[image: image3.png]4% Windows

Windows Hardware Error Architecture - 3

Windows Hardware Error Architecture

May 23, 2006

Abstract

This paper provides information about Windows Hardware Error Architecture for the Microsoft® Windows® family of operating systems. It provides guidelines for firmware and system developers to design systems that make the best use of the rich error handling capabilities of Windows Hardware Error Architecture.

This information applies for the following operating systems:

Microsoft Windows Server® 2008

Microsoft Windows Vista®
Future versions of this preview information will be provided in the Windows Driver Kit.

The current version of this paper is maintained on the Web at:

http://www.microsoft.com/whdc/system/pnppwr/WHEA/wheaintro.mspx

References and resources discussed here are listed at the end of this paper.

Contents

3Introduction to the Windows Hardware Error Architecture

5Hardware Errors and Error Sources

6Relationship between Windows and the System Firmware

6Windows Hardware Error Handling

8Components of WHEA for Windows Server 2008

10Error Handling Differences among Windows Versions

11Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows NT, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction to the Windows Hardware Error Architecture

In versions of the Microsoft® Windows® operating system earlier than Microsoft Windows Vista, the operating system supported several unrelated mechanisms for reporting hardware errors. These mechanisms provided little support for error recovery. For uncorrected errors, the operating system simply bugchecked the system and during a subsequent session recorded some of the available error information in the system event log.

The ability to determine the root cause of hardware errors was hindered by the limited amount of error information logged in the Windows system event log. The operating system was not capable of preventing system crashes caused by hardware errors, because there was no common error record format and little support for hardware error management applications.

The Windows Hardware Error Architecture (WHEA), introduced with Windows Vista, extends the previous hardware error reporting mechanisms and brings them together as components of a coherent hardware error infrastructure. WHEA takes advantage of the additional hardware error information available in today’s hardware devices and integrates much more closely with the system firmware.

As a result, WHEA provides the following benefits:

· Allows for more extensive error data to be made available in a standard error record format for determining the root cause of hardware errors.

· Provides mechanisms for recovering from hardware errors to avoid bugchecking the system when a hardware error is non-fatal.

· Supports user-mode error management applications and enables advanced computer health monitoring by reporting hardware errors via Event Tracing for Windows (ETW) and by providing an API for error management and control.

· Is extensible, so that as hardware vendors add new and better hardware error reporting mechanisms to their devices, WHEA allows the operating system to gracefully accommodate the new mechanisms.

This paper provides information to help system designers understand basic issues about hardware errors, the firmware/operating system relationship, and information about error handling and the WHEA architecture components.

This paper on the WHDC Web:
www.microsoft.com/whdc/system/pnppwr/WHEA/wheaintro.mspx
Terms in this Paper

The following are definitions for terms related to WHEA. References cited here are listed at the end of this paper.

Advanced Configuration and Power Interface (ACPI)

An industry-standard interface for operating system-directed device configuration and power management. For more information about ACPI, see the ACPI specification.

Baseboard Management Controller (BMC)

A set of hardware components on the motherboard that manage platform specific functions such as monitoring and handling certain environmental error conditions.

Corrected Machine Check (CMC)

An error condition detected by the processor that has been corrected by the hardware or the firmware. A CMC is typically reported to the operating system by generating an interrupt or by setting bits in an error register that is periodically polled by the operating system. This is a non-fatal error condition.

Corrected Platform Error (CPE)

An error condition detected by the platform hardware that has been corrected by the hardware or the firmware. A CPE is typically reported to the operating system by generating an interrupt or by setting bits in an error register that is periodically polled by the operating system. This is a non-fatal error condition.

Event Log (EL)

A Windows component that tracks events that occur on system components. WHEA uses the system event log to record hardware error events.

Event Tracing for Windows (ETW)

ETW provides application programmers the ability to start and stop event tracing sessions, instrument an application to provide trace events, and consume trace events. WHEA uses ETW to report hardware error events to error management applications. For more information about ETW, see the Event Tracing documentation in the Platform Software Development Kit (SDK) and the Windows Driver Kit (WDK).

Extensible Firmware Interface (EFI)

The next-generation firmware model for the interface between the operating system and the platform firmware. The interface consists of data tables that contain platform-related information, plus boot and runtime service calls that are available to the operating system and its loader. Together, these provide a standard environment for booting an operating system and running pre-boot applications. For more information about EFI, see the EFI specification.

Intelligent Platform Management Interface (IPMI)

A standard used for monitoring and managing environmental hardware errors built in to the hardware platform. For more information about IPMI, see the IPMI specification.

Low Level Hardware Error Handler (LLHEH)

The first operating system code that executes in response to a hardware error condition. An LLHEH can be an interrupt handler, an exception handler, a polling routine, or a callback routine that is called by the system firmware. All LLHEHs report hardware errors to the operating system through a common hardware error reporting interface.

Machine Check Architecture (MCA)

A hardware and software architecture for reporting hardware errors to the operating system.

Machine Check Exception (MCE)

An exception that the processor reports to the operating system to indicate that a hardware error has occurred.

Machine Specific Register (MSR)

A processor-specific register that is used by system software to carry out certain functions. The operation of each MSR is specific for each processor, each processor family, or both.

Non Maskable Interrupt (NMI)

An interrupt that the processor reports to the operating system regardless of the processor’s current interrupt priority level. An NMI is usually signaled when the platform detects a fatal hardware error condition.

PCI Express Advanced Error Reporting (PCIe AER)

An optional extended capability of PCI Express that provides more robust error reporting than the standard PCI Express error reporting mechanism. For more information about PCIe AER, see the PCI Express specification.

Platform-Specific Hardware Error Driver (PSHED)

A WHEA component that provides an abstraction of the hardware error reporting facilities of the underlying platform. Microsoft provides default PSHEDs for each processor architecture. Platform vendors can supplement the default PSHED functionality by implementing PSHED plug-in modules that take advantage of platform-specific capabilities.

Service Processor (SP)

A microcontroller, distinct from the main processor(s), that manages platform-specific functions such as monitoring environmental conditions and handling certain error conditions. A service processor is usually part of BMC hardware.

Hardware Errors and Error Sources

A hardware error is a behavior related to a malfunction of a hardware component in a computer system. The hardware components contain error detection mechanisms that can detect when a hardware error condition exists. Hardware errors can be classified as either corrected errors, or uncorrected errors.

· A corrected error is a hardware error condition that has been corrected by the hardware or by the firmware by the time the operating system is notified about the existence of the error condition.

· An uncorrected error is a hardware error condition that cannot be corrected by the hardware or by the firmware. Uncorrected errors are either fatal or non-fatal.

A fatal hardware error is an uncorrected or uncontained error condition that is determined to be unrecoverable by the hardware. When a fatal uncorrected error occurs, the system is bugchecked to prevent propagation of the error.

A non-fatal hardware error is an uncorrected error condition from which the operating system can attempt recovery by trying to correct the error.

Central to WHEA is the concept of a hardware error source. A hardware error source is any hardware unit that alerts the operating system to the presence of an error condition. Examples of hardware error sources include the following:

· Processor machine check exception (for example, MC#)

· Chipset error message signals (for example, SCI, SMI, SERR#, MCERR#)

· I/O bus error reporting (for example, PCI Express root port error interrupt)

· I/O device errors

A single hardware error source might handle aggregate error reporting for more than one type of hardware error condition. For example, a processor’s machine check exception typically reports processor errors, cache and memory errors, and system bus errors. Note that the system management interrupt (SMI) is usually handled by firmware; the operating system does not handle SMI.

A hardware error source is typically represented by the following:

· One or more hardware error status registers.

· One or more hardware error configuration or control registers.

· A signaling mechanism to alert the operating system to the existence of a hardware error condition.

In some situations, there is not an explicit signaling mechanism and the operating system must poll the error status registers to test for an error condition. However, polling can only be used for corrected error conditions since uncorrected errors require immediate attention by the operating system.

Beginning with Windows Vista, the operating system maintains a list of all of the hardware error sources that are discoverable on a particular hardware platform. WHEA uses a discovery mechanism when Windows starts to determine the list of hardware error sources. The means by which this information is exposed to the operating system is platform-specific. The operating system gathers this information from a combination of ACPI tables, firmware interactions, and other platform-specific mechanisms. However, note that Windows Vista does not gather hardware error source information from ACPI tables, but Microsoft Windows Server 20008 does use these tables.

Relationship between Windows and the System Firmware

Both Windows and the system firmware play important roles in hardware error handling. WHEA improves the methods by which both of these can contribute to the task of hardware error handling in a complementary fashion. WHEA allows the hardware platform vendor to determine whether the firmware or the operating system will own key hardware error resources. WHEA also allows the firmware to pass control of hardware error resources to the operating system when appropriate.

Microsoft recommends that the operating system should own as much of the hardware error resources as is practical. However, Microsoft recognizes that the system firmware must continue to manage some of these resources, due to the lack of standardization. As more hardware error reporting standards are defined and adopted, Microsoft believes that more of the hardware error handling mechanisms can be placed under operating system control.

A key objective of WHEA is to offer hardware vendors a choice between putting error handling code in firmware or in the operating system. Historically, because of limited operating system support, the only option for hardware vendors has been to put error handling code in firmware.

Windows Hardware Error Handling

WHEA is the Windows operating system’s kernel-mode component that:

· Performs error-source discovery to gather a list of hardware error sources.

· Listens for hardware errors.

· Creates error record and logs them.

· Attempts recovery action.

This section discusses the WHEA components for both client- and server-class systems, drawing distinctions where the implementations differ. Figure 1 shows a high-level overview of WHEA.

[image: image1.emf]Hardware Platform

Event Log

Kernel

User

ETW

Windows

Low Level Hardware Error Handlers

WHEA

IHV

WHEA

Figure 1: Windows Hardware Error Handling

WHEA uses routines called Low Level Hardware Error Handler (LLHEH) to interact with hardware to receive error notifications. A LLHEH can be configured and initialized at boot time or when new hardware is added to a running system. These handlers are implemented in the module most appropriate to them. For I/O buses, the handlers exist in their respective bus driver; for platform trap handlers, they exist in the kernel or hardware abstraction layer (HAL).

WHEA reacts to hardware errors based on their severity. The following describes WHEA actions based on classification of the error.

Corrected Error:

1.
WHEA is notified by a LLHEH that polls the hardware registers.

2.
WHEA fills the event record with information about the error—including information such as error source, severity, occurrence count and so on.

3.
WHEA generates an Event Tracing in Windows (ETW) event.

Uncorrected but Recoverable Error:

1.
WHEA is notified by a LLHEH that registered for hardware interrupts.

2.
WHEA takes recovery action by working with other operating system components to recover.

3.
When recovery is complete, WHEA fills the event record with information about the error—including information such as error source, severity, occurrence count, and so on.

4.
WHEA takes recovery action by working with other operating system components.

5.
WHEA generates an ETW event.

Windows Vista implements corrected error handlers for corrected machine checks and correctable errors reported using PCI Express AER. The LLHEH for corrected machine checks is implemented as a periodic polling routine that scans all the processors’ machine check exception status MSRs for valid errors. The PCI Express LLHEH is implemented as part of the PCI driver’s root port interrupt handler.

Uncorrected Fatal Error:

1.
WHEA is notified by a LLHEH that registered for hardware interrupts.

2.
WHEA fills the event record with information about the error—including information such as error source, severity, occurrence count, and so on.

3.
WHEA generates an ETW event and bugchecks the system.

The degree to which hardware errors are standardized varies greatly. Some hardware error information made available to the operating system will be in a standardized format—for example, PCI Express AER. Some will be entirely device- or implementation-dependent—for example, processor-specific MCA records. Microsoft is working with industry partners to standardize a common hardware error record format. This error record format specification will be made available as soon as it is ready for industry adoption.

On client systems, WHEA-generated ETW notifications are directly logged to Event Log. Management applications can register as event consumers to receive ETW notifications for particular type of errors. Windows defines a number of built-in hardware error events for which registered consumers will receive notifications.

Components of WHEA for Windows Server 2008
Server systems have stricter requirements for reliability and availability; this is mainly because of the types of mission-critical applications they are built to run. With Windows Server 2008, WHEA introduces a number of robust, scalable, and extensible features that can be used by hardware vendors and system manufacturers to customize their products and add value for their customers. The following diagram shows the major WHEA components.

[image: image2.emf]Hardware/Firmware

Kernel

Event Log

Kernel

User

ETW

Windows Server

HALPCI.sys

Management

Application

WMI

Platform-Specific Hardware Error Driver

Plug-in

Plug-in

Plug-in

LLHEH

LLHEH

IHV

ISV

WHEA

Figure 2: WHEA for Windows Server 2008
For each hardware error source reported by the platform to the operating system, there is a corresponding LLHEH, which is the first operating system code that executes in response to a hardware error condition. The LLHEH can be an interrupt handler, an exception handler, polling routine, or a callback routine that is invoked by the system firmware.

Each LLHEH performs the following tasks:

· Acknowledge the hardware error.

· Capture the available error information related to the hardware error.

· Report the hardware error condition to the operating system.

Typically, LLHEHs interact directly with the hardware and firmware to retrieve hardware error information. LLHEHs compile all of the information related to a hardware error into a hardware error packet. In cases where the firmware opted to process the hardware error first, LLHEH interacts with firmware to retrieve the error packet. All LLHEHs report hardware errors to the Windows operating system by passing the hardware error packet data to a common error reporting interface. WHEA creates an error record in a standardized format from the above error packet.

WHEA gives platform vendors the opportunity to add additional information to the error record before sending the ETW event.

Both the LLHEHs and Windows draw upon the services of the platform-specific hardware error driver (PSHED) to gather platform-specific error information. The PSHED provides an abstraction of the hardware error reporting facilities of the underlying platform by hiding the details of a platform’s error handling mechanisms from the operating system. This allows the core Windows components to access only the error status registers that are considered to be architectural while also providing a mechanism through which richer and more detailed platform-specific hardware error information can be obtained.

On platforms that involve a system firmware interface to hardware error handling resources, the PSHED handles the interface with the firmware. Microsoft provides a PSHED for each processor architecture (Itanium, x64, and x86). Platform vendors can supplement the default PSHED functionality by implementing PSHED plug-in modules that take advantage of platform-specific capabilities.

A PSHED plug-in is a special-purpose Windows device driver that implements an additional callback interface that is used by the operating system’s PSHED. The purpose of a PSHED plug-in is to augment or override the behavior of the PSHED. For each processor architecture, a default PSHED implements core error handling behavior common to that processor architecture, and it exposes a consistent interface to the Windows operating system.

A PSHED plug-in fulfills two important roles:

· Some error handling functionality required by WHEA is not reported in a standardized way. For such behavior, a PSHED plug-in is required to implement the necessary functionality. An example of this type of behavior is error injection, which is needed for WHEA testing and qualifying purposes. At present, no industry standard mechanism exists for hardware error injection.

· For error handling functionality that is standardized, such as the Machine Check Error Architecture, a plug-in might augment the behavior implemented by the PSHED.

A PSHED plug-in is intended to be implemented by platform vendors as a software interface to the hardware platform’s hardware error reporting and recovery capabilities. A PSHED plug-in might interface as necessary with platform firmware using whatever private interfaces/mechanisms necessary. This allows the platform hardware vendor to continue to use existing error handling firmware. In time, Microsoft expects that more hardware error reporting and recovery capabilities will be standardized, and therefore the need for PSHED plug-ins for general error handling and reporting will diminish such that PSHED plug-ins will only be needed for vendor-specific value-add capabilities.

Upon notification of a hardware error condition, Windows constructs a hardware error record that describes the hardware error condition. Windows then calls into the PSHED so that it can add any additional hardware error information to the hardware error record to better describe the hardware error condition. After Windows has compiled all of the hardware error information into the hardware error record, WHEA attempts error recovery if this was an uncontained error, and it notifies user-mode applications by generating an ETW event.

Under certain hardware error conditions, the operating system is forced to restart the computer to recover from the error. In these situations, the operating system does not log the error information in the system event log or notify user-mode applications until after the computer has been restarted. Therefore, the operating system must save the hardware error record to some form of non-volatile storage before restarting the system. The PSHED provides an interface through which the operating system can store and retrieve a hardware error record so that the error information is preserved during the system restart. When the system is restarted, the operating system retrieves the saved hardware error record so that it can be properly logged in the system event log and user-mode applications can be notified.

Windows also provides hardware error management APIs so that user-mode error management applications can set and retrieve hardware error source information, configure the error handling for a particular error source, and inject simulated hardware errors into the operating system for testing purposes.

Error Handling Differences Among Windows Versions

The following lists summarize the differences between WHEA and the hardware error handling in versions of Windows earlier than Windows Vista.

Error Handling in Earlier Versions of Microsoft Windows

· Numerous unrelated error reporting mechanisms

· Different error signaling and reporting mechanisms for each processor architecture

· No means for the operating system to determine what error sources are supported by a particular hardware platform

· Does not capture all of the available error information

· Does not effectively utilize existing or future hardware error standards

· Does not effectively leverage any platform-specific capabilities

· No common error record format for reporting error data

· No error record persistence mechanism for fatal hardware errors, so significant error data is lost when the system is restarted

· Poor support for handling I/O hardware errors

· Little support for error recovery

· Little support for error management applications

· Difficult to determine the root cause of hardware errors

· Offers little flexibility for platform and firmware vendors’ hardware error handling implementations

WHEA in Windows Vista and Windows Server 2008
· Common error reporting infrastructure for all hardware errors on all processor architectures and hardware platforms

· Error source discovery mechanism for determining the error sources that are supported by a particular hardware platform

· Enables the operating system to capture all of the available error information

· Makes full utilization of existing hardware error standards, and allows for supporting future hardware error standards through the use of new PSHEDs
· Allows for leveraging platform-specific capabilities through the use of PSHED plug-ins*

· Common error record format for all types of hardware errors

· Error record persistence mechanism for fatal hardware errors that preserves the full hardware error record while the system is restarted*

· Enhanced support for handling I/O hardware errors

· Infrastructure for recovery from non-fatal hardware errors*

· Support for error management applications through ETW-based error event reporting and user-mode error management API*

· Much easier to determine the root cause of hardware errors

· Offers new alternatives for platform and firmware vendors’ hardware error implementations*

* Capability in Windows Server 2008 only.

Resources

Call to Action

· Work with Microsoft to get resources needed for developing PSHED plug-ins.

· Work with Microsoft to validate WHEA platform support:

Provide firmware implementations with WHEA ACPI support.

Provide firmware with error record persistence support.

· Work with Microsoft to develop WHEA-based management applications:

Powerful health monitoring and error recovery features are possible with common error record format and ETW.

Error source control applications allow for fine-grained control over error source operational parameters.

Pre-boot and out-of-band error record processing applications.

References

Advanced Configuration and Power Interface (ACPI) Specification

http://www.acpi.info/

ACPI and Windows: http://www.microsoft.com/whdc/system/pnppwr/powermgmt/

Event Tracing for Windows (ETW)

Platform SDK: http://windowssdk.msdn.microsoft.com/library/default.asp?url=/library/en-us/etw/etw/event_tracing.asp

WDK (introduction): http://g.msn.com/9SE/1?http://www.microsoft.com/whdc/devtools/tools/EventTrace.mspx&&DI=6066&IG=45755639b75a4fa583d5bf0fa423b400&POS=1&CM=WPU&CE=1&CS=AWP&SR=1

Extensible Firmware Interface (EFI)

http://developer.intel.com/technology/efi/download.htm
EFI and Windows: http://www.microsoft.com/whdc/system/platform/firmware/efibrief.mspx

Intelligent Platform Management Interface (IPMI)

http://www.intel.com/design/servers/ipmi/spec.htm
PCI Express Specification

http://www.pcisig.com/specifications/order_form

PSHED Plug-in Developer’s Guide

PSHED Interface Specification

WHEA Error Record Persistence Specification

WHEA BOOT Error Record Specification

WHEA ACPI Specification

Send e-mail to WHEAFB@Microsoft.com.

Windows Server 2008 Logo Program for Systems, Version 3.0

http://www.microsoft.com/whdc/winlogo/hwrequirements.mspx

May 23, 2006
© 2006 Microsoft Corporation. All rights reserved.

[image: image3.png]_1207575754.vsd
Hardware Platform

Event Log

Kernel

User

ETW

Windows

Low Level Hardware Error Handlers

WHEA

IHV

WHEA

_1207575437.vsd
PCI.sys

Hardware/Firmware

Kernel

Event Log

Kernel

User

ETW

Windows Server

HAL

Management Application

WMI

Platform-Specific Hardware Error Driver

Plug-in

Plug-in

Plug-in

LLHEH

LLHEH

IHV

ISV

WHEA

