[image:]

Performance Tuning Guidelines for Windows Server 2008 - 2
[bookmark: OLE_LINK3][bookmark: OLE_LINK4][bookmark: OLE_LINK1][bookmark: OLE_LINK2]Performance Tuning Guidelines for Windows Server 2008
October 16, 2007
Abstract
This document describes important tuning parameters and settings that can result in improved performance for the Windows Server® 2008 operating system. Each setting and its potential effect are described to help you make an informed judgment about its relevance to your system, workload, and performance goals.
This information applies to the Windows Server 2008 operating system.
The current version of this guide is maintained on the Web at:
	http://www.microsoft.com/whdc/system/sysperf/Perf_tun_srv.mspx
Feedback: Please tell us if this paper was useful to you. Submit comments at:
	http://go.microsoft.com/fwlink/?LinkId=102585
References and resources discussed here are listed at the end of this guide.

Contents
Introduction	4
In This Guide	4
Performance Tuning for Server Hardware	4
Interrupt Affinity	6
Performance Tuning for Networking Subsystem	7
Choosing a Network Adapter	8
Tuning the Network Adapter	9
TCP Receive Window Auto-Tuning	10
TCP Parameters	11
Network-Related Performance Counters	11
Performance Tuning for Storage Subsystem	12
Choosing Storage	12
Storage-Related Parameters	20
Storage-Related Performance Counters	21
Performance Tuning for Web Servers	25
Selecting the Right Hardware for Performance	25
Operating System Practices	26
Tuning IIS 7.0	26
Kernel-Mode Tunings	27
User-Mode Settings	29
Performance Tuning for File Servers	36
Selecting the Right Hardware for Performance	36
Server Message Block Model	36
Configuration Considerations	37
General Tuning Parameters for Servers	37
General Tuning Parameters for Client Computers	38
Performance Tuning for Active Directory Servers	39
Considerations for Read-Heavy Scenarios	40
Considerations for Write-Heavy Scenarios	40
Use Indexing to Increase Query Performance	40
Optimize Trust Paths	40
Active Directory Performance Counters	41
Performance Tuning for Terminal Server	42
Selecting the Right Hardware for Performance	42
Tuning Applications for Terminal Server	44
Terminal Server Tuning Parameters	45
Desktop Size	47
Windows System Resource Manager	47
Performance Tuning for Terminal Server Gateway	48
Monitoring and Data Collection	49
Performance Tuning for File Server Workload (NetBench)	49
Registry Tuning Parameters for Servers	49
Registry Tuning Parameters for Client Computers	50
Performance Tuning for Network Workload (NTttcp)	50
Performance Tuning for Terminal Server Knowledge Worker Workload	52
Recommended Tunings on the Server	53
Monitoring and Data Collection	54
Performance Tuning for SAP Sales and Distribution Two-Tier Workload	55
Operating System Tunings on the Server	55
Tunings on the Database Server	56
Tunings on the SAP Application Server	56
Monitoring and Data Collection	56
Resources	57

Disclaimer
This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

[bookmark: Copyright]© 2007 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, MS-DOS, MSDN, SQL Server, Win-32, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
[bookmark: _Toc52966592][bookmark: _Toc180287465]Introduction
Windows Server® 2008 should perform very well out of the box for most customer workloads. Optimum out-of-the-box performance was a major goal for this release and influenced how Microsoft designed a new, dynamically tuned networking subsystem that incorporates both IPv4 and IPv6 protocols and improved file sharing through Server Message Block (SMB) 2.0. However, you can further tune the server settings and observe incremental performance gains, especially when the nature of the workload varies little over time.
The most effective tuning changes consider the hardware, the workload, and the performance goals. This document describes important tuning considerations and settings that can result in improved performance. Each setting and its potential effect are described to help you make an informed judgment about its relevance to your system, workload, and performance goals.
Note: Registry settings and tuning parameters have changed significantly from Windows Server 2003 to Windows Server 2008. Remember this as you tune your server—using earlier or out-of-date tuning guidelines might produce unexpected results.
As always, take care when you manipulate the registry directly. If you must edit the registry, back it up first.
[bookmark: _Toc122319635][bookmark: _Toc180287466]In This Guide	
This guide contains key performance recommendations for the following components:
Server Hardware
Networking Subsystem
Storage Subsystem

This guide also contains performance tuning considerations for the following server roles:
Web Servers
File Servers
Active Directory Servers
Terminal Servers
Terminal Server Gateway
File Server Workload
Networking Workload
Terminal Server Knowledge Worker Workload
SAP Sales and Distribution Two-Tier Workload
[bookmark: _Performance_Tuning_for_Networking][bookmark: _Server_Hardware][bookmark: _Toc180287467][bookmark: _Toc23251607][bookmark: _Toc52966593]Performance Tuning for Server Hardware
It is important to select the right hardware to satisfy the expected performance goals. Hardware bottlenecks limit the effectiveness of software tuning. This section provides guidelines for laying a good foundation for the role a server will play. Subsequent sections provide tuning guidelines specific to a server role, and include diagnostic techniques for isolating and identifying performance bottlenecks for certain server roles.
Table 1 provides important considerations when choosing the server hardware. Following these guidelines can help remove artificial performance bottlenecks that might impede your server’s performance.
Table 1. Server Hardware Recommendations
	Component
	Recommendation

	Processors
	When possible, choose 64-bit processors due to the benefit of additional address space.
Research data has shown that two CPUs are not as fast as one CPU that is twice as fast. Because it is not always possible to get a CPU that is twice as fast, doubling the number of CPUs is preferred, but it does not guarantee twice the performance.
It is important to match and scale the memory and I/O subsystem with the CPU power and vice versa.
Do not compare CPU frequencies across manufacturers and generations; the comparison can be a misleading indicator of speed.

	Cache
	Choose large L2 or L3 processor caches. The larger caches generally provide better performance and often play a bigger role than raw CPU frequency.

	Memory (RAM)
	Increase the amount of RAM to match your memory needs. When your computer runs low on memory and more is needed immediately, modern operating systems use hard drive space to supplement system RAM through a procedure called paging. Excessive paging degrades overall system performance.
Optimize paging by using the following guidelines for pagefile placement:
Place the pagefile and operating system files on separate physical disk drives.
Place the pagefile on a non-fault-tolerant drive. If you decide to place the page file on a fault-tolerance drive, remember that some fault-tolerant systems suffer from slow data writes because they write data to multiple locations.
Use multiple disks or a RAID 0 stripe set of disks if additional disk bandwidth is needed for paging. Don't place multiple pagefiles on different partitions of the same physical disk drive.

	Bus
	To avoid bus speed limitations, use either PCI-X or PCIe x8 and higher slots for Gigabit Ethernet adapters.

Table 2 lists the recommended settings for choosing networking and storage adapters in a high-performing server environment. These settings can help keep your networking or storage hardware from being the bottleneck when under heavy load.
Table 2. Networking and Storage Adapter Recommendations
	Recommen-dation
	Description

	WHQL certified
	The adapter has passed the Windows® Hardware Quality Labs (WHQL) certification test suite.

	64-bit capability
	Adapters that are 64-bit capable can perform direct memory access (DMA) operations to and from high physical memory locations (above 4 GB). If the driver does not support DMA above 4 GB, the system double-buffers the I/O to a physical address space of less than 4 GB.

	Copper and fiber (glass) adapters
	Copper adapters generally have the same performance as their fiber counterparts, and both copper and fiber are available on some Fibre Channel adapters. Certain environments are better suited to copper adapters whereas are better suited to fiber adapters.

	Dual- or quad-port adapters
	Multiport adapters are useful for servers with limited PCI slots.
To address SCSI limitations on the number of disks that can be connected to a SCSI bus, some adapters provide two or four SCSI buses on a single adapter card. Fibre Channel disks generally have no limits to the number of disks connected to an adapter unless they are hidden behind a SCSI interface.
Serial Attached SCSI (SAS) and Serial ATA (SATA) adapters also have a limited number of connections due to the serial nature of the protocols, but an increase in the number of attached disks is possible through switches.
Network adapters have this feature for load-balancing or failover scenarios. Using two single-port network adapters usually yields better performance than using a single dual-port network adapter for the same workload.
PCI bus limitation can be a major factor in limiting performance for multiport adapters. Therefore, it is important to consider placing them in a high-performing PCI slot that provides adequate bandwidth. In general, PCI‑E adapters provide higher bandwidth than PCI‑X adapters do.

	Interrupt moderation
	Some adapters can moderate how frequently they interrupt the host processors to indicate activity (or its completion). Moderating interrupts can often result in a reduction in CPU load on the host but, unless interrupt moderation is performed intelligently, the CPU savings might cause increases in latency.

	Offload capability and other advanced features such as message-signaled interrupt (MSI)-X
	Offload-capable adapters offer CPU savings that translate into improved performance. For more information, see "Choosing a Network Adapter" later in this guide.

[bookmark: _Toc52966646][bookmark: _Toc180287468]Interrupt Affinity
Interrupt affinity refers to the binding of interrupts from a specific device to one or more specific processors in a multiprocessor server. This forces the processing of interrupts to run on the specified processor or processors, unless otherwise specified by the device. For some scenarios, such as a file server, the network connections and file server sessions remain on the same network adapter. In those scenarios, binding interrupts from the network adapter to a processor allows for processing incoming packets (SMB requests and data) on a specific set of processors, which improves locality and scalability.
The Interrupt-Affinity Filter tool (IntFiltr) allows you to change the CPU affinity of the interrupt service routine (ISR), and it runs on most servers running Windows Server 2008, regardless of what processor or interrupt controller is used. However, on some systems with more than eight logical processors or for devices that use MSI or MSI-X, the tool is limited by the Advanced Programmable Interrupt Controller (APIC) protocol. The Interrupt-Affinity Policy tool does not encounter this issue because it sets the CPU affinity through the affinity policy of a device.
You can use this tool to direct any device's ISR to a specific processor or set of processors (instead of sending interrupts to any of the CPUs in the system). Note that different devices can have different interrupt affinity settings. For IntFiltr to work on some systems, you must set the MAXPROCSPERCLUSTER=0 boot parameter. Note that, on some systems, directing the ISR to a processor on a different nonuniform memory access (NUMA) node can cause performance issues.
[bookmark: _Performance_Tuning_for][bookmark: _Toc180287469]Performance Tuning for Networking Subsystem
Figure 1 illustrates the network architecture, which covers many components, interfaces, and protocols. The following sections discuss tuning guidelines for some of the components of server workloads.
 (
WMS
HTTP.SYS
TCP/IP
DNS
IIS
AFD.SYS
NIC Driver
User-Mode Applications
System Drivers
Protocol Stack
NDIS
Network Interface
UDP/IP
VPN
NDIS
)Figure 1. Network Stack Components
The network architecture is layered, and the layers can be broadly divided into the following sections:
The network driver and Network Driver Interface Specification (NDIS).
These are the lowest layers. NDIS exposes interfaces for the driver below it and for the layers above it such as TCP/IP.
The protocol stack.
This implements protocols such as TCP/IP and UDP/IP. These layers expose the transport layer interface for layers above them.
System drivers.
These are typically transport data interface extension (TDX) or Winsock Kernel (WSK) clients and expose interfaces to user-mode applications. The WSK interface is a new feature for Windows Server 2008 and Windows Vista® that is exposed by Afd.sys and improves performance by eliminating the switching between user mode and kernel modes.
User-mode applications.
These are typically Microsoft solutions or custom applications.

Tuning for network-intensive workloads can involve each of the layers. The following sections describe some of the tunings.
[bookmark: _Choosing_a_Network][bookmark: _Toc52966594][bookmark: _Toc180287470]Choosing a Network Adapter
Network-intensive applications need high-performance network adapters. This section covers some considerations for choosing network adapters.
[bookmark: _Toc52966596]Offload Capabilities
Offloading tasks can help lower CPU usage on the server, improving overall system performance. The Microsoft networking stack can offload one or more tasks to a network adapter that has the appropriate task-offload capabilities. Table 3 provides more details about each of the offloads.
Table 3. Offload Capabilities for Network Adapters
	Offload type
	Description

	Checksum calculation
	The networking stack can offload the calculation and validation of both Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) checksums on sends and receives. It can also offload the calculation and validation of both IPv4 and IPv6 checksums on sends and receives.

	Internet Protocol (IP) security authentication and encryption
	The TCP/IP transport can offload the calculation and validation of encrypted checksums for authentication headers and Encapsulating Security Payloads (ESPs). The TCP/IP transport can also offload the encryption and decryption of ESPs.

	Segmentation of large TCP packets
	The TCP/IP transport supports Giant Send Offload (GSO). With GSO, the TCP/IP transport can offload the segmentation of large TCP packets.

	TCP stack
	The TCP offload engine (TOE) enables a network adapter that has the appropriate capabilities to offload the entire network stack.

Receive-Side Scaling (RSS)
On systems with Pentium 4 and later processors, the scheduling for processing networking I/O within the context of an ISR is routed to the same processor. This behavior is different from that of earlier processors where interrupts from a device are rotated to all processors. The result is a scalability limitation for multiprocessor servers hosting a single network adapter that is governed by the processing power of a single CPU. With RSS, the network driver in conjunction with the network card distributes incoming packets among processors so that packets belonging to the same TCP connection are on the same processor, which preserves ordering. This helps improve scalability for scenarios such as Web servers, in which a machine accepts many connections that originate from different source addresses and ports. Research has shown that distributing packets belonging to TCP connections across hyperthreading processors degrades performance. Therefore, only physical processors accept RSS traffic. For more information about RSS, see "Scalable Networking: Eliminating the Receive Processing Bottleneck—Introducing RSS."
Message-Signaled Interrupts (MSI/MSI-X)
The ability to target processors with interrupts coupled with RSS dedicates a processor to servicing interrupts and deferred procedure calls (DPCs) that belong to the same TCP connection. This preserves the cache locality of TCP structures and greatly improves performance.
Network Adapter Resources
Several network adapters allow the administrator to manually configure resources by using the Advanced Networking tab for the adapter. Receive buffers and send buffers are among the parameters that may be set. A small number of network adapters actively manage their resources, so setting parameters for these network adapters is unnecessary.
[bookmark: _Toc52966604]Interrupt Moderation
To control interrupt moderation, some network adapters expose either different interrupt moderation levels, buffer coalescing parameters (sometimes separately for send and receive buffers), or both. You should consider buffer coalescing or batching when the network adapter does not perform interrupt moderation.
Table 4 provides a guideline of where certain high-performance features can benefit performance in terms of throughput, latency, or scalability for some server roles.
Table 4. Benefits from Network Adapter Features for Different Server Roles
	Server role
	Checksum offload
	Segmentation offload (GSO)
	TCP offload engine (TOE)
	Receive-side scaling (RSS)

	File server
	X
	X
	X
	

	Web server
	X
	X
	X
	X

	Mail server
	X
	
	
	X

	Database server
	X
	X
	X
	X

	FTP server
	X
	X
	X
	

	Media server
	X
	
	X
	X

[bookmark: _Toc52966601]
Disclaimer: The recommendations in Table 4 are intended to serve as guidance only for choosing the right technology for specific server roles under a deterministic traffic pattern. User experience can be different, depending on workload characteristics and the hardware that is used.
[bookmark: _Toc180287471]Tuning the Network Adapter
You can optimize network throughput and resource usage by using network adapter tunings (when available and exposed by the network adapter). Remember that the correct set of tunings depends on the network adapter, the workload, the host computer resources, and your performance goals.
[bookmark: _Toc52966602]Enable Offload Features
Turning on network adapter offload features is almost always beneficial. Sometimes, however, the network adapter might not be powerful enough to handle the offload capabilities at high throughput. For example, enabling GSO can lower the maximum sustainable throughput on some network adapters due to limited hardware resources. However, if the reduced throughput is not expected to be a limitation, you should enable offload capabilities even for such network adapters. Note that some network adapters require offload features to be independently enabled for send and receive paths.
[bookmark: _Toc52966603]Increase Network Adapter Resources
For network adapters that allow the manual configuration of resources such as receive and send buffers, you should increase the allocated resources. Some network adapters set their receive buffers low to conserve allocated memory from the host. The low value results in dropped packets and lower performance. Therefore, for receive-intensive scenarios, we recommend that you increase the receive buffers value to the maximum. If the adapter does not expose manual resource configuration, then it either dynamically configures the resources or is statically set to a fixed value that cannot be changed.
Enable Interrupt Moderation
To control interrupt moderation, some network adapters expose different interrupt moderation levels, buffer coalescing parameters (sometimes separately for send and receive buffers), or both. You should consider interrupt moderation for CPU-bound workloads and consider the trade‑off between the host CPU savings and latency versus the increased host CPU savings due to an increase in the number of interrupts and lesser latency. If the network adapter does not perform interrupt moderation but exposes buffer coalescing, then increasing the number of coalesced buffers allows for more buffers per send or receive, which improves performance.
Bind Each Adapter to a CPU
The method to use depends on the number of network adapters, the number of CPUs, and the number of ports per network adapter. Important factors are the type of workload and the distribution of the interrupts across the CPUs. For a workload such as a Web server with several networking adapters, you should partition the adapters on a processor basis to isolate the interrupts that the adapters generate.
[bookmark: _Toc52966605][bookmark: _Toc180287472]TCP Receive Window Auto-Tuning
One of the most significant changes to the TCP stack for this release is TCP receive window auto-tuning, which can impact existing network infrastructure demands. In the past, the network stack used a fixed-size receive-side window that limited the overall potential throughput for connections. You can calculate the total throughput of a single connection when using this fixed size default as:
Total achievable throughput in bytes = TCP window * (1 / connection latency)

For example, the total achievable throughput is only 51 Mbps on a 1-GB connection with a 10-ms latency (a reasonable value for a large corporate network infrastructure). With auto-tuning, however, the receive-side window is adjustable and is allowed to grow to meet the demands of the sender. It is entirely possible for a connection to achieve a full line rate of a 1‑GB connection. Network usage scenarios that might have been limited in the past by the total achievable throughput of TCP connections now can fully use the network.
The remote file copy is a common network usage scenario that is likely to increase demand on your infrastructure due to this change. Many improvements have been made to the underlying operating system support for remote file copy that now allow large file copies to perform at disk I/O speeds. If many concurrent remote large file copies are typical within your network environment, your network infrastructure might be taxed by the significant increase in network usage by each individual file copy operation.
Windows Filtering Platform
The Windows Filtering Platform (WFP) introduced in Windows Vista and Windows Server 2008 provides application programming interfaces (APIs) to third-party independent software vendors (ISVs) to create packet processing filters. Examples include firewall and antivirus software. Note that a poorly written WFP filter significantly decreases a server’s networking performance. For more information on WFP, see "Windows Filtering Platform."
[bookmark: _Toc180287473]TCP Parameters
The following keywords, which for Windows Server 2003 were added in the registry, are no longer supported and thus are ignored for Windows Server 2008:
TcpWindowSize
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters

NumTcbTablePartitions
HKLM\system\CurrentControlSet\Services\Tcpip\Parameters

MaxHashTableSize
HKLM\system\CurrentControlSet\Services\Tcpip\Parameters

[bookmark: _Toc180287474]Network-Related Performance Counters
IPv4
Datagrams received per second
Datagrams sent per second

Network Interface > [adapter name]
Bytes received per second
Bytes sent per second
Packets received per second
Packets sent per second
Output queue length
This counter is the length of the output packet queue (in packets). If this is longer than 2, delays occur—you should find the bottleneck and eliminate it, if possible. Because the requests are queued by NDIS, this length should always be 0.
Packets received errors
This counter is the number of inbound packets containing errors that prevent them from being deliverable to a higher-layer protocol. A zero value does not guarantee that there are no receive errors. The value is polled from the network driver, and it can be inaccurate.
Packets outbound errors

Processor
Percent of processor time
Interrupts per second
DPCs queued per second
This counter is an average rate at which DPCs were added to the processor's DPC queue. Each processor has its own DPC queue. This counter measures the rate that DPCs are added to the queue, not the number of DPCs in the queue. This counter displays the difference between the values observed in the last two samples, divided by the duration of the sample interval.

TCPv4
Connection failures
Segments sent per second
Segments received per second
Segments retransmitted per second
[bookmark: _Performance_Tuning_for_1][bookmark: _Toc23251608][bookmark: _Toc52966606][bookmark: _Toc180287475]Performance Tuning for Storage Subsystem
Decisions about how to design or configure storage software and hardware almost always consider performance. Performance is always sacrificed or enhanced as the result of trade-offs with other factors such as cost, reliability, availability, or ease of use. Trade-offs are made all along the way between application and disk media. Application calls are translated by file cache management, file system architecture, and volume management into individual storage access requests. These requests traverse the storage driver stack and generate streams of commands that are presented to the disk storage subsystem. The sequence and quantity of calls, as well as the subsequent translation, can enhance or degrade performance.
 (
SCSIPORT
NTFS
VOLMGRX
PartMgr
FASTFAT
VOLMGR
Miniport Driver
File System Drivers
Volume Snapshot and Management Drivers
Partition and Class Drivers
Port Driver
Adapter Interface
STORPORT
ClassPNP
VolSnap
DISK
ATAPORT
)Figure 2 shows the storage architecture, which covers many components in the driver stack. The layered driver model in Windows sacrifices some performance for maintainability and ease of use (in terms of incorporating drivers of varying types into the stack). The following sections discuss tuning guidelines for storage workloads.
[bookmark: _Ref23046570]
Figure 2. Storage Driver Stack
[bookmark: _Toc52966607][bookmark: _Toc180287476]Choosing Storage
The most important considerations in choosing storage systems include the following:
Understanding the characteristics for current and future storage workloads.
Understanding that application behavior is essential for both storage subsystem planning and performance analysis.
Providing necessary storage space, bandwidth, and latency characteristics for current and future needs.
Selecting a data layout scheme (such as striping), redundancy architecture (such as mirroring), and backup strategy.
Using a procedure that provides the required performance and data recovery capabilities.

The better the workloads on the system are understood, the more accurate the planning. The following are some important workload characteristics:
Read:write ratio.
Sequential/random (temporal and spatial locality).
Request sizes.
Interarrival rates, burstiness, and concurrency (patterns of request arrival rates).
[bookmark: _Toc52966609]Estimating the Amount of Data to Be Stored
When you estimate the amount of data to be stored on a new server, you must consider these issues:
The amount of data currently stored on servers that will be consolidated onto the new server.
The amount of replicated data that will be stored on the new file server if the server will be a file server replica member.
The amount of data that you will need to store on the server in the future.

A general guideline is to plan for faster growth in the future than you experienced in the past. Investigate whether your organization plans to hire a large number of employees, whether any groups in your organization are planning large projects that will require extra storage, and so on.
You must also consider the amount of space that that is used by operating system files, applications, RAID redundancy, log files, and other factors. Table 5 describes some factors that affect server capacity.
[bookmark: _Ref527869660]Table 5. Factors That Affect Server Capacity
	Factor
	Required storage capacity

	Operating system files
	At least 1.5 GB. To allow space for optional components, future service packs, and other items, plan to allow an additional 3 to 5 GB for the operating system volume.

	Paging file
	For smaller servers, 1.5 times the amount of RAM by default. For servers with hundreds of gigabytes of memory, the entire elimination of the paging file is possible; otherwise, the paging file might be limited due to space constraints (available disk capacity). The benefit of a paging file of larger than 50 GB is unclear.

	Memory dump
	Depending on the memory dump file option that you have chosen, the amount of required disk space can be as large as the amount of physical memory plus 1 MB. On servers with very large amounts of memory, full memory dumps become intractable due to the time that is required to create, transfer, and analyze the dump file.

	Applications
	Varies according to the application, which can include antivirus, backup and disk quota software, database applications, and optional components such as Recovery Console, Services for UNIX, and Services for NetWare.

	Log files
	Varies according to the application that creates the log file. Some applications allow you to configure a maximum log file size. You must ensure that you have adequate free space to store the log files.

	Data layout and redundancy
	Varies. For more information, see "Choosing the Raid Level" later in this guide.

	Shadow copies
	10% of the volume by default, although increasing this size is recommended.

[bookmark: _Toc52966610]Storage Array Selection
There are many considerations in choosing a storage array and adapters. The choices include the type of storage communication protocols being used, including the options shown in Table 6.
Table 6. Options for Storage Array Selection
	Option
	Description

	Fibre
Channel or SCSI
	Fibre Channel allows long glass or copper cables to connect the storage array to the system while providing high bandwidth.
SCSI provides very high bandwidth but has cable length restrictions.

	SAS or SATA
	These relatively new serial protocols are designed to improve performance, reduce cable length limitations, and reduce cost. In the future, SAS and SATA drives will replace much of the SCSI market.

	Hardware RAID capabilities
	For maximum performance and reliability, it is important for the storage controllers to offer RAID capabilities. RAID levels 0, 1, 0+1, 5, and 6 are described in Table 7.

	Maximum storage capacity
	Total storage area.

	Storage bandwidth
	The maximum peak and sustained bandwidths at which storage can be accessed is determined by the number of physical disks in the array, the speed of controllers, the type of disk (such as SCSI or Fibre Channel), the hardware RAID, and the adapters that are used to connect the storage array to the system. Of course, the more important values are the bandwidths achievable for the specific workloads to be executed on servers that access the storage.

[bookmark: _Toc52966611]Hardware RAID Levels
Most storage arrays provide some hardware RAID capabilities. Common RAID levels are shown in Table 7.
Table 7. RAID Options
	Option
	Description

	Just a bunch of disks (JBOD)
	This is not a RAID level, but rather the baseline against which to measure RAID performance, cost, and reliability. Individual disks are referenced separately, not as a combined entity.
In some scenarios, JBOD actually provides better performance than striped data layout schemes do. For example, when serving multiple lengthy sequential streams, performance is best when each stream is serviced by a single disk. Also, workloads that are composed of small, random requests do not gain performance benefits when moving from JBOD to a striped data layout.
JBOD is susceptible to static and dynamic "hot spots," thereby reducing available storage bandwidth due to load imbalance across the physical drives.
Any physical disk failure results in data loss. However, the loss is limited to the failed drives; it provides a level of data isolation that can be interpreted as higher reliability in some scenarios.

	Spanning
	This is also not a RAID level, but rather the simple concatenation of multiple physical disks into a single logical disk; each disk contains a set of sequential logical blocks. Spanning has the same performance and reliability characteristics as JBOD.

	RAID 0 (striping)
	RAID 0 is a data layout scheme in which sequential logical blocks of a prechosen size (the stripe unit) are laid out in a round-robin fashion across multiple disks. It presents a logical disk that stripes disk accesses over a set of physical disks.
For most workloads, a striped data layout provides better performance than JBOD if the stripe unit is appropriately selected based on server workload and storage hardware characteristics. The overall storage load is balanced across all physical drives.
This is the least expensive RAID configuration because all the disk capacity is available for storing the single copy of data.
Because no capacity is allocated for redundant data, RAID 0 does not provide data recovery mechanisms such as those in RAID 1 and RAID 5. Also, the loss of any disk results in data loss on a larger scale than JBOD in that the entire file system spread across n physical disks is disrupted; every nth block of data in the file system is missing.

	RAID 1 (mirroring)
	RAID 1 is a data layout scheme in which each logical block exists on at least two physical disks. It presents a logical disk that consists of a disk mirror pair.
RAID 1 often has worse bandwidth and latency for write operations as compared to RAID 0 (or JBOD) This is because data needs to be written to two or more physical disks. Request latency is based on the slowest of the two (or more) write operations necessary to update all copies of the affected data blocks.
Sometimes RAID 1 can provide faster read operations than RAID 0 because it can read from the least busy physical disk from the mirrored pair.
RAID 1 is the most expensive RAID scheme in terms of physical disks because half (or more) of the disk capacity is relegated to storing redundant data copies. RAID 1 can survive the loss of any single physical disk. In larger configurations it can survive multiple disk failures, if the failures don’t involve all the disks of a specific mirrored disk set.
RAID 1 is the fastest RAID level in terms of recovery time after a physical disk failure. Only a single disk (the other part of the broken mirror pair) is involved in bringing up the replacement drive. Note that the second disk is typically still available to service data requests throughout the rebuilding process.

	RAID 0+1 (striped mirrors)
	The combination of striping and mirroring provides the performance benefits of RAID 0 and the redundancy benefits of RAID 1.
This option is also known as RAID 1+0 and RAID 10.

	RAID 5 (rotated parity)
	RAID 5 presents a logical disk composed of multiple physical disks with data striped across the disks in sequential blocks (stripe units). However, the underlying physical disks have parity information scattered throughout the disk array, as Figure 3 shows.
For read requests, RAID 5 has characteristics that are similar to those of RAID 0. However, small RAID 5 writes are much slower than those of JBOD or RAID 0 because each parity block that corresponds to the modified data block requires three additional disk requests. Because four physical disk requests are generated for every logical write, bandwidth is reduced by approximately 75%.
RAID 5 provides data recovery capabilities because data can be reconstructed from the parity. RAID 5 can survive the loss of any one physical disk, as opposed to RAID 1, which can survive the loss of multiple disks as long as an entire mirrored set isn’t lost.
RAID 5 requires additional time to recover from a lost physical disk compared to RAID 1 because the data and parity from the failed disk can be re‑created only by reading all the other disks. Performance during the rebuilding period is severely reduced due only due to the rebuilding traffic but also because the reads and writes that target the data that was stored on the failed disk must read all disks (an entire "stripe") to re-create the missing data.
RAID 5 is less expensive than RAID 1 in that it requires only the addition of a single disk per array, rather than double the total amount of disks in an array.

	RAID 6 (double-rotated redundancy)
	RAID 6 is basically RAID 5 with additional redundancy built in. Instead of a single block of parity per stripe of data, two blocks of redundancy are included. The second block uses a different redundancy code (as opposed to parity), which allows data to be reconstructed after the loss of any two disks. Alternatively, disks can be arranged in a two-dimensional matrix, and both vertical and horizontal parity can be maintained.

Rotated redundancy schemes (such as RAID 5 and 6) are the most difficult to understand and plan for. Figure 3 illustrates RAID 5.

Figure 3. RAID 5 Overview
[bookmark: _Choosing_the_RAID_Level][bookmark: _Toc52966612]Choosing the RAID Level
Each RAID level involves a trade-off between the following factors:
Cost
Performance
Availability
Reliability

You can determine the best RAID level for your servers by evaluating the read and write loads of the various data types and then deciding how much you are willing to spend to achieve the performance and availability/reliability that your organization requires. Table 8 describes common RAID levels and their relative costs, performance, availability, and reliability.
[bookmark: _Ref22736016][bookmark: _Ref23047405]Table 8. RAID Trade-Offs
	Configuration
	Performance
	Reliability
	Availability
	Cost and capacity

	JBOD
	Pros:
· Concurrent sequential streams to separate disks.

Cons:
· Susceptibility to load imbalance.
	Pros:
· Data isolation; single loss affects one disk.

Cons:
· Data loss after one failure.
	Pros:
· Single loss does not prevent access to other disks.
	Pros:
· Minimum cost.

	RAID 0 (striping)
	Pros:
· Balanced load.
· Potential for better response times, throughput, and concurrency.

Cons:
· Difficult stripe unit size choice.
	

Cons:
· Data loss after one failure.
· Single loss affects entire array.
	

Cons:
· Single loss prevents access to entire array.
	Pros:
· Minimum cost.
· Two-disk minimum.

	RAID 1 (mirroring)
	Pros:
· Two data sources for every read request (up to 100% performance boost).

Cons:
· Writes must update all mirrors.
	Pros:
· Single loss and often multiple losses (in large configurations) are survivable.
	Pros:
· Single loss and often multiple losses (in large configurations) do not prevent access.
	Pros:
· Twice the cost of RAID 0 or JBOD.
· Two-disk minimum.

	RAID 0+1 (striped mirrors)
	Pros:
· Two data sources for every read request (up to 100% performance boost).
· Balanced load.
· Potential for better response times, throughput, and concurrency.

Cons:
· Writes must update mirrors.
· Difficult stripe unit size choice.
	Pros:
· Single loss and often multiple losses (in large configurations) are survivable.
	Pros:
· Single loss and often multiple losses (in large configurations) do not prevent access.
	Pros:
· Twice the cost of RAID 0 or JBOD.
· Four-disk minimum.

	RAID 5 (rotated parity)
	Pros:
· Balanced load.
· Potential for better read response times, throughput, and concurrency.

Cons:
· Up to 75% write performance hit due to RMW.
· Read performance degrades in failure mode.
· All sectors that must be read for reconstruction; major slowdown.
· Danger of data in invalid state after power loss and recovery.
	Pros:
· Single loss survivable; "in-flight" write requests might still corrupt.

Cons:
· Multiple losses affect entire array.
· After a single loss, array is vulnerable until reconstructed.
	Pros:
· Single loss does not prevent access.

Cons:
· Multiple losses prevent access to entire array.
· To speed reconstruction, application access might be slowed or stopped.
	Pros:
· One additional disk required.
· Three-disk minimum.

	RAID 6 (two separate erasure codes)
	Pros:
· Balanced load.
· Potential for better read response times, throughput, and concurrency.

Cons:
· Up to 83% write performance hit due to multiple RMW.
· Read performance degrades in failure mode.
· All sectors must be read for reconstruction: major slowdown.
· Danger of data in invalid state after power loss and recovery.
	Pros:
· Single loss survivable; "in‑flight" write requests might still corrupt.

Cons:
· >2 losses affect entire array.
· After 2 losses, array is vulnerable until reconstructed.
	Pros:
· Single loss does not prevent access.

Cons:
· >2 losses prevent access to entire array.
· To speed reconstruction, application access might be slowed or stopped.
	Pros:
· Two additional disks required.
· Five-disk minimum.

The following are sample uses for various RAID levels:
JBOD: Concurrent video streaming.
RAID 0: Temporary or reconstructable data, workloads that tend to develop hot spots in the data, and workloads with high degrees of unrelated concurrency.
RAID 1: Database logs, and critical data and concurrent sequential streams.
RAID 0+1: A general-purpose combination of performance and reliability for critical data, workloads with hot spots, and high-concurrency workloads.
RAID 5: Web pages, semicritical data, workloads without small writes, scenarios where capital and operating costs are an overriding factor, and read-dominated workloads.
RAID 6: Data mining, critical data (assuming quick replacement or hot spares), workloads without small writes, scenarios where cost is a major factor, and read-dominated workloads.

If you use more than two disks, RAID 0+1 is usually a better solution than RAID 1.
When determining the number of physical disks that you should include in RAID 0, RAID 5, and RAID 0+1 virtual disks, consider the following information:
Bandwidth (and often response time) improves as you add disks.
Reliability, in terms of mean time to failure for the array, decreases as you add disks.
Usable storage capacity increases as you add disks, but so does cost.
For striped arrays, the trade-off is in data isolation (small arrays) and better load balancing (large arrays). For RAID 1 arrays, the trade-off is in better cost/capacity (mirrors—that is, a depth of two) and the ability to withstand multiple disk failures (shadows—that is, depths of three or even four). Read and write performance issues can also play a role in RAID 1 array size. For RAID 5 arrays, the trade-off is in better data isolation and mean time between failures (MTBF) for small arrays and better cost/capacity for large arrays.
Because hard drive failures are not independent, array sizes must be limited when the array is made up of actual physical disks (that is, a bottom-tier array). The exact amount of this limit is extremely difficult to determine.

The following is the array size guideline with no hardware reliability data available:
Bottom-tier RAID 5 arrays should not extend beyond a single desk-side storage tower or a single row in a rack-mount configuration. This means approximately 8 to 14 physical disks for modern storage enclosures.
Bottom-tier mirrored arrays should not extend beyond two towers or rack-mount rows, with data being mirrored between towers or rows when possible. These guidelines help to avoid or alleviate the decrease in MTBF that is caused by using multiple buses, power supplies, and so on from separate storage enclosures.
Selecting a Stripe Unit Size
The Windows volume manager stripe unit is fixed at 64 K. Hardware solutions may range from 4 K to 1 MB and beyond. Ideal stripe unit size maximizes the disk activity without unnecessarily breaking up requests by requiring multiple disks to service a single request. For example, consider the following:
One long stream of sequential requests on JBOD keeps only one disk busy at a time. To keep all disks busy for such a workload, the stripe unit should be at least 1/n where n is the request size.
For n streams of small serialized random requests, if n is significantly greater than the number of disks and if there are no hot spots, striping does not increase performance over JBOD. However, if hot spots exist, the stripe unit size must maximize the chance that a request will not be split while minimizing the chance of a hot spot falling entirely within one or two stripe units. You might choose a low multiple of the typical request size, like 5X or 10X, especially if the requests are on some boundary (for example, 4 KB or 8 KB).
If requests are large and the average (or perhaps peak) number of outstanding requests is smaller than the number of disks, you might need to split some so that all disks are kept busy. Interpolate from the previous two examples. For example, if you have 10 disks and five streams of requests, split each request in half. (Use a stripe unit size equal to half the request size.)
Optimal stripe unit size increases with concurrency, burstiness, and typical request sizes.
Optimal stripe unit size decreases with sequentiality and with good alignment between data boundaries and stripe unit boundaries.
[bookmark: _Toc52966613]Determining the Volume Layout
[bookmark: _Toc52966615]Placing individual workloads into separate volumes has advantages. For example, you can use one volume for the operating system or paging space and one or more volumes for shared user data, applications, and log files. The benefits include fault isolation, easier capacity planning, and easier performance analysis.
You can place different types of workloads into separate volumes on different virtual disks. Using separate virtual disks is especially important for any workload that creates heavy sequential loads such as log files, where a single set of disks (that compose the virtual disk) can be dedicated to handling the disk I/O that the updates to the log files create. Placing the paging file on a separate virtual disk might provide some improvements in performance during periods of high paging.
There is also an advantage to combining workloads on the same physical disks, provided that the disks don’t experience high activity over the same period of time. This is essentially the partnering of hot data with cold data on the same physical drives.
[bookmark: _Toc180287477]Storage-Related Parameters
You can adjust the following registry parameter for high-throughput scenarios on Windows Server 2008.
NumberOfRequests
This driver/device-specific parameter is passed to a miniport when it is initialized. A higher value might improve performance and allow Windows to give more disk requests to a logical disk, which is most useful for hardware RAID adapters that have concurrency capabilities. This value is typically set by the driver when it is installed, but you can set it manually via the following registry entry:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services
\MINIPORT_ADAPTER\Parameters\DeviceN\NumberOfRequests (REG_DWORD)

Replace MINIPORT_ADAPTER with the specific adapter name. Make an entry for each device, and in each entry replace DeviceN with Device1, Device2, and so forth, depending on the number of devices you are adding. A reboot is required for this setting to take effect. For example, for two Emulex miniport adapters whose miniport driver name is lp6nds35, you would create the following registry entries set to 96:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\lp6nds35
\Parameters\Device0\NumberOfRequests
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\lp6nds35
\Parameters\Device1\NumberOfRequests

The following parameters do not apply to Windows Server 2008:
[bookmark: _Toc52966616]CountOperations
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Session Manager
\I/O System\
[bookmark: _Toc52966618]
DontVerifyRandomDrivers
HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Session Manager\Memory Management\
[bookmark: _Toc180287478][bookmark: _Toc72127003]Storage-Related Performance Counters
Logical Disk and Physical Disk
The same counters are valuable in each of these counter objects. Logical disk statistics are tracked by the volume manager (or managers), and physical disk statistics are tracked by the partition manager.
Note: If the Windows standard stacked drivers scheme is circumvented for some controller, so-called monolithic drivers might assume the role of partition manager or volume manager. In those cases, it is up to the monolithic driver writer to supply the same counters through the Windows Management Instrumentation (WMI) interface:
% Disk Read Time, % Disk Time, % Disk Write Time, % Idle Time
These counters are of little value when multiple physical drives are behind logical disks. Imagine a subsystem of 100 physical drives presented to the operating system as five disks, each backed by a 20-disk RAID 0+1 array. Now imagine that the administrator spans the five physical disks with one logical disk, volume x. One can assume that any serious system needing that many physical disks has at least one request outstanding to x at any given time. This makes the volume appear to be 100-percent busy and 0‑percent idle, when in fact the 100-disk array might be up to 99-percent idle.

Average Disk Bytes / { Read | Write | Transfer }
This counter is useful in gathering average, minimum, and maximum request sizes. If the sample time is long enough, a request size histogram can be generated. If possible, workloads should be observed separately; multimodal distributions cannot be differentiated by using average values if the requests are consistently interspersed.

Average Disk Queue Length, Average Disk { Read | Write } Queue Length
These counters are useful in gathering concurrency data, including burstiness and peak loads. Guidelines regarding queue lengths are given later in this guide. These counters represent the number of requests in flight below the driver taking the statistics. This means that the requests are not necessarily queued but could actually be in service or completed and on the way back up the path. Possible in-flight locations include the following:
Waiting in an ATAport or Storport queue.
Waiting in a queue in a miniport driver.
Waiting in a disk controller queue.
Waiting in an array controller queue.
Waiting in a hard disk queue (that is, onboard a physical disk).
Actively receiving service from a physical disk.
Completed, but not yet back up the stack to the point where the statistics are gathered.

Average Disk second / {Read | Write | Transfer}
These counters are useful in gathering disk request response time data and possibly extrapolating service time data. They are probably the most straightforward indicators of storage subsystem bottlenecks. Guidelines regarding response times are given later in this guide. If possible, workloads should be observed separately; multimodal distributions cannot be differentiated by using Perfmon if the requests are consistently interspersed.

Current Disk Queue Length
This counter is an instantaneous measurement of the number of requests in flight and thus is subject to extreme variance. As such, this counter is not of much use except to check for the existence of numerous short bursts of activity.

Disk Bytes / second, Disk {Read | Write } Bytes / second
This counter is useful for gathering throughput data. If the sample time is long enough, a histogram of the array’s response to specific loads (queues, request sizes, and so on) can be analyzed. If possible, workloads should be observed separately.

Disk {Reads | Writes | Transfers } / second
This counter is useful in gathering throughput data. If the sample time is long enough, a histogram of the array’s response to specific loads (queues, request sizes, and so on) can be analyzed. If possible, workloads should be observed separately.

Split I/O / second
This counter is useful only if the value is not in the noise. If it becomes significant, in terms of split I/Os per second per physical disk, further investigation could be warranted to determine the size of the original requests being split and the workload generating them.
[bookmark: _Toc72127004]Processor
% DPC Time, % Interrupt Time, % Privileged Time
If interrupt time and DPC time constitute a large portion of privileged time, the kernel is spending a significant amount of time processing I/Os. In some cases, it works best to keep interrupts and DPCs affinitized to a small number of CPUs on a multiprocessor system, to improve cache locality. In other cases, it works best to distribute the interrupts and DPCs among many CPUs to keep the interrupt and DPC activity from becoming a bottleneck.

DPCs Queued / second
This counter is another measurement of how DPCs are consuming CPU time and kernel resources.

Interrupts / second
This counter is another measurement of how interrupts are consuming CPU time and kernel resources. Modern disk controllers often combine or coalesce interrupts so that a single interrupt results in the processing of multiple I/O completions. Of course, it is a trade-off between delaying interrupts (and thus completions) and amortizing CPU processing time.
Power Protection and Advanced Performance Option
There are two performance-related options for every disk under Disk > Properties > Policies. Enabling write caching allows writes to be completed immediately after being cached in the storage subsystem. Note that with this action a period of time passes during which a power failure or other catastrophic event could result in a loss of the data. However, this period is typically fairly short because write caches in the storage subsystem are usually flushed during any period of idle activity. Alternately, you can use time-outs at the cache level to force dirty data out of the cache even if other active requests exist.
The advanced performance option strips all write-through flags from disk requests and also removes all flush-cache commands. The assumption is that if you have power protection on your I/O path you don’t need to worry about those two pieces of functionality; by definition, any written data is safe and "in-order" after it is copied into power-protected storage subsystem hardware, just as if it had been written to the physical disk media.
Block Alignment (DISKPART)
NTFS aligns its metadata and data clusters to partition boundary by increments of the cluster size (selected during file system creation, defaulting to 4 K). In earlier releases of Windows, the partition boundary offset for a given disk partition could be misaligned, compared to array disk stripe unit boundaries. This caused requests to be unintentionally split across multiple disks. To force alignment, diskpar.exe and diskpart.exe must be used at the time the partition is created.
In Windows Server 2008, partitions are automatically offset by 1 MB, which provides good alignment for the power-of-two stripe unit sizes typically found in hardware. If the stripe unit size is set to a size larger than 1 MB, the alignment issue is much less of a problem because small requests rarely cross large stripe unit boundaries. Note that Windows Server 2008 defaults to a smaller power-of-two offset for small drives.
If alignment is still a problem even with the default offset, you can use diskpart.exe to force alternate alignments at the time of partition creation.
Solid-State and Hybrid Drives
The cost of large quantities of nonvolatile memory has been prohibitive for server configurations in the past. Exceptions include aerospace or military applications where the shock and vibration sensitivity of flash memory is highly desirable. Newer laptops and desktop systems have started incorporating flash memory in the form of "hybrid" disk drives. In these configurations, Windows can explicitly request that some blocks of data be cached in a drive’s nonvolatile memory and other blocks be sent directly to the magnetic media. Because the amount of flash memory is quite small compared to the amount of data that can be stored on the platters, the cost is acceptable, especially when one considers the other benefits of flash memory: improved power and greater tolerance of shock, vibration, and heat.
As the cost of flash memory continues to decrease, it becomes more feasible as a means to improve storage subsystem response time on servers. The typical vehicle for incorporating nonvolatile memory in a server is the solid-state disk (SSD). The most cost-effective means involves placing only the "hottest" data of a workload onto nonvolatile memory. In Windows Server 2008, partitioning can be performed only by applications that store data on the SSD; Windows Server 2008 does not attempt to dynamically determine what data should optimally be stored on SSDs.
Response Times
Tools such as Perfmon can be used to obtain data on disk request response times. Write requests hitting a write-back hardware cache often have extremely low response times (less than 1 ms) because completion depends on memory rather than on disk speeds. The data is written back to disk media in the background. As the workload begins to saturate the cache, response times increase until the write cache’s only benefit is potentially a better ordering of requests to reduce positioning delays.
For JBOD arrays, reads and writes are roughly equivalent in performance characteristics. With modern hard disks, positioning delays for random requests are on the order of 5 to 15 ms. Positioning delays for sequential requests should be insignificant except in the case of write-through streams, where each positioning delay should approximate the required time for a complete disk rotation.
Transfer times are usually less significant in comparison to positioning delays, with the exception of sequential requests and large requests (greater than 256 KB) that are instead dominated by disk media access speeds as the requests become larger or more sequential. Modern hard disks access their media at 25 to 125 MB per second depending on rotation speed and sectors per track, which varies from region to region on a given disk model.
For striped arrays, if the stripe unit size is well chosen, each request is serviced by a single disk—except in the case of a low-concurrency workload. So the same general positioning and transfer times still apply.
For mirrored arrays, a write completion might need to wait for both disks to complete the request. Depending on how the requests are scheduled, the two completion of the requests could take quite a while. However, although writes generally should not take twice the time to complete for mirrored arrays, they will probably be slower than JBOD. Alternatively, reads can experience a performance boost if the array controller is dynamically load-balancing or taking spatial locality into account.
For RAID 5 arrays (rotated parity), small writes turn into four separate requests in the typical read-modify-write scenario. In the best case, this is roughly the equivalent of two mirrored reads plus a full rotation of the disks, assuming the Read-Write pairs proceed in parallel. RAID 6 pays an even larger performance penalty for writes; each RAID 6 small write request turns into three reads plus three writes.
You must consider the performance impact of redundant arrays on read and write requests when you are planning subsystems or analyzing performance data. For example, Perfmon might show 50 writes per second being processed by volume x, but in reality this could mean 100 requests per second for a mirrored array, 200 requests per second for a RAID 5 array, or even more than 200 requests per second if the requests are being split across stripe units.
The following are response time guidelines to follow when no workload details are available. For a lightly loaded system, average write response times should be less than 25 ms on RAID 5 and less than 15 ms on non-RAID 5. Average read response times should be less than 15 ms. For a heavily loaded system that isn’t saturated, average write response times should be less than 75 ms on RAID 5 and less than 50 ms on non-RAID 5. Average read response times should be less than 50 ms.
Queue Lengths
Several viewpoints exist regarding what constitutes excessive disk request queuing. The one espoused by this guide is defined as follows: the boundary between a busy disk subsystem and a saturated one is a persistent average of two requests per physical disk. A disk subsystem is on the verge of saturation when every physical disk is always servicing a request and every physical disk has at least one queued-up request to maintain maximum concurrency—that is, to keep the data pipeline flowing. Note that in this guideline, disk requests split into multiple requests (due to striping or redundancy maintenance) count as multiple requests.
There are caveats to this rule, because administrators probably do not want all of their physical disks busy all of the time. But because disk workloads are normally bursty, it is far more likely that this rule will be applied over shorter periods of (peak) time. Requests are typically not uniformly spread among all hard disks at any given time, so the administrator must consider deviations between queues—especially for bursty workloads. Conversely, a longer queue provides more opportunity for disk request schedulers to reduce positioning delays or optimize for full-stripe RAID 5 writes or mirrored read selection.
Because hardware has an increased capability to queue up requests—either through multiple queuing agents along the path or just agents with more queuing capability—increasing the multiplier threshold might allow more concurrency within the hardware. This creates a potential increase in response time variance, however. Ideally, the additional queuing time is balanced by increased concurrency and reduced mechanical positioning times.
The following is a queue length target to use when few workload details are available. For a lightly-loaded system, the average queue length should be less than one per physical disk with occasional spikes of 10 or less. If the workload is write-heavy, the average queue length above a mirrored controller should be less than 0.6 per physical disk and less than 0.3 per physical disk above a RAID 5 controller. For a heavily-loaded system that isn’t saturated, the average queue length should be less than 2.5 per physical disk with infrequent spikes up to 20. If the workload is write heavy, the average queue length above a mirrored controller should be less than 1.5 per physical disk and less than one above a RAID 5 controller. For workloads of sequential requests, larger queue lengths can be tolerated because services times and therefore response times are much shorter than those for a random workload.
For more details on Windows storage performance, see "Disk Subsystem Performance Analysis for Windows."
[bookmark: _Performance_Tuning_for_IIS_6.0][bookmark: _Toc23251609][bookmark: _Toc52966619][bookmark: _Toc180287479]Performance Tuning for Web Servers
[bookmark: _Toc52966620][bookmark: _Toc180287480]Selecting the Right Hardware for Performance
It is important to select the right hardware to satisfy the expected Web load (remembering average load, peak load, capacity, growth plans, and response times). Hardware bottlenecks limit the effectiveness of software tuning. "Performance Tuning for Server Hardware" earlier in this guide provides recommendations for hardware to avoid the following performance constraints:
Slow CPUs offer limited processing power for ASP, ASP.NET, and SSL scenarios.
A small L2 processor cache might negatively impact performance.
A limited amount of memory affects the number of sites that can be hosted, the amount of dynamic content scripts (such as ASP.NET) stored, and the number of application pools or worker processes.
Networking becomes a bottleneck due to an inefficient networking adapter.
The file system becomes a bottleneck due to an inefficient disk subsystem or storage adapter.
[bookmark: _Toc52966621][bookmark: _Toc180287481]Operating System Practices
If possible, do a clean installation of the operating system software. Upgrading could leave outdated, unwanted, or suboptimal registry settings as well as previously installed services and applications that consume resources if started automatically. If another operating system is installed and must be kept, you should install the new operating system on a different partition; otherwise, the new installation overwrites the settings under Program Files\Common Files.
To reduce disk access interference, keep the system page file, operating system, Web data, ASP template cache, and Internet Information Services (IIS) log on separate physical disks if possible.
To reduce the contention of system resources, install SQL and IIS on different servers if possible.
Avoid installing unnecessary services and applications. In some cases, it might be worthwhile to disable services that are not required on a system.
[bookmark: _Toc52966622][bookmark: _Toc180287482]Tuning IIS 7.0
IIS 7.0 employs a process model similar to that of IIS 6.0. A kernel-mode HTTP listener (Http.sys) receives and routes HTTP requests (and can even satisfy requests from its response cache). Worker processes register for URL subspaces, and Http.sys routes the request to the appropriate process (or set of processes, in the case of application pools).
Figure 4 shows the difference between the IIS 6.0 and IIS 7.0 process models. IIS 6.0 kept a single copy of the metabase in a global process, inetinfo.exe. IIS 7.0 no longer uses the metabase and instead loads XML configuration files located alongside Web content. Each worker process loads a unique copy of configuration. IIS 7.0 also implements an "integrated pipeline." The integrated pipeline model exposes extensibility.

[bookmark: _Ref22735504]Figure 4. Process Models for IIS 6.0 and IIS 7.0
The IIS 7.0 process relies on the kernel-mode Web driver, Http.sys. In the new model, Http.sys is responsible for connection management and request handling. The request may be either served from the Http.sys cache or handed to a worker process for further handling (see Figure 5). Multiple worker processes may be configured, providing isolation at lower cost.
Http.sys includes a response cache. When a request matches an entry in the response cache, Http.sys sends the cache response directly from kernel mode. Figure 5 shows the request flow from the network through Http.sys (and possibly up to a worker process). Some Web application platforms, such as ASP.NET, provide mechanisms to allow any dynamic content to be cached in the kernel cache. The static file handler in IIS 7.0 automatically caches frequently requested files in http.sys.

[bookmark: _Ref22635134][bookmark: _Ref22735542]Figure 5. Request Handling in IIS 7.0
Because a Web server has a kernel-mode as well as a user-mode component, both components must be tuned for optimal performance. Therefore, tuning IIS 7.0 for a specific workload includes configuring the following:
Http.sys (the kernel mode driver) and the associated kernel-mode cache.
Worker processes and user-mode IIS, including application pool configuration.
Certain tuning parameters that affect performance, which are discussed in the following sections.
[bookmark: _Toc180287483]Kernel-Mode Tunings
Performance-related Http.sys settings fall into two broad categories: cache management, and connection and request management. All registry settings are stored under the following entry:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Http
\Parameters

If the HTTP service is already running, it must be stopped and restarted for the changes to take effect.
[bookmark: _Toc52966624]Cache Management Settings
One of the benefits that Http.sys provides is a kernel-mode cache. If the response is in the kernel cache, it is possible to satisfy an HTTP request entirely from kernel mode, which significantly lowers the CPU cost of handling the request. However, the kernel-mode cache of IIS 7.0 is a physical memory-based cache and the cost of an entry is the memory that it occupies.
An entry in the cache is beneficial only when it is used. However, the entry uses physical memory at all times, whether the entry is in use or not. The usefulness of an item in the cache (the difference made in being able to serve it from the cache makes) and its cost (the physical memory occupied) over the lifetime of the entry must be evaluated by considering the available resources (CPU and physical memory) and the workload requirements. Http.sys attempts to keep only useful, actively accessed items in the cache, but it is possible to increase the performance of the Web server by tuning the Http.sys cache for particular workloads.
The following are some useful settings for the Http.sys kernel-mode cache:
UriEnableCache. Default value 1.
A nonzero value enables the kernel-mode response and fragment cache. For most workloads, the cache should remain enabled. Consider disabling the cache if you expect very low response and fragment cache usage.
UriMaxCacheMegabyteCount. Default value 0.
A nonzero value specifies the maximum memory available to the kernel cache. The default value, 0, allows the system to automatically adjust the amount of memory available to the cache. Note that specifying the size sets only the maximum, and the system might not allow the cache to grow to the specified size.
UriMaxUriBytes. Default value 262144 bytes (256 KB).
This is the maximum size of an entry in the kernel cache. Responses or fragments larger than this are not cached. If you have enough memory, consider increasing the limit. If memory is limited and large entries are crowding out smaller ones, it might be helpful to lower the limit.
UriScavengerPeriod. Default value 120 seconds.
The Http.sys cache is periodically scanned by a scavenger, and entries not accessed between scavenger scans are removed. Setting the scavenger period to a high value reduces the number of scavenger scans. However, the cache memory usage might grow as older, less frequently accessed entries are allowed to remain in the cache. Setting the period to too low a value causes more frequent scavenger scans and might result in excessive flushes and cache churn.
[bookmark: _Toc52966625]Request and Connection Management Settings
Http.sys also manages inbound HTTP/HTTPS connections and is the first layer to handle requests on those connections. It uses internal data structures to keep information about connections and requests. Although such data structures can be created and freed on demand, it is more CPU-efficient to keep some in reserve in look-aside lists. Keeping such reserves helps Http.sys handle fluctuations in load with less CPU usage. Note that load fluctuations are not necessarily the result of fluctuations in externally applied load. Internal optimizations to promote batch processing, and even interrupt moderation, might result in load fluctuations and spikes.
The reserves help reduce CPU usage and latency, and they increase Web server capacity but increase memory usage. When tuning the request and connection management behavior of Http.sys, you should remember the resources that are available to the server, your performance goals, and the characteristics of the workload. Use the following request and connection management settings:
MaxConnections
This value controls the number of concurrent connections that Http.sys allows. Each connection consumes non-paged pool, a precious and limited resource. The default is determined quite conservatively to limit the amount of non-paged pool that is used for connections. On a dedicated Web server with ample memory, you should set the value higher if you expect a significant concurrent connection load. A high value might result in increased non-paged pool usage, so take care to use a value that is appropriate for the system.
IdleConnectionsHighMark, IdleConnectionsLowMark, and IdleListTrimmerPeriod
These values control the handling of connection structures not currently in use: how many must be available at any time (to handle spikes in connection load), the low and high watermarks for the free list, and the frequency of connection structure trimming and replenishment.
RequestBufferLookasideDepth and InternalRequestLookasideDepth
These values control the handling of data structures related to buffer management and how many are kept in reserve to handle load fluctuations.
[bookmark: _Toc180287484][bookmark: _Toc52966635]User-Mode Settings
The settings in this section affect the IIS 7.0 worker process behavior. Most of these settings can be found in the %SystemRoot%\system32\inetsrv\config
\applicationHost.config XML configuration file. Use either appcmd.exe or the IIS 7.0 management console to change them. Most settings are automatically detected and do not require a restart of the IIS 7.0 worker processes or Web Application Server.
User-Mode Cache Behavior Settings
This section describes the settings that affect caching behavior in IIS 7.0. The user-mode cache is implemented as a module that listens to the global caching events that the integrated pipeline fires. To completely disable the user mode cache, remove the FileCacheModule (cachfile.dll) module from the list of installed modules in the system.webServer/globalModules configuration section in applicationHost.config.
system.webServer/caching
	Attribute
	Description
	Default

	enabled
	Disables the user-mode IIS cache when set to false. When the cache hit rate is very small, you can disable the cache altogether to avoid the overhead associated with the cache code path. Disabling the user mode cache does not disable the kernel-mode cache.
	True

	enableKernelCache
	Disables the kernel-mode cache when set to false.
	True

	maxCacheSize
	Limits the IIS user-mode cache size to the specified size in megabytes. IIS adjusts the default depending on available memory. Choose the value carefully based on the size of the hot set (the set of frequently accessed files) versus the amount of RAM or the IIS process address space, which is limited to 2 GB on 32-bit systems.
	0

	maxResponseSize
	Allows files up to the specified size to be cached. The actual value depends on the number and size of the largest files in the dataset versus the available RAM. Caching large, frequently requested files can reduce CPU usage, disk access, and associated latencies. Default value is 256 KB.
	262144

Compression Behavior Settings
IIS 7.0 compresses static content by default. Compression reduces bandwidth usage at the cost of CPU usage. Compressed content is cached in the kernel-mode cache if possible. IIS 7.0 allows compression to be controlled independently for static and dynamic content. Static content typically refers to content that does not change, such as GIF or HTM files. Dynamic content is typically generated by scripts or code on the server, that is, ASP.NET pages. The classification of any particular extension as static or dynamic can be customized.
To completely disable compression, remove StaticCompressionModule and DynamicCompressionModule from the list of modules in system.webServer/globalModules.
system.webServer/httpCompression
	Attribute
	Description

	staticCompressionEnableCpuUsage,
staticCompressionDisableCpuUsage,
dynamicCompressionEnableCpuUsage,
dynamicCompressionDisableCpuUsage
	Enables or disables compression if the current percentage CPU usage goes above or below specified limits.
IIS 7.0 automatically disables compression if steady-state CPU increases above the disable threshold. Compression is reenabled if CPU drops below the enable threshold.
The default values are 100, 50, 90, and 50, respectively.

	directory
	Specifies the directory where compressed versions of static files are temporarily stored and cached. Consider moving this directory off the system drive if it is accessed frequently.
The default value is %SystemDrive%\inetpub\temp\IIS Temporary Compressed Files.

	doDiskSpaceLimiting
	Specifies whether a limit exists for the amount of disk space that all compressed files, which are stored in the compression directory specified by directory, can occupy.
The default value is "true."

	maxDiskSpaceUsage
	Specifies the number of bytes of disk space that compressed files can occupy in the compression directory.
This setting might need to be increased if the total size of all compressed content is too large.
The default value is 100 MB.

system.webServer/urlCompression
	Attribute
	Description
	Default

	doStaticCompression
	Specifies whether static content is compressed.
	True

	doDynamicCompression
	Specifies whether dynamic content is compressed.
	False

Note: For IIS 7.0 servers that have low average CPU use, consider enabling compression for dynamic content, especially if responses are large. This should initially be done in a test environment to assess the impact on the CPU use from the baseline.
Tuning the Default Document List
The default document module handles HTTP requests for the root of a directory and translates them into requests for a specific file, such as default.htm or index.htm. On average, around 25 percent of all requests on the Internet go through the default document path. This varies significantly for individual sites. When an HTTP request does not specify a file name, the default document module linearly walks the list of allowed default documents, searching for each one in the file system. This can adversely affect performance, especially if reaching the content requires making a network round trip or touching a disk.
The overhead can be avoided by selectively disabling default documents and by reducing or ordering the list of documents. For Web sites that use a default document, you should reduce the list to only the default document types used. Additionally, order the list beginning with the most commonly accessed default document file name. Finally, you can selectively set the default document behavior on particular URLs by using custom configuration inside a location tag in applicationHost.config or by inserting a web.config file directly in the content directory. This allows a hybrid approach, enabling default documents only where necessary and setting the list to the correct file name for each URL.
To disable default documents entirely, remove DefaultDocumentModule from the list of modules in the system.webServer/globalModules section in applicationHost.config.
system.webServer/defaultDocument
	Attribute
	Description
	Default

	enabled
	Specifies that default documents are enabled.
	True

	<files> element
	Specifies the file names that are configured as default documents.
The default list is Default.htm, Default.asp, index.htm, index.html, iisstart.htm, and default.aspx.
	Not applicable

Central Binary Logging
Binary IIS logging reduces CPU usage, disk I/O, and disk space usage. Central binary logging is directed to a single file in binary format, regardless of the number of hosted sites. Parsing binary-format logs requires a post-processing tool.
Enable central binary logging by setting the centralLogFileMode attribute to CentralBinary and setting the enabled attribute to "true." Consider moving the location of the central log file off the system partition and onto a dedicated logging partition to avoid contention between system activities and logging activities.
system.applicationHost/log
	Attribute
	Description
	Default

	centralLogFileMode
	Specifies the logging mode for a server. Change this value to CentralBinary to enable central binary logging.
	Site

system.applicationHost/log/centralBinaryLogFile
	Attribute
	Description
	Default

	enabled
	Specifies whether central binary logging is enabled.
	False

	directory
	Specifies the directory where log entries are written.
The default directory is %SystemDrive%\inetpub\logs\LogFiles.
	See description

Application and Site Tunings
The following settings relate to application pool and site tunings.
system.applicationHost/applicationPools/applicationPoolDefaults
	Attribute
	Description
	Default

	queueLength
	Indicates to the Universal Listener how many requests are made to queue for an application pool before future requests are rejected. When the set value for this property is exceeded, IIS rejects subsequent requests with a 503 error.
Consider increasing this for applications that communicate with high-latency back-end data stores if 503 errors are observed.
	1000

	enable32BitAppOnWin64
	When true, enables a 32-bit application to run on a computer that has a 64-bit processor.
Consider enabling 32 bit mode if memory consumption is a concern. Because pointer sizes and instruction sizes are smaller, 32-bit applications use less memory than 64-bit applications do. The drawback to running 32-bit applications on a 64-bit machine is that user-mode address space is limited to 4 GB.
	False

system.applicationHost/sites/VirtualDirectoryDefault
	Attribute
	Description
	Default

	enabled
	Specifies whether IIS looks for Web.config files in content directories lower than the current level (true) or does not look for Web.config files in content directories lower than the current level (false).
At the time that configuration is queried in the IIS 7.0 pipeline, it is not known whether a URL (/foo.htm) is a reference to a directory or a file name. By default, IIS 7.0 must assume that /foo.htm is a reference to a directory and search for configuration in a /foo.htm/web.config file. This results in an extra file system operation that can be costly.
By imposing a simple limitation, allowing configuration only in virtual directories, IIS 7.0 can then know that unless /foo.htm is a virtual directory it should not look for a configuration file. Skipping the extra file operations can give a significant performance boost to Web sites with a very large set of randomly accessed static content.
	True

Managing IIS 7.0 Modules
IIS 7.0 has been refactored into multiple, user-pluggable modules to support a more modular structure. This refactorization comes at a small cost. For each module present, the integrated pipeline must call into the module for every event relevant to the module. This happens regardless of whether the module needs to do any work. You can conserve CPU cycles and memory by removing all modules that lack relevance to a particular Web site.
A Web server tuned only for simple static files might include only the following five modules: UriCacheModule, HttpCacheModule, StaticFileModule, AnonymousAuthenticationModule, and HttpLoggingModule.
To remove modules from applicationHost.config, remove all references to the module from the system.webServer/handlers and system.webServer/modules sections in addition to the module declaration in system.webServer/globalModules.
Classic ASP Settings
The following settings apply only to classic ASP pages and do not affect ASP.NET settings. For performance recommendations on ASP.NET, see the MSDN® article "10 Tips for Writing High-Performance Web Applications."
system.webServer/asp/cache
	Attribute
	Description
	Default

	diskTemplateCacheDirectory
	If possible, set to a platter not in heavy use, for example, not shared with the operating system, pagefile, IIS log, or other frequently-accessed content.
The default directory is %SystemDrive%\inetpub\temp
\ASP Compiled Templates.
	See description

	maxDiskTemplateCacheFiles
	This specifies whether disk caching of ASP script templates is allowed. Compiling the ASP templates is a processor-intensive task. Memory constraints limit the number of templates that can be cached in memory. Fetching compiled templates from the disk template cache incurs less cost than compiling templates that do not fit into the ASP memory cache.
	True

	scriptFileCacheSize
	Set to as many ASP templates as memory limits allow.
	250

	scriptEngineCacheMax
	Set to as many script engines as memory limits allow.
	125

system.webServer/asp/limits
	Attribute
	Description
	Default

	processorThreadMax
	Specifies the maximum number of worker threads per processor that ASP can create. Increase if the current setting is not sufficient to handle the load, possibly resulting in errors serving some requests or under-usage of CPU resources.
	25

system.webServer/asp/comPlus
	Attribute
	Description
	Default

	executeInMta
	Set to "true" if errors or failures are detected while serving some of the ASP content. This can happen, for example, when hosting multiple isolated sites where each site runs under its own worker process. Errors are typically reported from COM+ in the event viewer. This setting enables the multithreaded apartment model in ASP.
	False

Worker Process and Recycling Options
The options for recycling IIS worker processes under the IIS Admin user interface provide practical solutions to acute situations or events without the need for administrator intervention, a service reset, or even a computer reset. Such situations and events include memory leaks, increasing memory load, or nonresponsive or idle worker processes. Under normal conditions, recycling options might not be needed and can be turned off or the system can be configured to recycle very infrequently. In the following sections, bold names are per-application-pool variables.
Enable process recycling for a particular application by adding attributes to the recycling/periodicRestart element. The recycle event can be triggered by several events including memory usage, a fixed number of requests, and a fixed amount of time. When a worker process is recycled, the queued and executing requests are drained and a new process is simultaneously started to service new requests.
system.applicationHost/applicationPools/ApplicationPoolDefaults/recycling
/periodicRestart
	Attribute
	Description
	Default

	memory
	Enable process recycling if virtual memory consumption exceeds the specified limit in megabytes. This is a useful setting for 32-bit machines that have a small, 2‑GB address space to avoid failed requests due to out-of-memory errors.
	0

	privateMemory
	Enable process recycling if private memory allocations exceed a specified limit in megabytes.
	0

	requests
	Enable process recycling after a certain number of requests.
	0

	time
	Enable process recycling after a specified time period. (The default is 29 hours.)
	29:00:00

Secure Sockets Layer Tuning Parameters
The use of secure sockets layer (SSL) imposes extra CPU cost. The most expensive component of SSL is the session establishment cost (involving a full handshake), then reconnection cost and encryption/decryption cost. For better SSL performance, do the following:
Enable keep-alives for SSL sessions. This eliminates the session establishment costs.
Reuse sessions when appropriate, especially with non-keep-alive traffic.
Note that larger keys provide more security but also use more CPU time.
Note that not all components of your page might need to be encrypted. However, mixing plain HTTP and HTTPS might result in a pop-up warning on the client browser that not all content on the page is secure.
ISAPI
[bookmark: Other_Issues]No special tuning parameters are needed for the Internet Server Application Programming Interface (ISAPI) applications. If writing a private ISAPI extension, make sure to code it efficiently for performance and resource use. See also "Other Issues Affecting IIS Performance" later in this guide.
Managed Code Tuning Guidelines
The new integrated pipeline model in IIS 7.0 enables a high degree of flexibility and extensibility. Custom modules implemented in native or managed code can be inserted into the pipeline or can replace existing modules. Although this extensibility model offers convenience and simplicity, you should take care before inserting new managed modules that hook into global events. Adding a global managed module means that all requests, including static file requests, must touch managed code. Custom modules are susceptible to events such as garbage collection in addition to adding significant CPU cost due to marshalling data between native and managed code. If possible, you should implement global modules in native (C/C++) code.
When first deploying an ASP.NET Web site, be sure to precompile all scripts. You can accomplish this by calling one .NET script in each directory. Reset IIS after compilation is complete. Recompile after changes to Machine.config, Web.config, or any .aspx script.
If session state is not needed, be sure to turn it off for each page.
When running multiple hosts containing ASP.NET scripts in isolated mode (one application pool per site), monitor the memory usage. Be sure that the IIS server has enough RAM for the expected number of concurrently running application pools. Consider using multiple application-domains in place of multiple isolated processes.
For performance recommendations on ASP.NET, see the MSDN article "10 Tips for Writing High-Performance Web Applications."
[bookmark: _Other_Issues_Affecting]Other Issues Affecting IIS Performance
The following issues affect IIS performance:
Installing non-cache-aware filters. The installation of a filter that is non-HTTP-cache-aware causes IIS to disable caching altogether, resulting in a poor performance. Old ISAPI filters, written before IIS 6.0 can cause this behavior.
Common Gateway Interface (CGI) requests. For performance reasons, the use of CGI applications for serving requests is not recommended under IIS. The frequent creation and deletion of CGI processes involves significant overhead. Better alternatives include the use of ISAPI application and ASP or ASP.NET scripts. Isolation is available for each of these options.
NTFS File System Setting
Under HKLM\System\CurrentControlSet\Control\FileSystem\ is NtfsDisableLastAccessUpdate (REG_DWORD) 1.
This system-global switch reduces disk I/O load and latencies by disabling the updating of the date and time stamp for the last file or directory access. This key is set to 1 by default; it does not need to be adjusted on clean installations of Windows Server 2008 by default. Earlier versions of Microsoft operating systems did not have this key set. Disabling the updates is effective when used with large data sets (or a large number of hosts) that contain thousands of directories. We recommend that you use IIS logging instead if you maintain this information only for Web administration.
Warning: Some applications such as incremental backup utilities rely on this update information and cease to function properly without it.
Networking Subsystem Performance Settings for IIS
See "Performance Tuning for Networking Subsystem " earlier in this guide.
[bookmark: _Performance_Tuning_for_2][bookmark: _Toc23251610][bookmark: _Toc52966637][bookmark: _Toc180287485]Performance Tuning for File Servers
[bookmark: _Toc180287486]Selecting the Right Hardware for Performance
You should select the right hardware to satisfy the expected file server load, taking into account average load, peak load, capacity, growth plans, and response times. Hardware bottlenecks limit the effectiveness of software tuning. "Performance Tuning for Server Hardware" earlier in this guide provides recommendations for hardware. The sections on networking and storage subsystems also apply to file servers.
[bookmark: _Toc52966639][bookmark: _Toc180287487]Server Message Block Model
The Server Message Block (SMB) model consists of two entities: the client and the server.
On the client, applications perform system calls by requesting operations on remote files. These requests are handled by the redirector subsystem (rdbss.sys) and the SMB mini-redirector (mrxsmb.sys), which translate them into SMB protocol sessions and requests over TCP/IP. Starting with Windows Vista, the SMB 2.0 protocol is supported. The mrxsmb10.sys driver handles legacy SMB traffic, and the mrxsmb20.sys driver handles SMB 2.0 traffic.
On the server, SMB connections are accepted and SMB requests are processed as local file system operations through NTFS and the local storage stack. The srv.sys driver handles legacy SMB traffic, and the srv2.sys driver handles SMB 2.0 traffic. The srvnet.sys component implements the interface between networking and the file server for both SMB protocols. File system metadata and content can be cached in memory via the system cache in the kernel (ntoskrnl.exe).
Figure 6 provides an overview of the different layers that a user request on a client machine must go through to perform file operations over the network on a remote SMB file server using SMB 2.0.

Figure 6. Windows SMB Components
[bookmark: _Toc180287488]Configuration Considerations
Do not enable any services or features that your particular file server and file clients do not require. These might include SMB signing, client-side caching, file system minifilters, search service, scheduled tasks, NTFS encryption, NTFS compression, IPSEC, and antivirus features.
[bookmark: _Toc52966640][bookmark: _Toc180287489]General Tuning Parameters for Servers
The following registry tuning parameters can affect the performance of file servers:
[bookmark: _Toc52966642]NtfsDisable8dot3NameCreation
HKLM\System\CurrentControlSet\Control\FileSystem\ (REG_DWORD)

The default is 0. This parameter determines whether NTFS generates a short name in the 8.3 (MS‑DOS®) naming convention for long file names and for file names that contain characters from the extended character set. If the value of this entry is 0, files can have two names: the name that the user specifies and the short name that NTFS generates. If the user-specified name conforms to the 8.3 naming convention, NTFS does not generate a short name.
Changing this value does not change the contents of a file, but it avoids the short-name attribute creation for the file, also changing the way NTFS displays and manages the file. For most file servers, the recommended setting is 1.
· TreatHostAsStableStorage
HKLM\System\CurrentControlSet\Services\LanmanServer\Parameters\ (REG_DWORD)

The default is 0. This parameter disables the processing of write flush commands from clients. If the value of this entry is 1, the server performance and client latency for power-protected servers can improve. Workloads similar to the NetBench file server benchmark benefit from this behavior.
· AsynchronousCredits
HKLM\System\CurrentControlSet\Services\LanmanServer\Parameters
\ (REG_DWORD)

The default is 512. This parameter limits the number of concurrent "asynchronous" SMB commands that are allowed on a single connection. Some file clients such as IIS servers require a large amount of concurrency, with file change notification requests in particular. The value of this entry can be increased to support these clients.
· Smb2CreditsMin and Smb2CreditsMax
HKLM\System\CurrentControlSet\Services\LanmanServer\Parameters
\ (REG_DWORD)

The defaults are 64 and 1024, respectively. These parameters allow the server to throttle client operation concurrency dynamically within the specified boundaries. Some clients might achieve higher throughput with higher concurrency limits. One example is file copy over high-bandwidth, high-latency links.
[bookmark: _Toc52966641]PagedPoolSize (no longer required for Windows Server 2008)
HKLM\System\CurrentControlSet\Control\SessionManager
\MemoryManagement\ (REG_DWORD)
[bookmark: _Toc52966643]
Disablelastaccess (no longer required for Windows Server 2008)
HKLM\System\CurrentControlSet\Control\FileSystem\. (REG_DWORD)

[bookmark: _Toc52966644]
NumTcbTablePartitions (no longer required for Windows Server 2008)
HKLM\system\CurrentControlSet\Services\Tcpip\Parameters
\. (REG_DWORD)
[bookmark: _Toc52966645]
TcpAckFrequency (no longer required for Windows Server 2008)
HKLM\system\CurrentControlSet\Services\Tcpip\Parameters
\Interfaces
[bookmark: _Toc52966647][bookmark: _Toc180287490]General Tuning Parameters for Client Computers
[bookmark: _Toc52966648]DormantFileLimit
HKLM\system\CurrentControlSet\Services\lanmanworkstation
\parameters\ (REG_DWORD)

Windows XP client computers only. By default, this registry key is not created.
This parameter specifies the maximum number of files that should be left open on a share after the application has closed the file.
[bookmark: _Toc52966649]
ScavengerTimeLimit
HKLM\system\CurrentControlSet\Services\lanmanworkstation
\parameters\ (REG_DWORD)

Windows XP client computers only.
This is the number of seconds that the redirector waits before it starts scavenging dormant file handles (cached file handles that are not currently used by any application).
[bookmark: _Toc52966650]
DisableByteRangeLockingOnReadOnlyFiles
HKLM\System\CurrentControlSet\Services\LanmanWorkStation
\Parameters\ (REG_DWORD)

Windows XP client computers only.
Some distributed applications that lock portions of a read-only file as synchronization across clients require that file-handle caching and collapsing behavior be off for all read-only files. This parameter can be set if such applications will not be run on the system and collapsing behavior can be enabled on the client computer.
[bookmark: _Performance_Tuning_for_3][bookmark: _Toc180287491]Performance Tuning for Active Directory Servers
The performance of Active Directory®, particularly in large environments, can be improved by following these tuning steps:
Increase address space by using 64-bit processors.
For running Active Directory, 64-bit processors are preferred. Their large address space makes it possible to equip the server with enough RAM to cache all or most of the Active Directory database in memory. It also provides room for expansion to add RAM if the database size grows. For more information, see "Active Directory Performance for 64-bit Versions of Windows Server 2003."
Increase user-mode address space on 32-bit x86 servers.
On servers with 32-bit x86 processors, use the IncreaseUserVA boot option to increase user-mode address space. This increases the amount of virtual address space available to Active Directory and allows Active Directory to improve its caching. This option may be set by using the bcdedit tool as follows:
bcdedit /set IncreaseUserVA 3072

This option is the equivalent of the /3GB boot.ini option in Windows Server 2003.
Use an appropriate amount of RAM.
Active Directory uses the server’s RAM to cache as much of the directory database as possible. This reduces disk access and improves performance. Unlike in Windows 2000, the Active Directory cache in Windows Server 2003 and Windows Server 2008 is permitted to grow. However, it is still limited by the virtual address space and the amount of physical RAM on the server.
To determine whether more RAM is needed for the server, monitor the percentage of Active Directory operations being satisfied from the cache by using the Reliability and Performance Monitor. Examine the lsass,exe instance (for Active Directory Domain Services) or Directory instance (for Active Directory Lightweight Directory Services) of the Database\Database Cache % Hit performance counter. A low value indicates that many operations are not being satisfied from the cache; adding more RAM might improve the cache hit rate and the performance of Active Directory. You should examine the counter after Active Directory has been running for some time under a normal workload. The cache starts out empty when the Active Directory service is restarted or the machine is rebooted, so the initial hit rate is low.
The use of the Database Cache % Hit counter is the preferred way to assess the amount of RAM a server needs. Alternatively, a guideline is that when the RAM on a server is twice the physical size of the Active Directory database on disk, it likely gives enough room for caching the entire database in memory. However, in many scenarios this is an overestimation because the actual portion of the database frequently used is only a fraction of the entire database.
Use a good disk I/O subsystem.
Ideally, the server is equipped with sufficient RAM to be able to cache the "hot" portions of the database entirely in memory. However, the on-disk database must still be accessed to initially populate the memory cache, when accessing portions of the database not cached and when writing updates to the directory. Therefore, appropriate selection of storage is also vital to Active Directory performance.
We recommend that the Active Directory database folder be located on a physical volume that is separate from the Active Directory log file folder. In the Active Directory Lightweight Directory Services installation wizard, these are referred to as data files and data recovery files. Both of these folders should be on a physical volume that is separate from the operating system volume. The use of drives that support command queuing, particularly SCSI or Serial Attached SCSI, might also improve performance.
[bookmark: _Toc180287492]Considerations for Read-Heavy Scenarios
The typical directory workload consists of more query operations than update operations. Active Directory is optimized for such a workload. To obtain the maximum benefit, the most important performance tuning step is to ensure that the server has sufficient RAM to be able to cache the most frequently used portion of the database in memory. Query performance on a freshly rebooted server, or after the Active Directory service has been restarted, might initially be low until the cache is populated. The cache is automatically populated by Active Directory as portions of the directory are visited by queries.
[bookmark: _Toc180287493]Considerations for Write-Heavy Scenarios
Write-heavy scenarios do not benefit as much from the Active Directory cache. To guarantee the transactional durability of data written to the directory, Active Directory does not cache disk writes. It commits all writes to the disk before returning a successful completion status for an operation, unless explicitly requested not to do so. Therefore, fast disk I/O is vital to the performance of writes to Active Directory. The following are hardware recommendations that might improve performance for these scenarios:
Hardware RAID controllers
Low-latency/high-RPM disks
Battery-backed write caches on the controller

To determine whether disk I/O is a bottleneck, monitor the PhysicalDisk\Average Disk Queue Length counter for the volumes on which the Active Directory database and logs are located. A high queue length indicates a large amount of disk I/O that is being serialized. Choosing a storage system to improve write performance on those volumes might improve Active Directory performance.
[bookmark: _Toc180287494]Use Indexing to Increase Query Performance
Indexing of attributes is useful when searching for objects with the attribute name in the filter. Indexing can reduce the number of objects that need to be visited when evaluating the filter. However, this reduces the performance of write operations because the index must be updated when the corresponding attribute is modified or added. You can use logging (as mentioned in the Knowledge Base article "How to configure Active Directory diagnostic event logging in Windows Server 2003 and in Windows 2000 Server") to find the expensive and inefficient queries and consider indexing some of the attributes used in the corresponding queries to improve the search performance.
[bookmark: _Toc180287495]Optimize Trust Paths
Trusts are a way of allowing users to authenticate across different forests or domains. If the trust path between the resource and the user is long, then the user might experience high latency because the authentication request must travel through the trust path and return. For example, if a user from the grandchild of a domain tries to log on from a different grandchild in the same forest, the authentication request must travel up the chain from the grandchild to the root and then take the path to the other grandchild. To avoid this, you can create a shortcut trust directly between the two grandchild domains that avoids the long path. However, the administrator must manage trusts and hence you must consider how often a given trust will be used before creating it. You can create "external trusts" to reduce the trust path when authenticating between inter-forest domains.
[bookmark: _Toc180287496]Active Directory Performance Counters
A number of resources can be used to conduct performance diagnosis of a domain controller that is not performing as expected.
You can use the following Reliability and Performance Monitor (Perfmon) counters to track and analyze a domain controller’s performance:
If slow write operations or read operations are noticed, check the following disk I/O counters under the Physical Disk category to see if many queued disk operations exist:
Avg. Disk Queue Length
Avg. Disk Read Queue Length
Avg. Disk Write Queue Length
If lsass.exe uses a lot of physical memory, check the following Database counters under the Database category to see how much memory is used to cache the database For Active Directory Domain Services. These counters are located under the lsass.exe instance, whereas for Active Directory Lightweight Directory Services, they are located under the Directory instance:
Database Cache % Hit
Database Cache Size (MB)
If Isass.exe uses a lot of CPU, check Directory Services\ATQ Outstanding Queued Requests to see how many requests are queued at the domain controller. A high level of queuing indicates that requests are arriving at the domain controller faster than they can be processed. This can also lead to a high latency in responding to requests.

Data Collector Sets is another tool shipping with Windows Server 2008 that you can use to see the activity inside the domain controller. On a server on which the Active Directory Domain Services or Active Directory Lightweight Directory Services role has been installed, the collector template can be found in Reliability and Performance Monitor under Reliability and Performance > Data Collector Sets > System > Active Directory Diagnostics. To start it, click the Play icon. The data is collected for 5 minutes and a report is generated under Reliability and Performance > Reports > System > Active Directory Diagnostics. This report contains information about CPU usage by different processes, Lightweight Directory Access Protocol (LDAP) operations, Directory Services operations, Kerberos Key Distribution Center operations, NT LAN Manager (NTLM) authentications, Local Security Authority/Security Account Manager (LSA/SAM) operations, and averages of all the important performance counters. This report is useful in identifying the workload being placed on the domain controller, identifying the contribution of different aspects of that workload to the overall CPU usage, and locating the source of that workload such as an application sending a high rate of requests to the domain controller. The CPU section of the report indicates whether lsass.exe is the process that is taking highest CPU percentage. If any other process is taking more CPU on a domain controller, you should investigate it.
[bookmark: _Performance_Tuning_for_5][bookmark: _Toc180287497][bookmark: _Toc23251613][bookmark: _Toc52966656]Performance Tuning for Terminal Server
[bookmark: _Toc180287498]Selecting the Right Hardware for Performance
In a Terminal Server deployment scenario, the choice of hardware is governed by the application set and how the users will exercise it. The key factors that impact the number of users and their experience are CPU, memory, disk, and graphics. Earlier in this guide was a discussion on server hardware guidelines, Although these guidelines still apply in this role, this section contains additional guidelines that are specific to Terminal Server, mostly related to the multi-user environment of Terminal Server.
CPU Configuration
CPU configuration is conceptually determined by multiplying the required CPU to support a session by the number of sessions that the system is expected to support, while maintaining a buffer zone to handle temporary spikes. Multiple processors and cores can help to reduce abnormal CPU congestion situations, which are usually caused by a few overactive threads that are contained by a similar number of cores. Consequently, the more cores on a system, the lower the cushion margin that must be built into the CPU usage estimate, which results in a higher percentage of active load per CPU. One important factor to remember is that doubling the number of CPUs does not double CPU capacity. For more considerations, see "Server Hardware" earlier in this guide.
Processor Architecture
In a 32-bit architecture, all system processes share a 2‑GB kernel virtual address space, which limits the maximum number of attainable Terminal Server sessions. Because memory that the operating system allocates across all processes shares the same 2‑GB space, increasing the number of sessions and processes eventually exhausts this resource. Significant improvements have been made in Windows Server 2008 to better manage the 2‑GB address space. Some of these improvements include dynamic reallocation across different internal memory subareas based on consumption compared to Windows Server 2003, which had static allocation that left some fraction of the 2 GB unused depending on the specifics of the usage scenario. The most important kernel memory areas that affect Terminal Server capacity are system page table entries (PTEs), system cache, and paged pool. Improvements also include reducing consumption in some critical areas such as kernel stacks for threads. Nevertheless, either significant performance degradation or failures can occur if the number of sessions or processes is high. Actual values vary significantly with the usage scenario, but a good watermark is approximately 250 sessions. Using large amounts of memory (greater than 12 GB) also consumes substantial amounts from the 2‑GB space for memory management data structures, which further accentuates the issue.
The 64-bit processor architecture provides a dramatically higher kernel virtual address space, which makes it much more suitable for systems that need large amounts of memory. Specifically, the x64 version of the 64-bit architecture is the more viable option for Terminal Server deployments because it provides very low overhead when running 32-bit processes. The most significant performance drawback when migrating to 64-bit architecture is significantly higher memory usage.
Memory Configuration
It is difficult to predict the memory configuration without knowing the applications that users employ. However, the required amount of memory can be estimated by using the following formula:
	TotalMem = OSMem + SessionMem * NS
OSMem is the amount of memory that the operating system operation requires (such as system binary images, data structures, and so on), SessionMem is the amount of memory that processes running in one session require, and NS is the target number of active sessions. The amount of required memory for a session is mostly determined by the private memory reference set for applications and system processes running inside the session. Shared pages (code or data) have little impact because only one copy is present on the system.
One interesting observation is that, assuming the disk system backing the page file does not change, the higher the number of simultaneous active sessions the system plans to support, the bigger the per-session memory allocation must be. If the amount of memory allocated per session is not increased, the number of page faults generated by active sessions increases with the number of sessions and eventually overwhelms the I/O subsystem. By increasing the amount of memory allocated per session, the likelihood of incurring page faults decreases, which helps to reduce the overall rate of page faults.
Disk
Storage is one of the aspects most often overlooked when configuring a Terminal Server system, and it can be the most common limitation on systems deployed in the field.
The disk activity generated on a typical Terminal Server system impacts the following three areas:
System files and application binaries
Page files
User profiles and user data

Ideally, these three areas should be backed by distinct storage devices. Using RAID configurations or other types of high-performance storage further improves performance. We highly recommend that you use storage adapters with battery-backed cache that allows write-back optimizations. Controllers with write-back cache support offer improved support for synchronous disk writes. Because all users have an individual hive, synchronous disk writes are significantly more common on a Terminal Server system. Registry hives are periodically saved to disk by using synchronous write operations. To enable these optimizations, from the Disk Management console, open the Properties dialog box for the target disk and, on the Policies tab, select the Enable write caching on the disk and Enable advanced performance check boxes.
For more specific storage tunings, see the guidelines in "Performance Tuning for Storage Subsystem" earlier in this guide.
Network
Network usage includes two main categories:
· Terminal Server connections traffic in which usage is determined almost exclusively by the drawing patterns exhibited by the applications running inside the sessions and the redirected devices I/O traffic.
For example, applications handling text processing and data input consume bandwidth on the order of 10 to 100 Kb per second, whereas rich graphics and video playback cause significant increases in bandwidth usage. We do not recommend video playback over Terminal Server connections because desktop remoting is not optimized to support the high frame rate rendering associated with video playback. Frequent use of device redirection features like file, clipboard, printer, or audio redirection also leads to a significant increase in network traffic. In general, a single 1‑GB adapter is satisfactory for most systems.
Back-end connections such as roaming profiles, application access to file shares, database servers, e-mail servers, and HTTP servers.
The volume and profile of network traffic is specific to each deployment.
[bookmark: _Toc180287499]Tuning Applications for Terminal Server
Most of the CPU usage on a Terminal Server system is driven by applications. Desktop applications are usually optimized toward responsiveness with the goal of minimizing the amount of time it takes an application to respond to a user request. However, in a server environment it is equally important to minimize the total amount of CPU used to complete an action to avoid negatively affecting other sessions.
Consider the following suggestions when configuring applications to be used on a Terminal Serve system:
Minimize background/Idle loop processing.
Typical examples are disabling background grammar/spell checking, data indexing for search, and background saves.
Minimize how often an application polls to do a state check or update.
Disabling such behaviors or increasing the interval between polling iterations and timer firing significantly benefits CPU usage because the CPU impact of such activities is quickly amplified for large number of active sessions. Typical examples are connection status icons and status bar information refresh.
Minimize resource contention between applications by reducing their synchronization frequency with that resource.
Examples of such resources include registry keys and configuration files. Examples of such application components and features are status indicator (like shell notifications), background indexing or change monitoring, and offline synchronization.
Disable unnecessary processes that are registered to be launched at user logon or session startup.
These processes can significantly contribute to the CPU cost of creating a new session for the user, which in general is a CPU-intensive process and can be very expensive in morning scenarios. Use MsConfig.exe or MsInfo32.exe to get a list of processes that are launched at user logon.
When possible, avoid multimedia application components for Terminal Server deployments.
Video playback causes high bandwidth usage for the Terminal Server connection, and audio playback causes high bandwidth usage on the audio redirection channel. Also, multimedia processing (encoding and decoding, mixing, and so on) has a significant CPU usage cost.

Regarding memory consumption, consider the following suggestions:
Verify that dlls that applications load are not relocated at load.
If dlls are relocated, it is impossible to share their code across sessions, which significantly increases the footprint of a session. This is one of the most common memory-related performance problems in Terminal Server.
For Common Language Runtime (CLR) applications, use Native Image Generator (Ngen.exe) to increase page sharing and reduce CPU overhead.
When possible, apply similar techniques to other similar execution engines.
[bookmark: _Toc180287500]Terminal Server Tuning Parameters
Page File
Insufficient page file can cause memory allocation failures either in applications or system components. A general guideline is that the combined size of the page files should be two to three times larger than the physical memory size. You can use the Memory\Committed Bytes performance counter to monitor the amount of committed virtual memory on the system. When the value of this counter reaches close to the total combined size of physical memory and page files, memory allocation begins to fail. Due to a significant amount of disk I/O activity generated by page file access, consider using a dedicated storage device for the page file, ideally a high-performance one such as a RAID array.
Antivirus and Antispyware
Installing antivirus and antispyware software on a Terminal Server has a large impact on the overall system performance, especially on CPU usage. We highly recommend that you exclude from the active monitoring list all the folders that hold temporary files, especially those that services and other system components generate. Generally, antispyware software has a much more significant performance impact than antivirus software does and should be installed only when necessary.
Task Scheduler
Task Scheduler (which is accessible under All Programs > Accessories > System Tools) allows you to examine the list of tasks that are scheduled for different events. For Terminal Server, it is useful to focus specifically on the tasks that are configured to run on idle, at user logon, or on session connect and disconnect. Because of the specifics assumptions of the deployment, many of these tasks may be unnecessary.
Desktop Notification Icons
Notification icons on the Desktop can have relatively expensive refreshing mechanisms. You can use Customize Notifications Icons to examine the list of notifications that are available in the system. Generally, it is best to disable unnecessary notifications by either removing the component that registers them from the startup list or by changing the configuration on applications and system components to disable them.
The following tuning parameters can be implemented by opening the MMC snap-in for Group Policy (gpedit.smc) and making the respective changes under Computer Configuration > Administrative Templates > Windows Components > Terminal Services > Terminal Server:
Color depth
Color depth can be adjusted under Remote Session Environment > Limit Maximum Color Depth with possible values of 8, 15, 16, and 32 bit. The default value is 16 bit, and increasing the bit depth increases memory and bandwidth consumption. Alternatively, the color depth can be adjusted from TSConfig.exe by opening the Properties dialog box for a specific connection and, on the Client Setting tab, changing the selected value in the drop-down box under Color Depth. The Limit Maximum Color Depth check box must be selected.
Remote Desktop Protocol compression
Remote Desktop Protocol (RDP) compression can be configured under Remote Session Environment > Set compression algorithm for RDP data. Three values are possible:
Optimized to use less memory is the configuration that matches the default Windows 2003 configuration. This uses the least amount of memory per session but has the lowest compression ratio and thus the highest bandwidth consumption.
Balances memory and network bandwidth is the default setting for Windows Server 2008. This has lower bandwidth consumption while marginally increasing memory consumption (approximately 200 KB per session).
Optimized to use less network bandwidth further reduces network bandwidth usage at a cost of approximately 2 MB per session. This memory is allocated in the kernel virtual address space and can have a significant impact on 32-bit processor-based systems running relatively high number of users. Because 64-bit systems do not have these issues, this setting is recommended if the extra memory cost is deemed acceptable. If you want to use this setting, you should assess the maximum number of sessions and test to that level with this setting before placing a server in production.
Device redirection
Device redirection can be configured under Device and Resource Redirection. Alternatively, it can be configured through TSConfig by opening the properties for a specific connection such as RDP-Tcp and, on the Client Settings tab, changing Redirection settings.
Generally, device redirection increases the amount of network bandwidth that Terminal Server connections use because data is exchanged between devices on the client machines and processes running in the server session. The extent of the increase is a function of the nature of frequency of operations that are performed by the applications running on the server against the redirected devices.
Printer redirection and Plug and Play device redirection also causes an increase in logon CPU usage. You can redirect printers in two ways:
Matching printer driver-based redirection when a driver for the printer must be installed on the server. Earlier releases of Windows Server used this method.
Easy Print printer driver redirection, which is a new method in Windows Server 2008 that uses a common printer driver for all printers.
We recommend the Easy Print method because it causes less CPU usage for printer installation at connection time. The matching driver method causes higher CPU usage because it requires the spooler service to load different drivers. In terms of bandwidth usage, the Easy Print method causes slightly higher network bandwidth usage, but not significant enough to offset the other performance, manageability, and reliability benefits.
Audio redirection is disabled by default because using it causes a steady stream of network traffic. Audio redirection also enables users to run multimedia applications that typically have high CPU consumption.
Client Experience Settings
The Terminal Server Client allows control over a range of settings that influence network bandwidth performance for the Terminal Server connection. They can be accessed either through the Terminal Server Client user interface on the Experience tab, or as settings in the RDP file:
Disable wallpaper (RDP file setting: disable wallpaper:i:0) suppresses display of desktop wallpaper on redirected connections. It can significantly reduce bandwidth usage if desktop wallpaper consists of an image or other content with significant drawing cost.
Font smoothing (RDP file setting: allow font smoothing:i:0) controls ClearType font rendering support. Although this improves the rendering quality for fonts when enabled, it does affect network bandwidth consumption dramatically (generally more than 400 percent).
Desktop composition is supported only for a remote session to Windows Vista and has no relevance for server systems.
Show contents of windows while dragging (RDP file setting: disable full window drag:i:1), when disabled, reduces bandwidth by displaying only the window frame instead of the entire contents when dragged.
Menu and window animation (represented by two distinct RDP file settings: disable menu anims:i:1 and disable cursor setting:i:1), when disabled, reduces bandwidth by disabling animation on menus (such as fading) and cursors.
Themes (RDP file setting: disable themes:i:1), when disabled, reduces bandwidth by simplifying theme drawings that use the classic theme.
Bitmap cache (RDP file setting: bitmapcachepersistenable:i:1), when enabled, creates a client-side cache of bitmaps rendered in the session. It is a substantial improvement on bandwidth usage and should always be enabled (except for security considerations).
[bookmark: _Toc180287501]Desktop Size
Desktop size for remote sessions can be controlled either through the TS Client user interface (on the Display tab under Remote desktop size settings) or the RDP file (desktopwidth:i:1152 and desktopheight:i:864). The larger the desktop size, the higher memory and bandwidth consumption associated with that session. The current maximum desktop size that a server accepts is 4096 x 2048.
[bookmark: _Toc180287502]Windows System Resource Manager
Windows System Resource Manager (WSRM) is an optional component available in Windows Server 2008 that now supports an “equal per session” built-in policy that keeps CPU usage equally distributed among all active sessions on the system. Although enabling WSRM adds some CPU usage overhead to the system, the advantage is that it helps limit the impact that high CPU usage in one session has on the other sessions on the system. This helps to improve user experience and also allows you to plan running more users on the system because there is less need for a large cushion in CPU capacity to accommodate random CPU usage spikes.
[bookmark: _Performance_Tuning_for_4][bookmark: _Toc180287503]Performance Tuning for Terminal Server Gateway
This section describes the performance-related parameters that help to improve the performance of a customer deployment and the tunings that rely on their network usage patterns. At its core, the TS Gateway performs, many packet forwarding operations between the TS Client instances and the TS Server instances within the customer’s network. The IIS and TS Gateway export the following registry parameters to help improve system performance in the TS Gateway role:
Thread Tunings
MaxIoThreads
HKLM\Software\Microsoft\Terminal Server Gateway\ (REG_DWORD)

The default value is 5. It specifies the number of threads that the TS Gateway service creates to handle incoming requests.

MaxPoolThreads
HKLM\System\CurrentControlSet\Services\InetInfo\Parameters\ (REG_DWORD)

The default value is 4. It specifies the number of Internet Information Services (IIS) pool threads to create per processor. The IIS pool threads watch the network for requests and process all incoming requests. The MaxPoolThreads count does not include threads that are consumed by the TS Gateway service.
Remote Procedure Call Tunings for TS Gateways
The following parameters can help tune the remote procedure call (RPC) receive windows on the TS Client and TS Gateway machines. Changing the windows helps to throttle the amount of data flowing through each connection and can offer improved performance for RPC over HTTP v2 scenarios.
ServerReceiveWindow
HKLM\Software\Microsoft\Rpc\ (REG_DWORD)

The default value is 64 KB. This value specifies the receive window that the server uses for data that is received from the RPC proxy. The minimum value is set to 8 KB, and the maximum value is set at 1 GB. If the value is not present, then the default value is used. When changes are made to this value, IIS must be restarted for the change to take effect.

ClientReceiveWindow
HKLM\Software\Microsoft\Rpc\ (REG_DWORD)

The default value is 64 KB. This value specifies the receive window that the client uses for data received from the RPC proxy. The minimum valid value is 8 KB, and the maximum value is 1 GB. If the value is not present, then the default value is used.
[bookmark: _Toc180287504]Monitoring and Data Collection
The following list of performance counters is considered a base set of counters when monitoring the resource usage on the Terminal Server Gateway:
\Terminal Service Gateway*
\RPC/HTTP Proxy*
\RPC/HTTP Proxy Per Server*
\Web Service*
\W3SVC_W3WP*
\IPv4*
\Memory*
\Network Interface(*)*
\Process(*)*
\Processor(*)*
\System*
\TCPv4*
Note: If applicable, add the “\IPv6*” and “\TCPv6*” objects.
[bookmark: _Performance_Tuning_for_6][bookmark: _Toc180287505]Performance Tuning for File Server Workload (NetBench)
NetBench 7.02 is an eTesting Labs workload that measures the performance of file servers as they handle network file requests from clients. NetBench provides you with an overall I/O throughput score and average response time for your server and individual scores for the client computers. You can use these scores to measure, analyze, and predict how well your server can handle file requests from clients.
To ensure a fresh start, the data volumes should always be formatted between tests to flush and clean up the working set. For improved performance and scalability, we recommend that client data be partitioned over multiple data volumes. The networking, storage, and interrupt affinity sections contain additional tuning information that might be applicable to specific hardware.
[bookmark: _Toc180287506][bookmark: _Toc52966657]Registry Tuning Parameters for Servers
The following registry tuning parameters can affect the performance of file servers:
NtfsDisable8dot3NameCreation
HKLM\System\CurrentControlSet\Control\FileSystem\ (REG_DWORD)

The default is 0. This parameter determines whether NTFS generates a short name in the 8.3 (MS‑DOS) naming convention for long file names and for file names that contain characters from the extended character set. If the value of this entry is 0, files can have two names: the name that the user specifies and the short name that NTFS generates. If the name that the user specifies conforms to the 8.3 naming convention, NTFS does not generate a short name.
Changing this value does not change the contents of a file, but it avoids the short-name attribute creation for the file, also changing the way NTFS displays and manages the file. For most file servers, the recommended setting is 1.
· TreatHostAsStableStorage
HKLM\System\CurrentControlSet\Services\LanmanServer\Parameters\ (REG_DWORD)

The default is 0. This parameter disables the processing of write flush commands from clients. If the value of this entry is 1, the server performance and client latency for power-protected servers can improve.
[bookmark: _Toc180287507]Registry Tuning Parameters for Client Computers
DormantFileLimit
HKLM\system\CurrentControlSet\Services\lanmanworkstation
\parameters\ (REG_DWORD)

Windows XP client computers only.
This parameter specifies the maximum number of files that should be left open on a share after the application has closed the file.

ScavengerTimeLimit
HKLM\system\CurrentControlSet\Services\lanmanworkstation
\parameters\ (REG_DWORD)

Windows XP client computers only.
This is the number of seconds that the redirector waits before it starts scavenging dormant file handles (cached file handles that are not currently used by any application).

DisableByteRangeLockingOnReadOnlyFiles
HKLM\System\CurrentControlSet\Services\LanmanWorkStation
\Parameters\ (REG_DWORD)

Windows XP client computers only.
Some distributed applications that lock portions of a read-only file as synchronization across clients require that file-handle caching and collapsing behavior be off for all read-only files. This parameter can be set if such applications will not be run on the system and collapsing behavior can be enabled on the client computer.
[bookmark: _Performance_Tuning_for_7][bookmark: _Toc23251615][bookmark: _Toc52966663][bookmark: _Toc180287508]Performance Tuning for Network Workload (NTttcp)
[bookmark: _Toc52966664]Tuning for NTttcp
NTttcp is a Winsock-based port of ttcp to Windows. It helps measure network driver performance and throughput on different network topologies and hardware setups. It provides the customer with a multithreaded, asynchronous performance workload for measuring achievable data transfer rate on an existing network setup.
Options include the following:
A single thread should suffice for optimal throughput.
Multiple threads are required only in the case of single to many clients.
Posting enough user receive buffers (using the "-a" option) alleviates TCP copying.
You should not excessively post user receive buffers because the first ones posted would return before you have the need to use other buffers.
It’s best to bind each set of threads to a processor (the second delimited parameter in the "-m" option).
Each thread creates a socket that connects (listens) on a different port.

Table 9. Example Syntax for NTttcp Sender and Receiver
	Syntax
	Details

	Example Syntax for a Sender
NTttcps –m 1,0,10.1.2.3 –a 2
	Single thread.
Bound to CPU 0.
Connecting to computer with IP 10.1.2.3.
Posting two send overlapped buffers.
Default buffer size: 64 K.
Default number of buffers to send: 20 K.

	Example Syntax for a Receiver
NTttcpr –m 1,0,10.1.2.3 –a 6 -fr
	Single thread.
Bound to CPU 0.
Binding on local computer to IP 10.1.2.3.
Posting six receive overlapped buffers.
Default buffer size: 64 KB.
Default number of buffers to receive: 20 K.
Posting full length (64 K) receive buffers.

[bookmark: _Toc52966665]Network Adapter
Be sure that you enable all offloading features.
[bookmark: _Toc52966666]TCP/IP Window Size
For 1-GB adapters, the settings shown in Table 9 should provide you with good throughput because NTttcp sets the default TCP window size to 64 K through a specific socket option (SO_RCVBUF) for the connection. This provides good performance on a low-latency network. In contrast, for high-latency networks or for 10-GB adapters, NTttcp’s default TCP window size value yields less than optimal performance. In those cases, you must adjust the TCP window size to allow for the larger bandwidth delay product. You can statically set the TCP window size to a large value by using the –rb option. This disables TCP Window Auto-Tuning and is recommended only if the user fully understands the resultant change in TCP/IP behavior. By default, the TCP window size is set at an adequate value and adjusts only under heavy load or over high-latency links.
Receive-Side Scaling (RSS)
Windows Server 2008 supports RSS out of the box. RSS enables multiple DPCs to be scheduled and executed on concurrent processors, which improves scalability and performance for receive-intensive scenarios with fewer networking adapters than available processors. Note that, because hardware limitations on some of the adapters and to other functionality constraints, not all adapters can support simultaneously processing DPCs on all processors on the server. DPCs also are not scheduled on hyperthreading processors due to a negative performance impact when doing so. Therefore, DPCs in RSS are scheduled only on logical and physical processors regardless of how many cores or sockets are on the server box.
[bookmark: _Toc52966667]Tuning for Chariot
Chariot is a networking workload generator from Ixia. It stresses the network to help predict networked application performance.
You can use the High_Performance_Throughput script workload of Chariot to simulate the NTttcp workload. The tuning considerations for this workload are the same as those for NTttcp.
[bookmark: _Terminal_Server_Knowledge][bookmark: _Toc180287509]Performance Tuning for Terminal Server Knowledge Worker Workload
Windows Server 2008 Terminal Server capacity planning tools include automation framework and application scripting support that allow the simulation of user interaction with a Windows Terminal Server. It is important to note that the following tunings apply only for a synthetic Terminal Server knowledge worker workload and are not intended as turnings for a server not running this workload. This workload is built with these tools to emulate common usage pattern for knowledge workers. If an updated version of the workload is released, the guide will be updated accordingly.
The Terminal Server knowledge worker workload uses Microsoft Office applications and Microsoft Internet Explorer. It operates in an isolated local network that has the following infrastructure:
Domain controller (Active Directory, Domain Name Service—DNS, and Dynamic Host Control Procedure—DHCP).
Microsoft Exchange Server for e-mail hosting.
Windows IIS Server for Web hosting.
Load Generator (a test controller) for creating a distributed workload.
A pool of Windows XP–based test systems for executing the distributed workload, with no more than 60 simulated users per physical test system.
Windows Terminal Server (Application Server) with Microsoft Office installed.
Note: The domain controller and the load generator could be combined on one physical system with no incurred performance penalty. Similarly, the IIS Server and the Exchange Server could be combined on another computer system.
Table 10 provides guidelines for achieving the best performance on the Terminal Server workload and suggestions as to where bottlenecks might exist and how to avoid them.
Table 10. Hardware Recommendations for Terminal Server Workload
	Hardware limiting factor
	Recommendation

	Processor usage
	· Use 64-bit processors to expand the available virtual address space.
· Use multicore systems (at least two or four sockets and dual-core or quad-core 64-bit CPUs).

	Physical disks
	· Separate the operating system files, page file, and user profiles (user data) to individual physical partitions.
· Choose the appropriate RAID configuration. (Refer to "Choosing RAID Level" earlier in this guide.)
· If applicable, set the write-through cache policy to 50% reads versus 50% writes.
· If applicable, select Enable write caching on the disk through the Microsoft Management Console (MMC) disk management snap-in (diskmgmt.msc).
· If applicable, select Enable Advanced Performance through the MMC disk management snap-in (diskmgmt.msc).

	Memory (RAM)
	The amount of RAM and physical memory access times affect the response times for the user interactions. On NUMA-type computer systems, ensure that the hardware configuration uses the NUMA, which is changed by using system BIOS or hardware partitioning settings.

	Network bandwidth
	Allow adequate bandwidth by using network interface cards (NICs) that have high bandwidths such as 1‑GB Ethernet.

[bookmark: _Toc180287510]Recommended Tunings on the Server
After the operating system is installed and the Terminal Server role is added, apply the following changes:
Navigate to Control Panel > System > Advanced System Settings > Advanced tab and set the following:
Navigate to Performance Settings > Advanced > Virtual memory and set one or more fixed-size page files (Initial Size equal to Maximum Size) with a total page file size at least two to three times the physical RAM size to minimize paging. For servers with hundreds of gigabytes of memory, the entire elimination of the paging file is possible; otherwise, the paging file might be limited due to constraints in available disk space. There are no clear benefits of a paging file larger than 100 GB. Ensure that no system-managed page files are in the Virtual memory on the Application Server.
Navigate to Performance Settings > Visual Effects and select the Adjust for best performance check box.

Allow for the workload automation to run by opening the MMC snap-in for Group Policies (gpedit.msc) and making the following changes via Local Computer Policy > User Configuration > Administrative Templates:
Navigate to Control Panel > Display, and disable Screen Saver and Password protected screen saver.
Under Start Menu and Taskbar, enable Force Windows Classic Start Menu.
Navigate to Windows Components > Internet Explorer, and enable Prevent Performance of First Run Customize settings and choose Go directly to home page.
Navigate to Start > All Programs > Administrative Tools > System Configuration Tools tab, disable User Account Control (UAC) by selecting Disable UAC, and then reboot the system.
Allow for the workload automation to run by opening the registry and adding ProtectedModeOffForAllZones key and set it to 1 under:
HKLM\SOFTWARE\Microsoft\Internet Explorer\Low Rights\ (REG_DWORD)

Minimize the impact on CPU usage when running a large number of Terminal Server sessions by opening the MMC snap-in for Group Policies (gpedit.msc) and making the following changes under Local Computer Policy > User Configuration > Administrative Templates:
Under Start Menu and Taskbar, enable Do not keep history of recently opened documents.
Under Start Menu and Taskbar, enable Remove Balloon Tips on Start Menu items.
Under Start Menu and Taskbar, enable Remove frequent program list from Start Menu.

Minimize the impact on the memory footprint and reduce background activity by disabling certain Microsoft Win32® services. The following are snippets from command-line scripts to accomplish this:
	Service name
	Syntax to stop and disable service

	Desktop Window Manager Session Manager
	sc config UxSms start= disabled
sc stop UxSms

	Windows Error Reporting service

	sc config WerSvc start= disabled
sc stop WerSvc

	Windows Update

	sc config wuauserv start= disabled
sc stop wuauserv

Minimize background traffic by applying the following changes under Start > All Programs > Administrative Tools > Server Manager, and going to Resources and Support:
Opt out of participating in the Customer Experience Improvement Program (CEIP).
Opt out of participating in Windows Error Reporting (WER).

Apply the following changes from the Terminal Services MMC snap-in (tsconfig.msc):
Set the maximum color depth to 24 bits per pixel (bpp).
Disable all device redirections.
Navigate to Start > All Programs > Administrative Tools > Terminal Services > Terminal Services Configuration and change the Client Settings from the RDP-Tcp properties as follows:
· Limit the Maximum Color Depth to 24 bpps.
· Disable redirection for all available devices such as Drive, Windows Printer, LPT Port, COM Port, Clipboard, Audio, Supported Plug and Play Devices, and Default to main client printer.
[bookmark: _Toc180287511]Monitoring and Data Collection
The following list of performance counters is considered a base set of counters when monitoring the resource usage on the Terminal Server workload. Log the performance counters to a local, raw (blg) performance counter log. It is less expensive to collect all instances (‘*’ wide character) and then extract particular instances while post-processing by using relog.exe.
\Cache*
\IPv4*
\LogicalDisk(*)*
\Memory*
\Network Interface(*)*
\Paging File(*)*
\PhysicalDisk(*)*
\Print Queue(*)*
\Process(*)*
\Processor(*)*
\System*
\TCPv4*
Note: If applicable, add the \IPv6* and \TCPv6* objects.
Stop unnecessary ETW loggers by running logman.exe stop –ets <provider name>. To view providers on the system, run logman.exe query –ets.
Use logman.exe to collect performance counter log data instead of using perfmon.exe, which enables logging providers and increases CPU usage.
The QIdle tool (part of Terminal Server Scaling Tools) determines whether any of the currently running scripts have failed and require an administrator to intervene. QIdle determines this by periodically checking to see whether any of the sessions logged on to the terminal server has been idle for longer than a specific period of time. If any idle sessions exist, QIdle notifies the administrator with a beeping sound.
[bookmark: _SAP_Sales_and][bookmark: _Toc180287512]Performance Tuning for SAP Sales and Distribution Two-Tier Workload
SAP AG has developed a number of standard application benchmarks. The Sales and Distribution (SD) workload represents one of the important classes of workloads used for benchmarking SAP enterprise resource planning (ERP) installations. For more information on obtaining the benchmark kit, contact SAP.
Fine, multidimensional tuning of the operating system level, application server, database server, network, and storage is required to achieve optimal throughput and good response times as the number of concurrent SD users increases before capping out due to resource limitations.
The following are some guidelines that can benefit the two-tier setup of the SAP ERP for SD workload on Windows Server 2008.
[bookmark: _Toc180287513]Operating System Tunings on the Server
Navigate to Control Panel > System > Advanced System Settings > Advanced tab and set the following:
Navigate to Performance Settings > Advanced > Virtual memory and set one or more fixed-size page files (Initial Size equal to Maximum Size) with a total page file size equal to or greater than the physical RAM size to minimize paging. For servers with hundreds of gigabytes of memory, the entire elimination of the paging file is possible; otherwise, the paging file might be limited due to space constraints of available disk space. There are no clear benefits of a paging file larger than GB. Ensure that no system-managed page files are in the Virtual memory on the Application Server.
Navigate to Performance Settings > Visual Effects and select the Adjust for best performance check box.
Enable the Lock pages in memory user right assignment for the account that will run the SQL and SAP services.
From the Group Policy MMC snap-in (gpedit.msc), navigate to Computer Configuration > Windows Settings > Security Settings > Local Policies > User Rights Assignment. In the pane, double-click Lock pages in memory and add the accounts with privileges to run sqlservr.exe and SAP services.
Disable User Account Control.
Navigate to Start > All Programs > Administrative Tools > System Configuration > Tools tab, start Disable UAC, and then reboot the system.
[bookmark: _Toc180287514]Tunings on the Database Server
When the database server is SQL Server™ 2005, consider setting the following SQL Server configuration options with sp_configure. For detailed information on the sp_configure stored procedure, refer to "Setting Server Configuration Options."
Apply CPU core affinity for the SQL Server 2005 process: Set affinity mask and affinity I/O mask to partition SQL process on specific cores. If required, use the affinity64 mask and affinity64 I/O mask to set the affinity on more than 32 cores.
On NUMA class hardware, do the following:
To further subdivide the CPUs in a hardware NUMA node to more CPU nodes (known as Soft-NUMA), refer to "How to: Configure SQL Server to Use Soft-NUMA."
To set TCP/IP connection affinity, refer to "How to: Map TCP/IP Ports to NUMA Nodes."
Set a fixed amount of memory that the SQL Server process will use. For example, set the max server memory and min server memory to be equal and large enough to satisfy the workload (2500 MB is a good starting value).
Change the network packet size to 8 KB for better page alignment in SQL environments.
Set the recovery interval to 32767, to offset the SQL Server checkpoints while running the workload.
On a two-tier ERP SAP setup, consider enabling and using only the Named Pipes protocol and disabling the rest of the available protocols from the SQL Server Configuration Manager for the local SQL connections.
[bookmark: _Toc180287515]Tunings on the SAP Application Server
The ratio between number of Dialog Instances (D) versus Update (U) instances in the SAP ERP installation might vary, but usually a ratio of 1:1U or 2D:1U is a good start for the SD workload.
Use the processor affinity capabilities in the SAP’s instance profiles to partition each worker process to a subset of the available CPU cores and thus achieve better CPU and memory locality.
Take advantage of the FLAT memory model released by SAP AG on November 23, 2006, with the SAP Note No. 1002587 "Flat Memory Model on Windows" for SAP kernel 7.00 Patch Level 87.
[bookmark: _Toc180287516]Monitoring and Data Collection
The following list of performance counters is considered a base set of counters when monitoring the resource usage of the Application Server when running the two-tier SAP ERP SD workload. Log the performance counters to a local, raw (blg) performance counter log. It is less expensive to collect all instances (‘*’ wide character) and then extract particular instances while post-processing by using relog.exe:
\Cache*
\IPv4*
\LogicalDisk(*)*
\Memory*
\Network Interface(*)*
\Paging File(*)*
\PhysicalDisk(*)*
\Process(*)*
\Processor(*)*
\System*
\TCPv4*
Note: If applicable, add the \IPv6* and \TCPv6* objects.
[bookmark: _Toc180287517]Resources
Web Sites:
Windows Server 2008
http://www.microsoft.com/windowsserver2008
SAP Global
http://www.sap.com/solutions/benchmark/sd.epx
Transaction Processing Performance Council
http://www.tpc.org
Documents:
Scalable Networking: Eliminating the Receive Processing Bottleneck—Introducing RSS
http://download.microsoft.com/download/5/D/6/5D6EAF2B-7DDF-476B-93DC-7CF0072878E6/NDIS_RSS.doc
Disk Subsystem Performance Analysis for Windows
http://www.microsoft.com/whdc/device/storage/subsys_perf.mspx
10 Tips for Writing High-Performance Web Applications
http://go.microsoft.com/fwlink/?LinkId=98290
Performance Tuning Guidelines for Microsoft Services for Network File System
http://technet.microsoft.com/en-us/library/bb463205.aspx
Active Directory Performance for 64-bit Versions of Windows Server 2003
http://www.microsoft.com/downloads/details.aspx?FamilyID=52e7c3bd-570a-475c-96e0-316dc821e3e7
How to configure Active Directory diagnostic event logging in Windows Server 2003 and in Windows 2000 Server
http://support.microsoft.com/kb/314980
Setting Server Configuration Options
http://go.microsoft.com/fwlink/?LinkId=98291
How to: Configure SQL Server to Use Soft-NUMA
http://go.microsoft.com/fwlink/?LinkId=98292
How to: Map TCP/IP Ports to NUMA Nodes
http://go.microsoft.com/fwlink/?LinkId=98293
SAP with Microsoft SQL Server 2005:
Best Practices for High Availability, Maximum Performance, and Scalability
http://download.microsoft.com/download/d/9/4/d948f981-926e-40fa-a026-5bfcf076d9b9/SAP_SQL2005_Best%20Practices.doc

Application

RDBSS.SYS

Network Stack

File Client

MRXSMB.SYS

MRXSMB10.SYS
or
MRXSMB20.SYS

SMB

SRV.SYS or SRV2.SYS

Network Stack

NTFS.SYS

Storage Stack

SMB File Server

SRVNET.SYS

System Cache

October 16, 2007
© 2007 Microsoft Corporation. All rights reserved.
image2.png
RAID 5

SHIEEED
~EEEED
SEEED
WP
=CEEED

=

image3.emf
Worker Processes (W3wp.exe)

IIS Core

Static File

Engine

ISAPI

Engine

ASP ASPX

HTTP.SYS

TCP/IP

W

A

S

Metabase

Process

(Inetinfo.exe)

metabase

Worker Processes (W3wp.exe)

HTTP.SYS

TCP/IP

W

A

S

IIS 7.0 Integrated Pipeline

XML Configuration

ASPX

Handler

ASP

Handler

Static File

Handler

kernel

user

kernel

user

IIS 6.0 IIS 7.0

oleObject2.bin
Worker Processes (W3wp.exe)

IIS Core

ISAPI
Engine

Static File Engine

ASP

ASPX

HTTP.SYS

TCP/IP

W A S

Metabase Process (Inetinfo.exe)

metabase

Worker Processes (W3wp.exe)

IIS 7.0 Integrated Pipeline

IIS 6.0

XML Configuration

ASPX
Handler

ASP
Handler

Static File
Handler

HTTP.SYS

TCP/IP

W A S

kernel

user

kernel

user

IIS 7.0

image4.emf
Worker Process

Worker Process

Worker Process

Http.sys

Namespace

Http Engine

REQUEST

request

Response

Cache

request request

Send

Response

RESPONSE

oleObject3.bin
Worker Process

Worker Process

Worker Process

Http.sys

request

Namespace

Http Engine

request

REQUEST

Response Cache

request

Send
Response

RESPONSE

image5.png
4% Windows

