[image: image3.png]4% Windows




Reading and Printing XPS Documents - 23

Reading and Printing XPS Documents
May 3, 2006 

Abstract

This paper provides information about reading and printing XML Paper Specification (XPS) Documents by using the managed APIs of the Windows Presentation Foundation of the Microsoft® Windows® family of operating systems. It provides guidelines for application programmers to work with XPS Documents in common application programming scenarios.

This information applies for the following operating systems:

Microsoft Windows Server® 2008

Microsoft Windows Vista®

Microsoft Windows Server 2003

Microsoft Windows XP

The current version of this paper is maintained on the Web at: 

http://www.microsoft.com/whdc/xps/xps-read.mspx
References and resources discussed here are listed at the end of this paper.

Contents

3Introduction


3XPS Document API Overview


3Document Content APIs


3Document Part APIs


4Fixed and Flow Documents


4Reading and Writing XPS Documents


4Reading the Source Document


5Writing with the XpsDocumentWriter Object


9Save a Document Asynchronously


11Printing with Windows Vista


11Create a PrintQueue Object


12PrintCapabilites and PrintTicket Usage


12PrintTicket and PrintCapabilites Overview


17PrintTicket Creation


17Print a Document with a PrintTicket


20Advanced Options with the XpsSerializationManager


20Writing with the XpsSerializationManager


21Document Part Interleaving


21Font Subsetting


23BasePackagingPolicy


23Additional Resources




Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.
© 2006 Microsoft Corporation.  All rights reserved.

Microsoft, Windows, Windows NT, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction
The Windows Presentation Foundation (WPF) provides several ways to read and write XML Paper Specification (XPS) Documents. The best one to use in an application depends on how developers want to process the document and the application content. This paper reviews the different XPS Document-related APIs provided by WPF. It describes how application developers can use the APIs to read XPS Documents into their WPF-based applications and how WPF-based applications can write and print application content as an XPS Document.
This paper describes how to use the XpsDocumentWriter class and other WPF interfaces to save the content of a WPF-based application as an XPS Document or send them to a printer. It also describes how an application can use the PrintCapabilities and PrintTicket features provided by the WPF print support. 
This paper provides the application developer with a basic familiarity of the XPS Document-related APIs. After reading this paper, an application developer should be able to write application content as an XPS Document, print WPF-based application content, and read an XPS Document into a WPF-based application.
XPS Document API Overview
It is important to understand the nature of each XPS Document-related API because the interfaces, objects, and methods that make up the different APIs are very similar in appearance yet behave differently. This section reviews the characteristics of the XPS Document-related APIs provided by the WPF so that developers can select the best one to use in their application.
Document Content APIs

The System.Windows.Documents namespace contains interfaces and classes that treat the XPS Document parts as logical elements. The interfaces and classes resemble the structure of an XPS Document and use WPF visual objects. For most applications, this level of abstraction provides the best balance between efficiency, program control, and ease of use.

The System.Windows.Xps namespace contains the XpsDocumentWriter class, which can be used to print a variety of visual objects or to write them as an XPS Document file. The classes in the System.Windows.Xps.Serialization namespace process the same objects as those found in the System.Windows.Xps namespace; however, the System.Windows.Xps.Serialization classes support more configuration options for writing the document.
Document Part APIs

The classes in the System.Windows.Xps.Packaging namespace read and write the individual parts of an XPS Document. The interfaces and methods resemble the structure of an XPS Document, but the content of the document parts has not been interpreted into logical objects. With these classes, an application can read the actual markup text and obtain streams to the various resources in the document. Be careful when using these APIs because invalid XPS Documents can be created if the contents of the document parts are not properly formatted.
The interfaces found in the System.IO.Packaging namespace work with the individual components of a package as defined by the Open Packaging Conventions. All XPS Documents conform to the Open Packaging Conventions, but a document that conforms to the Open Packaging Conventions is not necessarily an XPS Document. To create XPS Documents by using these classes, refer to the XML Paper Specification and the Open Packaging Conventions to understand the requirements of a valid XPS Document.
This paper does not discuss the classes in the System.Windows.Xps.Packaging or the System.IO.Packaging namespaces. For more information on using these classes, see these items in the References section at the end of this paper:

· The Windows SDK 
· The MSDN Magazine article titled A First Look at APIs for Creating XML Paper Specification Documents
Fixed and Flow Documents
An important aspect of XPS Documents is that they are fixed documents rather than flow documents. A flow document can change appearance depending on how or where it is viewed. For example, a Web page is often a flow document. In contrast, a fixed document does not change appearance or layout after it is published. For example, a printed document is a fixed document because its appearance does not change. The content of a fixed document is not intended to be modified although some document attributes and properties, such as digital signatures, can be added or modified.
The XPS Document APIs reflect this model and generally support either reading the content of an XPS Document or writing application content to an XPS Document, but the APIs do not support modifying the content of an existing XPS Document. The fact that the XPS Document APIs do not directly support document modification does not mean that users cannot edit their XPS Documents. Instead it means that the process of modifying an XPS Document is to create a new document and leave the original document intact. This might seem like a matter of definitions, but the concept is fundamental to understanding how these APIs work with documents as well as with each other.
Reading and Writing XPS Documents

This section shows how to use the classes of the System.Windows.Documents namespace to read an XPS Document into its component parts and how to use the XpsDocumentWriter object from the System.Windows.Xps namespace to write document parts to an XPS Document.
Reading the Source Document

To open an existing XPS Document for reading, instantiate a new XpsDocument object. Specify the file name and desired access as arguments for the constructor, as in this code sample:
XpsDocument OldXpsDoc =

new XpsDocument(XPSDocFileName, FileAccess.Read);

The application can use the XpsDocument object to access all the other parts of the document. The following code sample shows how to enumerate the different levels of the document starting with the document’s FixedDocumentSequence.
FixedDocument Sequence DocFds = OldXpsDoc.FixedDocumentSequence;

foreach (DocumentReference DocRef in DocFds.References)

{


// get the FixedDocument object from this reference


bool bForceReload = false;


FixedDocument DocFd = DocRef.GetDocument(bForceReload);


// get the pages referenced by this fixed document


foreach (PageContent DocFpPc in DocFd.Pages)


{



FixedPage DocFp = DocFpPc.GetPageRoot(bForceReload);



// in each page, browse the list of elements


// contained in this page



foreach (UIElement DocFpUiElem in DocFp.Children)



{




// Access page UI Element



} // next UI Element


} // next FixedPage part

}//Next Document in this Set of references

The document can be reloaded by setting the bForceReload argument to true when instantiating the FixedDocument object or a FixedPage object. If the bForceReload flag is true, the document contents are read from the file instead of the cached version of the file. Reading from the file is slower than reading from the cached version of the file but guarantees that the application receives the most current version of the file's contents. For the best combination of performance and reliability, this flag can be true for the first call and false for all subsequent calls unless there is a reason to believe that the contents of the file might change between calls.
Writing with the XpsDocumentWriter Object
XpsDocumentWriter is a versatile class that can be used to send visual application content to a printer or to save it as an XPS Document.
Write a single visual object

An XpsDocumentWriter object can print a visual tree as a single page or save it as a one-page XPS Document. The following code sample shows how an application can save a visual object as an XPS Document.

// create a new XPS Document for output

XpsDocument NewXpsDoc =

new XpsDocument(XPSDocFileName, FileAccess.ReadWrite);

// create a document writer object based on the open XPS Document

XpsDocumentWriter XpsDocWrtr =


XpsDocument.CreateXpsDocumentWriter(NewXpsDoc);

// write a visual object to this document

XpsDocWrtr.Write((Visual)VisualMyVisual);

// close the new one page document

NewXpsDoc.Close();

The writing methods of an XpsDocumentWriter object treat the passed object as an argument of the Write method as the complete document and write a complete XPS Document from that object. For example, if a single visual item is passed , the XpsDocumentWriter creates an XPS Document that contains one FixedDocumentSequence, one FixedDocument, and one FixedPage that contains the visual that was passed as an argument. Calling XpsDocumentWriter with another visual throws an exception saying that the “Document Writer is done writing and cannot process any more write requests.” The following sections describe several different ways in which an application can write more than one visual object as an XPS Document by using the XpsDocumentWriter object.

Write a document object

The XpsDocumentWriter class provides several options for writing documents that have more than one page. An application can create a more complex object that contains more of the document structure, or it can write visual objects as pages of an XPS Document by using the batch interface.
The Write method of the XpsDocumentWriter has several overloads that allow it to write more complex objects as an XPS Document. Because the XpsDocumentWriter can be used only once per XPS Document, the application must construct these objects before passing them to the XpsDocumentWriter. In addition to a Visual object, the XpsDocumentWriter can also write the following objects as an XPS Document:
· System.Windows.Documents.FixedDocumentSequence

· System.Windows.Documents.FixedDocument

· System.Windows.Documents.FixedPage

An application could, for example, create a FixedDocumentSequence object and populate that object with the content from the application. It could then write, or print, that FixedDocumentSequence object by using the XpsDocumentWriter as shown in the following code sample.
// create the empty XPS Document objects

FixedDocumentSequence fixedDocSeq =

new FixedDocumentSequence();

DocumentReference docRef1 = new DocumentReference();

FixedDocument fixedDoc1 = new FixedDocument();

PageContent pageContent1 = new PageContent();

FixedPage fixedPage1 = new FixedPage();

// add the visual object the FixedPage

fixedPage1.Children.Add(myVisual);

// add the FixedPage to the PageContent collection

pageContent1.BeginInit();


((IAddChild)pageContent1).AddChild(fixedPage1);

pageContent1.EndInit();

// add the page content to the document reference collection

((IAddChild)fixedDocument).AddChild(pageContent1);

docRef1.BeginInit();


docRef1.SetDocument(fixedDoc1);

docRef1.EndInit();

// add the document reference to the FixedDocumentSequence

(fixedDocSeq as IAddChild).AddChild(docRef1);

// write the fixed document sequence as an XPS Document

// using the XpsDocumentWriter created earlier

XpsDocWrtr.Write(fixedDocSeq);

// and close the document

NewXpsDoc.Close();

With this approach, the application has complete control over how the pages are composed and it can still write or print the document with a single call to the Write method.

The XpsDocumentWriter also supports writing a DocumentPaginator object as an XPS Document. The System.Windows.Documents.DocumentPaginator object can be obtained from a FlowDocument object and provides a very easy way to convert a flow document to a fixed XPS Document for printing or saving in a fixed format. The bold text in the following code sample illustrates how to save a flow document as a fixed document by using the XpsDocumentWriter.

// create a new XPS Document for output

XpsDocument NewXpsDoc =


new XpsDocument(XPSDocFileName, FileAccess.ReadWrite);

// create a document writer object based on the new XPS Document

XpsDocumentWriter XpsDocWrtr =


XpsDocument.CreateXpsDocumentWriter(NewXpsDoc);

// write a flow document to this document

XpsDocWrtr.Write (flowDocument.DocumentPaginator);

// close the new one page document

NewXpsDoc.Close();

Write multiple visual objects as a batch

To write more than one visual object to an XPS Document with the XpsDocumentWriter, the application must use the VisualsToXpsDocument class. Each call to the VisualsToXpsDoc.Write method creates a new FixedPage in the document. Only those visual objects that can be included in a FixedPage can be passed to the VisualsToXpsDocument.Write method. For example, a Canvas object can be included into a fixed page so that the VisualsToXpsDocument.Write method can process it. A FixedPage or a FixedDocument object, however, cannot be included into a FixedPage object, so they cannot be processed by the VisualsToXpsDocument.Write method.

The following code sample writes a collection of Canvas objects as pages in an XPS Document.

// create a new XPS Document for output

XpsDocument outXpsDoc = new XpsDocument(OutputFileName,


FileAccess.ReadWrite);

// create the document writer for the new document

XpsDocumentWriter XpsDocWrtr =


XpsDocument.CreateXpsDocumentWriter(outXpsDoc);

// create the "batch" writer

VisualsToXpsDocument XpsVisWriter =


XpsDocWrtr.CreateVisualsCollator();

int pageNo = 0;

XpsVisWriter.BeginBatchWrite();

for (pageNo = 0; pageNo < CanvasArray.Length; pageNo++)

{


XpsVisWriter.Write(CanvasArray[pageNo]);

}

XpsVisWriter.EndBatchWrite();

outXpsDoc.Close();

In this example, the code creates an empty XPS Document with ReadWrite access and then creates an XpsDocumentWriter object for the document. Before writing the visual content created by the application, the code instantiates a VisualToXpsDocument object to process the elements as a batch. The code then writes each visual item to the document, ends the batch, and closes the document.

Progress event handler

The XpsDocumentWriter class generates progress events as it writes each document part. These events can be monitored by the application to track the progress of the operation.

After each document part is written, a WritingProgressChanged event is raised by the XpsDocumentWriter and the document writer passes a WritingProgressChangedEventArgs object to the event handler. This object contains the writing level and the instance index of that level. The writing level is one of the following:

· FixedDocumentSequenceWritingProgress

· FixedDocumentWritingProgress

· FixedPageWritingProgress

· None

For example, after the XpsDocumentWriter has written the third FixedPage of the document, it raises the WritingProgressChanged event with a writing level of FixedPageWritingProgress and the instance index set to 3. With this information, the progress event handler can update a progress bar by computing the percent complete from the current page and the total document part count of the document as shown in the following sample event handler:
private void PrintingProgress(


object sender, WritingProgressChangedEventArgs e)

{


if (XpsWritingProgressChangeLevel.FixedPageWritingProgress ==



e.WritingLevel)

{



int pagesComplete = e.Number;



// compute percentage complete for the document.


// add two to total pages: one to account for


// the FixedDocument and one to account for 


// the FixedDocumentSequence parts that are 


// written to the document after the last page.



percentComplete =



pagesComplete / (totalPartsInDoc + 2);


}


else if (

XpsWritingProgressChangeLevel.FixedDocumentSequenceWritingProgress == e.WritingLevel)


{



// the Fixed Document Sequence is the last item


// written by the XPS Document Writer



percentComplete = 99;


}


// update progress bar value


// completion event handler will set progress to 100%


ProgressBar.Value = percentComplete;

}

In the sample event handler, the page total of the document is adjusted to account for the FixedDocument and FixedDocumentSequence parts that are written to the document after the last page. In practice, of course, this adjustment could be made outside the event handler. It is included here to keep the event handler self contained and to illustrate that more than just the FixedPages are written to the document. The FixedDocumentSequence is the last document part written, but it is not the last action that the writer performed, so the progress event handler in this example modifies the percent complete value of the progress bar to 99 percent. The percent complete will be set to 100 percent in the completion handler.
Another solution is to update progress by counting all the document parts instead of just the fixed pages. The sum of document parts to write is the sum of:

· The number of FixedPages in the document

· The number of FixedDocument objects
· The FixedDocumentSequence object

So writing a four-page document would cause the XpsDocumentWriter to write a total of six document parts: the four FixedPages plus the FixedDocument and the FixedDocumentSequence. This approach provides a more accurate percent-complete value, but requires maintaining the count of document parts outside the event handler. The object number sent to the event handler counts only the instance number of the reported object. For example, after writing the last document part, the WritingLevel reported in the event will be FixedDocumentSequenceWritingProgress and the number will be one. So, unless the event handler had maintained a count of the other document parts, the object number could be misinterpreted.
After the document has been completely written, if the application called the synchronous Write method then the method returns. If the application called the asynchronous WriteAsync method, then the WritingCompleted event is raised. These conditions indicate that the XpsDocumentWriter has completed writing and the application can perform subsequent operations. Depending on the application these operations can include clearing the progress bar or setting it to 100 percent, closing the XpsDocument object, and closing or freeing any other objects that are no longer needed.
Save a Document Asynchronously
The XpsDocumentWriter and the VisualsToXpsDocument objects can be called synchronously or asynchronously. Calling these methods synchronously is the simplest form and was the form that was used in the examples of the previous section. However, synchronous calls can delay the user when writing large documents or when writing documents to a remote location over a network. The XpsDocumentWriter classes provide asynchronous writing methods to accommodate these situations.
The synchronous writing methods of the XpsDocumentWriter and VisualsToXpsDocument classes do not return to the calling method until they have completed their task. The asynchronous writing methods, on the other hand, return to the application much more quickly and allow the program to continue and allow the user interact with the program more quickly. The application, however, must be a WPF-based application, so the XpsDocumentWriter can continue to run in the background. The application must also maintain the document components, such as the visual structures, and not free them until the writing has completed.
The application must use a completion event handler with the asynchronous calls in order to be notified when the writing operation completes. The application registers the event handler with the XpsDocumentWriter object before it calls a writing method. After the document has been written, the completion event is raised and the event handler is called. The application can then close the document and free any objects that are no longer required.
Using asynchronous methods is only slightly more complex than using the synchronous methods. For example, to call the synchronous Write method, the application must:

1.
Create the visual objects for the document.
2.
Open a new and empty XPS Document for writing.
3.
Create the XpsDocumentWriter object.
4.
Call the Write method for the type of object being written to the document.
5.
Close the XPS Document.
6.
Free the objects that are no longer needed to write this document.
To perform the same actions by using the asynchronous WriteAsync method, the application can be modified as described in the following list with the modifications indicated by italic text:
1.
Create the visual objects for the document.
2.
Open a new, empty XPS Document for writing.
3.
Create the XpsDocumentWriter object.
4.
Register the completion event handler with the XpsDocumentWriter object.
5.
Call the WriteAsync method for the type of object being written to the document. The WriteAsync method returns control to the application before the document has been completed.
6.
After the document has been completely written, the completion event handler is called. The completion event handler:

a.
Closes the XPS Document.
b.
Frees the objects that are no longer needed to write this document.
The difference between the synchronous and asynchronous calls is that with the asynchronous calls, the actions that are taken after the document has been written have been moved from the main body of the calling method to the completion event handler. Of course, any objects used by the completion event handler, such as the new XpsDocument object, must be moved out of the procedure scope to make them available to the completion event handler.

The following code sample shows how the synchronous writing example in the previous section could be modified to write asynchronously. The code added to process the document writing operation asynchronously is shown in bold text.
private void WriteUsingAsync (



string XPSDocFileName, object FixedDocFromApplication) 

{


// create a new XPS Document for output


//  note that AsyncXpsDoc is a property defined in the

//   class containing this method.

AsyncXpsDoc = new XpsDocument(XPSDocFileName,


FileAccess.ReadWrite);


// create a doc writer object based on the open XPS Document


XpsDocumentWriter XpsDocWrtr =



XpsDocument.CreateXpsDocumentWriter(AsyncXpsDoc);


// register the writing completed event handler

XpsDocWrtr.WritingCompleted +=



new WritingCompletedEventHandler(AsyncPrintCompleted);


XpsDocWrtr.WriteAsync((FixedDocument)FixedDocFromApplication);


return;

}
// Completion Event Handler

private void AsyncPrintCompleted(


object sender, WritingCompletedEventArgs e)

{


if ((e.Cancelled) || (e.Error != null))



//document not written


else



// Asynchronous operation Completed


AsyncXpsDoc.Close();


AsyncXpsDoc = null;

}

Printing with Windows Vista

The XpsDocumentWriter object can print an XPS Document as easily as it can write one to a file. The only difference is that to print the document, the XpsDocumentWriter object is created from a PrintQueue object instead of from an XpsDocument object. After the XpsDocumentWriter object has been created from the print queue, same methods are used to print the document as were used to write the document contents to a file. The synchronous and asynchronous methods and the progress and completion events are also useable.
Create a PrintQueue Object
To print an XPS Document by using the XpsDocumentWriter object, the XpsDocumentWriter must be created from a PrintQueue object. There are several ways an application can instantiate a PrintQueue object. The application can:

· Present the user with the Print dialog box and have the user select a printer.
· Instantiate a PrintServer object and select one of the print queues managed by the print server.
The best method for an application depends on the requirements for user involvement and for security. The PrintServer object can be instantiated only in a full-trust scenario. The Print dialog box can be opened in either a full-trust or a partial-trust scenario.
Create a PrintQueue from the print dialog box
In a partial-trust or a full-trust scenario, an application can obtain a valid PrintQueue object from the PrintDialog after the user selects a printer from the Print dialog box. The following code sample shows how to display the Print dialog box to the user and test the result.
PrintDialog printDlg = new PrintDialog();

if (printDlg.ShowDialog().Equals(false))

{


// the user did not select a print queue so return


return;

}

// Print dialog returned successfully
// so get print queue object from dialog

PrintQueue myPrintQueue = printDlg.PrintQueue;

// continue...

By using the PrintQueue property of the PrintDialog object, the application can create an XpsDocumentWriter object and use it to print the XPS Document. The following code sample illustrates this. The sample is largely the same as the one in the “Write a single visual object” section earlier in this document, and uses boldface text to highlight the differences between creating an XpsDocumentWriter for printing and for writing.
// create a document writer object based on the open PrintQueue
XpsDocumentWriter XpsDocWrtr =


PrintQueue.CreateXpsDocumentWriter(myPrintQueue);

// write a fixed page to this document

XpsDocWrtr.Write((FixedPage)ApplicationFixedPage);

Create a PrintQueue from a PrintServer object
The PrintServer class abstracts a print server. In a full-trust scenario, a PrintServer object can be instantiated for any print server that the application has the connectivity and permission to access, including the local machine. The print server on the local machine can also be accessed by instantiating a LocalPrintServer object. The LocalPrintSerever class inherits from the PrintServer class and abstracts the local machine.

With a PrintServer object, the application can enumerate the print queues and select one for printing. Obtaining a PrintQueue object for the default printer on the local machine is a special case. The following code sample shows how to create an XpsDocumentWriter for the local default printer.
// create a doc writer object for local default printer

XpsDocumentWriter XpsDocWrtr =


PrintQueue.CreateXpsDocumentWriter(



LocalPrintServer.GetDefaultPrintQueue());

Using the PrintServer class can offer more flexibility by allowing the application to select a print queue from a local or remote server. The print queues from the print server can also be enumerated and filtered before selection.

PrintCapabilites and PrintTicket Usage
Windows Vista printing introduces the PrintCapabilities and PrintTicket objects for applications to query and set printer features and options. These objects provide functionality similar to what is provided by a printer’s DEVMODE structure and DeviceCapabilities interface. The new PrintTicket and PrintCapabilities objects, however, are more extensible than the previous methods and are also more portable across applications and devices.

PrintTicket and PrintCapabilites Overview

Applications written for earlier versions of Microsoft Windows use the device capabilities functions of the Microsoft Win32® APIs (namely GetDeviceCaps and DeviceCapabilities) to read a printer’s capabilities and use the DEVMODE structure to configure printer settings. These methods have limited extensibility and portability, and this has restricted printer innovation and feature support in applications. For example, the DEVMODE structure is divided into public and private portions. The public portion contains standard printer features. The private portion contains custom feature information that can be understood only by applications that are aware of that information.
The PrintTicket and PrintCapabilities features in Windows Vista make it possible for an application to support new printer features and innovation by providing a more flexible and extensible framework in which to communicate printer configuration information. The print subsystem in Windows Vista uses a common feature schema and an XML-based format for communication. The self-describing nature of XML and the support provided by the WPF objects make it much easier for applications to understand new and custom printer features.

PrintCapabilities object

Print drivers with PrintCapabilities return an XML document that contains information about a printer’s features and capabilities. Unlike the Win32 functions, which return information about only one printer feature per call, the XML PrintCapabilities document contains information about all the features that the printer supports. The common printer capabilities are accessible as properties of the PrintCapabilities object. The following code sample illustrates how to obtain the OutputQualityCapability property of the default printer on the local machine and display the values of that property in a list box defined elsewhere in the application.

PrintQueue localPrintQueue =

LocalPrintServer.GetDefaultPrintQueue();
PrintCapabilities localPrintCap =


localPrintQueue.GetPrintCapabilities();

PropertyListBox.Items.Clear();

foreach (OutputQuality qualityProp in 



localPrintCap.OutputQualityCapability)

{


PropertyListBox.Items.Add(qualityProp.ToString());

}

The application can read the printer capabilities of the default printer on the local machine as properties of the localPrintCap object.
Although the commonly used printer capabilities can be accessed as properties of the PrintCapabilities object, the application can also read the XML PrintCapabilites document and parse the XML directly to access any other printer capabilities. The following code sample shows how an application can open the XML stream and load it into an XML reader object.
// create a print queue object for the target printer

PrintQueue localPrintQueue =

localPrintServer.GetDefaultPrintQueue();

// obtain the stream for the PrintCapabilities document

MemoryStream printCapXml =


localPrintQueue.GetPrintCapabilitiesAsXml();

// create an XML text reader object to parse the stream

XmlTextReader printCapXmlReader = new XmlTextReader(printCapXml);

The syntax of a PrintCapabilities document and the elements used are defined in the Print Schema.

Print Schema

The Print Schema document defines the organization and content of the PrintTicket and the PrintCapabilities documents. The Print Schema design supports private extensions to enable innovation by hardware manufacturers. The PrintTicket framework and the PrintCapabilities framework are subsets of the overall Print Schema.

Using a common schema for printer features and properties makes it possible for applications to access printer features and capabilities without the need to query a specific print driver or application. A common schema also reduces the ambiguity of names and features by providing a consistent set of names and definitions for printer features and attributes.

A prerelease version of the Print Schema is documented in the Windows Vista SDK.

PrintTicket object

A PrintTicket is an XML-based description of printer properties that an application can pass to a printer or store in an XPS Document. PrintTickets can be applied in two different contexts:

· Device Specific
A specific PrintTicket is based on an actual printer’s features and settings as described in the printer’s PrintCapabilities document.

· Generic
A generic PrintTicket describes the document author's intent. It is based on generic printer features and settings as they are described in the public Print Schema. A generic PrintTicket does not reference the features of a specific printer.
Because PrintTickets can be added to XPS Documents, the author’s intent of how a document should be printed can now accompany the document. Embedding a PrintTicket in the document makes it possible for an application to provide a more consistent document appearance to subsequent readers of the printed document.
PrintTickets can be associated with an entire document or with individual parts of an XPS Document. PrintTicket scope is divided into three content levels that represent:

· The high-level print job (job-level or document sequence PrintTicket)

· The documents in the job (document-level PrintTicket)

· The pages in the document (page-level PrintTicket)

These levels are ranked according to their specificity. The job-level PrintTicket is most general, followed by the document-level PrintTicket, and the page-level PrintTicket has the most limited scope.

The PrintTicket hierarchy corresponds to the XPS Document part hierarchy. The hierarchical nature of PrintTickets enables elements in lower-level PrintTickets to override corresponding elements of higher-level PrintTickets for a limited scope, such as one page in a document. For example, a print job could be configured to print pages in portrait orientation by using a job-level PrintTicket and one page could have a page-level PrintTicket to indicate the page that should be printed in landscape orientation.

The names of the element used in a PrintTicket document include a prefix to indicate their scope. Elements with a job-level scope are prefixed with Job, a document-level scope with Document, and a page-level scope with Page. A job-level PrintTicket contains all job formatting settings that apply to an entire job and can contain elements with scope prefixes of Job, Document, or Page. A document-level PrintTicket incorporates the printer settings that apply to a document in a job and can contain only elements that have a scope prefix of Document or Page. A page-level PrintTicket contains printer settings that apply to a page in a document and can contain only elements with the Page scope prefix. The following figure illustrates the relationship of the PrintTicket levels and the elements that can be used by the PrintTickets at that level.

[image: image1.emf]Page-level

Elements

Document-level

Elements

Job-level

Elements

Job-level

PrintTicket

Document-

level

PrintTicket

Page-level

PrintTicket


Relationship between PrintTicket level and element scopes

PrintTicket processing in the print driver

When the application processes the document for printing by the print driver, the print driver merges the PrintTicket objects of the relevant document parts from higher in the XPS Document part hierarchy to create a complete PrintTicket object for the each document part. For example, when processing a page-level PrintTicket, the print driver merges the page-level PrintTicket with the PrintTickets of the FixedDocument and FixedDocumentSequence parts to create the correct, merged PrintTicket for that document part. 
The following illustration shows how the print driver applies this merging process.

[image: image2.emf]FixedDocumentSequence 

part PrintTicket read by 

driver (cleared if part has 

no PrintTicket)

Last FixedDocument part 

PrintTicket read by driver 

(cleared if part has no 

PrintTicket)

FixedPage part 

PrintTicket read by driver 

(cleared if part has no 

PrintTicket)

PrintTicket used by driver 

for FixedPage part

Cached 

FixedDocumentSequence 

Part PrintTicket

PrintTicket used by driver 

for FixedDocument part

Merge

Merge

FixedDocumentSequence 

printer settings

FixedDocument

printer settings

FixedPage

printer settings

Cached FixedDocument 

Part PrintTicket

PrintTicket used by driver 

for 

FixedDocumentSequence 

part


PrintTicket processing within a print driver

Applications can take advantage of this merging process and simplify the PrintTickets that they create. In this merging process, the settings and configuration described by the lower level PrintTickets override any of the same settings found in a higher-level PrintTicket.

For example, an application can create a job-level PrintTicket that describes the printer settings to use for the majority of the document content. It can then create a page-level PrintTicket with the settings that apply to an individual page. Because the settings from the page-level PrintTicket will be merged with the higher-level PrintTickets in the document, the print driver will be able to work from a complete PrintTicket for each document part it processes even though the lower-level PrintTicket contains only a subset of the printer settings.
For example, an application could create a job-level PrintTicket that contains the following features.

PageOrientation: Portrait


PageOutputQuality: Normal

For those pages that have images and require a higher print quality, the application could submit page-level PrintTickets with only the following feature for those pages.


PageOutputQuality: Photographic

When the page is processed for printing by the print driver, the print driver will create a merged PrintTicket for those pages that contains the following features even though the page-level PrintTicket sent by the application contained only the PageOutputQuality feature.


PageOrientation: Portrait


PageOutputQuality: Photographic

Printing with PrintTicket objects

There are several PrintTickets an application can use when printing a document. The PrintQueue object includes two PrintTicket properties: 
· The DefaultPrintTicket contains the system default print preferences.

· The UserPrintTicket contains the user’s default print preferences that were saved from the Print dialog box.
An application can use either of these PrintTicket objects or it can create a PrintTicket object to pass as an argument of the Write or WriteAsync method. The PrintTicket passed in the Write method is associated with the object that is passed. For example, if a FixedDocumentSequence is passed to the Write method, the PrintTicket object passed in the same call applies to the FixedDocumentSequence of the XPS Document.

If a document requires more specific printer configuration settings, for example, printer settings that apply only to specific pages, it can still use the XpsDocumentWriter, but it must send the special PrintTickets to the document writer from an event handler.
As the XpsDocumentWriter is writing an object, it raises a WritingPrintTicketRequired event before it writes each document part. If a document part requires special print processing, the event handler in the application can provide a special PrintTicket to the XpsDocumentWriter to use with that document part. This procedure is described in more detail later in this section.
Generic PrintTicket objects

An application can save printer setting preferences to a document by including generic PrintTicket objects in the XPS Documents it creates. This might be useful if a document contains pages that differ in size, orientation, or image quality. For example, suppose that a document that has some pages that contain only text and others that contain text and images. If the application can detect that the printer has a high-speed text-only mode and a slower graphics mode from the PrintCapabilities returned by the printer, it could improve printing performance by changing the printer’s OutputQuality property to match each page’s content. This information can be saved in the document as generic PrintTickets or sent as specific PrintTickets to the printer.

PrintTicket Creation
PrintTickets can be created by simply instantiating and initializing a PrintTicket object. The following sample instantiates the object and initializes two of its properties.
PrintTicket newPrintTicket = new PrintTicket();

newPrintTicket.PageOrientation = PageOrientation.Portrait;

newPrintTicket.PageMediaType = PageMediaType.Plain;

Because the underlying data for a PrintTicket object is an XML document, the PrintTicket object can be serialized as an XML document. For example, the PrintTicket created above could be serialized using either of these two methods:
// Serialize a PrintTicket object as an XML document

MemoryStream XmlPrintTicket = newPrintTicket.GetXmlStream();
– or –
// serialized the PrintTicket object to a stream

newPrintTicket.SaveTo(myPrintTicketStream);

A PrintTicket object can also be created by reading an XML document formatted as a PrintTicket. If an XML document that contains a valid PrintTicket definition has been completed, a PrintTicket object from that document can be created. This can be useful to configure custom settings that are not represented as properties of the PrintTicket object. This procedure is shown in the following code sample.

// xmlPrintTicket is an XmlDocument object
// created previously that contains
// a valid PrintTicket document

MemoryStream newPrintTicketStream = new MemoryStream();

// copy the XML PrintTicket to the local stream

xmlPrintTicket.Save (newPrintTicketStream);

// reset the stream position back to the beginning

newPrintTicketStream.Position = 0;

// create a new PrintTicket object from the stream

PrintTicket newPrintTicketObject = 

new PrintTicket(newPrintTicketStream);
// newPrintTicketObject object is now ready for use

Print a Document with a PrintTicket
A PrintTicket can be sent with the object for writing to the print queue by including it in the call to the Write method of the XpsDocumentWriter as shown in the following code sample. 
XpsDocumentWriter XpsDocWrtr =

PrintQueue.CreateXpsDocumentWriter(printQueue)

XpsDocWrtr.Write (DocumentFDS, ptToUseForPrinting);

The PrintTicket in the argument to the Write or WriteAsync method will apply to the object. If DocumentFDS is a FixedDocumentSequence object of the document to print, then the PrintTicket (ptToUseForPrinting) applies to all FixedDocuments and FixedPages in the document. To send a PrintTicket that applies to selected parts of the document, the application must use an event handler as described in the next section.

Processing the WritingPrintTicketRequired event 
As the print spooler spools a document, it raises a WritingPrintTicketRequired event before it processes each document part. An application can create an event handler to handle these events and add the event handler to the XpsDocumentWriter object. The event handler can send a special PrintTicket to be attached to the document part before the XpsDocumentWriter writes that document part to the spool file or the document file.

The XpsDocumentWriter sends the following information to the event handler:
· The object raising the event

· The current PintTicket level:
FixedDocumentPrintTicket

FixedDocumentSequencePrintTicket

FixedPagePrintTicket

None

· The sequence of the object
The event handler uses this information to decide what processing, if any, to perform before the document part is written. For example, to implement the PrintTicket example described earlier, in which some pages of a document require a higher print quality, the application can send special PrintTickets for these pages from the event handler. 
Each time the XpsDocumentWriter raises the WritingPrintTicketRequired event for a FixedPage, the application's event handler can test the contents of the page for graphics. If the page contains graphics then it can return a page-level PrintTicket with an OutputQuality of Photographic to the XpsDocumentWriter so the XpsDocumentWriter can spool it with those pages. Because the OutputQuality feature is the only PrintTicket feature to change, the page-level PrintTicket sent by the event handler can contain only that feature. That setting will override the setting of the same feature in the higher-level PrintTickets when processed by the print driver for printing, but all other settings from the higher-level PrintTickets will be retained. The following code sample illustrates this implementation.

Note: The XpsDocumentWriter does not pass any PrintTickets or PrintTicket information to the WritingPrintTicketRequired event handler. If the event handler requires any default or application PrintTicket information, the application must make it available to the event handler. The WritingPrintTicketRequired event handler can send PrintTicket objects to the XpsDocumentWriter only.

The method shown in the following code sample saves a FixedDocumentSequence as an XPS Document. It creates a job-level PrintTicket for the FixedDocumentSequence object and adds the WritingPrintTicketRequired event handler to the XpsDocumentWriter object to handle the pages that need a different PrintTicket. The FixedDocumentSequence object is passed to the XpsDocumentWriter.Write method with the job-level PrintTicket and the event handler passes the page-level PrintTickets when required.

In this sample, the XpsDocumentWriter object is created by the application before this method is called. The application can create the XpsDocumentWriter object from a print queue to print the document or from an XpsDocument object to save it as a file.

void ArticleSample_DocSave(


XpsDocumentWriter xpsDocWriter, FixedDocumentSequence AppDocFds)

{


// instantiated and initialize the default 


// PrintTicket docDefaultPrintTicketdocDefault

PrintTicket docDefaultPrintTicket = new PrintTicket();


docDefaultPrintTicket.OutputQuality = OutputQuality.Text;


docDefaultPrintTicket.PageOrientation = PageOrientation.Portrait;


// add PrintTicket event handler to the document writer


xpsDocWriter.WritingPrintTicketRequired +=



ArticleSample_WritingPrintTicketRequired;


// write document

xpsDocWriter.Write(AppDocFds, docDefaultPrintTicket);

}

The following code sample shows the WritingPrintTicketRequired event handler method:
void ArticleSample_WritingPrintTicketRequired(


object sender, WritingPrintTicketRequiredEventArgs e)

{


if (PrintTicketLevel.FixedPagePrintTicket ==



e.CurrentPrintTicketLevel)


{



// this writer is ready to write a page 


// so see if this page has any images



if (ApplicationPageHasImages(e.Sequence))



{



// this page has images and so requires 



// higher print quality.



// create a new PrintTicket to use for



// this page



PrintTicket newPageLevelPrintTicket =




new PrintTicket();



// set the required OutputQuality for this page




// leave all others unchanged




newPageLevelPrintTicket.OutputQuality =




OutputQuality.Photographic;




// send this PrintTicket back to be written



// with the page.




e.CurrentPrintTicket = newPageLevelPrintTicket;



}



else



{




// no images on this page so do not return a 



// PrintTicket for this page 



// the job-level PrintTicket settings still apply



}


}

}

Write an XPS Document with a PrintTicket
The procedure used for printing a document can be also be used for writing a document to a file. Although mainly used when printing a document, PrintTickets can also be included in documents that are saved to a file. The previous code sample could be used to save a document with a PrintTicket to a file by creating the XpsDocumentWriter from an XpsDocument object.
Advanced Options with the XpsSerializationManager
WPF provides additional features for applications that need more control over how the XPS Document is written. This additional control is provided by the XpsSerializationManager and the XpsSerializationManagerAsync classes. These classes perform the same functions as the XpsDocumentWriter class but offer additional features that allow the application to control aspects of document storage such as the packaging policy and font subsetting configuration.
Writing with the XpsSerializationManager
Unlike the XpsDocumentWriter that is instantiated from the destination document or print queue, the XpsSerializationManager requires an XpsPackagingPolicy object to identify the destination. The following code sample illustrates how an application opens the destination document, creates the XpsPackagingPolicy object for that document, and then creates the XpsSerializationManager to write the object to the document.

Bool batchMode = false;

//

// create a new XPS Document for output

XpsDocument topLevelXpsDoc =

new XpsDocument(NewXpsDocFileName, FileAccess.ReadWrite);

//
// create the packaging policy object

XpsPackagingPolicy packPol =

new XpsPackagingPolicy(topLevelXpsDoc);

//
// create the serialization manager to write the content

XpsSerializationManager serialMgr =

new XpsSerializationManager(packPol, batchMode);

//
// write document content

serialMgr.SaveAsXaml (docPageVisual);
The code sample above creates a generic packaging policy for the serialization manager. The same visual and document objects that can be passed to the Write method of the XpsDocumentWriter can also be passed to the SaveAsXaml method of the XpsSerializationManager:
· FixedDocumentSequence

· FixedDocument

· FixedPage

· DocumentPaginator

· Visual

The XpsSerializationManager supports the progress and PrintTicket events: XpsSerializationProgressChanged and XpsSerializationPrintTicketRequired. These events are similar to the XpsDocumentWriter events described earlier in this paper. The XpsSerializationManagerAsync class inherits from the XpsSerializationManager class and it supports those events as well as completion event, XpsSerializationCompleted.

Printing a document by using the XpsSerializationManager requires the application to acquire a stream to the spool file. The procedure for this is outside the scope of this paper.

Document Part Interleaving
Document part interleaving describes how the individual document parts are stored in an XPS Document. Document parts that are interleaved can be broken down into smaller parts for storage. The order in which these parts are stored, and later read, is determined by the PackageInterleavingOrder.

If the XpsDocument is open for Write access, the default policy is to interleave the document parts by using the ResourcesFirst interleaving order. If the XpsDocument is open for ReadWrite access, the default is to not interleave the document parts. The specific PackageInterleavingOrder options are:

· None – no interleaving is performed.
· ResourcesFirst – the font and image resources are read before the text.
· ResourcesLast – the font and image resources are read after the text.
· ImagesLast – the font resources are read before the text and the images are read after the text.
Interleaving can speed up printing by sending sections of the document parts to the spooler so they can be processed before the entire document part has been written. The ResourcesFirst and ResourcesLast options can also be used to spool a document to a printer. These options can provide the printer with the document data in the most efficient manner for print processing. For example, the print driver might be able to process the print job more efficiently if it receives the fonts and images before receiving the text.
For online document viewing, the ImagesLast option might make an XPS Document appear faster in a document viewer application by allowing the document viewing program to display the text of a page before reading and loading the images for the page.

The PackageInterleavingOrder can be specified by using one of the overloaded constructors when instantiating the XpsPackagingPolicy object as shown in the following code sample.

// create the packaging policy object using the defaults

XpsPackagingPolicy packPol =

new XpsPackagingPolicy(topLevelXpsDoc);

// or

// create the packaging policy object by specifying the

// PackageInterleavingOrder in the constructor

PackageInterleavingOrder piOrder =

PackageInterleavingOrder.ImagesLast

XpsPackagingPolicy packPol =

new XpsPackagingPolicy(topLevelXpsDoc, piOrder);

Font Subsetting
Font subsetting is the process of making new font files that contain only the glyphs required to display the corresponding document content. To make the documents portable, XPS Documents contain the font and image resources required to render the document. Because some fonts contain characters for many languages and some documents use many different fonts, saving font resources in the document can greatly increase the document size. Font subsetting can reduce the size of an XPS Document by reducing the size of the font resources that are stored in the document.

Font subsetting overview

The default font subsetting policy is to determine the subset of the font resource necessary to save by evaluating the contents of the entire document. The default policy results in the greatest overall space saving. Depending on the interleaving policy, however, the default subsetting policy might not allow the most efficient processing of the document.
To save the characters necessary for a document-wide font resource, the entire document must be analyzed. If the interleaving policy is ResourcesFirst, the font resources are written before the text resource. This is the default for printing so the printer can load all the font resources before it starts processing the document text. To do this, the text resources of the entire document must be processed and cached before the font resources can be written. If processing a large document, this method can use a large amount of memory. To improve performance of print processing, the default subsetting policy for printing documents is to create font subsets for every four pages of the document instead of creating one subset for the entire document. In this way, only four pages of the document must be cached before the font resources can be written.
Document-wide font subsetting might not be the best option if writing an XPS Document that contains more than one FixedDocument in the FixedDocumentSequence. If each of the FixedDocuments in the XPS Document has its own font resource, they can be self-contained and more easily moved to another XPS Document at a later date.
Font subsetting configuration
An application can configure the font subsetting policy of the XpsSerializationManager before it is used to serialize an XPS Document. The default level of subsetting is to create a subset for the entire fixed document sequence. The level of subsetting can also be configured at the page level, or the fixed document level. The number of these objects used to create the font subset is also configurable.
The font subsetting policy used by the XPS Serialization Manager is configured by calling the SetFontSubsettingPolicy and the SetFontSubsettingCountPolicy methods of the XpsSerializationManager object. In the following code sample, boldfaced text shows how to define a font subsetting policy that commits the font resources every two pages.
Bool batchMode = false;

//

// create a new XPS Document for output

XpsDocument topLevelXpsDoc =

new XpsDocument(NewXpsDocFileName, FileAccess.ReadWrite);

// create the packaging policy object

XpsPackagingPolicy packPol =

new XpsPackagingPolicy(topLevelXpsDoc);

// create the serialization manager to write the content

XpsSerializationManager serialMgr =

new XpsSerializationManager(packPol, batchMode);

// set the font subsetting policy for this document

serialMgr.SetFontSubsettingPolicy(


FontSubsetterCommitPolicies.CommitPerPage);
serialMgr.SetFontSubsettingCountPolicy (2);
// write document contents

serialMgr.SaveAsXaml (docSequence);

BasePackagingPolicy
The packaging policy classes provide the methods for acquiring serialization readers and writers for the different types of document parts found within an XpsDocument. The XpsPackagingPolicy class derives from the BasePackagingPolicy class. The BasePackagingPolicy class can be overloaded to give your application more complete control of the XpsDocument packaging.
Overloading this interface can enable an application to use the XPS Document format for storage, but in a way that is not defined by the Open Packaging Conventions, For example, the document parts could be distributed into individual, stand-alone files or perhaps be stored and read as records in a database.
Implementing a custom packaging policy is beyond the scope of this paper and can result in documents that might not be portable or compatible with other XPS Document-based applications. Discussion of how to do this is beyond the scope of this paper, and the Windows SDK documentation has more information on this interface.
Additional Resources

If you have questions about XPS or this white paper, send an e-mail to xpsinfo@microsoft.com
Windows Platform SDK
http://windowssdk.msdn.microsoft.com/library/
Windows Driver Kit (WDK) 
http://www.microsoft.com/whdc/driver/WDK/aboutWDK.mspx
A First Look at APIs For Creating XML Paper Specification Documents 
http://msdn.microsoft.com/msdnmag/issues/06/01/XMLPaperSpecification/default.aspx
PrintTicket and PrintCapabilities Support in Windows Print Drivers 
http://www.microsoft.com/whdc/device/print/XPSDrv_PrintTicket.mspx
XPS - XML Paper Specification and other related specifications
http://www.microsoft.com/whdc/xps
Print Schema 
http://windowssdk.msdn.microsoft.com/library/default.asp?url=/library/en-us/printschema/html/d746bdd1-96c2-41f5-ad99-0b51c8ee8731.asp











































































May 3, 2006
© 2006 Microsoft Corporation. All rights reserved.


[image: image3.png]