[image: image1.png]4% Windows

How to Install Windows Drivers with Software Applications - 12

How to Install Windows Drivers with Software Applications
August 1, 2006

Abstract

Microsoft® Windows Vista™ provides enhanced support for both software-first and hardware-first installations of driver packages that have accompanying software applications. This paper describes best practices for installing driver packages that include applications on the Microsoft Windows® family of operating systems.

This information applies for the following operating systems:

Microsoft Windows Vista

Microsoft Windows Server® 2003

Microsoft Windows XP

Microsoft Windows 2000

Future versions of this preview information will be provided in the Windows Driver Kit.

The current version of this paper is maintained on the Web at:

http://www.microsoft.com/whdc/driver/install/app_drv.mspx.
References and resources discussed here are listed at the end of this paper.

Contents

4Introduction

4Methods for Installing Drivers with Applications

5Software-First Scenarios

5Hardware-First Scenarios

5Method 1: A Co-Installer that Launches an Application Installer

5Method 2: An Application that Is Integrated with the Driver Package

6Method 3: A HardwareId INF Directive in Autorun.inf

6Device Installation Process

6Method 1 Process: A Co-Installer that Launches an Application Installer

6Software-First Scenario

7Hardware-First Scenario

7Driver Updates

7Method 2 Process: An Application that Is Integrated with the Driver Package

7Software-First Scenario

7Hardware-First Scenario

8Driver Updates

8Method 3 Process: A HardwareId INF Directive in Autorun.inf

8Software-First Scenario

8Hardware-First Scenario

9Driver Updates

9Implementing Installation Methods

9Method 1 Implementation: A Co-installer that Launches an Application Installer

9Implementing a Finish-Install Page

10Implementing a Finish-Install Action

10Implementation Guidelines for Co-Installers

11Method 2 Implementation: An Application that Is Integrated with the Driver Package

11Method 3 Implementation: A HardwareId INF Directive in Autorun.inf

12Multifunction Devices

12Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.
© 2006 Microsoft Corporation. All rights reserved.

Microsoft, Win32, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction
Microsoft® Windows Vista™ provides enhanced support for both software-first and hardware-first installations of driver packages that have accompanying software applications. These enhancements, along with changes in the requirements for the Windows Vista Logo Program for Hardware, enable hardware vendors to build products that give customers a great user experience when they install device drivers that come with applications. Hardware vendors can take advantage of these changes to support both software-first and hardware-first installations.
Often, a customer installs the software for a new device before installing the hardware. This is a software-first installation. Just as often, a customer who is eager to use a new device ignores instructions and labels that the vendor places on the device to guide the user to perform a software-first installation. Instead, the customer installs the hardware before the software. This is a hardware-first installation. Customers are equally likely to use either method, so vendors must support both, which has been difficult in the past.
The Windows Vista logo program requirements allow device co-installers to invoke other programs to install applications. Vendors can use this technique to dramatically improve hardware-first installation scenarios, as described in this paper.
Windows Vista implements new features that further improve the user’s experience:

· A co-installer can use finish-install actions to present a user interface outside the Found New Hardware Wizard, which enables the co-installer to implement a customized user interface or to launch Microsoft Internet Explorer to download applications.
· A new INF directive, HardwareId, can be added to Autorun.inf to prevent the Found New Hardware Wizard from running and allow AutoRun to run the application installer first.
To help improve security, driver versioning, and corporate deployment of drivers, Windows Vista introduces the driver store, which is a special storage location on the user's computer in which Plug and Play saves drivers that have yet to be installed. Although the driver store has no direct effect on the installation of drivers that have accompanying applications, vendors might have to modify driver packages that were created for previous versions of Microsoft Windows®. For example, on Windows Vista, drivers are first copied to the driver store and then installed from that location, instead of being installed directly from a CD, so a co-installer cannot assume that the driver CD is still present when the co-installer runs. To avoid problems such as this, vendors should modify their driver packages to use the installation methods that are described in this paper because these methods work together with the driver store.
This paper describes methods that vendors can use to implement driver installation packages that support both software-first and hardware-first installation of driver packages. For more information about device and driver installation in Windows Vista, see "Resources" at the end of this paper.
Methods for Installing Drivers with Applications
Vendors can use the methods that are described in this section to provide a smooth user experience when users install new devices while ensuring that both the driver and the application are properly installed in both software-first and hardware-first scenarios.
Software-First Scenarios
All of the installation methods that are described in this paper use the Device Installation Frameworks (DIFx) tools, DPInst and DIFxApp. Both tools install device packages. DPInst is a standalone executable. DIFxApp is a Microsoft Windows Installer (MSI) custom action that integrates with existing application installers that use MSI.
For more information about the DIFx tools, see Device Installation Frameworks Overview, which is listed in "Resources" at the end of this paper.
Hardware-First Scenarios
Vendors can choose from three methods to create good hardware-first installation solutions, each with different advantages and disadvantages. Vendors should choose the method that best suits their products.
Method 1: A Co-Installer that Launches an Application Installer
When Plug and Play detects a device, it installs the driver for that device as usual. At the end of installation, the co-installer for the driver invokes the application installer, which then installs the application.
Microsoft recommends this method most strongly, for the following reasons:
· This method can be used to install driver packages on systems that are running Windows 2000, Windows XP, Microsoft Windows Server® 2003, or Windows Vista.

· In Windows Vista, a vendor can provide a custom user interface by using a finish-install action.

· Only the driver package must be signed. The application does not have to be signed.
· Only the driver is copied to the driver store. The application is installed elsewhere on the user's system.
· Driver updates can prompt the user for application updates to synchronize versions.

· The vendor has greater flexibility in the source media to be used. The application can be on a CD, or it can be downloaded from the Web.
Method 2: An Application that Is Integrated with the Driver Package
When creating the driver package, the vendor adds the application installation files to the driver’s INF, thus creating a combined driver package. The application and driver are now one package, so they are both installed in all scenarios.

Advantages of this method:

· This method can be used to install driver packages on systems that are running Windows 2000, Windows XP, Windows Server 2003, or Windows Vista.

· Application and driver versions are always synchronized.

· Both the application and the driver can be updated through Windows Update because they are both in the driver package.
Disadvantages of this method:

· Both the application and the driver must be signed because they are both in the driver package.
· Both the application and the driver must be submitted to Windows Hardware Quality Labs (WHQL) as a single package whenever either the application or the driver changes.

· The application exists on the user’s hard disk in two places: Once in the driver store and once in the applications directory (most likely in the Program Files directory). Vendors should choose another method for driver packages with large applications.
· This method does not support optional applications.
Method 3: A HardwareId INF Directive in Autorun.inf
This method builds upon existing software-first methods to create a smooth hardware-first scenario. The vendor produces a CD with an Autorun.inf file that launches an application installer that installs the drivers. The new HardwareId INF directive in Windows Vista causes the Found New Hardware Wizard to wait to run until after the CD’s AutoRun process finishes. The Found New Hardware Wizard then finds that the drivers are already installed by the application installer, so the wizard exits.
Advantages of this method:

· Vendors can easily add this method to an existing product.

· Only the driver package is signed; the application does not have to be signed.

· Only the driver is copied to the driver store.

Disadvantages of this method:

· This method can be used for driver installation only on Windows Vista. The vendor must implement a mechanism to synchronize application and driver versions. For more information, see "Device Installation Process" later in this paper.
· When Windows Update updates the driver, it does not update the application. Windows Update runs only the device INF, which must not reference the application.

· The source media must be a CD. The HardwareId directive does not provide any capability for downloading an application from the Web.

Device Installation Process
This section describes the device installation process for software-first, hardware-first, and driver-update scenarios that use each of the three installation methods.
Method 1 Process: A Co-Installer that Launches an Application Installer
In this method, the device co-installer launches the application installer at the end of the device installation process.
Software-First Scenario
1.
The user inserts a CD.

2.
AutoRun launches the application installer.
3.
The application installer installs the application and uses the DIFx tools to preinstall INFs and drivers in the driver store.

4.
The user installs the hardware.
5.
Plug and Play installs the drivers that are already in the driver store.

Hardware-First Scenario
1.
The user installs the hardware.

2.
Windows downloads the driver from Windows Update and installs it by using its co-installer.
3.
At the end of the driver install process, the co-installer’s finish-install page or finish-install action either launches the application installer or prompts the user to download the application from the Web.

4.
The application installer installs the application. The DIFx tools in the application installer (which are used in software-first installs) detect that drivers have already been installed and do nothing.
Implementations that use this method with a CD must also use a HardwareId directive in an Autorun.inf file, as described in "Method 3: Implement the HardwareId INF Directive in Autorun.INF," later in this paper. In this case, the installation process proceeds as described in that section.
Driver Updates
1.
Windows Update detects a new driver.

2.
The user chooses to install the new driver.
3.
Windows Update downloads the driver package, including the new co-installer, and installs it as usual.

4.
The new co-installer prompts the user to download the new version of the application. If this is implemented as a finish-install action, the co-installer itself can download and install the new application.

5.
The new application installer updates the application. The DIFx tools in the application installer, which are used for software-first scenarios, detect that drivers are already installed and do nothing.
Method 2 Process: An Application that Is Integrated with the Driver Package
In this method, the driver and application are combined into one driver package and installed together.
Software-First Scenario

1.
The user inserts a CD.

2.
AutoRun launches DPInst.

3.
DPInst pre-installs the driver’s INF and all of its files, including the application and its installer, into the driver store.

4.
The user installs the hardware.

5.
Plug and Play installs the drivers that are already in the driver store.

6.
The co-installer’s finish-install page launches the application installer.
7.
The application installer installs only the application.

Hardware-First Scenario

1.
The user installs the hardware.
2.
Windows downloads the driver from Windows Update and installs it by using its co-installer.
3.
The co-installer’s finish-install page launches the application installer.

4.
The application installer installs only the application.
Implementations that use this method with a CD must also use a HardwareId directive in an Autorun.inf file, as described in "Method 3: Implement the HardwareId INF Directive in Autorun.INF," later in this paper. In this case, the installation process proceeds as described in that section.

Driver Updates

1.
Windows Update detects a new driver.
2.
The user chooses to install the new driver.
3.
Windows Update downloads the driver package, including the new application, and installs it as usual.

4.
The new co-installer launches the application installer.

5.
The application installer updates only the application.
Method 3 Process: A HardwareId INF Directive in Autorun.inf
This method builds on an existing method that many vendors already use, by adding a directive to Autorun.inf that stops the Found New Hardware Wizard and allows AutoRun to install the device.
Software-First Scenario

1.
The user inserts a CD.

2.
AutoRun launches the application installer.

3
The application installer installs the application and uses the DIFx tools to preinstall INFs and drivers in the driver store.

4.
The user installs the hardware.

5
Plug and Play installs the drivers that are already in the driver store.

Hardware-First Scenario

1.
The user installs the hardware.
2.
The Found New Hardware Wizard runs and prompts the user for the CD.
3.
The Found New Hardware Wizard looks for the HardwareId directive in Autorun.inf on the CD. If it finds a match, The Found New Hardware Wizard runs AutoRun,

4.
AutoRun launches the application installer.

5.
The application installer installs the application and uses the DIFx tools to install drivers. If this implementation also uses a co-installer as described for Methods 1 and 2 earlier in this paper, the co-installer detects that the application has been installed already and takes no action.
6.
When the application installer exits, the Found New Hardware Wizard continues.

7.
The Found New Hardware Wizard detects that the driver is already installed and exits.

Driver Updates
Windows Update hosts only driver updates that have been signed by WHQL and installs driver updates. A vendor must host application updates and provide a mechanism for updating applications.
Vendors can implement a system for synchronizing application and driver versions through their application install mechanism: When the application downloads an update, it also downloads a driver package and uses the DIFx tools to update the driver.
Implementing Installation Methods

This section describes the detailed steps for implementing the device installation methods that are described earlier in this paper.
Method 1 Implementation: A Co-installer that Launches an Application Installer

To implement a driver package that uses a co-installer to launch an application installer:
1.
Create a device INF as usual. This INF installs only the device driver and does not refer to the application at all.

2.
Create a co-installer or update an existing co-installer to add a finish-install page or finish-install action that either launches the application installer or prompts the user to download the application from the Web.
A vendor implements a finish-install page or a finish-install action according to the requirements for their product. For details, see "Implementing a Finish-Install Page" and "Implementing a Finish-Install Action," later in this paper.
3.
Follow the directions in the DIFx tools documentation to create the driver package and application installer.
Implementing a Finish-Install Page
A co-installer can use finish-install pages on all versions of Windows from Windows 2000 through Windows Vista. The user interface for finish-install pages appears as wizard pages within the Found New Hardware Wizard.
To implement a finish-install page, a co-installer adds its pages to the SP_NEWDEVICEWIZARD_DATA structure during a DIF_NEWDEVICEWIZARD_FINISHINSTALL request.
The following pseudocode shows how an installer adds a custom page to the array of pages in the class install parameters:

// get the class install parameters by calling
// SetupDiGetClassInstallParams
// check whether NumDynamicPages has reached the max

// fill in the PROPSHEETPAGE structure

// add the page and increment the NumDynamicPages counter

NewDevWizardData.DynamicPages[NewDevWizardData.NumDynamicPages++] =

 CreatePropertySheetPage(&Page);

// apply the modified params by calling

// SetupDiSetClassInstallParams

For information about the CreatePropertySheetPage function, see the Platform SDK. For detailed information about implementing finish-install pages, see the WDK documentation.

Implementing a Finish-Install Action

A co-installer can use finish-install actions to present a more robust user interface for a wide range of actions, such as displaying a simple prompt with a URL for the application, launching an installation program off the CD, launching Internet Explorer, or implementing a full Web download application. Finish-install actions are available in Windows Vista.
To implement a finish-install action, a co-installer:

· Sets the DI_FLAGSEX_FINISHINSTALL_ACTION flag when the installer processes a DIF_NEWDEVICEWIZARD_FINISHINSTALL DIF code and returns NO_ERROR.
· Starts the application installation process as described earlier, when it processes a DIF_FINISHINSTALL_ACTION request and returns one of the following error codes:

NO_ERROR after the application has been installed.
A Win32 error code if the installation fails, but should be attempted again.
Returning a Microsoft Win32® error code indicates that device installation should run another finish-install process to complete the finish-install actions the next time the device is enumerated. If the installation fails and should not be attempted again, the co-installer should return NO_ERROR.

For detailed information about implementing finish-install actions, see the WDK documentation.

Implementation Guidelines for Co-Installers

A co-installer must not exit from its finish-install pages or finish-install action until the application installer has finished. If a co-installer exits early and another driver requires a reboot, Windows might reboot the computer before the application installer finishes.
Be careful to prompt the user only if necessary. A co-installer should first look for the application on the CD and, if the application is present, silently begin the installation process. If the CD is not present, the co-installer should offer the user the choice of either inserting a CD or downloading the application from the Web. If the user chooses to insert a CD, the co-installer should detect the new media notification, silently exit, and allow the CD’s AutoRun process to install the application.
A co-installer can detect the new media by listening for a WM_DEVICECHANGED/DBT_DEVICEARRIVAL message with dbch_devicetype set to DBT_DEVTYP_VOLUME and dbcv_flags set to DBTF_MEDIA. For details, see Detecting Media Insertion or Removal, which is listed in "Resources" at the end of this paper.
A co-installer should never assume that the source media is available during installation. (For example, a co-installer should never use the %1% DirId to find source media from within the co-installer). Windows Vista invokes co-installers after they have been copied to the driver store; by this time, the source media might have been removed, which is why it is important to avoid prompting the user for the CD. For example, suppose a user performs a software-first installation, removes the CD, and then plugs in the device. The co-installer is invoked only when the user plugs in the device for the first time.
Important

If a co-installer launches Internet Explorer, it must launch it in Protected Mode, which has features that protect users against malicious code. Failing to launch Internet Explorer in Protected Node opens the user's system to malicious software attacks because Internet Explorer is running as an administrator. (Finish-install pages always run as an administrator.) To launch Internet Explorer in Protected Mode, follow the instructions in Understanding and Working in Protected Mode Internet Explorer, which is listed in "Resources" at the end of this paper.
Method 2 Implementation: An Application that Is Integrated with the Driver Package

The following steps create a driver package that contains both the driver and the application:

1.
Update the device INF to copy the application’s installation files to the Program Files\vendor_name\application_name directory (the Program Files directory is DirId %16422%).
2.
Create a co-installer or modify an existing co-installer to add a finish-install page or finish-install action that launches the application installer and prompts the user for a CD only if necessary or that prompts the user to download the application from the Web.
A vendor implements a finish-install page or a finish-install action according to the requirements for their product. For details, see "Implementing a Finish-Install Page" and "Implementing a Finish-Install Action," earlier in this paper.

3
Lay out the files by using DPInst as described in the Driver Package Installer documentation, which is listed in "Resources" at the end of this paper.

A driver package that implements this method should also follow the additional guidelines for co-installers that are described in "Implementation Guidelines for Co-Installers," earlier in this paper.

Method 3 Implementation: A HardwareId INF Directive in Autorun.inf
Follow these steps to implement a HardwareId INF directive in Autorun.inf:
1.
Follow the directions in the DIFx tools documentation to create the driver package and application installer.
2.
Add one or more HardwareId INF directives to autorun.inf. Each HardwareId directive lists one Plug and Play hardware ID for which this product has drivers. The syntax is as follows:

[DeviceInstall]

HardwareId=”pnp-id1”

HardwareId=”pnp-id2”
…

Each pnp-id is the Plug and Play hardware ID for one device. The Plug and Play hardware ID can be relatively generic (for example, PCI\VEN_1234&DEV_1234) to very specific (for example, PCI\VEN_1234&DEV_1234&SUBSYS_12345678&REV_01).

Each Plug and Play hardware ID must be enclosed in quotes. Only one Plug and Play hardware ID can be specified per HardwareId directive. To specify multiple hardware IDs, use multiple HardwareId directives, one per line.

Application installers that are invoked by AutoRun must not wait for in-progress Plug and Play installations to complete, which is frequently done in existing implementations. When using the HardwareId directive, the Found New Hardware Wizard invokes the application installer by using AutoRun on hardware-first installations. The wizard waits for the application installer to finish before exiting. Application installers that wait for the wizard cause a deadlock and cause the system to appear hung to the user.

Multifunction Devices
Multifunction devices require several drivers. Each driver might have an associated application, or all drivers might interact with a single application. Vendors with multifunction devices should follow the guidelines in this section.
For devices that use a parent device to enumerate several child devices:
· The parent driver’s INF should use the CopyInf directive to copy all the child device’s INFs to the driver store. This preinstalls all of the drivers in the driver store by using a single action. For details about CopyInf, see “INF CopyINF Directive” in the WDK documentation.
· For methods 1 and 2 described earlier in this paper, only the parent device’s co-installer launches the application installer.

For composite devices in which all devices appear as peers:
· Do not rely on Windows to install devices in a particular order. There is no guaranteed order in which peer devices are installed.
· Each INF must have a CopyInf directive that copies all other INFs to the driver store.
· For methods that use a co-installer as described in methods 1 and 2 earlier in this paper:

If the multifunction device has a separate application for each driver, then each of those drivers can have its own co-installer that installs its associated application.

If the multifunction device has only one application and all of the drivers communicate with it, then each device must have a co-installer that is associated with it and launches the application installer. When the co-installer processes its DIF_NEWDEVICEWIZARD_FINISHINSTALL request, it should check to see if the application has already been installed and request a finish-install page or action only if the application is not already installed. This avoids launching the application installer multiple times.
Resources
Device and Driver Installation on WHDC
Driver Install Frameworks Tools
http://www.microsoft.com/whdc/driver/install/difxtools.mspx
Driver Package Installer Version 2.0
http://www.microsoft.com/whdc/driver/install/DPInst.mspx
Understanding and Working in Protected Mode Internet Explorer
http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/IETechCol/dnwebgen/ProtectedMode.asp
Device Finish-Install Actions in Windows Vista
http://www.microsoft.com/whdc/driver/install/Finish_Install.mspx
Device Installation Rules for Windows Vista
http://www.microsoft.com/whdc/driver/install/InstallRules.mspx
Media Insertion and AutoRun on MSDN

Detecting Media Insertion or Removal
http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/devio/base/detecting_media_insertion_or_removal.asp
Creating an AutoRun-Enabled Application
http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/shellcc/platform/shell/programmersguide/shell_basics/shell_basics_extending
/autorun/autoplay_works.asp
Windows Driver Kit (WDK)

http://www.microsoft.com/whdc/driver/WDK/aboutWDK.mspx
Windows Vista Logo Program: Proposed Requirements for Hardware (System and Devices)
http://www.microsoft.com/whdc/winlogo/hwrequirements.mspx

August 1, 2006
© 2006 Microsoft Corporation. All rights reserved.

[image: image1.png]