DLinq Data Types and Functions.doc

	`[image: image1.png]

	DLinq Data Types and Functions

	
	Status:
	Ready for signoff
	Last updated: 8/26/2006 8:16 AM

	

	Product Unit
	VCSPU
	Spec Template Version
	February 2006

	Feature ID
	
	Patent Tracking ID
	

	

	Program Manager
	t-AlexT, DineshKu
	UE Writer
	

	Developer
	HartmutM, MattWar
	User Experience
	

	Tester
	TikiWan, VijayU, DaigoH
	International
	

DLinq helps developers bridge the object-relational divide, but even still there are many areas in which the differences between the data world and the object world surface. Details such as the mapping of types between SQL Server and the CLR, the translation to SQL of .NET functions such as String.Length, and the representation of SQL constructs such as LIKE require careful attention to provide the experience developers will expect while using DLinq.

Microsoft Corporation Technical Documentation License Agreement (Standard)
READ THIS! THIS IS A LEGAL AGREEMENT BETWEEN MICROSOFT CORPORATION ("MICROSOFT") AND THE RECIPIENT OF THESE MATERIALS, WHETHER AN INDIVIDUAL OR AN ENTITY ("YOU"). IF YOU HAVE ACCESSED THIS AGREEMENT IN THE PROCESS OF DOWNLOADING MATERIALS ("MATERIALS") FROM A MICROSOFT WEB SITE, BY CLICKING "I ACCEPT", DOWNLOADING, USING OR PROVIDING FEEDBACK ON THE MATERIALS, YOU AGREE TO THESE TERMS. IF THIS AGREEMENT IS ATTACHED TO MATERIALS, BY ACCESSING, USING OR PROVIDING FEEDBACK ON THE ATTACHED MATERIALS, YOU AGREE TO THESE TERMS.

1. For good and valuable consideration, the receipt and sufficiency of which are acknowledged, You and Microsoft agree as follows:

(a) If You are an authorized representative of the corporation or other entity designated below ("Company"), and such Company has executed a Microsoft Corporation Non-Disclosure Agreement that is not limited to a specific subject matter or event ("Microsoft NDA"), You represent that You have authority to act on behalf of Company and agree that the Confidential Information, as defined in the Microsoft NDA, is subject to the terms and conditions of the Microsoft NDA and that Company will treat the Confidential Information accordingly;

(b) If You are an individual, and have executed a Microsoft NDA, You agree that the Confidential Information, as defined in the Microsoft NDA, is subject to the terms and conditions of the Microsoft NDA and that You will treat the Confidential Information accordingly; or

(c)If a Microsoft NDA has not been executed, You (if You are an individual), or Company (if You are an authorized representative of Company), as applicable, agrees: (a) to refrain from disclosing or distributing the Confidential Information to any third party for five (5) years from the date of disclosure of the Confidential Information by Microsoft to Company/You; (b) to refrain from reproducing or summarizing the Confidential Information; and (c) to take reasonable security precautions, at least as great as the precautions it takes to protect its own confidential information, but no less than reasonable care, to keep confidential the Confidential Information. You/Company, however, may disclose Confidential Information in accordance with a judicial or other governmental order, provided You/Company either (i) gives Microsoft reasonable notice prior to such disclosure and to allow Microsoft a reasonable opportunity to seek a protective order or equivalent, or (ii) obtains written assurance from the applicable judicial or governmental entity that it will afford the Confidential Information the highest level of protection afforded under applicable law or regulation. Confidential Information shall not include any information, however designated, that: (i) is or subsequently becomes publicly available without Your/Company’s breach of any obligation owed to Microsoft; (ii) became known to You/Company prior to Microsoft’s disclosure of such information to You/Company pursuant to the terms of this Agreement; (iii) became known to You/Company from a source other than Microsoft other than by the breach of an obligation of confidentiality owed to Microsoft; or (iv) is independently developed by You/Company. For purposes of this paragraph, "Confidential Information" means nonpublic information that Microsoft designates as being confidential or which, under the circumstances surrounding disclosure ought to be treated as confidential by Recipient. "Confidential Information" includes, without limitation, information in tangible or intangible form relating to and/or including released or unreleased Microsoft software or hardware products, the marketing or promotion of any Microsoft product, Microsoft's business policies or practices, and information received from others that Microsoft is obligated to treat as confidential.

2. You may review these Materials only (a) as a reference to assist You in planning and designing Your product, service or technology ("Product") to interface with a Microsoft Product as described in these Materials; and (b) to provide feedback on these Materials to Microsoft. All other rights are retained by Microsoft; this agreement does not give You rights under any Microsoft patents. You may not (i) duplicate any part of these Materials, (ii) remove this agreement or any notices from these Materials, or (iii) give any part of these Materials, or assign or otherwise provide Your rights under this agreement, to anyone else.

3. These Materials may contain preliminary information or inaccuracies, and may not correctly represent any associated Microsoft Product as commercially released. All Materials are provided entirely "AS IS." To the extent permitted by law, MICROSOFT MAKES NO WARRANTY OF ANY KIND, DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, AND ASSUMES NO LIABILITY TO YOU FOR ANY DAMAGES OF ANY TYPE IN CONNECTION WITH THESE MATERIALS OR ANY INTELLECTUAL PROPERTY IN THEM.

4. If You are an entity and (a) merge into another entity or (b) a controlling ownership interest in You changes, Your right to use these Materials automatically terminates and You must destroy them.

5. You have no obligation to give Microsoft any suggestions, comments or other feedback ("Feedback") relating to these Materials. However, any Feedback you voluntarily provide may be used in Microsoft Products and related specifications or other documentation (collectively, "Microsoft Offerings") which in turn may be relied upon by other third parties to develop their own Products. Accordingly, if You do give Microsoft Feedback on any version of these Materials or the Microsoft Offerings to which they apply, You agree: (a) Microsoft may freely use, reproduce, license, distribute, and otherwise commercialize Your Feedback in any Microsoft Offering; (b) You also grant third parties, without charge, only those patent rights necessary to enable other Products to use or interface with any specific parts of a Microsoft Product that incorporate Your Feedback; and (c) You will not give Microsoft any Feedback (i) that You have reason to believe is subject to any patent, copyright or other intellectual property claim or right of any third party; or (ii) subject to license terms which seek to require any Microsoft Offering incorporating or derived from such Feedback, or other Microsoft intellectual property, to be licensed to or otherwise shared with any third party.

6. Microsoft has no obligation to maintain confidentiality of any Microsoft Offering, but otherwise the confidentiality of Your Feedback, including Your identity as the source of such Feedback, is governed by Your NDA.

7. This agreement is governed by the laws of the State of Washington. Any dispute involving it must be brought in the federal or state superior courts located in King County, Washington, and You waive any defenses allowing the dispute to be litigated elsewhere. If there is litigation, the losing party must pay the other party’s reasonable attorneys’ fees, costs and other expenses. If any part of this agreement is unenforceable, it will be considered modified to the extent necessary to make it enforceable, and the remainder shall continue in effect. This agreement is the entire agreement between You and Microsoft concerning these Materials; it may be changed only by a written document signed by both You and Microsoft.
[image: image2.png]

1. Overview
1
2. Context
1
2.1 Type Mapping Philosophy
1
3. Requirements
1
3.1 Goals
1
3.2 Non-goals
2
4. Design
2
4.1 SQL-CLR Type Mappings
2
4.1.1 Type Mapping Run-time Behavior Matrix
2
4.1.2 Enum Mapping
4
4.1.3 DateTime Mapping
4
4.1.4 Binary/String Serialization
4
4.2 Expression Translation Semantics
4
4.3 .NET Method/Operator Translation
4
4.3.1 Basic operations
5
4.3.2 Numeric types
6
4.3.3 Boolean types
7
4.3.4 Sequence operators
7
4.3.5 System.Object methods
9
4.3.6 System.String methods
10
4.3.7 System.Math methods
12
4.3.8 System.Convert methods
13
4.3.9 System.TimeSpan methods
14
4.3.10 System.DateTime methods
14
4.4 SQL Function Mapping
16
4.4.1 SQL functions emulated with shadowed SQL behavior
16
4.4.1.1 DATEDIFF
16
4.4.2 SQL functions emulated with shadowed .NET behavior
16
4.4.2.1 ROUND
16
4.4.3 SQL functions not available in BCL
16
4.4.3.1 LIKE
16
4.4.3.2 STDDEV
16
5. Feature Decisions / Q&A
16
5.1 Type Mapping Rationale
17
5.1.1 Decimal/Money types
17
5.1.2 DateTime types
17
5.1.3 Floating-point types
17
5.1.4 Text fields
18
5.1.5 Enum fields
18
5.1.6 Unsupported mappings
19
5.2 Expression Semantics Rationale
19
5.2.1 Boolean short-circuiting semantics
19
5.2.2 Boolean 3-value logic
19
5.2.3 Integer overflow
20
5.2.4 Floating-point rounding
20
5.2.5 String comparison culture/case-sensitivity
20
5.2.6 Fixed-length/length-limited strings
20
5.2.7 GUID ordering
21
6. Inspection Checklist
21
7. Change History
22

1. Overview

DLinq helps developers bridge the object-relational divide, but even still there are many areas in which the differences between the data world and the object world surface. Details such as the mapping of types between SQL Server and the CLR, the translation to SQL of .NET functions such as String.Length, and the representation of SQL constructs such as LIKE require careful attention to provide the experience developers will expect while using DLinq.
2. Context
2.1 Type Mapping Philosophy

A major goal of DLinq is to provide a great query experience against relational databases. This goal guides the type mappings that we make available to the user.

A type mapping is a pairing between the CLR type of an object’s field/property and the SQL Server type of a table’s field.

For example, the following property definition from the Product class in Northwind.cs is using the valid type mapping between the CLR type of short and the SQL type of SMALLINT.

[Column(Storage="_UnitsInStock", DBType="SmallInt")]

public System.Nullable<short> UnitsInStock {

 get { /* ... */ }

 set { /* ... */ }

We could conceivably come up with a reasonable conversion to and from the database for every possible type mapping and allow users to map any database column to any CLR field or property. This would cause the core query experience to break down, however, as DLinq query translation relies on the CLR methods available on the CLR type being mapped to. If a database type is mapped to a far different CLR type, operations the user would expect to perform would be missing and the natural query-writing experience would be lost.
Therefore, the type mappings that are allowed represent natural conversions between types that that have similar operations defined on them, such as conversions between numeric types.
3. Requirements

3.1 Goals
The major goals of the DLinq Data Types and Functions plan are to:
· Support a great query experience against the database by…
· …mapping between all reasonable pairings of CLR types and SQL Server types that will allow for a logical composition of queries against these fields

· Expose SQL functionality to the developer through the .NET methods they are already comfortable with by…

· …translating the most commonly used methods and operators on the CLR types into their SQL analogues within queries
· Provide access to SQL functionality not available within .NET by…

· …creating new .NET methods for direct translation to SQL functionality that…

· …does not have BCL analogues
· …has BCL analogues but with differing semantics that we are preserving

We hope to do the above while…
· …limiting data loss and roundtripping issues related to differences in magnitude, precision, and other type conversion details between the type systems

· …deferring to SQL semantics in general, but maintaining .NET semantics when user confusion would be high and the more accurate translation is possible without sacrificing query performance or simplicity
3.2 Non-goals
We are not setting out to:
· Allow every possible type mapping, especially those that would work for saving and retrieving data directly, but break down when users attempt to construct queries
· Provide a translation for all BCL methods or for arbitrary user-created methods
4. Design

The following sections describe the details of type mappings, type conversions, how we are translating .NET functions into SQL, and how we are exposing any other SQL functionality through .NET.
It is important to note, also, that this spec deals only with the run-time behavior of mappings and expressions. Design-time features such as wizards, tools and validators are scheduled for a later date and are not covered in this spec.
4.1 SQL-CLR Type Mappings
4.1.1 Type Mapping Run-time Behavior Matrix

The diagram on the following page shows a matrix of mappings between CLR types on the top and SQL Server types on the left.
Each cell in the matrix represents the run-time behavior expected when data is retrieved from or saved into fields or properties with the column’s CLR type that is linked to a database field with the row’s SQL Server type.

DLinq will not support mapping to any CLR or SQL data types not specified in the matrix below (except as allowed by string or binary serialization).

The red-outlined cells shows the default SQL type mappings for each column’s CLR type. These defaults are used when generating a SQL Server database using CreateDatabase(). Design-time type mapping defaults for use in SQLMetal, for example, are outside the scope of this spec.

	[image: image3.png]o

NS
NS

NS

NS

BIGINT s s | ns [ns | s [s [s [ns [ns | s
ns| s [Ns s [us s s [ns [s [ns s [s

s s [Ns s [us s s [ns [s [ns s [s

s s [Ns s [us s s [ns [s [ns s [s

] s s [Ns s [us s s [ns [s [ns s [s

s s [Ns s [us s s [ns [s [ns s [s

s s [Ns s [us s s [ns [s [ns s [s

s s [Ns s [us s s [ns [s [ns s [s

| s | ns [s [s s s [ns [s [us s s

cHAR(1) ns| s | Ns [s [s NS [s | ns [s | us [s | s [Ns ns|ns [NS [Ns | ns
INCHAR(1) ns| s | ns s [s s s [ns [ns [s s [s [ns ns|ns [NS [Ns | ns
cHAR(50) ns| s | ns s [s s | s [s [ns [s [s [s [ns | s ns|ns [s [Ns | ns
INCHAR(50) | s | Ns [NS | s NS | s [Ns [Ns [N [NS Ns NS [Ns S| Ns[Ns NS ns
VARCHAR(50) | s | Ns [NS | s NS | s [Ns [Ns [N [NS Ns NS [Ns S| Ns[Ns NS ns
INVARCHAR(50) | s | Ns [NS | s NS | s [Ns [Ns [N [NS Ns NS [Ns S| Ns[Ns NS ns
VARCHAR(MAX) S| s | NS [Ns | Ns NS s [Ns [Ns | Ns [NS Ns NS [Ns S| Ns [NS [Ns | ns
INVARCHAR(MAX) N[s | Ns s [s s s [ns [ns | s s [s [ns [ns ns|ns [NS [Ns | ns
et ns| s [ns s [s s | s s [ns [s [s [s [ns [ns ns|ns [s [Ns | ns
INTEXT S| s | NS [Ns | Ns NS s [Ns [Ns | Ns [NS Ns NS [Ns S| Ns [NS [Ns | ns
N[s | Ns s [s s s [ns [ns | s s [s [ns [ns | ns [NS [Ns | ns

ns| s [Ns s [s s s [ns [ns [s s [vs [s [s | us [s s | ns (s | [ns [s s [ns

ns| s | Ns s [s NS s [ns [ns [s s s [ns [ns [us [s [vs [ns [ns | Ns[ns s [ns

BINARY(50) s s | ns [s | s s s [ns [s | s s [s [ns [s | s [s [s [ns [s s ns|ns
VARBINARY(50) S| N | NS [Ns | Ns NS s | Ns [Ns | N NS [Ns | Ns [Ns | s [NS [s [Ns [Ns [s Ns|ns
VARBINARY(MAX) s s | Ns [s | s s s s [vs | us s [s [ns [s | s [s [s [ns s [s ns|ns
imAGE e I e I Y e) S) S E S B e ns|ns
TIMESTAMP S| s | NS [Ns | Ns NS s [Ns [Ns [N [NS s [Ns [Ns | s [Ns s [Ns [Ns | s [ns [Ns [Ns
UNIQUEIDENTIFIER ns| s | Ns s [s s s [ns s | s s s [s [s [s [s [s [ns [ns [ns IR s s
R s [s | ns | ns | Ns [ns [Ns [ns [ns NS s NS [ns | s [ns [ns [ns [ns | ns [ns | ns [ns | ns ||

	Legend:
[image: image4.png]

No data loss exceptions

Note: silent precision loss or conversions from Unicode to ANSI may still occur

[image: image5.png]

Data loss exceptions possible saving TO the database

[image: image6.png]

Data loss exceptions possible loading FROM the database

[image: image7.png]

Data loss exceptions possible both FROM and TO the database

[image: image8.png]

Mapping not supported / run-time behavior not defined

[image: image9.png]

Default SQL type mapping for that column’s CLR type (used within CreateDatabase)

4.1.2 Enum Mapping

DLinq supports mapping CLR Enum types to numeric types:
· Mapping to SQL numeric types (TINYINT, SMALLINT, INT, BIGINT):
When a CLR Enum type is mapped to a SQL numeric type, the CLR Enum’s underlying integer value is mapped to the value of the SQL database field. The value of the field in SQL will be retrieved directly as the underlying integral value of the Enum type. When the Enum value is changed and data is saved back to the database, the Enum’s underlying integral value will be stored to the database field.
Support for mapping a CLR Enum to a SQL text type has been cut for now due to time constraints.
The default SQL mapping for a CLR Enum type is the SQL equivalent of its underlying integral type.
4.1.3 DateTime Mapping

DateTime values are saved as is to the database with no TimeZone conversion, regardless of the original DateTime’s Kind information.

When DateTime values are retrieved from the database, their value is loaded as is into a DateTime with a Kind of Unspecified.
4.1.4 Binary/String Serialization

DLinq supports two types of serialization of arbitrary BCL and user classes:

· String serialization (Foo.Parse()):
To support serialization to a SQL text field (CHAR/NCHAR/VARCHAR/NVARCHAR/TEXT/NTEXT/XML), a CLR class must implement the following methods:
· string T.ToString(): Returns the string representation of an object of that type. This value is saved to the database during serialization.
· static T T.Parse(string): Returns a newly constructed object of that type from a given string. This method is invoked during deserialization to convert a string from the database back into an object. It is not required that any other overloads of Parse be implemented.
· Binary serialization (ISerializable): If a class implements ISerializable, it can be serialized to any SQL binary field (BINARY/VARBINARY/IMAGE). The standard behavior of ISerializable is followed to serialize and deserialize the object.
Serialization using IXMLSerializable is not supported.
4.2 Expression Translation Semantics
Unless otherwise specified, DLinq queries pass their .NET syntactic structure on through to the analogous SQL syntactic structure, accepting any semantic differences that may arise.
We considered various scenarios where we could generate SQL that is not a direct syntactic translation of the .NET code in order to more closely emulate .NET semantics, but have decided not to take these translations on at this time. These scenarios are listed in section 5.2 below.
4.3 .NET Method/Operator Translation

This section describes the behavior of .NET operators and methods and the situations in which special care is taken to ensure .NET semantics.

CLR constructs are only translatable to SQL expressions where we explicitly provide a conversion in the DLinq query translation engine. This means that any BCL functionality not described below, as well as all user-defined methods, properties and casts are not supported for translation to SQL.
Such unsupported methods can be used in queries, however, providing that they either:

· Can be evaluated to a translatable value before the conversion process takes place (meaning that they must not depend on any lambda variables that will not be bound until query execution takes place).
…or…

· Can be applied to the results after they are retrieved back from the database (meaning there must not be further requests for database information after the application of this method)
For more details about translation, see the Query Translation Specification.

As with expression translation, translation of the following methods will by default be purely syntactic (and thus cause the query to adopt the analogous SQL Server semantics) unless otherwise noted below.

4.3.1 Basic operations
Basic equality operators == !=
Equality and inequality are supported for numeric, Boolean, DateTime and TimeSpan types.

Assignment operators: = += -=

Assignment operators are not supported within queries, except for use of the = operator within Let expressions.

Is operator:
The is operator has a supported translation when inheritance mapping is being used. It can be used instead of directly testing the discriminator column to determine if an object is of a specific entity type, and is translated to a check on the discriminator column.
Casts / as operator:
Implicit or explicit casts are allowed from a source CLR type to a target CLR type if there is a valid conversion within SQL Server from the SQL type that the source CLR type is mapped to (or its default SQL mapping if that is unknown) to the default SQL type that the destination CLR type maps to.

After conversion, casts change the behavior of operations performed on a CLR expression to match the behavior of other CLR expressions that naturally map to the destination type.
Casts are also translatable within the context of inheritance mapping. Objects can be casted to more specific entity subtypes so that their subtype-specific data can be accessed.

The following is a matrix of the valid built-in SQL Server 2005 conversions, for reference (from http://msdn2.microsoft.com/en-us/library/ms187928.aspx):

[image: image10.png]1an ¥13
x|
Juetiea—|bs

sayguapranbiun|
duersown|

g
Fauowyjews|
Fauouw|
(1iNDuAun)|
(Zinmuniews|
(rINDau

Fieuigaeal

Zieuiq

0/00/0/0/@/0/0/0[0 0]0]0/0/0|0j0j0j0/0/0I0j0]00l @ |O
0/0/0/0/0/0/0/000 0000000000000 0s o
000 000000000000000000000 0O
008 @0 e0000000000000000e 000
[00l@@8e/0/00000000000000I0 @000
00010 0/0/0/000 000000000 00000
00010 0/0/0/000 0000000000 o0 e 0o
cceeeeee00000000000 000000 0O
jocoooco0ee0000000000 000000 O
joocococee000000000 0000000 O
0o 0 c0e@e00000000 ©000000e0 0
jocloocoeecoc00006 000000000 O
locoooco0ee000000 ©0000O00OO0O®0 O
jocooco0ee00000 00000000000 0
locoooco0ee0o00o 000000000000 O
cco0c0ee000 0000000000000 0
[cCl0000ee00 ©000000000000e0 0
00000008 ++0000000060660000e0 0
00000 0®ex%x00000000000000e0 0
0o 0000 ©000000000000000e0 0
000000 00000000000000000e0 0
l0oco0o 000000000 000000000e e e
locoo 000000000 0000000000e e O
loclo 00000000000 000000000e e O
oo 0000 oooc0c000000000C00ee O

00 00000000000000000000CCee ®

smallint(INT2)
[tinyint(iNT1)
smallmoney
uniqueidentifier
sal_variant

varbinary
int(INT4)

® Explicit conversion

@ Implicit conversion

O conversion not allowed

% Requires explicit CAST to prevent the loss of precision or scale that

might occur in an implicit conversion.

the conversion must be explicit.

@ Implicit conversions between xml data types are supported only if the
source or target is untyped xml. Otherwise,

4.3.2 Numeric types

Basic arithmetic operators: + - (subtraction) * / % << >> - (unary negation)
Basic comparison operators: == != < <= > >=

Arithmetic and comparison operators work mostly as expected in the CLR, except that SQL does not support the modulus operator on floating-point numbers, and SQL does not support unchecked arithmetic.

An exception is that the modulus operator (% in C#) is not supported on floating-point types such as REAL and FLOAT.

Increment/decrement operators: ++ --

Increment and decrement operators cause side-effects when used within expressions that cannot be replicated in SQL and are therefore not supported.
4.3.3 Boolean types

Basic Boolean operators: & && | || ^ !
Boolean operators work as expected in CLR, except that short-circuiting behavior is not translated (&& behaves like & and || behaves like |)
4.3.4 Sequence operators

Supported sequence operators:
public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate)

public static IQueryable<T> OfType<T>(this IQueryable source)

public static IQueryable<T> Cast<T>(this IQueryable source)

public static IQueryable<S> Select<T,S>(this IQueryable<T> source, Expression<Func<T, S>> selector)

public static IQueryable<S> SelectMany<T,S>(this IQueryable<T> source, Expression<Func<T, IEnumerable<S>>> selector)

public static IQueryable<V> Join<T,U,K,V>(this IQueryable<T> outer, IQueryable<U> inner, Expression<Func<T,K>> outerKeySelector, Expression<Func<U,K>> innerKeySelector, Expression<Func<T,U,V>> resultSelector)

public static IQueryable<V> GroupJoin<T,U,K,V>(this IQueryable<T> outer, IQueryable<U> inner, Expression<Func<T,K>> outerKeySelector, Expression<Func<U,K>> innerKeySelector, Expression<Func<T,IEnumerable<U>,V>> resultSelector)

public static IOrderedQueryable<T> OrderBy<T,K>(this IQueryable<T> source, Expression<Func<T,K>> keySelector)
public static IOrderedQueryable<T> OrderByDescending<T, K>(this IQueryable<T> source, Expression<Func<T, K>> keySelector)
public static IOrderedQueryable<T> ThenBy<T, K>(this IOrderedQueryable<T> source, Expression<Func<T, K>> keySelector)
public static IOrderedQueryable<T> ThenByDescending<T, K>(this IOrderedQueryable<T> source, Expression<Func<T, K>> keySelector)

public static IQueryable<T> Take<T>(this IQueryable<T> source, int count)

public static IQueryable<T> Skip<T>(this IQueryable<T> source, int count)
public static IQueryable<IGrouping<K,T>> GroupBy<T, K>(this IQueryable<T> source, Expression<Func<T, K>> keySelector)
public static IQueryable<IGrouping<K, E>> GroupBy<T, K, E>(this IQueryable<T> source, Expression<Func<T, K>> keySelector, Expression<Func<T, E>> elementSelector)
public static IQueryable<T> Distinct<T>(this IQueryable<T> source)

public static IQueryable<T> Concat<T>(this IQueryable<T> source1, IQueryable<T> source2)

public static IQueryable<T> Union<T>(this IQueryable<T> source1, IQueryable<T> source2)

public static IQueryable<T> Intersect<T>(this IQueryable<T> source1, IQueryable<T> source2)

public static IQueryable<T> Except<T>(this IQueryable<T> source1, IQueryable<T> source2)
public static T First<T>(this IQueryable<T> source)
public static T First<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate)
public static T FirstOrDefault<T>(this IQueryable<T> source)
public static T FirstOrDefault<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate)
public static T Last<T>(this IQueryable<T> source)
public static T Last<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate)
public static T LastOrDefault<T>(this IQueryable<T> source)
public static T LastOrDefault<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate)

public static T Single<T>(this IQueryable<T> source)

public static T Single<T>(this IQueryable<T> source, Expression<Func<T,bool>> predicate)
public static T SingleOrDefault<T>(this IQueryable<T> source)

public static T SingleOrDefault<T>(this IQueryable<T> source, Expression<Func<T,bool>> predicate)

public static IQueryable<T> DefaultIfEmpty<T>(this IQueryable<T> source)
public static bool Any<T>(this IQueryable<T> source)

public static bool Any<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate)
public static bool All<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate)

public static int Count<T>(this IQueryable<T> source)
public static int Count<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate)
public static long LongCount<T>(this IQueryable<T> source)
public static long LongCount<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate)
public static T Min<T>(this IQueryable<T> source)

public static V Min<T,V>(this IQueryable<T> source, Expression<Func<T,V>> selector)

public static T Max<T>(this IQueryable<T> source)

public static V Max<T,V>(this IQueryable<T> source, Expression<Func<T,V>> selector)

public static <numeric type> Sum(this IQueryable<<numeric type>> source)

public static <numeric type> Sum<T>(this IQueryable<T> source, Expression<Func<T,<numeric type>>> selector)
public static <numeric type> Average(this IQueryable<<numeric type>> source)

public static <numeric type> Average<T>(this IQueryable<T> source, Expression<Func<T,<numeric type>>> selector)
Unsupported sequence operators:

Unsupported sequence operators include:
· Those that take a lambda with an index parameter

· Those that rely on the properties of sequential rows, such as TakeWhile

· Those that rely on an arbitrary CLR implementation, such as IComparer<T>, IEqualityComparer<T>
public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, int, bool>> predicate)

public static IQueryable<S> Select<T,S>(this IQueryable<T> source, Expression<Func<T, int, S>> selector)

public static IQueryable<S> SelectMany<T,S>(this IQueryable<T> source, Expression<Func<T, int, IEnumerable<S>>> selector)
public static IOrderedQueryable<T> OrderBy<T, K>(this IQueryable<T> source, Expression<Func<T, K>> keySelector, IComparer<K> comparer)

public static IOrderedQueryable<T> OrderByDescending<T, K>(this IQueryable<T> source, Expression<Func<T, K>> keySelector, IComparer<K> comparer)
public static IOrderedQueryable<T> ThenBy<T, K>(this IOrderedQueryable<T> source, Expression<Func<T, K>> keySelector, IComparer<K> comparer)
public static IOrderedQueryable<T> ThenByDescending<T, K>(this IOrderedQueryable<T> source, Expression<Func<T, K>> keySelector, IComparer<K> comparer)

public static IQueryable<T> TakeWhile<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate)
public static IQueryable<T> TakeWhile<T>(this IQueryable<T> source, Expression<Func<T, int, bool>> predicate)
public static IQueryable<T> SkipWhile<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate)
public static IQueryable<T> SkipWhile<T>(this IQueryable<T> source, Expression<Func<T, int, bool>> predicate)
public static IQueryable<IGrouping<K, T>> GroupBy<T, K>(this IQueryable<T> source, Expression<Func<T, K>> keySelector, IEqualityComparer<K> comparer)

public static IQueryable<IGrouping<K, E>> GroupBy<T, K, E>(this IQueryable<T> source, Expression<Func<T, K>> keySelector, Expression<Func<T,E>> elementSelector, IEqualityComparer<K> comparer)
public static IQueryable<T> DefaultIfEmpty<T>(this IQueryable<T> source, T defaultValue)

public static T ElementAt<T>(this IQueryable<T> source, int index)

public static T ElementAtOrDefault<T>(this IQueryable<T> source, int index)

public static bool Contains<T>(this IQueryable<T> source, T item)

public static IQueryable<T> Reverse<T>(this IQueryable<T> source)
public static bool EqualAll<T>(this IQueryable<T> source1, IQueryable<T> source2)

public static T Aggregate<T>(this IQueryable<T> source, Expression<Func<T,T,T>> func)
public static U Aggregate<T,U>(this IQueryable<T> source, U seed, Expression<Func<U,T,U>> func)

public static V Aggregate<T,U,V>(this IQueryable<T> source, U seed, Expression<Func<U,T,U>> func, Expression<Func<U,V>> selector)
Differences from .NET:
All supported sequence operators work as expected in the CLR, except:
· Average will return a value of the same type as the type being averaged (in the CLR, Average always returns either a double or a decimal). If the source argument is explicitly cast to double/decimal or the selector casts to double/decimal, the resulting SQL will also have such a conversion and the result will be as expected.

· Distinct is not supported on TEXT/NTEXT/IMAGE columns or any type that contains such columns.
4.3.5 System.Object methods
Supported:
public virtual bool Equals(object obj)
public static bool Equals(object objA, object objB)

public virtual string ToString();

Differences from .NET:
The output of ToString for double uses CONVERT(NVARCHAR(30), @x, 2) on SQL, which always uses 16 digits and “Scientific Notation”, e.g. “0.000000000000000e+000” for 0, so it does not give the same string as .NET’s Convert.ToString().
ToString is not supported for binary types such as BINARY/VARBINARY/IMAGE/TIMESTAMP.
Not supported:
public virtual int GetHashCode();
public Type GetType();

protected object MemberwiseClone();

public static bool ReferenceEquals(object objA, object objB);
4.3.6 System.String methods

Supported:
Non-static methods:
public int Length { get; }

public char this[int index] { get; }

public string Substring(int startIndex);

public string Substring(int startIndex, int length);

public bool Contains(string value);

public bool StartsWith(string value);

public bool EndsWith(string value);

public int IndexOf(char value);

public int IndexOf(string value);

public int IndexOf(char value, int startIndex);

public int IndexOf(string value, int startIndex);

public int IndexOf(char value, int startIndex, int count);

public int IndexOf(string value, int startIndex, int count);

public int LastIndexOf(char value);

public int LastIndexOf(string value);

public int LastIndexOf(char value, int startIndex);

public int LastIndexOf(string value, int startIndex);

public int LastIndexOf(char value, int startIndex, int count);

public int LastIndexOf(string value, int startIndex, int count);
public string Insert(int startIndex, string value);

public string Remove(int startIndex);

public string Remove(int startIndex, int count);

public string Replace(char oldChar, char newChar);

public string Replace(string oldValue, string newValue);

public string Trim();

public string ToLower();

public string ToUpper();
public string PadRight(int totalWidth);

public string PadRight(int totalWidth, char paddingChar);

public string PadLeft(int totalWidth);

public string PadLeft(int totalWidth, char paddingChar);

public override bool Equals(object obj);

public int CompareTo(object value);

public int CompareTo(string strB);

Static methods:
public static int Compare(string strA, string strB);
public static string Concat(object arg0);
public static string Concat(params object[] args);

public static string Concat(params string[] values);

public static string Concat(object arg0, object arg1);

public static string Concat(string str0, string str1);

public static string Concat(object arg0, object arg1, object arg2);

public static string Concat(string str0, string str1, string str2);

public static string Concat(object arg0, object arg1, object arg2, object arg3);
public static string Concat(string str0, string str1, string str2, string str3);
public static bool Equals(string a, string b);
Constructor:

public String(char c, int count);
Operators:
 +, ==, !=

Not supported:

· Culture-aware overloads (methods that take a CultureInfo / StringComparison / IFormatProvider)
· Methods that take or produce a char[]
Static:

string Copy(string str)
int Compare(string strA, string strB, bool ignoreCase);

int Compare(string strA, string strB, StringComparison comparisonType);

int Compare(string strA, string strB, bool ignoreCase, CultureInfo culture);

int Compare(string strA, int indexA, string strB, int indexB, int length);

int Compare(string strA, int indexA, string strB, int indexB, int length, bool ignoreCase);

int Compare(string strA, int indexA, string strB, int indexB, int length, StringComparison comparisonType);

int Compare(string strA, int indexA, string strB, int indexB, int length, bool ignoreCase, CultureInfo culture);

int CompareOrdinal(string strA, string strB);

int CompareOrdinal(string strA, int indexA, string strB, int indexB, int length);

string Join(string separator, string[] value [,...])

Non-static:

string ToUpperInvariant()

string Format(string format, object arg0) + overloads

int IndexOf(string value, int startIndex, StringComparison comparisonType)
int IndexOfAny(char[] anyOf)

string Normalize(), bool IsNormalized()

string Normalize(NormalizationForm normalizationForm)

string[] Split(...)
bool StartsWith(string value, StringComparison comparisonType)

char[] ToCharArray()

string ToUpper(CultureInfo culture)

string TrimEnd(params char[] trimChars)

string TrimStart(params char[] trimChars)
Differences from .NET:
Queries do not account for any SQL Server collations that may be in effect on the server, and thus will provide culture-sensitive, case-insensitive comparisons by default, which differs from .NET’s default case-sensitive semantics.
LastIndexOf returns 0 instead of -1 when no match is found.

CompareTo returns null if either this or CompareTo’s method argument is null, instead of throwing an exception or returning a random value.
Substring returns an empty string when the startIndex + length is out of bounds, instead of throwing an exception.
Strange results may be returned from concatenation or other operations on fixed-length strings (CHAR/NCHAR) as these types automatically have padding applied within the database. Extra padding on return values or strange results relating to the padding are considered acceptable.

The following methods have no valid translation for TEXT/NTEXT columns (note, these methods are supported for VARCHAR/NVARCHAR, including VARCHAR(max) and NVARCHAR(max)):

· Substring(int startIndex)

· Trim()

· Replace()

· ToUpper()

· ToLower()

· Remove(…)

· PadLeft(…)

· PadRight(…)
4.3.7 System.Math methods
Supported static methods:
public static decimal Abs(decimal value);

public static double Abs(double value);

public static float Abs(float value);

public static int Abs(int value);

public static long Abs(long value);

public static sbyte Abs(sbyte value);

public static short Abs(short value);

public static double Acos(double d);

public static double Asin(double d);

public static double Atan(double d);

public static double Atan2(double y, double x);

public static long BigMul(int a, int b);

public static decimal Ceiling(decimal d);

public static double Ceiling(double a);

public static double Cos(double d);

public static double Cosh(double value);

public static double Exp(double d);

public static decimal Floor(decimal d);

public static double Floor(double d);

public static double Log(double d);

public static double Log(double a, double newBase);

public static double Log10(double d);

public static byte Max(byte val1, byte val2);

public static decimal Max(decimal val1, decimal val2);

public static double Max(double val1, double val2);

public static float Max(float val1, float val2);

public static int Max(int val1, int val2);

public static long Max(long val1, long val2);

public static sbyte Max(sbyte val1, sbyte val2);

public static short Max(short val1, short val2);

public static uint Max(uint val1, uint val2);

public static ulong Max(ulong val1, ulong val2);

public static ushort Max(ushort val1, ushort val2);

public static byte Min(byte val1, byte val2);

public static decimal Min(decimal val1, decimal val2);

public static double Min(double val1, double val2);

public static float Min(float val1, float val2);

public static int Min(int val1, int val2);

public static long Min(long val1, long val2);

public static sbyte Min(sbyte val1, sbyte val2);

public static short Min(short val1, short val2);

public static uint Min(uint val1, uint val2);

public static ulong Min(ulong val1, ulong val2);

public static ushort Min(ushort val1, ushort val2);

public static double Pow(double x, double y);

public static decimal Round(decimal d);

public static double Round(double a);

public static decimal Round(decimal d, int decimals);

public static double Round(double value, int digits);

public static int Sign(decimal value);

public static int Sign(double value);

public static int Sign(float value);

public static int Sign(int value);

public static int Sign(long value);

public static int Sign(sbyte value);

public static int Sign(short value);

public static double Sin(double a);

public static double Sinh(double value);

public static double Sqrt(double d);

public static double Tan(double a);

public static double Tanh(double value);

public static decimal Truncate(decimal d);

public static double Truncate(double d);

Not supported:
public static int DivRem(int a, int b, out int result);

public static long DivRem(long a, long b, out long result);

public static double IEEERemainder(double x, double y);

Difference to .Net:
Round has different semantics in .NET (Banker’s rounding) than in SQL Server, however we are passing through to the SQL ROUND semantics and not attempting to implement Banker’s rounding.
See the discussion of Round in section 5.2.4 below.
4.3.8 System.Convert methods
Supported:
public static <Type2> To<Type2>(<Type1> value);
where Type1 and Type2 are each one of:
bool, byte, char, DateTime, decimal, double, float, int, long, short, string

These methods have the same semantics as the cast behavior described above.
Not supported:
Unsupported methods include:
· Versions with an IFormatProvider parameter

· Methods that involve char[] or byte[] (To/FromBase64CharArray, To/FromBase64String)

· The following methods:

public static <Type2> To<Type2>(<Type1> value);
where Type1 and Type2 are each one of:
sbyte, uint, ulong, ushort
int To<int type>(string value, int fromBase), ToString(... value, int toBase)
bool IsDBNull(object value)
TypeCode GetTypeCode(object value);

object ChangeType(...);
4.3.9 System.TimeSpan methods
Although database fields cannot be mapped to TimeSpan, operations on TimeSpan are supported as TimeSpan values can be returned from DateTime subtraction or introduced into an expression as a literal or bound variable.
Supported:
Constructors:

public TimeSpan(long ticks);
public TimeSpan(int hours, int minutes, int seconds);

public TimeSpan(int days, int hours, int minutes, int seconds);

public TimeSpan(int days, int hours, int minutes, int seconds, int milliseconds);
Operators:

+, - (subtraction), - (unary negation), ==, !=, <, <=, >, >=
Non-static methods / properties:

public int Days { get; }

public int Hours { get; }

public int Milliseconds { get; }

public int Minutes { get; }

public int Seconds { get; }

public long Ticks { get; }

public double TotalDays { get; }

public double TotalHours { get; }

public double TotalMilliseconds { get; }

public double TotalMinutes { get; }

public double TotalSeconds { get; }

public bool Equals(TimeSpan obj);

public int CompareTo(TimeSpan value);

public TimeSpan Add(TimeSpan ts);
public TimeSpan Subtract(TimeSpan ts);
public TimeSpan Duration();

public TimeSpan Negate();
Static methods:

public static int Compare(TimeSpan t1, TimeSpan t2);

public static bool Equals(TimeSpan t1, TimeSpan t2);
4.3.10 System.DateTime methods
Supported:

Constructors:

public DateTime(int year, int month, int day);
public DateTime(int year, int month, int day, int hour, int minute, int second);
public DateTime(int year, int month, int day, int hour, int minute, int second, int millisecond);
Operators:
+ (takes one DateTime and a TimeSpan, returns DateTime)
- (takes two DateTimes, returns TimeSpan)

- (takes one DateTime and a TimeSpan, returns DateTime)

==, !=, <, <=, >, >=

Non-static methods / properties:
public DateTime Date { get; }

public int Day { get; }

public DayOfWeek DayOfWeek { get; }

public int Hour { get; }
public int Millisecond { get; }

public int Minute { get; }

public int Month { get; }

public int Second { get; }

public TimeSpan TimeOfDay { get; }

public int Year { get; }

public int CompareTo(DateTime value);

public bool Equals(DateTime value);

Static methods:
public DateTime Add(TimeSpan value);

public DateTime AddDays(double value);

public DateTime AddHours(double value);

public DateTime AddMilliseconds(double value);

public DateTime AddMinutes(double value);

public DateTime AddMonths(int months);

public DateTime AddSeconds(double value);

public DateTime AddTicks(long value);

public DateTime AddYears(int value);
public static DateTime Now { get; }

public static DateTime Today { get; }

public static bool Equals(DateTime t1, DateTime t2);
DateTime subtraction part pattern:

When the following pattern is recognized:

(dateTime1 – dateTime2).{Days, Hours, Milliseconds, Minutes, Months, Seconds, Years}
… it is translated into a direct call to DATEDIFF:

DATEDIFF({DatePart}, @dateTime1, @dateTime2)
Differences from .NET:
For a discussion of the differences between the .NET DateTime type and the SQL DateTime type, see the section on DateTime in section 5.1.2 below.
Not supported:

bool IsDaylightSavingTime();

bool IsLeapYear(int year);

int DaysInMonth(int year, int month);

long ToBinary();

long ToFileTime();

long ToFileTimeUtc();
string ToLongDateString();

string ToLongTimeString();

double ToOADate();

string ToShortDateString();

string ToShortTimeString();

DateTime ToUniversalTime();

DateTime FromBinary(long dateData), FileTime, FileTimeUtc, OADate

string[] GetDateTimeFormats(...)

DateTime UtcNow

4.4 SQL Function Mapping
There is functionality in SQL that we cannot expose through translation of existing CLR and .NET constructs. These include the LIKE function and the STDDEV aggregate function. There are also functions that have greatly different semantics to their .NET counterparts, such as DATEDIFF, where we are taking steps to translate and preserve the .NET semantics, but would also like to offer the ability to directly use the SQL semantics if the user so desires.
We will do this by offering new .NET methods that simulate the SQL behavior and then allowing mapping these methods to their SQL analogues within queries.
We will also provide new methods to allow accurate translation of .NET semantics for functions normally shadowed by a default translation to SQL semantics.
FUTURE WORK: This is an area of active exploration and will be finalized during a later feature crew.

4.4.1 SQL functions emulated with shadowed SQL behavior
4.4.1.1 DATEDIFF
4.4.2 SQL functions emulated with shadowed .NET behavior

4.4.2.1 ROUND
4.4.3 SQL functions not available in BCL
4.4.3.1 LIKE

4.4.3.2 STDDEV
5. Feature Decisions / Q&A

The following sections describe the rationale for the design decisions made regarding data types.
5.1 Type Mapping Rationale
5.1.1 Decimal/Money types

The SQL Server DECIMAL/MONEY/SMALLMONEY types and the CLR Decimal/Double types have the following differences:

· SQL Server (DECIMAL(precision,scale))

· Up to 38 digits of precision
· Range (with all digits to left of decimal point): -1038 + 1 to 1038 – 1
· Can represent all possible 0-38 digit numbers
· SQL Server (MONEY)

· Up to 18-19 digits of precision, but always with exactly 4 digits right of decimal point
· Range: -263/1000 to (263 – 1)/1000
· Can represent all possible 0-18 digit numbers, and some but not all 19 digit numbers
· SQL Server (SMALLMONEY)

· Up to 5-6 digits of precision, but always with exactly 4 digits right of decimal point
· Range: -231/1000 to (231 – 1)/1000
· Can represent all possible 0-5 digit numbers, and some but not all 6 digit numbers
· CLR (Decimal)

· Up to 28-29 digits of precision
· Range (with all digits to left of decimal point): -296 + 1 to 296 – 1
· Can represent all possible 0-28 digit numbers, and some but not all 29-digit numbers
· CLR (Double)

· Range: ±4.94065645841246544E-324 to 1.79769313486231570E+308
· Supports much greater magnitude than Decimal, but has less precision
· All decimal values can be converted to double without overflow, but precision may be lost
Our plan is to handle database DECIMAL types larger than DECIMAL(28,?) by mapping them to Double. This will unfortunately lose some precision, but this is preferable to magnitude loss.

5.1.2 DateTime types

There are differences in range and tick precision between SQL Server and CLR date/time types:

	Type
	Minimum value
	Maximum value
	Tick

	System.DateTime
	January 1, 0001
	December 31, 9999
	100 nanoseconds
(0.0000001 seconds)

	T-SQL DateTime
	January 1, 1753
	December 31, 9999
	3.33… milliseconds
(0.0033333 seconds)

	T-SQL SmallDateTime
	January 1, 1900
	June 6, 2079
	1 minute
(60 seconds)

However, since both the range and precision of the CLR DateTime type are greater than that of the two SQL Server types, data from SQL Server will never lose magnitude or precision while in .NET, although the reverse may occur.

SQL Server dates have no conception of TimeZones, whereas TimeZone support has become even richer in .NET 2.0. It will be up to the user to decide how they wish to store dates in their database (either as local time, UTC, or invariant) and perform the needed translations themselves before and after DLinq queries.
5.1.3 Floating-point types

SQL Server allows floating point types of variable size, specified as FLOAT(mantissaBits).

CLR Single is equivalent to REAL (a synonym for FLOAT(24)).

CLR Double is equivalent to FLOAT (which defaults to FLOAT(53)).

Our plan is to map FLOATs that are FLOAT(24) or less to Single, and larger floats to FLOAT(53).
SQL Server can technically store NaN, positive/negative infinity and positive/negative zero within queries but these values do not behave as expected, even in direct SQL queries. For the vast majority of customers, these are non-issues, and we can’t easily mitigate them, so for now this is probably acceptable.
5.1.4 Text fields

Sometimes, numeric data is stored in text fields within databases. We could potentially offer a mapping between SQL text types and CLR numeric types (and vice-versa), however many issues would then arise with operations. For example, the expected CLR behavior for + is addition for integer types, but is concatenation for string types. This would create difficult-to-translate queries involving + that still may not match the user’s intent.

For now, we will therefore not allow mappings between text fields and numeric fields, in either direction.

Also, SQL text fields can have their types annotated with collations that affect the default sorting order for that field. There is not necessarily a reasonable mapping between SQL collations and the various cultures available within .NET, and even so, it is not possible to similarly tag a .NET field or property to set such default sorting behavior on a per-field/per-property basis.

We will therefore not make any special accommodation automatically for SQL collations, which may result in differing sort orders when data is ordered within the database than when it is sorted in .NET.
5.1.5 Enum fields

There is no specific provision in SQL Server for Enum fields. Data that represents a choice between various options is traditionally stored in either a numeric field or a string field, and it is up to either a CHECK CONSTRAINT or the database programmer to avoid filling the field with data that does not represent a valid choice.

In the CLR, Enum types are stored internally as one of the integral types, but have a defined set of valid values, available through reflection.

We will support one type of mapping to CLR Enum types:

· Mapping to SQL numeric types: When a CLR Enum type is mapped to a SQL numeric type, the CLR Enum’s underlying integer value is mapped to the value of the SQL database field. The value of the field in SQL will be retrieved directly as the underlying integral value of the Enum type. When the Enum value is changed and data is saved back to the database, the Enum’s underlying integral value will be stored to the database field.
We also wished to support another CLR Enum mapping, but have cut the feature due to resource constraints:
· Mapping to SQL text types: When a CLR Enum type is mapped to a SQL text type, the SQL database value is mapped to the names of the CLR Enum members. For example, if there is a DaysOfWeek Enum defined that contains a member named Tue, that member will map to and from a database value of “Tue”. This mapping can be accomplished by using reflection over the Enum type.
Ultimately, it would also be valuable to support arbitrary mapping attributes on the CLR Enum members themselves, so that a value stored as “F” in the database can map to an Enum member called .Female, allowing use of more naturally named CLR Enums.
5.1.6 Unsupported mappings

We have explicitly decided not to map to the following .NET types have no supported mapping (although some such as TimeSpan may appear within translatable expressions as literals):

· TimeSpan

· Note that although TimeSpan values are not supported for type mapping, they are supported within expressions as they can be returned by date subtraction operations and introduced as literals and

· System.Data.SqlTypes.*

· System.Xml.* except XDocument and XElement

· IXMLSerializable

· Bitmap

· StringBuilder
· IntPtr

· UIntPtr

· Other string-like types such as Uri
Users who wish to use unsupported type mappings can instead map to a valid type and then create their own properties on the entity class to convert to and from the type they want.

DLinq supports at least one CLR type mapping for all SQL Server types except UDTs.

5.2 Expression Semantics Rationale
5.2.1 Boolean short-circuiting semantics

.NET offers optional short-circuiting semantics for Boolean and/or operators to allow skipping evaluation of the second operand if the result can be determined just from the first operand. This is often used to allow testing first if an object is null and only testing the object’s value if it is not null.

SQL queries, on the other hand, are set-based queries and do not have a defined order of evaluation. There is no concept of short-circuiting within SQL.

There are ways that we can force ordered evaluation within SQL using CASE statements, however these can often prevent the query planner from using indexes, hurting query performance.

We will therefore not take special precautions to ensure order of evaluation or do short-circuiting within Boolean operators.

5.2.2 Boolean 3-value logic

Handling of null values for nullable types is an open issue as there is different behavior between the CLR’s Nullable<T> types and SQL types, especially as relates to equality of null values. In SQL, null values are never equal, whereas in the CLR, they are always equal (in order to unify value type/reference type equality semantics). So far, we do not have a simple solution to reconcile this behavior.

The handling of this issue is outside the scope of this spec, and will be covered in the Query Translation Specification.
5.2.3 Integer overflow

In the CLR, integer overflow is not caught as an exception unless the operation is explicitly done in a checked context. Unchecked integer overflows wrap around the bounds of their type silently.

In SQL, all overflows cause the query to abort and we would therefore have to throw an OverflowException.

There is no reasonable way to cause overflows to silently wrap in SQL queries without hurting the performance badly for the 99% case where the user will not be overflowing their types.

We will therefore not take special precautions to ensure that integers “wrap around” when they overflow.
5.2.4 Floating-point rounding

The Math.Round method in .NET performs “Banker’s rounding”, where numbers ending in .5 will round to the nearest even digit, as opposed to the higher digit. For example, 2.5 rounds to 2, while 3.5 rounds to 4. This helps avoid systematic bias towards higher values when dealing with lots of data.

In SQL, the Round function instead always rounds away from 0. Therefore 2.5 would round to 3, as opposed to the 2 it rounds to in .NET.

There is a possible translation to perform Banker’s rounding that we have investigated, but this would again be potentially less performant, and the use cases where a user would require rounding behavior in the server that emulates .NET semantics seem rare. Also, it is still possible for the user to perform their own rounding before or after the query if they do require this level of control.

We will therefore not take special precautions to ensure that queries implement Banker’s rounding.
5.2.5 String comparison culture/case-sensitivity

The CLR String class by default will perform binary case-sensitive, culture-insensitive comparisons, whereas the default SQL Server collation sets text fields up for a case-insensitive, culture-sensitive comparison. This can affect both sort order and equality of CLR and SQL string fields.

Due to the myriad of different cultures and collations available within .NET and SQL Server, it will not be possible to ensure proper culture-sensitivity automatically. We could, however, at least support case-sensitive binary comparisons vs. culture-sensitive (case-insensitive) text comparisons.

When a user calls the simple overloads of String.Equals (or uses the equality operator), we could annotate the comparison within the generated query to enforce ordinal binary comparisons, which ensure that the data is exactly the same, disregarding culture (this matches .NET semantics).

When a user calls the overload of String.Equals that takes a StringComparison value, we could check to see if the user is passing in one of the …IgnoreCase values. If so, we can allow the default comparison to take place.

For now, however, we are not addressing this issue, and therefore string comparisons that would always be case-sensitive in the CLR will use the database’s collation (which is case-insensitive by default).

5.2.6 Fixed-length/length-limited strings

SQL has two types of length-limited strings (assuming a length of 50 below):

· CHAR(50)/NCHAR(50) are fixed-length strings. These strings are always the length defined in their type, and are padded to fill out that length if they are too short.

· VARCHAR(50)/NCHAR(50) are length-limited strings. These strings are capped at the length defined in their type, but can be shorter. These strings are not padded.

It is possible to map these types to Char[50], and we will support this mapping, however this still does not exactly preserve the padding behavior for CHAR(50)/NCHAR(50), which will be quite difficult to translate across all possible expressions. This is also not optimal for a default mapping anyway, as the mapped instance methods available on String are not available on Char[].

We will therefore allow mappings to fixed-length string types, but with the caveat that certain expressions may result in semantics that do not exactly match the .NET semantics.

5.2.7 GUID ordering

The .NET Guid type has different ordering behavior than the SQL UNIQUEIDENTIFIER type. .NET sorts GUIDs according to their lexicographic display order, whereas SQL sorts GUIDs by a specific octet order that previously ensured that newly generated GUIDs would be sorted last. Due to privacy concerns, Microsoft products no longer generate GUIDs such that they would naturally order themselves in this fashion, however SQL continues to sort UNIQUEIDENTIFIER fields in this way.

Given that GUID ordering is now random, sort order now comes down to an issue of convention, rather than meaning.

We will therefore not take special precautions to ensure that GUIDs are ordered in any particular fashion.
6. Inspection Checklist

See the DevDiv Spec Handbook for worksheets and steps to completing inspection items.

Spec Inspection Checklist

	Date
	Approver
	Category
	Inspection Requirement

	
	
	Feature Crew
	The PM is satisfied that the design in this document is complete and accurate.

	
	
	Feature Crew
	The developer is satisfied that the design in this document is complete and accurate.

	
	
	Feature Crew
	The tester is satisfied that the design in this document is complete and accurate.

	
	
	Feature Crew
	The UE writer is satisfied that this document is complete.

	
	
	Feature Crew
	Either the UX participant or the UX delegate is satisfied that this document is complete.

	
	
	Feature Crew
	Either the IPM or the international delegate is satisfied that this document is complete.

	
	
	Bug Free
	All spec bugs logged against this document are resolved.

	
	
	Customer Review
	All customer review issues in this document are resolved.

	
	
	Performance
	All customer visible performance characteristics are listed in this document.

	
	
	Performance
	The requirements section of this document states the budget available for all customer visible performance characteristics.

	
	
	User Experience
	All APIs in this document pass a cognitive dimensions review.

	
	
	User Experience
	All UI components in this document are named according to the guidelines.

	
	
	Instrumentation
	All SQM measurements are identified in this document.

	
	
	Accessibility
	All interactions with the UI can be created using only the keyboard.

	
	
	Accessibility
	Custom controls in this document have IAccessible and UI Automation implementations defined.

	
	
	International
	PoliCheck reports no issues in this document.

	
	
	Setup
	This document identifies information needed to author setup.

	
	
	DCR
	This document records the bug number in the change history and describes changes in the Q&A section.

Feature Complete Inspection Checklist

	Date
	Approver
	Category
	Inspection Requirement

	
	
	Customer Review
	Customers have had sufficient time to review this document.

	
	
	Customer Review
	All outstanding feedback from customers has a response.

	
	
	User Experience
	All UI components are declared in the UI Components List.

	
	
	User Experience
	All data used to justify scenario and design decisions are stored in the evidence repository.

	
	
	International
	PM has verified that scenarios work in the pseudo-localized build.

7. Change History

	Change
	Changed By
	Date

	Draft brought to spec review
	t-AlexT
	7/11/06

	Integrated many of the fixes requested during spec review meeting

Spec bug fixes (DevDiv 8414, 8425, 9090, 14577, 16744)
	t-AlexT
	7/17/06

	Removal of CLR Enum mappings to SQL text types

More spec bug fixes (DevDiv 9019, 14434, 17254, 21500, 21677)
Update of mapping matrix to represent spec bug changes
	t-AlexT
	8/14/06

	Updated Boolean row and BIT column in mapping matrix
	t-AlexT
	8/22/06

	Updated Char numeric mappings, Float/Single and UNIQUEIDENTIFER matrix issues

Ready for signoff
	t-AlexT
	8/26/06

Microsoft Confidential. © 2006 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Any use, distribution or public discussion of, and any feedback to, these materials is subject to the terms of the attached license. By providing any feedback on these materials to Microsoft, you agree to the terms of that license.
ii
Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation 2006

IF DATE \@ "yyyy" = "1998" "1998-" . All Rights Reserved.

