CDUnderThreshold">
 <Node ID="DS" />
 </Node>
 </RegularDetection>
 <RegularDetection MonitorTypeStateID="OverThreshold">
 <Node ID="CDOverThreshold">
 <Node ID="DS" />
 </Node>
 </RegularDetection>
 </RegularDetections>
 </MonitorImplementation>
 </UnitMonitorType>

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, insert the preceding XML in the <UnitMonitorType> subsection under the <MonitorTypes> section.
Add Data Source Type
In the Unit Monitor Type definition, <DataSource> references a <DataSourceModuleType> that is named Microsoft.Unix.Microsoft.SCX.Authoring.Guide.ScriptBased.PerfCounterProvider, which must be defined.
All the attributes in <DataSourceModuleType> are defined within <Configuration>. There are two attributes that can be changed. These modifiable attributes are defined in <OverrideableParameters> and are <IntervalSeconds> and <SyncTime>. Recall from the preceding discovery definition that <IntervalSeconds> is given a value of 30 seconds and <SyncTime> is left empty. Initial values for <OverrideableParameters> are set in the <Configuration> subsection in <UnitMonitor>. <OverrideableParameters> can also be modified through the Operations console.
Because this is a performance monitor, you must make sure that the output is of the correct type. The last line before the closing tag, </DataSourceModuleType>, is an <OutputType> subsection that is defined as SystemPerf!System.Performance.Data.

 <DataSourceModuleType ID="Microsoft.SCX.Authoring.Guide.ScriptBased.PerfCounterProvider" Accessibility="Public" Batching="false">
 <Configuration>
 <xsd:element name="IntervalSeconds" type="xsd:integer" />
 <xsd:element name="TargetSystem" type="xsd:string" />
 <xsd:element name="Uri" type="xsd:string" />
 <xsd:element name="Selector" type="xsd:string" minOccurs="0" maxOccurs="1" />
 <xsd:element name="InvokeAction" type="xsd:string" />
 <xsd:element name="Input" type="xsd:string" />
 <xsd:element name="SyncTime" type="xsd:string" minOccurs="0" maxOccurs="1" />
 <xsd:element name="ObjectName" type="xsd:string" />
 <xsd:element name="CounterName" type="xsd:string" />
 <xsd:element name="InstanceName" type="xsd:string" />
 <xsd:element name="Value" type="xsd:string" />
 </Configuration>
 <OverrideableParameters>
 <OverrideableParameter ID="IntervalSeconds" Selector="$Config/IntervalSeconds$" ParameterType="int" />
 <OverrideableParameter ID="SyncTime" Selector="$Config/SyncTime$" ParameterType="string" />
 </OverrideableParameters>
 <ModuleImplementation Isolation="Any">
 <Composite>
 <MemberModules>
 <!--Schedule when the Probe event occurs-->
 <DataSource ID="Scheduler" TypeID="System!System.SimpleScheduler">
 <IntervalSeconds>$Config/IntervalSeconds$</IntervalSeconds>
 <SyncTime>$Config/SyncTime$</SyncTime>
 </DataSource>
 <!--Invoke the Probe Action-->
 <ProbeAction ID="Invoke" TypeID="Unix!Microsoft.Unix.WSMan.Invoke.ProbeAction">
 <TargetSystem>$Config/TargetSystem$</TargetSystem>
 <Uri>$Config/Uri$</Uri>
 <Selector>$Config/Selector$</Selector>
 <InvokeAction>$Config/InvokeAction$</InvokeAction>
 <Input>$Config/Input$</Input>
 </ProbeAction>
 <!--Map how to handle retrieved data-->
 <ConditionDetection ID="Mapper" TypeID="SystemPerf!System.Performance.DataGenericMapper">
 <ObjectName>$Config/ObjectName$</ObjectName>
 <CounterName>$Config/CounterName$</CounterName>
 <InstanceName>$Config/InstanceName$</InstanceName>
 <Value>$Config/Value$</Value>
 </ConditionDetection>
 </MemberModules>
 <!--Describe order to execute above Modules, most deeply nested node executes first.-->
 <Composition>
 <Node ID="Mapper">
 <Node ID="Invoke">
 <Node ID="Scheduler" />
 </Node>
 </Node>
 </Composition>
 </Composite>
 </ModuleImplementation>
 <OutputType>SystemPerf!System.Performance.Data</OutputType>
 </DataSourceModuleType>
In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, insert the preceding XML in the <ModuleTypes> section.
Add Language Pack Strings
All strings associated with the sample application performance are defined as follows:

 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.SampleAppPerf.AlertMessage">
 <Name>Sample App Performance Alert</Name>
 <Description>Application is not healthy</Description>
 </DisplayString>
 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.SampleAppPerf.Monitor">
 <Name>Sample App Perf Monitor</Name>
 <Description />
 </DisplayString>
 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.SampleAppPerf.Monitor" SubElementID="OverThreshold">
 <Name>Over Threshold</Name>
 <Description />
 </DisplayString>
 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.SampleAppPerf.Monitor" SubElementID="UnderThreshold">
 <Name>Under Threshold</Name>
 <Description />
 </DisplayString>

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, insert the preceding XML in the <DisplayStrings> subsection under the <Language> section.
Add a Task
Additionally, a task is added that checks the application performance at any time and in addition to the regular checks that are performed by the monitor.

 <Task ID="Microsoft.SCX.Authoring.Guide.GetSampleAppPerf.Task" Accessibility="Internal" Enabled="true" Target="Unix!Microsoft.Unix.Computer" Timeout="300" Remotable="true">
 <Category>Maintenance</Category>
 <ProbeAction ID="RunScript" TypeID="Unix!Microsoft.Unix.WSMan.Invoke.ProbeAction">
 <TargetSystem>$Target/Property[Type="Unix!Microsoft.Unix.Computer"]/PrincipalName$</TargetSystem>
 <Uri>http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem?__cimnamespace=root/scx</Uri>
 <Selector />
 <InvokeAction>ExecuteCommand</InvokeAction>
 <Input><![CDATA[<p:ExecuteCommand_INPUT xmlns:p="http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem"><p:command>sh /tmp/SampleAppPerf.sh</p:command><p:timeout>10</p:timeout></p:ExecuteCommand_INPUT>]]></Input>
 </ProbeAction>
 </Task>

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, insert the preceding XML in the <Tasks> subsection under the <Monitoring> section.

 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.GetSampleAppPerf.Task">
 <Name>Get Sample App Perf</Name>
 <Description />
 </DisplayString>

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, insert the preceding XML in the <DisplayStrings> subsection under the <Language> section.
Observe Performance
If you want to observe the performance task, go to the Operations console, open a Diagram View of the computer that is being monitored and then run the Get Sample App Perf Task. The results are reported for a single execution of the task.
[image:]To observe the ongoing monitoring of performance
	1.	In the Diagram View, right-click Microsoft.SCX.Sample.Application.
2.	Select Health Explorer.
3.	Expand the Performance node. Notice that there is now a Sample App Perf Monitor.

Because the data is not being stored, there is no view to observe the data over time. The Collect and View Performance Data topic describes the rule that makes it possible to record data over time.
[bookmark: _Toc235267470][bookmark: z6f486e73d1c84b65b1ac4eaff783a2b2]Collect and View Performance Data
This topic describes how rules are used to store information for later retrieval in the Operations Manager database.
Add a Rule
Rules are the mechanism by which system data is stored in the Operations Manager database. A monitor reports information only in the moment. Only through logging information in the Operations Manager database is it possible to produce views and reports of past events. A rule resembles a monitor except for the two write actions that occur at the end of the rule definition.

 <Rules>
 <Rule ID="Microsoft.SCX.AuthoringGuide.SampleAppPerf.Collection" Enabled="true" Target="Microsoft.SCX.Sample.Application" ConfirmDelivery="false" Remotable="true" Priority="Normal" DiscardLevel="100">
 <Category>PerformanceCollection</Category>
 <DataSources>
 <DataSource ID="DS" TypeID="Microsoft.SCX.Authoring.Guide.ScriptBased.PerfCounterProvider">
 <IntervalSeconds>30</IntervalSeconds>
 <TargetSystem>$Target/Host/Property[Type="Unix!Microsoft.Unix.Computer"]/PrincipalName$</TargetSystem>
 <Uri>http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem?__cimnamespace=root/scx</Uri>
 <Selector />
 <InvokeAction>ExecuteCommand</InvokeAction>
 <Input><![CDATA[<p:ExecuteCommand_INPUT xmlns:p="http://schemas.microsoft.com/wbem/wscim/1/cim-schema/2/SCX_OperatingSystem"><p:command>sh /tmp/SampleAppPerf.sh</p:command><p:timeout>10</p:timeout></p:ExecuteCommand_INPUT>]]></Input>
 <SyncTime />
 <ObjectName>SampleApp</ObjectName>
 <CounterName>SampleValue</CounterName>
 <InstanceName>$Target/Property[Type="Microsoft.SCX.Sample.Application"]/DisplayName$</InstanceName>
 <Value>$Data///*[local-name()="StdOut"]$</Value>
 </DataSource>
 </DataSources>
 <!--Write collected data to Operations Manager database -->
 <WriteActions>
 <WriteAction ID="WriteToDB" TypeID="SC!Microsoft.SystemCenter.CollectPerformanceData" />
 <WriteAction ID="WriteToDW" TypeID="SCDW!Microsoft.SystemCenter.DataWarehouse.PublishPerformanceData" />
 </WriteActions>
 </Rule>
 </Rules>

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, insert the preceding XML in the <Rules/> subsection under the <Monitoring> section.
Presentation
The bulk of the definition for the historical data is in the presentation section of the management pack. Such presentation definitions include fonts, sort order, colors, and any attribute that is needed to display the information. Any folders or views are also defined here, though the actual strings are defined in the language pack section.

 <Views>
 <View ID="Microsoft.SCX.Authoring.Guide.SampleApp.Perf.View" Accessibility="Public" Enabled="true" Target="Microsoft.SCX.Sample.Application" TypeID="SC!Microsoft.SystemCenter.PerformanceViewType" Visible="true">
 <Category>Operations</Category>
 <Criteria />
 <Presentation>
 <SortedColumnIndex>0</SortedColumnIndex>
 <SortOrder>0</SortOrder>
 <StartTime>2009-04-20T15:28:00.8351039-07:00</StartTime>
 <EndTime>2009-04-21T15:28:00.8351039-07:00</EndTime>
 <DynamicTimeTicks>864000000000</DynamicTimeTicks>
 <IsDynamic>true</IsDynamic>
 <Is3DMode>false</Is3DMode>
 <ShowAlerts>false</ShowAlerts>
 <ShowMaintenanceMode>false</ShowMaintenanceMode>
 <BaselineMode>false</BaselineMode>
 <ShowPointLabels>false</ShowPointLabels>
 <EnableSmartLabels>true</EnableSmartLabels>
 <RightAngleAxes>false</RightAngleAxes>
 <ClusterSeries>false</ClusterSeries>
 <Title />
 <TitleFont>Microsoft Sans Serif,12,Regular</TitleFont>
 <ChartFont>Microsoft Sans Serif,8.25,Regular</ChartFont>
 <ShowBands>false</ShowBands>
 <BandColor>-1579033</BandColor>
 <ChartType>Line</ChartType>
 <Depth>100</Depth>
 <GapDepth>100</GapDepth>
 <Perspective>10</Perspective>
 <GraphXRotation>0</GraphXRotation>
 <GraphYRotation>0</GraphYRotation>
 <XLabelAngle>0</XLabelAngle>
 <LabelColor>-16777216</LabelColor>
 <LabelFont>Microsoft Sans Serif,8.25,Regular</LabelFont>
 <XAxisVisible>True</XAxisVisible>
 <XShowMajorGridlines>false</XShowMajorGridlines>
 <XShowMinorGridlines>false</XShowMinorGridlines>
 <ShowInterlaceStrips>false</ShowInterlaceStrips>
 <XInterlaceColor>16777215</XInterlaceColor>
 <XShowSideMargin>true</XShowSideMargin>
 <XAxisFont>Microsoft Sans Serif,8.25,Regular</XAxisFont>
 <AutoAxis>true</AutoAxis>
 <AxisMax>100</AxisMax>
 <AxisMin>0</AxisMin>
 <YAxisVisible>True</YAxisVisible>
 <YShowMajorGridlines>true</YShowMajorGridlines>
 <YShowMinorGridlines>false</YShowMinorGridlines>
 <YShowInterlaceStrips>false</YShowInterlaceStrips>
 <YShowSideMargin>true</YShowSideMargin>
 <YAxisFont>Microsoft Sans Serif,8.25,Regular</YAxisFont>
 <BackgroundColor1>-1</BackgroundColor1>
 <BackgroundColor2>-1</BackgroundColor2>
 <GradientType>None</GradientType>
 <Series />
 </Presentation>
 <Target />
 </View>
 </Views>

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, insert the preceding XML in the <Presentation> section.

 <Folder ID="Microsoft.SCX.Authoring.Guide.SampleApp.Folder" Accessibility="Public" ParentFolder="SC!Microsoft.SystemCenter.Monitoring.ViewFolder.Root" />

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, insert the preceding XML in the <Folders> subsection under the <Presentation> section.

 <FolderItem ElementID="Microsoft.SCX.Authoring.Guide.SampleApp.Perf.View" Folder="Microsoft.SCX.Authoring.Guide.SampleApp.Folder" />

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, insert the preceding XML in the <FolderItems> subsection under the <Presentation> section.
Language Pack
The display strings for the performance view and folder are defined as follows:

 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.SampleApp.Perf.View">
 <Name>Sample Application Performance</Name>
 </DisplayString>
 <DisplayString ElementID="Microsoft.SCX.Authoring.Guide.SampleApp.Folder">
 <Name>Microsoft System Center Cross Platform Management Pack Authoring Guide Sample</Name>
 </DisplayString>

In the Microsoft.SCX.Authoring.Guide.xml file that you created earlier, insert the preceding XML in the <DisplayStrings> subsection under the <LanguagePack> section.
To observe the data collection within Operations Manager, save the file, Microsoft.SCX.Authoring.Guide.xml, and then import the management pack into the Operations Manager management group, as described in the Required Management Pack Definitions topic.
Observing Collected Data
After the management pack that contains the data collection monitor and rule is imported into the Operations console, the collected data can be viewed.
[image:]To observe the performance data
	1.	In the Operations console, from the monitoring node, verify that there is a folder that is named Microsoft System Center Cross Platform Management Pack Authoring Guide Sample. In the folder is a view for Sample Application Performance.
2.	Click the Sample Application Performance View. Notice that all the data is displayed as a line graph.

[bookmark: _Toc235267471][bookmark: z591e037c68bd4a099a9cb280b2d8bb7b]Create a Performance Rollup
In this topic, the Performance rollup is introduced. Sample code is provided so that you can add this functionality to your management pack.
Performance Rollup
The performance rollup, also called a dependency monitor, is defined similarly to the health rollup. For more information on dependency monitor elements, see Management Packs, Rules, Monitors, and Tasks and Their Relation to Models (http://go.microsoft.com/fwlink/?linkid=152365).
Dependency Monitor
A dependency monitor for performance uses the same algorithm that is used in the dependency monitor for health. See the Create a Health Rollup topic for details on the types of algorithms that are available.

 <DependencyMonitor ID="Microsoft.SCX.Authoring.Guide.Computer.SampleAppPerformanceRollup" Accessibility="Public" Enabled="true" Target="Unix!Microsoft.Unix.Computer" ParentMonitorID="SystemHealth!System.Health.PerformanceState" Remotable="true" Priority="Normal" RelationshipType="Microsoft.Unix.ComputerHostsSampleApplication" MemberMonitor="SystemHealth!System.Health.PerformanceState">
 <Category>PerformanceHealth</Category>
 <Algorithm>WorstOf</Algorithm>
 </DependencyMonitor>

The <DependencyMonitor> falls under the <UnitMonitors> subsection in the <Monitors> section of the management pack.
Observe Performance Dependency Monitor
Before you add the dependency monitor, observe the performance dependency monitor.
[image:]To observe the performance dependency monitor:
	1.	Open the Operations console.
2.	Open the Health Explorer view for the monitored server. A tree diagram of availability, configuration, and performance is displayed.
3.	Expand the performance node. Notice that hardware, operating system, and the UNIX heartbeat monitors are currently installed and monitoring the server.
4.	Add the performance dependency monitor code to the monitors section in the management pack, increment the version number located in the manifest <identity>, save the file, and then import the management pack into Operations Manager.
5.	Refresh the Health Explorer.
6.	Expand the performance node. The Microsoft.SCX.Authoring.Guide.Computer.SampleAppPerformanceRollup should now be included.
7.	Continue to expand the performance node tree until the Sample App Perf Monitor is visible.

Customization of Performance Dependency Monitor
Any monitor with a shared Parent Monitor ID can be combined into a single dependency grouping. The Dependency monitor ID is the description that is used in the Health Explorer. The Target is the same type that is used in the discovery: Unix!Microsoft.Unix.Computer. The Relationship Type is also UNIX-specific and defined as Microsoft.Unix.ComputerHostsSampleApplication. Changing the Parent Monitor ID and the dependency monitor ID creates a new dependency monitor in the Health Explorer.

29

image2.gif

image1.gif
% gi}j;%em Center

Operations Manager 2007 R2

