[image: image3.jpg]



[image: image4.jpg]ﬂmMicrosoft Dynamics





[image: image5.jpg]



Microsoft Dynamics AX 4.0
Writing Secure X++ Code
White Paper

[Security and Trustworthy Computing]

[image: image6.jpg]



Date: June 12, 2006
Michael Fruergaard Pontoppidan

Mukkul Dasgupta

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication.  Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only.  MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user.  Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation. 

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document.  \Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred. 

 (2006) Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Dynamics, Axapta, Dynamics AX, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

5Introduction


5Kernel APIs


5Dangerous Code Patterns in X++


5Recommended Approach for Updating Legacy Code


7Credentials and Cryptography


8Dynamics AX Code Access Security


8Implementing Code Access Security


8API Owner


8API Consumer


9User Impersonation API


9Mitigation


10New Best Practice Rules


10Direct SQL


11Mitigation


11New Best Practice Rules


11Run-time Compilation and Execution of X++


11Mitigation


12New Best Practice Rules


12Data-controlled Execution of X++


12Mitigation


13New Best Practice Rules


13Files


14Mitigation


14New Best Practice Rules


15Win32 Interop


15Mitigation


15New Best Practice Rules


16Using Managed Assemblies


16WinAPI


17Mitigation


17New Best Practice Rules


18Server-bound Batch Processing


18Provisioning Legacy Batch-enabled X++ Classes


19Checking for Unsupported AX Client Interactions


19Enabling a Class to Run as a Server-bound Batch Job


19Classes in Batch Journals


20Tighter Privileges on APIs


20Modifying X++ and Metadata


20Mitigation


20APIs with Enforced Authorization Checks


20APIs that are Turned Off by Default


21Data Authorization


21Access to System Tables (Table Permission Framework)


21AOSAuthorization Property


22AOSValidate Functions


22Record-level Security


22Using Display and Edit methods


22Using a ListView, TreeView, or Table to Show Data


23The following code example illustrates the use of the same ListView with record-level security enabled.


23New Best Practice Rules


23Using a Temporary Table as a Data Source


24The following example shows the same code with record-level security enabled.


24New Best Practice Rules


25Display and Edit Methods


25Mitigation


26New Best Practice Rules


27Appendix A – Dangerous APIs


30Appendix B – Authorization APIs


30Explicit Checks


30Imperative Checks


30Declarative Checks


30Implicit Checks


31Appendix C – AOS Table Security


34Appendix D – Permission Classes for Dynamics AX Code Access Security-protected APIs


38API Owner Code Sample: Securing Application Classes


40API Consumer Code Samples


40Applying Code Access Security to the TextBuffer API


40Applying Code Access Security to the DLL API


42Asserting Multiple Permissions within a Function




Introduction

Trustworthy computing means helping to make sure that the user can expect—and even take for granted—a safe and reliable computing experience. The Microsoft trustworthy computing goals are designed to deliver the level of trust and responsibility that people expect from the computing industry. These goals include the following:

· Security: Users expect their systems to be resilient, and for system and data confidentiality, integrity, and availability to be maintained.

· Privacy: People expect and demand control over access to and use of their personal information.

· Reliability: As computers become increasingly central to how people work and live, they must perform as expected. Users look for a consistently trouble-free computing experience.

· Business Integrity: Belief in technology is stronger when the industry is responsive, responsible, and respectful.

This white paper addresses one of the most important aspects of trustworthy computing: writing secure code. This paper will help you to write X++ code that meets the trustworthy computing requirements of Microsoft Dynamics/AX 4.0.
For more information about writing secure code, see the following:

· M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press, 2004.

· BF. Swiderski and W. Snyder. Threat Modeling. Microsoft Press, 2003.
· “Microsoft Dynamics AX Security” in the Microsoft Dynamics AX SDK.
Kernel APIs

While the kernel APIs have been reviewed for security issues, make sure that you use the APIs in as secure a way as possible. For example, when you use the APIs to execute direct SQL statements, the direct SQL strings must be validated — or better yet, be outside the influence of an adversary. 

The kernel APIs that require special attention are listed in Appendix A – Dangerous APIs. The appendix also refers to a section of this document that describes why the API is dangerous and how to safely use it.

Dangerous Code Patterns in X++

The list of dangerous code patterns in the following sections is not complete. Microsoft will add new patterns to the list as they are found. The purpose of the list is to stimulate the threat modeling process.

The list includes mitigations if they are available.

Recommended Approach for Updating Legacy Code

When you run the Dynamics AX Best Practices tool, it will generate errors for dangerous APIs and code patterns, even if you have mitigated them. APIs that have added security authorization checks do not generate best practices errors because such checks will result in broken code only if used in unsupported scenarios.

To let the Best Practices tool know that you have mitigated a particular dangerous API, add the following comment.
//BP deviation documented

Use the following guidelines to determine threat priorities.
1. Changes that take longer to fix because they have longer call chain stacks (which take time to analyze and add appropriate validation code):

· COM

· DLL

· DLLFunction

· ClrInterop

· ClrObject

2. Dangerous APIs with the most occurrences in the Dynamics AX application (and therefore can be used as a guideline for ISV code):

· AsciiIO

· TextBuffer

· COM

· DLL

· SQL statement

3. Dangerous APIs that may involve more detailed parameter validation or input from security experts:

· RunBuf

· EvalBuf

· XppCompiler

· DictClass/Table

· SQL statement

4. Mitigating information disclosure threats:

· Display or edit methods

· Record-level security (RLS) in ListView, TreeView, Table, or temp tables

Credentials and Cryptography

Credentials are used to log into components that are not part of Dynamics AX. Most credentials include a user name and password. You should avoid storing credentials because it is always risky.

To mitigate threats associated with credentials, follow these guidelines:
· Do not store credentials.

· Use Microsoft® Windows® operating system login (if possible).

· Prompt the user for credentials (when needed).

Use cryptography correctly. Never attempt to hide or encrypt data by using custom cryptographic protocols. Use the appropriate CryptoAPIs as described in the Cryptography reference in the Microsoft Platform SDK.
Dynamics AX Code Access Security

Microsoft Dynamics AX code access security allows developers to protect dangerous APIs from being invoked by untrusted code (code that does not originate from the Application Object Tree (AOT)). Code access security does this by performing the following actions:

5. It verifies that the code asserted the appropriate permission on the call stack to use the dangerous API.

6. It verifies that the assert (the request to use the dangerous API) was executed in trusted code and saved in the AOT.

7. It verifies that the assert was executed on the same tier as the dangerous API.

For Dynamics AX version 4.0, code access security covers the use of dangerous APIs on the server tier only. You do not need to modify or mitigate client-only invocations of dangerous APIs.

Implementing Code Access Security

Code access security must be implemented by the dangerous API owner and all consumers of the dangerous API.
8. The owner secures the dangerous API by implementing a specific type of permission class and calling the demand() method on that class 

9. Each API consumer must explicitly request permission to invoke a secured dangerous API by calling the assert() method on the permission class.

Application code will break unless both of these steps are completed.

Note   Code access security does not guarantee the validity of any data or parameters passed to the dangerous API. Data validation is still the responsibility of the consumer.
API Owner

If you own an application class (as opposed to a kernel class) that you want to secure by using Dynamics AX code access security, see Appendix D – Securing Application Classes section.

API Consumer

The User Impersonation section and Appendix D – API Consumer Code Samples include detailed examples of how API consumers must modify their code for APIs that are protected by Dynamics AX code access security. The table in Appendix D – Permission Classes for CAS-protected APIs lists the permission classes and corresponding parameters for using APIs that are protected by Dynamics AX code access security in AX 4.0. 

The APIs listed in the following subsections are protected by Dynamics AX code access security:

· Direct SQL
· Run-time Compilation and Execution of X++
· Data-controlled Execution of X++
· Files
· Win32 Interop
· Windows API
Dynamics AX code access security does not support multiple successive calls to assert() within the same function. 

This will result in the following error.

Error: Multiple calls to CodeAccessPermission.Assert

The supported methods of asserting multiple permissions within the same function are described in Appendix D – Asserting multiple permissions.
A configuration command is available for AX code access security. For more information, see “Configuration Commands (Server)” in Dynamics AX Administrator Help (axitpro.chm).
To configure code access security:
10. Open a command prompt (Click Start, point to All Programs, point to Accessories, and click Command Prompt), and navigate to the directory in which Microsoft Dynamics AX is installed.

11. Type the following command:
AX32.exe -caslevel=<enable/disable/trace>

Where:
· Enable (the default setting) activates code access security for all code access security-protected APIs. If a protected API is invoked incorrectly, an error is generated.

· Disable disables code access security. 

Important   Do not set the caslevel to disable in a production environment.

· Trace simulates code access security. An error is not generated if a protected API is invoked incorrectly. Instead, debug information is written to the Infolog. Use this option in development or test environments to determine the changes that you need to make.

Important   Do not set the caslevel to trace in a production environment.
User Impersonation API

The runas() API enables impersonation of users in X++. This is considered to be a dangerous API, and has been secured by using code access security. 

Mitigation
To mitigate threats associated with the use of the runas() API, you must make sure that users cannot influence the code execution. Follow these guidelines:
· Implement all of the validation and checking required for the parameters that are passed to runas()
. For example, validate that you obtain parameters from a trusted source (such as a secure system table).
· Instantiate the permission class for runas() by supplying the required parameters. For runas(), provide the user name of the Dynamics AX user to be impersonated, as shown in the following example.

permission = new RunAsPermission(RunAsUser);
· To declare that you are going to use runas (), introduce an assert method for the permission class, as shown in the following example.

permission.assert();
· Call runas() as shown in the following example. An exception is thrown if the correct permission is not found on the stack. 
runas(classnum(ExecuteSomeCode),

staticmethodstr(ExecuteSomeCode, runJobInImpersonatedSession),

RunAsUser,

Company,

      infolog.language(),

      runAsParams);
· Use the revertAssert method to limit the scope of the assert to the smallest possible block of code. Although revertAssert is automatically called when the method ends, it is a best practice to use revertAssert to limit the scope of the assert. See the following example.
CodeAccessPermission::revertAssert();
New Best Practice Rules

The compiler reports a best practice error when the following method is used:

· RunAs(parameter)
Direct SQL

When direct SQL is used through the Connection and Statement classes, it is subject to SQL injection threats. Classes that wrap these kernel classes—for example, the SysSQLBuilder classes—are equally dangerous. You should keep in mind that record-level security and field-level security are not enforced on the Statement class. 

To learn more about SQL injection attacks, see the article, Stop SQL Injection Attacks Before They Stop You, on MSDN.
The following Direct SQL example code is at risk for SQL injection.
void MyFunction str _value)

{

    DictTable  dictTable  = new DictTable(tableNum(custTable));

    Connection connection = new Connection();

    Statement  statement  = connection.createStatement();

    str sql = strfmt("SELECT * FROM %1 WHERE %2 == %3",

              dictTable.name(DbBackend::Sql), 

              fieldStr(Custtable, accountNum), 

              _value);

    ;

    statement.executeUpdate(sql);

}

Mitigation

To mitigate SQL injection threats associated with the use of Direct SQL, follow these guidelines.

· Use safer alternatives for executing SQL: for example, use the Query class, Views, or X++ Select statements.

· The only real mitigation for SQL injection is to use parameterized queries. User input data validation tends to have limited effectiveness.

· Do not use the forceLiterals keyword in X++ Select statements.

· Do not set Query.literals(true). 
· Avoid accepting any input that the user can directly control.

· Make sure that you do not expose the data that is returned to the user without explicit security validation.

New Best Practice Rules

The compiler reports a best practice error if the parameters passed to the following methods are neither text constants nor macros:

· Statement.executeQuery(parameter)

· Statement.executeUpdate(parameter)
Run-time Compilation and Execution of X++ 

The following APIs allow execution of a string variable that contains X++ code:

· RunBuf

· EvalBuf

· XppCompiler

If an attacker can control the input passed to these methods, the entire system is compromised. Injection of code can make an attacker the owner of the client computer, the AOS computer and the database computer.

Make sure that the input parameters do not contain non-validated user input.

Mitigation
To mitigate code injection threats associated with string variables, follow these guidelines.

· Require developer privilege.
Use developer authorization on the controls and data types where the attacker can enter X++ code. An attacker would need to have developer privileges to exploit this vulnerability. To require developer authorization, set the security key property to SysDevelopment.

DO NOT allow a non-developer user to influence input parameters of these APIs.

· For defense in depth, refactor the code to eliminate any need for compiling the code at run time.

For example, you can refactor the following code
buf  = @'

void go(%1 _var)

{

;

    _var.%2();

}

';

buf = strfmt(buf, classId2Name(classidget(this)), methodName);

if (compiler.compile(buf))

{

    runbuf(buf, this);

}

To the following code
SysDictClass::invokeObjectMethod(this, methodName);

New Best Practice Rules

The compiler reports a best practices error if the parameters passed to the following methods are neither text constants nor macros:

· Runbuf(parameter)

· Evalbuf(parameter)

The compiler reports a best practice error when the following methods are used:

· XppCompiler.execute()

· XppCompiler.executeEx()

Data-controlled Execution of X++ 

The following APIs allow the execution of X++ code based on data.
· Thread
· DictClass.callObject()

· DictClass.callStatic()

· DictTable.callObject()

· DictTable.callStatic()

· AOSLoadGen

Mitigation

To mitigate threats associated with data-controlled execution of X++ code, follow these guidelines:

· Require developer privilege.
· Use developer authorization on the controls and data types where the attacker can enter X++ code. An attacker would need to have developer privileges to exploit this vulnerability. To require developer privilege, set the security key property to SysDevelopment.

· Make sure that data passed to these APIs does not contain non-validated user input.

New Best Practice Rules

The compiler reports a best practices error if the parameters passed to the following methods are neither text constants nor macros:

· new Thread(parameter)

· DictClass.callObject(parameter)

· DictClass.callStatic(parameter)

· DictTable.callObject(parameter)

· DictTable.callStatic(parameter)

· new AOSLoadGen(parameter)

Files

File handling on the client does not expose additional threats because file handling runs only when the user is logged on to the client. 

The AOS runs in the context of a special Windows account that has the minimum privileges required to execute the actions that the AOS can perform. However, in some cases these privileges may exceed those set for the user. This can lead to potential security issues if the AOS performs arbitrary tasks on behalf of the client. The following figure illustrates this discrepancy.

[image: image1.emf]Business

Connector

Windows

Client

AOS

Database

Trust

Boundary

Trust

Boundary

Windows 

Authenticated User

AOS Least 

Privileged User


Mitigation
To mitigate threats associated with kernel file APIs, use one of the following two mitigation strategies:

· Bind the API to the client.
Set the called from property to client. This mitigation has been implemented in the following classes, resulting in different behavior in Dynamics AX 4.0 than in previous releases:

· Image

· ImageList

· Protect APIs by using Dynamics AX code access security.

You can protect the methods on file manipulation classes by using the FileIOPermission class. API consumers must change their calling code to work with AX CAS. For more information about the permission class and its parameters, see Appendix D.
In addition, you can use the following mitigation strategies:
· Avoid working with files from the server tier. This includes objects set to run on called from. Be aware that batchable (RunbaseBatch) jobs always run on server.

· Do not allow the user to control parameters for files on the server.

· Instead of having the server read the file, have the client read the file and then send the contents to the server.

New Best Practice Rules

The compiler reports a best practices error if the parameters passed to the following methods are neither text constants nor macros:

· new BinaryIo(parameter)

· new AsciiIo(parameter)

· new CommaIo(parameter)

· new Comma7Io(parameter)

· new Io(parameter)

· XmlDocument.load(parameter)

· XmlDocument.save(parameter)

· XmlDocument.newFile(parameter)

· XmlReader.newFile(parameter)

· XmlTextReader.newFile(parameter)

· XmlWriter.newFile(parameter)

· XmlTextWriter.newFile(parameter)

· XmlSchema.newFile(parameter)

· XmlSchema.writeToFile(parameter)

The compiler reports a best practices error if the following methods are used:

· TreeNode.treenodeExport()

· TextBuffer.toFile()

· TextBuffer.fromFile()

· BinData.loadFile()

· BinData.saveFile()

Win32 Interop

The following APIs support calling into unmanaged code:

· DLL

· DLLFunction

· COM

· COMDispFunction
For managed code, the following APIs support calling into unmanaged code:

· ClrObject

· ClrInterop
Mitigation

To mitigate threats associated with calls to unmanaged code, follow these guidelines:

· Always validate the (string) input parameters that are used to create instances of these objects. If an adversary can control which DLL/COM object to use, the adversary can compromise parts of the system through AX APIs that the adversary would normally not be able to access. 

New Best Practice Rules

A non-suppressible best practices error will occur if the parameters passed to these methods are neither text constants nor macros. Therefore, the following parameters must be constants or macros in all circumstances:
· new DLL(parameter)
· new DLLFunction(dll, parameter)
· new ClrObject(parameter)
· new COM(parameter)
· COMDispInfo.call([parameter])

A best practices error occurs if the following methods are used:

· ClrObject.Dispatch()

· ClrInterop.GetAnyTypeForObject()

· ClrInterop.GetObjectForAnyType()

· ClrInterop.StaticInvoke()

· ClrInterop.GetLastException()

· XmlNode.transformNode()

· XmlTransform.execute()
Using Managed Assemblies
Microsoft Dynamics AX 4.0 supports calling managed assemblies from within itself. These assemblies must be listed under the reference node in the AOT.

Use the following rules when you add a reference node to the AOT:
· The reference must use a fully qualified name.

· The assembly referenced must be strongly signed.

WinAPI

In version 3.0, most methods on the WinAPI class can execute on both the client and the server tier. Only authorized users should be allowed to call into the Windows API on the server. 
To reduce this risk, Microsoft Dynamics AX 4.0 includes the following changes: 
· All methods on the WinAPI are restricted to run only on the client.

· A new class, WinAPIServer, has been created. This class has a limited subset of the WinAPI functionality. Each method call on the WinAPIServer class is authorized before it can call into Windows.

It is important to use the right version of the class.

Calls made through WinAPIServer will execute in the security context of the AOS. Typically, the authenticated user running the client will not have any privileges on the AOS. This can lead to potential security issues if the AOS performs arbitrary tasks on behalf of the client.
The following examples illustrate how to update code from version 3.0 to version 4.0.

Version 3.0 code example
#WinAPI

str folderpath = WinAPI::GetFolderPathServer(#CSIDL_PERSONAL);

Version 4.0 code example
#WinAPI

str folderpath = WinAPIServer::GetFolderPath(#CSIDL_PERSONAL);

Mitigation

To mitigate threats associated with calls to the Windows API, follow these guidelines:

· Use WinAPIServer when you access the Windows API on the server tier (instead of using WinAPI as you did for Axapta 3.0).
· Always validate the (string) input parameters used to create instances of these objects. If an adversary can control which objects to use, the adversary can compromise parts of the system that the adversary would normally not be able to access.
New Best Practice Rules

A best practices error occurs if the following methods are used:

· WinAPIServer.CopyFile()

· WinAPIServer.CreateFile()

· WinAPIServer.DeleteFile()

· WinAPIServer.FileExists()

· WinAPIServer.FileSize()

· WinAPIServer.getFileDate()

· WinAPIServer.getFileModifiedDate()

· WinAPIServer.getFileSize()

· WinAPIServer.getFileTime()

· WinAPIServer.getFolderPath()

· WinAPIServer.getTempPath()

· WinAPIServer.pathExists()

· WinAPIServer.closeHandle()

Server-bound Batch Processing

Microsoft Dynamics AX 4.0 introduces a new type of batch job that is referred to as a server-bound batch job. It coexists in this release with the legacy batch jobs from previous Axapta releases. To execute server-bound jobs, you use the same AX client-based processing mechanism that existed in Axapta 3.0. However, server-bound batch jobs provide additional security mechanisms than legacy batch jobs provide.
Dynamics AX executes server-bound batch jobs for the user who submitted the batch job, not the user who is processing queued batch jobs (if they are different). Record-level security and security keys are applied to filter data as the batch job submitter, not the processing user.

Interactions between server-bound batch jobs and the AX client are deliberately restricted to reduce the possibility that information could be disclosed when data is transferred from the AOS (where the batch job runs) to the AX client (where batch processing was initiated and where the processing user has access to any data returned from the AOS).

To be compatible with future versions of Microsoft Dynamics AX, all new batch-enabled X++ classes in AX 4.0 must be developed as server-bound batch jobs. Also, you should review your existing (legacy) batch-enabled X++ classes to determine if they can be converted into server-bound batch jobs. 
Provisioning Legacy Batch-enabled X++ Classes

Only the following classes and methods are supported to interact with the AX client:

· Infolog:

· Add

· Copy

· Cut

· Num

· Line

· Import

· Export
· Global

· Error

· Info

· Warning

To move to a server-bound batch process, you must make sure that you do not have additional client interactions.
Checking for Unsupported AX Client Interactions

To identify unsupported AX client interactions, you can use any of the following techniques:

· Review your code manually. 

· Identify transition exceptions in the Infolog, as follows:
1. Convert the X++ classes to server-bound batch jobs (as described in the section, “Enabling a Class to Run as a Server-bound Batch Job,” below).

2. Submit the X++ class for batch processing.

3. Check the Infolog for transition exceptions.

· Use the client-server trace to identify client-server interactions, as follows:
1.
Submit the unmodified X++ class for batch processing.

2.
Check the client-server trace for client-server interactions.

Enabling a Class to Run as a Server-bound Batch Job
You must override a method to return true, as shown in the following example.
public boolean runsImpersonated()

{

    return true;

}

Classes in Batch Journals

A batch journal can contain a mixture of batch run modes. Classes in batch journals are executed according to whether they are legacy or server-bound. 

Tighter Privileges on APIs

One way to mitigate threats that can affect your code is to impose tighter privileges on APIs. This section describes the tightened privileges in effect for Microsoft Dynamics AX 4.0.

Modifying X++ and Metadata
X++ code and metadata are stored in the Application Object Data (AOD) files. The AOS manages all reading and writing to these files.

There are the APIs to create, read, update, and delete metadata and X++ source code in Microsoft Dynamics AX. These APIs are listed in Appendix A – Dangerous APIs.

Metadata and X++ source code can also be modified through a set of X++ wrappers for these APIs. These wrappers include ClassBuild, FormBuild, SysTreenode, xUtilElements.
The metadata store performs authorization checks to ensure that an attacker cannot tamper with metadata in the shared metadata repository. If unauthorized access attempts occur, the metadata store will generate an exception.

However, everyone is allowed read access to X++ source and metadata because this is required to execute the business logic.

Mitigation

To mitigate the risks associated with the required read access, follow these guidelines:

· Ensure that users have development privileges. To do this, set the security key property to SysDevelopment.

Note   Modifying metadata at run time by using APIs (such as FormBuild and QueryBuild) does not pose a threat, provided that the modified versions are not persisted in the AOD file.

APIs with Enforced Authorization Checks

Some kernel APIs have a built-in authorization check that is invoked at run time. If the call is not authorized, the API throws an exception.

See Appendix A – Dangerous Kernel APIs for a complete list.

Features that use these APIs should first perform an authorization check to provide a better user experience.

APIs that Are Turned Off by Default

Some kernel APIs are turned off by default. The administrator must manually turn on a configuration key so that the APIs can be used.

See Appendix A – Dangerous Kernel APIs for a complete list.

Features that use these APIs should first check the configuration key to provide a better user experience.

Data Authorization

Threat model analysis of Axapta 3.0 revealed that some tables—primarily system tables—require stricter security validations. This section describes the changes in Dynamics AX that impose stricter validation.

[image: image2.emf]AOS

Business 

Connector

Windows 

Client

Authenticated 

User

Database

R

CUD

Authorization 

Check

Machine 

Boundary

UI Filter


Access to System Tables (Table Permission Framework)

A new Table Permission Framework has been implemented in the kernel to protect the identified system tables. It consists of the following property and functions:

· aosAuthorization property

· aosValidateDelete(), aosValidateInsert(), aosValidateUpdate(),aosValidateRead(),and skipAosValidation() functions 

Features that use the system tables should first perform an explicit or implicit authorization check to provide a better user experience. This technique is described in Appendix B – Authorization APIs. See Appendix C – AOS Table Security for a list of currently protected tables and their AOSAuthorization property values.

AOSAuthorization Property

This property on a table can take any permutation of Create, Read, Update, and Delete (CRUD) values. The default value is None. The value of this property determines which CRUD operations will result in the AOS performing a security authorization check. The security-authorization check verifies that the current user has permission to perform the requested operation on that table. This is based on User Group Permissions. If the user does not have adequate permissions, the authorization check throws an exception.

For example, the UserInfo table has AOSAuthorizationProperty set to CD (Create and Delete). Whenever a Create or Delete operation is requested on that table, the AOS performs the authorization check. It does not do any additional checks for Read or Update operations. 

AOSValidate Functions
Microsoft Dynamics AX includes three new base functions for tables. These functions can be overwritten so that any table can perform more complex security authorizations. The functions are the following:

· AOSValidateInsert()

· AOSValidateUpdate()

· AOSValidateDelete()

For certain situations, such as upgrades, you may want to disable these validation checks. To disable the validate checks, you can call skipAosValidation(). However, this function is protected by the Dynamics AX code access security framework, as described previously in this document. 

Record-level Security

Record-level security is automatically handled by the kernel when a form or report is opened. However, record-level security is bypassed in several situations where the data binding to a control is performed manually. These situations are the following:

· Using the display and edit methods.

· Using ListView, TreeView, or a table to show data.

· Using a temporary table as a data source.

Using Display and Edit methods

When you use a display or edit method, consider using record-level security if a value is returned from another row. 

However, record-level security is not required in these situations:

· If the value is derived.

· If the value is based only on fields in the current record.

Also see Display and Edit Methods later in this document.

Using a ListView, TreeView, or Table to Show Data

When a list view, tree view, or table control is populated with data from a query, you must manually enable record-level security.

The following code example illustrates the use a ListView without record-level security enabled.
public void run

{

    CustTable custTable;

    super();

    while select custTable

    {

        listView.add(custTable.name);

    }
}

The following code example illustrates the use of the same ListView with record-level security enabled.
public void run

{

    CustTable custTable;

    super();

    // Ensure that RLS is used.

    custTable.recordLevelSecurity(true);

    while select custTable

    {

        listView.add(custTable.name);

    }

}

New Best Practice Rules

The compiler records a best practices error if the parameters passed to the following methods are neither text constants nor macros:

· new FormTreeItem(text)
· new FormListItem(text)
· FormTreeItem.text(text)

· FormListItem.text(text)

· FormListViewControl.add(text)

· FormTreeViewControl.add(text)

· TableCell.data(value)
Using a Temporary Table as a Data Source

When the form cache is being filled with data of your choice, you must make sure that the data uses record-level security. Usually, this occurs when you run a form on a temporary data set. This includes tables declared as temporary in the code (as shown in the following example) or situations where the Temporary property of a table in the AOT has been set to Yes.

The following example shows tables declared as temporary.
public void run

{

    CustTable custTable, tmpDatasource;

    while select custTable

    {

        tmpDataSource.data(custTable);

        tmpDataSource.insert();

    }

    formDataSource.setTmp();

    formDataSource.checkRecord(false);

    formDataSource.setTmpData(tmpDatasource);

    super();

}

The following example shows the same code with record-level security enabled.
public void run

{

    CustTable custTable, tmpDatasource;

;

    // Ensure that RLS is used.

    custTable.recordLevelSecurity(true);

    while select custTable

    {

        tmpDataSource.data(custTable);

        tmpDataSource.insert();

    }

    formDataSource.setTmp();

    formDataSource.checkRecord(false);

    formDataSource.setTmpData(tmpDatasource);

    super();

}

New Best Practice Rules

The compiler records a best practices error if the following is used in X++:

· xRecord.setTmp()

· SysTableLookup.parmTmp
This is an intermediary dangerous class::method because it is passed a temporary table, and cannot validate whether RecordLevelSecurity was used when it populates the temporary table.

Display and Edit Methods

You can enforce security on display or edit methods on forms (but not on reports) when the method is declared on the table in the AOT. 
In practice, if a user has access to a table, the user also has access to all of the display methods (from reports). 

In theory, a display method can expose any data from any table. If a display method returns data from another table (or another row in the same table), it poses a threat.

The following examples illustrate these vulnerabilities.

Example (Table: InventItemGroup)
display ForecastHasSales hasSalesBudget()

{

    return (select forecastSales

                where forecastSales.itemGroupId == this.itemGroupId).recId != 0;

}

Example (Table: CustInterestJour)
server display InterestAmountCur sumInterestAmount()

{

    InterestAmountCur   interestAmountCur;

    CustInterestTrans   custInterestTrans;

    while select sum(InterestAmount) from custInterestTrans

        group by CurrencyCode

        where custInterestTrans.InterestNote == this.InterestNote &&

              custInterestTrans.InterestCalculate

    {

        interestAmountCur += custInterestTrans.custInterestAmount(this);

    }

    return interestAmountCur;

}

Before taking action, consider each situation carefully. In many cases, the information is derived and therefore does not pose any threat. 

If a display method returns data from the same row but from another column, it also poses a threat. For example, a user may not be allowed to see another person’s monthly salary, but could run a query to ask for the annual salary (calculated value). 

Mitigation

To mitigate threats associated with the use of display and edit methods, follow these steps:

12. Evaluate each display method that returns data from another row, either in the same table or a different table. 

13. Discuss (internally) if this data poses an information-disclosure threat.

14. If the data does pose a threat, perform explicit authorization checks, and throw an exception if access is unauthorized. 

New Best Practice Rules

The compiler records a best practices error if the following X++ keywords are used: 

· Display or edit 
Appendix A – Dangerous APIs

	API
	Classification
	Covered in Topic

	AccessRightsList (table)
	APIs that change security or configuration
	Access to System Tables (Table Permission Framework)

	Application.dbSynchronize()
	APIs that change security or configuration
	APIs with Enforced Authorization Checks; see the Secure Server APIs spec.

	AOSLoadGen
	X++ execution
	Data-controlled Execution of X++

	AscIIIO
	File access
	 Files

	BinaryIO
	File access
	Files

	BinData
	File access
	Files

	ClrObject
	Interop 
	Win32 Interop

	COM
	Interop
	Win32 Interop

	Comma7IO
	File access
	Files

	CommaIO
	File access
	Files

	CompanyDomainList (table)
	APIs that change security or configuration
	Access to System Tables (Table Permission Framework)

	DataArea (table)
	APIs that change  security or configuration
	Access to System Tables (Table Permission Framework)

	DDEClient
	Interop
	APIs that are Turned Off by Default

	DDEServer
	Interop
	APIs that are Turned Off by Default

	DDETopic
	Interop
	APIs that are Turned Off by Default

	DictClass.CallObject()
	X++ execution 
	Data-controlled Execution of X++

	DictClass.CallStatic()
	X++ execution 
	Data-controlled Execution of X++

	DictIndex.Modify()
	Modifying the AOT
	Tighter Privileges on APIs

	DictTable.CallObject()
	X++ execution 
	Data-controlled Execution of X++

	DictTable.CallStatic()
	X++ execution 
	Data-controlled Execution of X++

	DictType.SetStringLen()
	Modifying the AOT
	Tighter Privileges on APIs

	DictType.SetStringRight()
	Modifying the AOT
	Tighter Privileges on APIs

	DLL
	Interop
	Win32 Interop

	DLLFunction
	Interop
	Win32 Interop

	DomainInfo (Table)
	APIs that change  security or configuration 
	Access to System Tables (Table Permission Framework)

	EvalBuf (function)
	X++ execution 
	Run-time Compilation and Execution of X++

	FormBuild*
	Modifying the AOT
	Tighter Privileges on APIs

	Image
	File access
	Files

	ImageList
	File access
	Files

	IO
	File access
	Files

	RunAs
	User impersonation
	User Impersonation API

	RunBuf (function)
	X++ Execution 
	Run-time Compilation and Execution of X++

	SaxReader
	File access
	Files

	Session.Terminate()
	APIs that change  security or configuration 
	APIs with Enforced Authorization Checks

	SqlDataDictionary
	Database access
	APIs with Enforced Authorization Checks

	Statement
	Database access
	Direct SQL

	SysConfig (table)
	APIs that change  security or configuration
	Access to System Tables (Table Permission Framework)

	SysDataExpImp.openFileServer
	File access
	APIs with Enforced Authorization Checks

	SysDataExcelCOM.buildDefFromFile
	File access
	APIs with Enforced Authorization Checks

	SysDataExcelCOM.buildWork
	
	

	book
	File access
	APIs with Enforced Authorization Checks

	SysAutoRun.fileExistsServer
	File access
	APIs with Enforced Authorization Checks

	SystemSequence
	Database access
	APIs with Enforced Authorization Checks

	TextBuffer
	File access
	Files

	Thread
	X++ execution 
	Data-controlled Execution of X++

	Treenode (and specializations)
	Modifying the AOT
	Tighter Privileges on APIs

	Treenode (export/import)
	File access
	Files

	UserGroup (table)
	APIs that change  security or configuration
	Access to System Tables (Table Permission Framework)

	UserGroupList (table)
	APIs that change  security or configuration
	Access to System Tables (Table Permission Framework)

	UserInfo (table)
	APIs that change  security or configuration
	Access to System Tables (Table Permission Framework)

	UtilApplCodeDoc (table)
	Modifying the AOT
	Tighter Privileges on APIs

	UtilApplHelp (table)
	Modifying the AOT
	Tighter Privileges on APIs

	UtilCodeDoc (table)
	Modifying the AOT
	Tighter Privileges on APIs

	UtilElements (table)
	Modifying the AOT
	Tighter Privileges on APIs

	UtilElementsOld (table)
	Modifying the AOT
	Tighter Privileges on APIs

	UtilFile.Reindex()
	Modifying the AOT
	Tighter Privileges on APIs

	UtilIdElements (table)
	Modifying the AOT
	Tighter Privileges on APIs

	UtilIdElementsOld (table)
	Modifying the AOT
	Tighter Privileges on APIs

	xApplication.DeleteCompany
	Database  access
	APIs with Enforced Authorization Checks

	xInfo.startImport()
	Modifying the AOT
	Tighter Privileges on APIs

	XppCompiler.Execute()
	X++ execution 
	Run-time Compilation and Execution of X++

	XppCompiler.ExecuteEx()
	X++ execution 
	Run-time Compilation and Execution of X++


Appendix B – Authorization APIs

The kernel exposes APIs that can be used to query the security and configuration key system. This appendix explains how to use these APIs.

Explicit Checks 

When an authorization check is explicit, it states what security rights are required to perform a given task. Explicit checks are either imperative or declarative.
Imperative Checks

Imperative checks are done from within X++. 

The following examples illustrate the use of imperative checks.

if (hasSecurityKeyAccess(securitykeyNum(mySecurityKey), AccessType::View))

{

     foo();

}

if (hasMenuItemAccess(menuItemDisplayStr(myMenuItem), MenuItemType::Display)))

{

     foo();

}

DictTable dictTable = new DictTable(tablenum(myTable));

if (dictTable.rights >= AccessType::Insert))

{

     foo();

}

if (isConfigurationkeyEnabled(configurationkeyNum(myConfigurationKey))

{

     foo();

}

Declarative Checks

Declarative checks are done by setting security properties on AOT objects.

An example of this is setting the security key and needed access level properties on menu items and form/report controls.

Implicit Checks

When an authorization check is automatically performed by the kernel, it is implicit.

For example, to use a data source on a form or report, a user must have access to the table used as the data source to run the form or report.

Appendix C – AOS Table Security

An optional stricter security model is available for securing Microsoft Dynamics AX 4.0. This model should be used for tables that could lead to elevation of privilege and denial of service attacks. With this model, the AOS authorizes each create, read, update, and delete (CRUD) operation. The security authorization check verifies that the current user has permission to perform the requested operation on that table, based on User Group Permissions. If the user that initiates the operation is not authorized, AOS throws an exception regardless of how and where the operation was initiated.

The following changes are planned and/or implemented in Dynamics AX 4.0:

· A new property on tables, AosAuthorization, which has the following values:

· None (default) – security is in the user interface (same behavior as Axapta 3.0)

· D – Authorization is required to perform a Delete function.
· CD – Authorization is required to perform a Create or Delete function.

· CUD – Authorization is required to perform a Create, Update, or Delete function.

· CRUD – Authorization is required to perform a Create, Read, Update, or Delete function.

· UD – Authorization is required to perform an Update or Delete function.
The compiler reports a best practices warning if this property is not set to None because it can break existing functionality.
To enforce authorization, tables will have the AosAuthorization property set to a non-default value:

For more information, see Table C, “Database Tables Protected in Dynamics AX 4.0.”
Note   The list in Table C is just a snapshot of tables protected at the time of publication. The set of tables protected in Dynamics AX can be changed during an implementation. Therefore, you should use this list as a starting point only. For the actual list, you must refer to the properties of the tables in your AX deployment.
Table C: Database Tables Protected in Dynamics AX 4.0
	Table Name
	Content Description
	Type
	STRIDE
	AOS Authorization

	AccessRightsList
	List of user permissions
	 
	DE
	CUD

	Batch
	Batch jobs
	System
	 
	 

	CompanyDomainList
	Grouping of companies in domains
	 
	DE
	CUD

	DataArea
	Companies
	 
	DE
	CUD

	DatabaseLog
	What to log
	 
	RD
	 

	DomainInfo
	Domains (=Groups of companies)
	 
	DE
	CUD

	LanguageTable
	Languages
	 
	D
	 

	SqlDescribe
	SqlDescribe
	 
	D
	CUD

	SqlDictionary
	Data schema
	 
	D
	CUD

	SqlParameters
	SqlParameters
	 
	D
	CUD

	SqlStatistics
	SqlStatistics
	 
	D
	CUD

	SqlStorage
	SqlStorage
	 
	D
	CUD

	SysBCProxyUserAccount 
	Stores the BC Proxy info
	SysKern
	 
	CUD

	SysConfig
	License codes, configuration key settings
	 
	D
	CUD

	SysDatabaseLog
	Logged data.
	 
	R
	UD

	SysExpImpField
	Export and Import fields information
	 
	E
	CUD

	SysExpImpTable
	Export and Import table information
	 
	E
	CUD

	SysLicenseCodeSort
	SysLicenseCodeSort
	 
	 
	CUD

	SysPerimeterNetworkParams
	Perimeter Network params
	 
	SE
	CUD

	SysRecordLevelSecurity
	Record level security settings
	 
	DE
	CUD

	SysRecordTemplateSystemTable
	System record templates
	 
	DE
	CUD

	SysSecurityFormControlTable
	Form security of display/edit methods
	 
	DE
	CUD

	SysSecurityFormTable
	Form security of display/edit methods
	 
	DE
	CUD

	SysSemaphore
	Inter Client/COM/AOS commnunication
	 
	D
	CD

	SysSetupCompanyLog
	Company specific installation information
	 
	D
	CUD

	SysSetupLog
	System wide Installation information
	 
	D
	CUD

	SystemSequences
	RecId sequence
	 
	D
	CD

	SysUserInfo
	User information
	 
	E
	CD

	TableCollectionList
	Assignment of table collections to virtual companies
	 
	E
	 

	UserGroupInfo
	User Groups
	 
	E
	CUD

	UserGroupList
	Grouping of users
	 
	E
	CUD

	UserInfo
	User information
	 
	E
	CD

	UtilElements
	AOD File
	 
	D
	 

	UtilIdElements
	AOD File
	 
	D
	 

	VirtualDataAreaList
	Virtual companies
	 
	E
	 


Appendix D – Permission Classes for Dynamics AX Code Access Security-protected APIs 

The following table specifies the methods of the dangerous API classes that are protected when you use Dynamics AX code access security. The table also lists the corresponding permission classes and parameters. After the table are some code examples that illustrate how API consumers should implement Dynamics AX code access security.

For more information, see Table D, “APIs Protected by Permission Classes.”
Note   The list in Table D is just a snapshot of classes protected at the time of publication. The list of protected classes in Dynamics AX can be changed during an implementation. Therefore, you should use this list as a starting point only. You should use the AX code access security command-line switch with the trace flag, as documented in the Implementing Code Access Security section of this white paper, to determine which of your APIs needs to be updated.
Table D: APIs Protected by Permission Classes
	Class Name
	Method
	Permission class
	Parameters
	Best Practices Rule

	AOSLoadGen
	New
	ExecutePermission
	none
	 

	AsciiIo
	New
	FileIOPermission
	fileName and mode. Same parameters as new.
	 

	BinaryIo
	New
	FileIOPermission
	fileName and mode. Same parameters as new.
	 

	BinData
	loadFile
	FileIOPermission
	fileName and mode = "r"
	 

	BinData
	saveFile
	FileIOPermission
	fileName and mode = "w"
	 

	ClrInterop
	GetAnyTypeFor
Object
	InteropPermission
	InteropKind = ClrInterop
	 

	ClrInterop
	GetObjectFor
Anytype
	InteropPermission
	InteropKind = ClrInterop
	 

	ClrInterop
	GetLastException
	InteropPermission
	InteropKind = ClrInterop
	 

	ClrInterop
	StaticInvoke
	InteropPermission
	InteropKind = ClrInterop
	

	ClrInterop
	New
	InteropPermission
	InteropKind = ClrInterop
	 

	ClrObject
	Dispatch
	InteropPermission
	InteropKind = ClrInterop
	Yes

	ClrObject
	New
	InteropPermission
	InteropKind = ClrInterop
	 

	COM
	New 
	InteropPermission
	InteropKind = ComInterop
	Yes

	COMDispFunction
	Call
	InteropPermission
	InteropKind = ComInterop
	 

	Comma7Io
	New
	FileIOPermission
	fileName and mode. Same parameters as new.
	 

	CommaIo
	New
	FileIOPermission
	fileName and mode. Same parameters as new.
	 

	CommaTextIo
	New
	FileIOPermission
	fileName and mode. Same parameters as new.
	 

	DictClass
	callObject
	ExecutePermission
	None
	Yes

	DictClass
	callStatic
	ExecutePermission
	None
	Yes

	DictTable
	callObject
	ExecutePermission
	None
	Yes

	DictTable
	callStatic
	ExecutePermission
	None
	Yes

	DLL
	New
	InteropPermission
	InteropKind = DllInterop
	Yes

	DLLFunction
	Call
	InteropPermission
	InteropKind = DllInterop
	Yes

	EvalBuf
	(global function)
	ExecutePermission
	None
	 

	Io
	New
	FileIOPermission
	fileName and mode. Same parameters as new
	 

	RunAs
	New
	RunAsPermission
	User ID (the AX user to be impersonated)
	 

	RunBuf
	(global function)
	ExecutePermission
	None
	 

	Statement
	executeQuery
	SQLStatementExecutePermission
	The SQL statement being executed.
	Yes

	Statement
	executeUpdate
	SQLStatementExecutePermission
	The SQL statement being executed.
	Yes

	TextBuffer
	fromFile
	FileIOPermission
	fileName and mode.
	 

	TextBuffer
	toFile
	FileIOPermission
	File name and mode.
	 

	TextIO
	New
	FileIOPermission
	fileName and mode. Same parameters as new
	 

	Thread
	executeInUi
Thread
	ExecutePermission
	None
	 

	Thread
	getThisThread
	ExecutePermission
	None
	 

	Thread
	New 
	ExecutePermission
	None
	 

	TreeNode
	treeNodeExport
	FileIOPermission
	fileName and "w"
	 

	XppCompiler
	New
	ExecutePermission
	None
	 

	XmlDocument
	Load
	FileIOPermission
	fileName and "r"
	Yes

	XmlDocument
	newFile
	FileIOPermission
	fileName and "r"
	Yes

	XmlDocument
	Save
	FileIOPermission
	fileName and "w"
	Yes

	XmlReader
	newFile
	FileIOPermission
	fileName and "r"
	Yes

	XmlReaderSettings
	prohibitDtd
	InteropPermission
	InteropKind = ClrInterop
	 

	XmlResolver
	allowFile
Access
	InteropPermission
	InteropKind = ClrInterop
	 

	XmlResolver
	allowWebAccess
	InteropPermission
	InteropKind = ClrInterop
	 

	XmlResolver
	baseUrlOverride
	InteropPermission
	InteropKind = ClrInterop
	 

	XmlResolver
	useCredentials
	InteropPermission
	InteropKind = ClrInterop
	 

	XmlTextReader
	newFile
	FileIOPermission
	fileName and "r"
	Yes

	XmlTextReader
	prohibitDtd
	InteropPermission
	InteropKind = ClrInterop
	 

	XmlWriter
	newFile
	FileIOPermission
	fileName and "w"
	Yes

	XmlTextWriter
	newFile
	FileIOPermission
	fileName and "w"
	Yes

	XmlSchema
	newFile
	FileIOPermission
	fileName and "r"
	Yes

	XmlSchema
	writeToFile
	FileIOPermission
	fileName and "w"
	Yes

	XmlNode
	transformNode
	InteropPermission
	InteropKind = ClrInterop
	Yes

	XmlTransform
	Execute
	InteropPermission
	InteropKind = ClrInterop
	Yes

	xRecord
	skipAosValidation
	SkipAosValidationPermisssion
	None
	 

	WinAPIServer
	CopyFile()
	FileIOPermission
	_fileName and mode = "r"_newfileName and mode = "w"
	 

	WinAPIServer
	CreateFile()
	FileIOPermission
	fileName and 
mode = "r" if _access = #OPEN_EXISTING and 
mode = "w" otherwise
	 

	WinAPIServer
	deleteFile()
	FileIOPermission
	fileName and "w"
	 

	WinAPIServer
	fileExists()
	FileIOPermission
	fileName and "r"
	 

	WinAPIServer
	fileSize()
	FileIOPermission
	fileName and "r"
	 

	WinAPIServer
	getFileDate()
	FileIOPermission
	fileName and "r"
	 

	WinAPIServer
	getFile
ModifiedDate()
	FileIOPermission
	fileName and "r"
	 

	WinAPIServer
	getFilleSize()
	FileIOPermission
	fileName and "r"
	 

	WinAPIServer
	getFileTime()
	FileIOPermission
	fileName and "r"
	 

	WinAPIServer
	getFolder
Path()
	FileIOPermission
	fileName and "r"
	 

	WinAPIServer
	getTempPath()
	FileIOPermission
	fileName and "r"
	 

	WinAPIServer
	pathExists()
	FileIOPermission
	folderPath and "r"
	 

	WinAPIServer
	closeHandle()
	FileIOPermission
	fileName and "w"
	 


API Owner Code Sample: Securing Application Classes

If you are the owner of a dangerous API that is implemented as an application class, you must perform threat modeling to understand what vulnerabilities exist. You must then decide whether to resolve these vulnerabilities, and if so, which techniques to use. 
If you decide to use Dynamics AX code access security, you must perform the following steps. At the same time, you must understand the extent to which the dangerous API is used and how it will collaborate with the API consumers. The API consumers will also need to complete some development work if you secure your dangerous API.

To implement Dynamics AX code access security, complete the following steps. The code examples shown refer to a hypothetical example.

15. Derive a sealed permission class for the API being secured from SysCodeAccessPermission. Note that the data variable in the following example represents a specific parameter that will be passed to the dangerous API. See the following example.
final class SysTestCodeAccessPermission extends CodeAccessPermission

{

    str _data;

}
16. Overwrite the copy() method to return a copy of the permission object. This helps to prevent the permission object from being modified and then passed to the dangerous API. See the following example.
public CodeAccessPermission copy()

{

    return new SysTestCodeAccessPermission(_data);

}
17. Implement accessors in the permission class that return the parameters. See the following example.
private str data()

{

    return _data;

}
18. Create constructors for all of the custom parameter types needed for the permission. See the following example.
public void new(str d)

{

    super();

    _data = d;

}
19. Override the isSubsetOf() method so that it compares the two permission objects to determine whether the permissions required to invoke the dangerous API have been asserted. The isSubsetOf() method returns true if the permission exists; otherwise it returns false. You must decide how best to implement this method because it is API-specific. The isSubsetOf() method returns true if there are no parameters for the permission class. See the following example.
public boolean isSubsetOf(CodeAccessPermission _target)

{

    SysTestCodeAccessPermission sysTarget = _target;

    return _data == sysTarget.data();

}
20. Before the dangerous API functionality executes, introduce a call to the Demand method. This will perform a run-time stack walk to check whether the required permission has been granted on the same tier and the other checks mentioned previously. See the following example.
public static void dangerousApi(str data)

{

    SysTestCodeAccessPermission p = new SysTestCodeAccessPermission(data);

    p.demand();

    //Do dangerous stuff here.

}
API Consumer Code Samples

This section provides examples of API consumer code modified for increased security. 

Applying Code Access Security to the TextBuffer API

The TextBuffer class is used to manage arbitrary text. Use it to manage text file content or to generate and work with text. The TextBuffer class features various string operations, a simple clip board, and a file interface. 
The following methods are mitigated by code access security on the server.

public boolean fromFile(str filename, [int encoding=FileEncoding::AUTO])

public boolean toFile(str filename, [int encoding=FileEncoding::ACP])

No code change is required for code that executes on the client. If your code is marked “client server” and can be called either on the client or the server, either change it to run on the client only or use the code access security mitigation as described previously in this document.

The following example illustrates the use of the TextBuffer class on the server.
server void MyServerFunction()

{

// Declare the CAS Permission object.

FileIOPermission fileIOPermission;

TextBuffer txtb = new TextBuffer();

// Assert that it is okay to read and write files and Clipboard

// because the content is coming from a static file name.

fileIOPermission = new FileIOPermission(filename, ‘rw’);

fileIOPermission.assert();

// From file will demand CAS permission (read)

txtb.fromFile("c:\\temp\\myfile.txt"); // Read text from file

// To clipboard will demand CAS permission (write)

txtb.toClipboard(); // Copy it to the clipboard

// To file will demand CAS permission (write)

txtb.toFile(("c:\\temp\\myfile.txt"); // Write text to file

}

Applying Code Access Security to the DLL API

The DLL API allows X++ code to call Win32 DLLs directly. There are two classes that make up this functionality: DLL and DLLFunction. 
The following methods are protected by code access security on the server in the DLL class:

public void new(str filename)

The DLLFunction class allows methods to be invoked in a library loaded by the DLL class. All methods that are used to invoke library methods are protected by code access security on the server.

The DLL and DLLFunction classes are not protected on the client. There are no client-side mitigations. No code change is required for code that executes on the client. If your code is marked “client server” and can be called either on the client or the server, either change it to run on the client only or use the code access security mitigation as previously described.

The following example illustrates the use of the DLL and DLLFunction classes on the server

server void MyServerFunction()

{

// Declare an interop permission of the right kind

InteropPermission dllPermission = 

new InteropPermission(InteropKind::DllInterop);

DLL           _DLL;

DLLFunction   _chartCreate;

// assert that it is okay to use COM in this function

dllPermission.assert();

// construct operation demands CAS permission

_DLL = new DLL('cfx2032.dll');

// Method definition is not protected by CAS

_chartCreate = new DLLFunction(_DLL,'chart_Create');

_chartCreate.returns(ExtTypes::DWord);

      _chartCreate.arg(ExtTypes::DWord,

                      ExtTypes::DWord,

                      ExtTypes::DWord,

                      ExtTypes::DWord,

                      ExtTypes::DWord);

      // Invoke operation demands CAS permission

      _windowhdl = _chartCreate.call(…);

      // Optionally call revertAssert() to limit scope of assert.

      CodeAccessPermission::revertAssert();

}

Asserting Multiple Permissions within a Function
Dynamics AX code access security does not support making multiple successive calls to assert() within the same function.

The following example illustrates the use of multiple assert() calls.

FileIOPermission p1 = new FileIOPermission("my file", "w");

FileIOPermission p2 = new FileIOPermission("your file", "r");

p1.assert();

p2.assert();

WinAPIServer::copyFile("my file","your file");

Multiple calls to assert within the same function will result in the following error.
Error: Multiple calls to CodeAccessPermission.Assert

The supported methods for asserting multiple permissions within the same function are either to use CodeAccessPermission::assertMultiple() or to call revertAssert() between each call to assert(). 
The following is a definition of assertMultiple().

	Static assertMultiple(Set sysCodePermissionSet)

	This declares that the calling code can access the resource, which is protected by demand of any of the permissions in the set through the code that calls this method, even if callers higher in the stack have not been granted permission to access the resource. This method is used to assert multiple permissions.


[image: image7.png]



Dynamics AX





The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, this document should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.


This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.


Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation. 


Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.





© 2006 Microsoft Corporation. All rights reserved.


Microsoft, the Microsoft Dynamics Logo, [list all other trademarked MS product names cited in the document, in alphabetical order], BizTalk, Dexterity, FRx, Microsoft Dynamics, SharePoint, Visual Basic, Visual C++, Visual SourceSafe, Visual Studio, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation, FRx Software Corporation, or Microsoft Business Solutions ApS in the United States and/or other countries. Microsoft Business Solutions ApS and FRx Software Corporation are subsidiaries of Microsoft Corporation. 





Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a way that helps you drive business success.





U.S. and Canada Toll Free 1-888-477-7989


Worldwide +1-701-281-6500


� HYPERLINK "http://www.microsoft.com/dynamics" \o "http://www.microsoft.com/dynamics" �www.microsoft.com/dynamics�





Part No. 0000-0000 (mm/yy)





















































� Code access security does not guarantee the validity of any data or parameters passed to the dangerous API that is being called. This validation is still the responsibility of the API consumer.





42

MICROSOFT DYNAMICS ax 4.0 – writing secure x++ code

41

MICROSOFT DYNAMICS AX 4.0 – WRITING SECURE X++ CODE


_1211643238.vsd
Business Connector


Windows Client


AOS


Database


Trust Boundary


Windows Authenticated User


AOS Least Privileged User


Trust Boundary



_1211638068.vsd
Business Connector


Windows Client


AOS


Authenticated User


Database


R


CUD


Authorization Check


Machine Boundary


UI Filter



