[image: image5.png]4% Windows

Sample Drivers for the User-Mode Driver Framework - 3

Sample Drivers for the User-Mode Driver Framework
Version 0.5 May 16, 2006

Abstract

This paper provides information about the sample drivers that are supplied with the user-mode driver framework (UMDF), which is a component of the Windows Driver Foundation (WDF) for the Microsoft® Windows® family of operating systems. It steps through the Skeleton sample driver and explains the structure of a UMDF driver. The paper also provides guidelines for using the Skeleton sample as a basis for user-mode driver development.
This information applies for the following operating systems:

Microsoft Windows Vista™

Microsoft Windows XP
Future versions of this preview information will be provided in the Windows Driver Kit.

The current version of this paper is maintained on the Web at:

http://www.microsoft.com/whdc/driver/wdf/UMDF-samp.mspx
References and resources discussed here are listed at the end of this paper.

Contents

3Introduction

3How to Use This Document

4UMDF Driver Structure and Concepts

5The Least You Should Know about Windows I/O

6The Least You Should Know about COM

7UMDF Architecture

8Required Driver Functionality

9Flow of Control in UMDF Driver

10UMDF Sample Drivers

11A Minimal UMDF Driver: The Skeleton Driver

12Classes, Objects, and Interfaces

13Driver Dynamic-Link Library and Exports

13Driver Entry Point: DllMain

14Get Class Object: DllGetClassObject

15Functions for COM Support

16IUnknown Methods

16IClassFactory Interface

16Driver Callback Object

19Device Callback Object

19CreateInstance Method

20Initialize Method

23Configure Method

23QueryInterface Method

23Using the Skeleton Driver as a Basis for Development

24Customize the Exports File

24Customize the Sources File

24Customize the INX File

25Customize the Comsup.cpp File

25Add Device-Specific Code to Driver.cpp

25Add Device-Specific Code to Device.cpp

26Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.
© 2006 Microsoft Corporation. All rights reserved.

Microsoft, MSDN, Win32, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction
The user-mode driver framework (UMDF) supports the development of user-mode drivers for protocol-based and serial bus–based devices, such as Universal Serial Bus (USB) devices and network-connected devices. For example, drivers for the following types of devices can be written in user mode:

· Portable storage devices, such as personal digital assistants (PDAs) and cell phones

· Portable media players
· USB bulk transfer devices

· Auxiliary display devices

UMDF integrates the installation and management of these devices with standard operating system facilities, such as Plug and Play and power management. A device that is controlled by a UMDF driver can be directly connected, connected on the network, or connected via a wireless protocol such as Bluetooth.

UMDF drivers handle the same types of I/O requests as kernel-mode drivers and are installed by an INF file, just as kernel-mode drivers are. UMDF drivers have comparable performance to kernel-mode drivers and numerous advantages:

· Simpler driver environment

· Greater stability

· Greater security

· Use of the Microsoft® Win32® API

· Debugging with a user-mode debugger

· Programming in C++

· Rapid code generation

User-mode drivers can support 32-bit or 64-bit devices for any Microsoft Windows® hardware platform and can be distributed on Windows Update.

How to Use This Document

Microsoft anticipates that some developers of UMDF drivers will have extensive experience in writing Windows driver model (WDM) kernel-mode drivers but little familiarity with the component object model (COM), whereas others are experienced applications programmers who know COM quite well but have limited experience with WDM. Although these two skill sets are quite different, this document attempts to provide both audiences with useful information.
Consider the following a guide to this document:

· If you are well acquainted with COM, you can skim the following sections or skip them entirely:

The Least You Should Know about COM

Driver Dynamic-Link Library and Exports
Functions for COM Support
· If you have written kernel-mode drivers and understand WDM, you can skip the following section:

The Least You Should Know about Windows I/O
If COM is new to you (or if your COM experience is somewhat rusty), you should refer to one of the numerous available books or to MSDN®, which is listed in the "Resources" section at the end of this document.
UMDF Driver Structure and Concepts

UMDF is based on the same conceptual driver programming model as the kernel-mode driver framework (KMDF) that is also part of WDF. However, the two frameworks implement the model with different components, device-driver interfaces (DDIs), and data structures.
UMDF drivers create callback objects to represent the driver itself, each of its devices, and each of its I/O queues. The framework defines a set of interfaces, some of which the driver must implement for the callback objects that it creates and others that the framework itself implements for the objects that the framework creates. In general, the framework creates an object that corresponds to each of the driver’s callback objects. The framework makes the interfaces on its own objects available to the driver by passing pointers.
The Least You Should Know about Windows I/O

Before writing a driver—even a user-mode driver—you must understand the basics of the Windows I/O architecture, as shown in Figure 1. This section outlines some of the major principles behind the I/O system and defines the most important terms. For a detailed explanation of Windows I/O, see Windows Internals, which is listed in the "Resources" section at the end of this document.
[image: image1.emf]Applications and Windows services

Win32 API

User-mode PnP

manager

PnP managerI/O manager

Power

manager

Windows I/O system

User mode

Kernel mode

Bus driver

Function

driver

Filter driver

Filter driver

Device stack

Figure 1. Windows I/O Basics

As Figure 1 shows, Windows supports a layered I/O architecture. User-mode applications and services issue I/O requests through the Win32 API and communicate with the user-mode PnP manager to perform Plug and Play and power activities. The Win32 API and user-mode PnP manager, in turn, communicate with the kernel-mode I/O system, which includes the kernel-mode I/O manager, PnP manager, and power manager. The kernel-mode I/O system communicates with the kernel-mode drivers.
Drivers are also layered. Most devices are driven by not one but by several drivers, each layered atop the next. Together, the group of drivers that operate a particular device is called the device stack (sometimes also called the driver stack). At the bottom of the device stack is a bus driver, which controls a bus and enumerates the devices that are connected to the bus. Layered above the bus driver are filter drivers and a function driver. The function driver is the primary driver for the device and exposes the device interface to the I/O manager. Filter drivers can be layered above or below the function driver and provide additional features, such as encryption or security, or change the behavior of a device. Each driver in the device stack is represented by a device object. The device object is a data structure that contains information about the driver and the device.
Drivers receive I/O, Plug and Play, and power management requests in the form of I/O request packets (IRPs). When the Windows I/O manager receives an I/O request, it determines which device stack corresponds to the virtual file that is specified in the request. It then packages the request into an IRP and forwards it to the target device object. Plug and Play and power management notifications are also packaged as IRPs, and drivers communicate with other drivers by sending IRPs.
When a driver receives an IRP, it takes whatever actions are required to satisfy the request and then completes it. Sometimes, however, a driver cannot satisfy an IRP by itself. If the driver cannot complete the IRP, it typically passes the IRP down the device stack to the next driver and optionally sets an I/O completion routine for callback when the request is complete. Eventually, the IRP arrives at a driver that satisfies and completes the request. When the request is complete, the I/O manager calls any completion callback routines that drivers set as the request traveled down the device stack. It calls these routines in the opposite order in which they were set; that is, it “unwinds” back up the device stack.
The Least You Should Know about COM

UMDF interfaces are defined in terms of COM. UMDF does not depend on the COM infrastructure and run-time library. Instead, it uses only the COM programming pattern, specifically the query-interface and reference-counting features. It does not use the COM run-time loader.
The following is a brief refresher on COM:

· COM is based on a client-server model.

· COM maintains reference counts for all of its objects.
· COM objects expose interfaces, which support callable methods.
· COM interfaces are C++ abstract base classes. An interface contains one or more methods that form the contract for any caller that wants to use the class.
· The query-interface (QI) feature of COM enables a client to query a server to determine whether the server supports a particular interface. UMDF drivers can request notification of particular system events by exposing callback interfaces. UMDF uses the QI feature to discover these callback interfaces.
· IUnknown is the fundamental COM interface, and every COM object supports it. IUnknown supports the QueryInterface, AddRef, and Release methods. The QueryInterface method enables other components to determine which interfaces the object supports. The AddRef and Release methods manage object lifetime.
· The IClassFactory interface creates instances of class objects. UMDF calls DllGetClassObject to get a pointer to an IClassFactory interface in the driver and then uses the CreateInstance method of the IClassFactory interface to create an instance of the driver object.
· When COM returns an interface pointer to a driver, it takes out a reference on the corresponding object. The driver should release this reference by calling the object’s Release method when it has finished using the object. Failing to release references causes object leaks, which consume memory unnecessarily.
UMDF Architecture
A UMDF driver is a dynamic-link library (DLL) that runs as an in-process COM server. Figure 2 shows the components that are involved when a UMDF driver controls a device.
[image: image2.emf]Kernel-mode Drivers

Application

Driver Manager

Win32

API

Run-time Environment

UMDF

Driver Host Process

User-mode Driver

Reflector

Windows Kernel

 I/O Manager

IHV

Microsoft

ISV

Supplied by:

Device Stack

Kernel Mode

User Mode

Figure 2. User-Mode Driver Architecture
As Figure 2 shows, the user-mode driver runs in a driver host process, which combines with kernel-mode drivers (including the reflector) to form the device stack for the device.
The following describes the components in the figure according to the typical flow of an I/O request:
Application. The application issues I/O requests through the Win32 API, which in turn calls I/O routines in the Windows kernel.
Windows kernel. The Windows kernel creates IRPs to represent the requests and forwards them to the top of the kernel-mode device stack for the target device.
Reflector. The reflector is a kernel-mode WDM filter driver that is installed at the top of the kernel-mode device stack for each device that is managed by a UMDF driver. The reflector manages communication between the kernel-mode components and the user-mode driver host process.
Driver manager. The driver manager creates and shuts down all the driver host processes and maintains status information about them. It also responds to messages from the reflector. The driver manager runs as a Windows service and is started during installation of the first device that is managed by a UMDF driver. The driver manager must be running all the time that any device controlled by a UMDF driver is installed on the system. Microsoft provides the driver manager.
Host process. The host process is the process in which the user-mode driver runs. The host process is a child process of the driver manager and runs in the security credentials of a LocalService account, although it is not a Windows service. The host process includes the following components:

· The UMDF driver is an in-process COM component that controls the hardware from user mode. An independent hardware vendor (IHV) supplies the UMDF driver.

· UMDF exposes the user-mode DDI. UMDF is a DLL of COM-style objects that support the presentation, flow, and management of I/O and Plug and Play requests to the driver.
· The run-time environment dispatches I/O requests, loads the driver, constructs and destroys the user-mode device stack, manages a user-mode thread pool, and handles messages from the reflector and the driver manager.

Kernel-mode Drivers. Additional kernel-mode drivers can service each device. Either Microsoft or an IHV can supply these drivers.
Required Driver Functionality

Every UMDF driver must:

· Support the DllMain export as its primary entry point.

· Support the DllGetClassObject export, which must return a pointer to an IClassFactory interface that creates an instance of the driver callback object.
· Implement the IDriverEntry interface on the driver class.

The driver must support DllMain as its primary entry point. After the system creates the UMDF driver host process, the host process loads the driver by calling the DllMain function. In a UMDF driver, this function does very little; typically, it enables tracing and then returns. As in all DLLs, the driver must not make blocking calls such as WaitForSingleObject, which can deadlock the system. Drivers should defer resource allocation to IDriverEntry::OnInitialize, instead of DllMain.
The driver must also support the DllGetClassObject function, which COM requires. This function returns a pointer to an IClassFactory interface with which UMDF can create an instance of the driver callback object. The UMDF sample drivers show how to implement this function. Alternatively, the active template library (ATL) wizard can be used to generate the supporting COM code.
Finally, every user-mode WDF driver must implement the IDriverEntry interface on the driver class. This interface includes methods that initialize and uninitialize driver-wide data. UMDF calls the OnInitialize method when the first device for the driver is loaded and calls the OnDeinitialize method when the driver is unloaded. IDriverEntry also includes the OnAddDevice method, which UMDF calls when the Plug and Play manager enumerates one of the driver’s devices.

Flow of Control in UMDF Driver

Figure 3 shows the interactions of the driver with UMDF and the system.
[image: image3.emf]DllMain

Load driver library.

Notify driver that a

device is present.

Create driver

callback object and

get pointer to

IDriverEntry

interface.

Get interface with

which to create

driver callback

object.

Initialize global

variables and

tracing.

Instantiate class

factory object.

Return pointer to

IClassFactory

interface.

Create driver

callback object.

Return pointer to

IDriverEntry

interface.

Create device

callback object.

Create and

configure I/O

queues.

Query for PnP and

I/O queue interfaces

on device object.

Invoke PnP and I/O

queue methods as

events occur.

DllGetClassObject

IClassFactory::CreateInstance

IDriverEntry::OnDeviceAdd

Respond to events

as called.

IUnknown::QueryInterface

Return interface

pointers as

requested.

various

System and UMDF

Actions

Driver Actions

Start UMDF driver.

IDriverEntry::OnInitialize

Initialize driver

variables.

Figure 3. Flow of Control for UMDF and Driver

When the system starts, the driver manager is loaded and the following actions occur:

1.
The driver manager creates the driver host process and then loads the driver library by calling the DllMain entry point. DllMain performs any required global initialization for the driver, such as starting tracing.
2.
UMDF creates a framework driver object and calls the driver at DllGetClassObject to get an interface that it can use to create a corresponding callback object in the driver. DllGetClassObject returns a pointer to the driver’s IClassFactory interface.
3.
UMDF calls the CreateInstance method of the IClassFactory interface to create an instance of the driver callback object. The driver callback object implements methods to initialize the driver, to notify it that one of its devices has been enumerated, and to prepare it for unloading.
4.
UMDF calls the OnInitialize method of the driver callback object to initialize the driver.

5.
Whenever one of the driver’s devices is enumerated, UMDF calls OnDeviceAdd. OnDeviceAdd performs any required configuration, creates a device callback object to represent the device, creates any required device interfaces, and creates and configures the queues into which UMDF will place I/O requests that are targeted at the driver.
Note: A device interface is a device feature that a driver exposes to applications or other system components, whereas a COM interface is a related group of functions that act on an object.
6.
UMDF queries for the Plug and Play and queue interfaces that it will use to handle I/O requests.
7.
When the device is removed, UMDF calls the Plug and Play methods that are appropriate for the type of removal (orderly or surprise), deletes the objects, and calls the IDriverEntry::OnDeinitialize method to clean up. It then unloads the DLL and deletes the driver host process.
UMDF Sample Drivers

The UMDF prerelease includes several sample user-mode drivers, which are installed at WDF\UMDF\src in the Windows Driver Kit (WDK) installation directory. You can use these samples as the basis for your own drivers and refer to them for specific implementation techniques. Table 1 lists the UMDF samples.
Table 1. UMDF Sample Drivers

	Name
	Description

	Skeleton
	Minimal software-only driver that shows the structure and fundamental components of a simple UMDF driver.

	Echo
	Simple driver that uses a serial I/O queue and handles one I/O request at a time.
The Echo sample defers the completion of each I/O request to a worker thread and shows how to mark a request cancelable while it is pending in the driver.
This sample was adapted from the KMDF Echo sample and is functionally similar to the WDM sample of the same name.

	USB\Driver
	Hardware driver for the USB-FX2 Learning Kit from OSR.
This sample supports a parallel I/O queue. It is similar to the Echo sample, but can handle multiple independent requests at one time.

This driver also demonstrates how a user-mode driver controls a device. It uses the memory in the OSR-USBFX2 device as a buffer and uses the WinUSB API and WinUSB kernel-mode driver to control the hardware. The driver demonstrates how to escape from UMDF and send I/O by using an alternate path and how to synchronize I/O on the alternate path with cancellation and file closure.

	USB\Filter
	Filter driver for the WinUSB driver stack.
This sample modifies the data in read and write requests as they flow through the device stack and uses I/O targets to communicate with a lower driver.

Note that the USB directory contains two sample drivers, both of which work with the USB-FX2 Learning Kit that is available from OSR.

Use the WDK build environment to build the samples. To build a particular sample:
1.
Start a build environment window.

2.
Set the working directory to the directory that contains the sample to build.
3.
Type the following command:

build –ceZ

A Minimal UMDF Driver: The Skeleton Driver
The Skeleton driver contains the minimum amount of code that is required in a loadable UMDF driver. It was designed as a starting point from which to build drivers for actual hardware. In addition to demonstrating the minimal required features and best practices, the Skeleton driver splits into appropriate modules the common code that is required in all UMDF drivers.
The skeleton driver supports a driver entry point, functions to create and initialize the driver and device callback objects, and functions for COM support. It does not support any I/O or Plug and Play operations.
Table 2 lists the component source files.
Table 2. Files for the Skeleton Driver
	File name
	Description

	Comsup.cpp
	Source code for the CUnknown and CClassFactory classes.

	Comsup.h
	Header file for COM support functions and classes.

	Device.cpp
	Source code for the device callback object class, CMyDevice.

	Device.h
	Header file for the device callback object.

	Dllsup.cpp
	Source code for the driver entry point and exported COM support functions.

	Driver.cpp
	Source code for the driver callback object class, CMyDriver.

	Driver.h
	Header file for the driver callback object.

	Exports.def
	Definition file that identifies the library name and exported entry point for driver.

	Internal.h
	Header file for local type definitions.

	Makefile
	Generic makefile for building the sample.

	Makefile.inc
	Additional commands input to the makefile.

	Skeleton.htm
	Help file that describes the sample.

	Skeleton.rc
	Resource file for the sample.

	Sources
	Source file for the build procedure.

	UMDF_Skeleton_OSR.inx
	INF that installs the Skeleton sample as a driver for the OSR USBFX2 device.

	UMDF_Skeleton_OSR_xp.inx
	INF that installs the Skeleton sample as a driver for the OSR USBFX2 device on Windows XP.

	UMDF_Skeleton_root.inx
	INF that installs the Skeleton sample as a driver for a root-enumerated device.

	UMDF_Skeleton_root_xp.inx
	INF that installs the Skeleton sample as a driver for a root-enumerated device on Windows XP.

Classes, Objects, and Interfaces

The Skeleton driver implements the four classes that are listed in Table 3.
Table 3. Classes Implemented in Skeleton Driver

	Class name
	Description
	Public interfaces

	CUnknown
	Base class from which others derive.
	IUnknown

	CClassFactory
	Class factory that Instantiates the driver class.
	IClassFactory

IUnknown

	CMyDriver
	Driver callback object class.
	IDriverEntry

IUnknown

	CMyDevice
	Device callback object.
	IUnknown

Figure 4 shows how the objects that are instantiated from these classes interact with the corresponding framework objects.
[image: image4.emf]IDriverEntry

CMyDriver

IWdfDriver

Framework Driver

Object

CMyDevice

IUnknown

CUnknown

IClassFactory

CClassFactory

IWdfDevice

Framework

Device Object

IWdfDeviceInitialize

Figure 4. Interaction of Framework and Skeleton Objects

As the figure shows, the framework implements a driver object and a device object. The framework’s driver object uses the IDriverEntry interface on the Skeleton driver’s CMyDriver object, and the CMyDriver object, in turn, uses the IWdfDriver interface on the framework’s driver object. The framework’s device object exposes the IWdfDevice and IWdfDeviceInitialize interfaces, which the driver’s CMyDevice object class uses. The Skeleton driver’s CMyDevice class does not implement additional interfaces because it does not support hardware or handle I/O requests. The device object in a typical driver would implement additional interfaces for Plug and Play notifications, I/O requests, I/O queues, and so forth.
Driver Dynamic-Link Library and Exports
Every UMDF driver must support DllMain as the driver’s primary entry point and must export the DllGetClassObject function so that COM can instantiate the driver object. The Skeleton sample defines these functions in the Dllsup.cpp file.
Driver Entry Point: DllMain

DllMain is the driver’s primary entry point. This function typically initializes any data that is required for tracing and debugging but otherwise does little because most driver- and device-specific initialization takes place in conjunction with the driver and device object creation. In the Skeleton driver, DllMain simply initializes tracing, as the following source code shows:
BOOL

WINAPI

DllMain(

 HINSTANCE ModuleHandle,

 DWORD Reason,

 PVOID /* Reserved */

)

/*++

 Routine Description:

 This is the entry point and exit point for the I/O driver. It
 does very little because the driver has minimal global data.

 This method initializes tracing.

 Arguments:

 ModuleHandle - the DLL handle for this module.

 Reason - the reason this entry point was called.

 Reserved - unused

 Return Value:

 TRUE

--*/

{

 if (DLL_PROCESS_ATTACH == Reason)

 {

 //

 // Initialize tracing.

 //

 WPP_INIT_TRACING(MYDRIVER_TRACING_ID);

 }

 else if (DLL_PROCESS_DETACH == Reason)

 {

 //

 // Clean up tracing.

 //

 WPP_CLEANUP();

 }

 return TRUE;

}

When the driver host process calls DllMain, it passes a reason for the call, along with a handle and a reserved value, both of which the function can ignore. If the driver host process is starting and the DLL is being loaded, the reason is DLL_PROCESS_ATTACH. In this case, the function initializes tracing. If the driver host process is terminating or the library did not load successfully, the reason is DLL_PROCESS_DETACH, so the function ends tracing. Starting and ending tracing in DllMain ensures that trace information is recorded for the entire life of the driver.
Get Class Object: DllGetClassObject
COM calls the driver’s DllGetClassObject function to get a pointer to an interface through which it can instantiate a driver callback object. This method should create an instance of the class factory for the driver object; UMDF later calls methods on the class factory to actually instantiate the driver callback object.
The following is the source code for the Skeleton driver’s DllGetClassObject function:

HRESULT

STDAPICALLTYPE

DllGetClassObject(

 __in REFCLSID ClassId,

 __in REFIID InterfaceId,

 __deref_out LPVOID *Interface

)

/*++

 Routine Description:

 This routine is called by COM to instantiate the skeleton driver

 callback object and do an initial query interface on it.

 This method only creates an instance of the driver's class
 factory, which is the minimum required to support UMDF.

 Arguments:

 ClassId - the CLSID of the object being "gotten"

 InterfaceId - the interface the caller wants from that object.

 Interface - a location to store the referenced interface pointer

 Return Value:

 S_OK if the function succeeds, or

 Error code indicating the reason for failure.

--*/

{

 PCClassFactory factory;

 HRESULT hr = S_OK;

 *Interface = NULL;

 //

 // If the CLSID doesn't match that of our "coclass" (defined in
 // the IDL file) then we can't create the object that the caller

 // wants. This error may indicate that the COM registration is

 // incorrect, and another CLSID is referencing this driver.

 //

 if (IsEqualCLSID(ClassId, CLSID_MyDriverCoClass) == false)

 {

 Trace(

 TRACE_LEVEL_ERROR,

 L"ERROR: Called to create instance of unrecognized class (%!GUID!)",

 &ClassId

);

 return CLASS_E_CLASSNOTAVAILABLE;

 }

 //

 // Create an instance of the class factory for the caller.

 //

 factory = new CClassFactory();

 if (NULL == factory)
 {

 hr = E_OUTOFMEMORY;

 }

 //
 // Query the object we created for the interface that the caller
 // requested. Then release the object. If the QI succeeded and
 // referenced the object, its reference count will now be 1.

 // If the QI failed, the reference count is 0 and
 // the object is automatically deleted.

 //

 if (S_OK == hr)

 {

 hr = factory->QueryInterface(InterfaceId, Interface);

 factory->Release();

 }

 return hr;

}

In the Skeleton driver, DllGetClassObject verifies that the class ID passed in by the caller (COM) matches the class ID of the object, as defined in the IDL file. It creates an instance of the class factory, calls QueryInterface on the class factory to get a pointer to the IClassFactory interface and increment its reference count, and then returns.
Functions for COM Support

The source file Comsup.cpp supplies code that is required to support COM. It implements methods for the IUnknown and IClassFactory interfaces. This section briefly describes what these methods do, but does not show any of the sample code. You can simply copy the Comsup.cpp and Comsup.h files for use in your own drivers, typically without any changes.
IUnknown Methods

CUnknown is the base class from which all other classes derive, and it supports the IUnknown interface. Every UMDF driver must implement this class with a constructor method and the IUnknown interface, which includes the AddRef, QueryInterface, QueryIUnknown, and Release methods. Table 4 summarizes the IUnknown methods.

Table 4. IUnknown Methods

	Method name
	Description

	CUnknown
	Constructor, which initializes the reference count for this instance of the CUnknown class to 1.

	QueryInterface
	Returns a pointer to the IUnknown interface for the object.

	QueryIUnknown
	Public helper method that casts a CUnknown pointer to an IUnknown pointer.

	AddRef
	Increments the reference count for the object.

	Release
	Decrements the object’s reference count and deletes the object if the reference count reaches zero.

IClassFactory Interface
The CClassFactory class object implements the IClassFactory interface. The framework invokes methods in this interface to create an instance of the driver callback class. The driver callback class instance is the only callback object that the framework creates; the driver itself creates all other callback objects in response to calls from the framework. Table 5 summarizes the methods in this interface.
Table 5. IClassFactory Methods

	Method
	Description

	QueryInterface
	Returns a pointer to the requested interface.

	QueryIClassFactory
	Public helper method that casts a CClassFactory pointer to an IClassFactory pointer; essentially similar to the QueryIUnknown method in the IUnknown interface.

	CreateInstance
	Creates an instance of the driver callback class and returns a pointer to a requested interface for that class.

	LockServer
	Maintains a lock count that indicates whether the driver DLL should remain in memory.

Driver Callback Object
When UMDF gets a pointer to the IClassFactory interface, it calls the CreateInstance method in that interface to create an instance of an object. That method, in turn, calls the CMyDriver::CreateInstance method, which creates and initializes the driver callback object. In general, any CreateInstance method is a factory method that creates an object.

CMyDriver::CreateInstance is defined in the source file Driver.cpp and is straightforward, as the following shows:
HRESULT

CMyDriver::CreateInstance(

 __out PCMyDriver *Driver

)

/*++

 Routine Description:

 This static method is invoked to create and initialize a new
 instance of the driver class. The caller should arrange for the

 object to be released when it is no longer in use.

 Arguments:

 Driver - a location to store a referenced pointer to the new
 instance

 Return Value:

 S_OK if successful, or error otherwise.

--*/

{

 PCMyDriver driver;

 HRESULT hr;

 //

 // Allocate the callback object.

 //

 driver = new CMyDriver();

 if (NULL == driver)

 {

 return E_OUTOFMEMORY;

 }

 //

 // Initialize the callback object.

 //

 hr = driver->Initialize();

 if (SUCCEEDED(hr))
 {

 //

 // Store a pointer to the new, initialized object in the

 // output parameter.

 //

 *Driver = driver;

 }

 else
 {

 //

 // Release the reference on the driver object so that
 // it will delete itself.

 //

 driver->Release();

 }

 return hr;

}

This method allocates and creates an instance of the driver callback object, and then calls the Initialize method to initialize the object. The Skeleton driver object requires no initialization, so the Initialize method is a stub (and so is not shown here). CreateInstance returns a pointer to the new driver callback object and releases its reference on this object before returning.
Every UMDF driver must implement the IDriverEntry interface on the driver callback object. This interface supports methods to initialize the driver, perform tasks when one of the driver’s devices is added to the system, and prepare the driver for unloading, just before DllMain.DetachProcess is called. The driver.cpp file contains code that implements IDriverEntry.
IDriverEntry defines three methods: OnDeviceAdd, OnInitialize and OnDeinitialize. In the Skeleton driver, the OnInitialize and OnDeinitialize methods are stubs.
When one of the driver’s devices is added, UMDF calls the OnDeviceAdd method, passing as parameters pointers to the IWdfDriver and IWdfDeviceInitialize interfaces, which the framework implements. The Skeleton driver does not support physical hardware, so its OnDeviceAdd method is minimal:
HRESULT

CMyDriver::OnDeviceAdd(

 __in IWDFDriver *FxWdfDriver,

 __in IWDFDeviceInitialize *FxDeviceInit

)

/*++

 Routine Description:

 The FX invokes this method to install our driver on a device

 stack. This method creates a device callback object, then calls

 the Fx to create an Fx device object and associate the new
 callback object with it.

 Arguments:

 FxWdfDriver - the Fx driver object.

 FxDeviceInit - the initialization information for the device.

 Return Value:

 status

--*/

{

 HRESULT hr;

 PCMyDevice device = NULL;

 //

 // TODO: Here is where to do any per-device initialization
 // (reading settings from the registry, for example) that is
 // required before you create the device callback object.
 // You can leave initialization of the device callback object
 // itself to the device event handler.
 //

 //

 // Create a new instance of our device callback object
 //

 hr = CMyDevice::CreateInstance(FxWdfDriver, FxDeviceInit,
 &device);

 //

 // TODO: Change any per-device settings that the object exposes
 // before you call Configure to complete its initialization.

 //

 //

 // If that succeeded then call the device's construct method.
 // The construct method can create queues or other structures
 // that are required for the device object.

 //

 if (S_OK == hr)

 {

 hr = device->Configure();

 }

 //
 // Release the reference on the device callback object now that
 // it's associated with an fx device object.

 //

 if (NULL != device)

 {

 device->Release();

 }

 return hr;

}

The Skeleton driver’s OnDeviceAdd method calls the CreateInstance method on the CMyDevice class to instantiate the device callback object. It passes the pointers to the IWdfDeviceInitialize and IWdfDriver interfaces so that CreateInstance can use these UMDF-defined interfaces to create and initialize the device object.
By convention, a CreateInstance method in the sample represents a factory for building objects of a particular type.
Device Callback Object

The device callback object represents the device in the driver. The driver creates an instance of this object when its IDriverEntry::OnDeviceAdd method is called. The driver implements the CreateInstance, Initialize, Configure, and QueryInterface methods for the device callback object.
The code for the device callback object for the Skeleton driver is in the file Device.cpp. This module includes the header files Internal.h, which contains driver-specific internal definitions, and Device.tmh, which defines tracing information for Event Tracing for Windows (ETW).

CreateInstance Method

A driver’s IDriverEntry::OnDeviceAdd method calls IDeviceObject::CreateInstance to create an instance of the device callback object. This method simply allocates and initializes an instance of the device callback object, as follows:
HRESULT

CMyDevice::CreateInstance(

 __in IWDFDriver *FxDriver,

 __in IWDFDeviceInitialize * FxDeviceInit,

 __out PCMyDevice *Device

)

/*++

 Routine Description:

 This method creates and initializes an instance of the skeleton
 driver's device callback object.

 Arguments:

 FxDeviceInit - the settings for the device.

 Device - a location to store the referenced pointer to the
 device object.

 Return Value:

 Status

--*/

{

 PCMyDevice device;

 HRESULT hr;

 //

 // Allocate a new instance of the device class.

 //

 device = new CMyDevice();

 if (NULL == device)

 {

 return E_OUTOFMEMORY;

 }

 //

 // Initialize the instance.

 //

 hr = device->Initialize(FxDriver, FxDeviceInit);

 if (S_OK == hr)

 {

 *Device = device;

 }
 else
 {

 device->Release();

 }

 return hr;

}

When UMDF calls the OnDeviceAdd method, it passes a pointer to the IWdfDriver interface and a pointer to the IWdfDeviceInitialize interface. These interfaces provide methods through which the driver can initialize per-device-object settings and create a device callback object. OnDeviceAdd passes these pointers to CreateInstance, which in turn passes them as parameters to the Initialize method to initialize the instance.
Initialize Method

The Initialize method of the device callback object does exactly what its name implies: it initializes the callback object. It also calls the framework to create the framework’s device object.
The Initialize method receives a handle to the framework’s IWdfDeviceInitialize interface and stores it in FxDeviceInit. It uses this handle to call methods on that interface to initialize certain device characteristics that must be set before the framework’s device object is created. Such characteristics include the synchronization (locking) model and the Plug and Play features. They also indicate whether the driver is a filter driver, whether the driver controls device power policy, and whether the framework should forward or fail certain request types. The driver must set these values before creating the framework’s device object because they determine which callbacks the framework initializes for the driver’s device object.
HRESULT

CMyDevice::Initialize(

 __in IWDFDriver * FxDriver,

 __in IWDFDeviceInitialize * FxDeviceInit

)

/*++

 Routine Description:

 This method initializes the device callback object and creates
 the partner device object.

 The method should perform any device-specific configuration
 that:

 * could fail (these can't be done in the constructor)

 * must be done before the partner object is created -or-

 * can be done after the partner object is created and
 isn't influenced by any device-level parameters that the
 parent (the driver in this case) might set.

 Arguments:

 FxDeviceInit - the settings for this device.

 Return Value:

 status.

--*/

{

 IWDFDevice *fxDevice;

 HRESULT hr;

 //

 // Configure things like the locking model before we create our
 // partner device.

 //

 //

 // TODO: Set the locking model. The skeleton uses device level

 // locking, but you can choose "none" as well.

 //

 FxDeviceInit->SetLockingConstraint(WdfDeviceLevel);

 //

 // TODO: If you're writing a filter driver indicate that here.
 //

 // FxDeviceInit->SetFilter();

 //

 //

 // TODO: Any per-device initialization which must be done before
 // creating the partner object.

 //

 //

 // Create a new FX device object and assign the new callback
 // object to handle any device level events that occur.

 //

 //

 // QueryIUnknown references the IUnknown interface that it
 // returns (which is the same as referencing the device). We
 // pass that to CreateDevice, which takes its own reference
 // if everything works.

 //

 {

 IUnknown *unknown = this->QueryIUnknown();

 hr = FxDriver->CreateDevice(FxDeviceInit, unknown,
 &fxDevice);

 unknown->Release();

 }

 //

 // If that succeeded, then set our FxDevice member variable.

 //

 if (S_OK == hr)

 {

 m_FxDevice = fxDevice;

 //

 // Drop the reference we got from CreateDevice. Since this
 // object is partnered with the framework object they have
 // the same lifespan. There is no need for an additional
 // reference.

 //

 fxDevice->Release();

 }

 return hr;

}

The Initialize method first sets the locking model for the driver by calling the SetLockingConstraint method of the IWdfDeviceInitialize interface. The locking model determines whether the framework calls the driver’s callback methods concurrently on a per-device-object level or not at all. The Skeleton driver sets WdfDeviceLevel, which means that the framework synchronizes calls to methods at the device object level or lower. Therefore, the driver does not require code to synchronize access to shared data in such methods.
Device-level locking applies to methods on the IWdfIoQueue interface, the IFileCallbackCleanup interface, and the IFileCallbackClose interface. The IWdfIoQueue interface is implemented by the I/O queue object, and the IFileCallbackCleanup and IFileCallbackClose interfaces are implemented by the device object.
The Skeleton does not support physical hardware, so it does not set any Plug and Play characteristics. If it supported an actual Plug and Play device, it might also have to specify whether the device is ejectable, lockable, and other similar settings.
After the driver has set the device characteristics, it can call UMDF to create the framework’s device object. The IWdfDriver::CreateDevice method takes a pointer to the IWdfDeviceInitialize interface that was passed to the driver, a pointer to the driver’s device callback object, and a location in which to return the handle to the created framework device object. To get a pointer to the device callback object, the driver calls QueryIUnknown on the current interface. It then passes this pointer when it calls CreateDevice. Calling QueryIUnknown adds a reference on the IUnknown interface that it returns—in this case, the driver’s callback object interface. After the CreateDevice method returns, the driver releases this reference.
If UMDF successfully creates the framework device object, the driver initializes the variable m_FxDevice to hold the pointer to the returned interface. It then calls the Release method to release the reference that the CreateDevice method added on the returned interface. The m_FxDevice interface has the same lifetime as the framework’s IWdfDevice interface, so this reference is not required to ensure that the interface persists for the driver.
Configure Method

The Configure method handles tasks that are related to configuration after the framework and device callback objects have been created. The Skeleton driver’s OnDeviceAdd callback invokes the Configure method after CreateInstance has successfully returned.
In the Skeleton driver, Configure is a stub. In a driver that handles I/O requests, this method would create and configure I/O queues and queue callback objects.
QueryInterface Method

The QueryInterface method returns a pointer to any of the device callback object’s interfaces. It takes the InterfaceId as an input parameter and returns a pointer to the interface.
The Skeleton driver does not implement any of the event callback interfaces for the device object because it does not support actual hardware. Therefore, it simply returns the pointer to the IUnknown interface of the base class CUnknown, as follows:

 return CUnknown::QueryInterface(InterfaceId, Object);

In a driver that supports actual hardware, this method should validate the input InterfaceId and return a pointer to the requested interface.
Using the Skeleton Driver as a Basis for Development
The Skeleton driver is designed for use as a basis for UMDF driver development. By customizing the existing code and adding some of your own code, you can create a driver for your specific device. The following tasks are required:

· Customize the exports.
· Customize the Sources file.
· Customize the INF file.

· Customize the Comsup.cpp file.
· Add device-specific code to the Driver.cpp file.
· Add device-specific code to the Device.cpp file.
For most drivers, you can use the following files from the Skeleton unchanged:
· Resource.h

· Makefile
· ComSup.cpp and Comsup.h, which supply basic support for COM

· DllSup.cpp, which supports basic DLL functions

Customize the Exports File
The file Exports.def lists the library and function names that the DLL exports. To customize this file, replace the value in the LIBRARY statement with the name of the binary file that contains the DLL. For example:

LIBRARY "MyDevice.DLL"

Your driver must export the DllGetClassObject function, so you can leave the EXPORTS area unchanged.
Customize the Sources File

The Sources file defines environment variables and settings that are required to build the driver. It is input to the generic makefile that is supplied with the samples. To create a makefile to build your own driver, you do not edit the generic makefile; instead, you edit the Sources file.
To customize the Sources file:
· Change the TARGETNAME statement to include the name for your driver. For example:

TARGETNAME=MyDevice

· Change the SOURCES statement to include the source files for your driver. For example:
SOURCES=\
 MyDevice.rc \
 dllsup.cpp \
 comsup.cpp \
 driver.cpp \
 device.cpp \

· Change the NTTARGETFILES statement to include the INF files and any other miscellaneous files for your driver. For example:
NTTARGETFILES=$(OBJ_PATH)\$(O)\UMDFSkeleton_Root.inf \

 $(OBJ_PATH)\$(O)\UMDFSkeleton_OSR.inf
Customize the INX File

The INX file contains the INF that is used to install the driver. To use this file as a basis for your own driver’s installation, you must change a variety of settings. The following list outlines the types of required changes:

· Change the [Manufacturer] section to include the name of your company and the [Manufacturer.NT$ARCH$] section to include the name and location of your driver.
· Change the [SourceDisksFiles] section to include the name of your DLL.

· If your driver is a filter driver, change the [DDInstall.Services] section to install the reflector as the top filter driver in the kernel-mode device stack. If your driver is a function driver, the [DDInstall.Services] section should install the reflector as the service for the device.

· Change the [DDInstall.Wdf] section to install your driver as a service and list it in the UMDFServiceOrder directive.

· If your driver performs impersonation, add the UMDFImpersonation directive that specifies the maximum impersonation level for the driver.
· In the [UMDFServiceInstall] section, change the name of the binary to the name of your driver binary and specify your driver’s class ID in the DriverCLSID directive.

· In the UMDriverCopy section, specify the name of your DLL.

· In the [Strings] section, change the strings to specify the name of your company, installation medium, and so forth.

Additional changes might be required depending on the type of device that your driver supports or whether yours is a software-only driver. For more information, see the UMDF documentation in the WDK.
Customize the Comsup.cpp File

If you change the name of the driver class to something different from CMyDriver, you must change the following line in CClassFactory::CreateInstance to reflect the new class name:

 hr = CMyDriver::CreateInstance(&driver);

Add Device-Specific Code to Driver.cpp
In the driver.cpp file, you should add code to the OnDeviceAdd method to initialize your device and to change any device-specific settings. For example, if your driver must read settings from the registry before initializing the device, it should do so in OnDeviceAdd.
The CreateInstance, AddRef, Release, and QueryInterface methods from the Skeleton driver should suffice for most drivers.
Add Device-Specific Code to Device.cpp

The file Device.cpp is where you must do the most work. The Skeleton sample does not support an actual device, so it implements very few of the interfaces and callback objects that are required for the typical device.
In the Initialize method, you should set the locking constraint for your driver. The locking constraint determines whether your driver’s callback methods can be called concurrently or whether only one such method at a time can be active. Note, however, that the locking model applies strictly to the number of callback methods that are called concurrently; it does not limit the number of I/O requests that can be active in your driver at one time.
If your driver is a filter driver, you should indicate that in the Initialize method as well, by calling the SetFilter method of the IDeviceInitialize interface.
In the Configure method, you create the I/O queues for the driver. Because the Skeleton driver does not handle actual I/O requests, it does not set up any queues. Most drivers, however, implement one or more queues through which UMDF dispatches I/O requests. To create a queue, the driver calls the IWdfDevice::CreateIoQueue method and specifies how the queue dispatches requests to the driver: in parallel as soon as they arrive, sequentially (one at a time), or only when the driver calls a method on the queue to request one. The driver then calls IWdfIoQueue::ConfigureRequestDispatching to specify the types of requests that should be directed to the queue. The driver must also implement methods in the IQueueCallbackXxx, IRequestCallbackXxx, and IFileCallbackXxx interfaces as appropriate to handle the requests that are directed to its queues.
Finally, a driver that supports a Plug and Play device typically must implement the IPnPCallback interface and possibly the IPnPCallbackHardware and IPnPCallbackSelfManagedIo interfaces as well.

You should also either update the header file Internal.h or add your own device-specific header file with any additional definitions pertinent to your device-specific code.
Resources

Windows Driver Foundation (WDF) on the WHDC Web site

http://www.microsoft.com/whdc/driver/wdf/default.mspx
Current White Papers

Architecture of the Windows Driver Foundation
http://www.microsoft.com/whdc/driver/wdf/wdf-arch.mspx
Introduction to the WDF User-Mode Driver Framework
http://www.microsoft.com/whdc/driver/wdf/UMDF_intro.mspx
Architecture of the User-Mode Driver Framework
http://www.microsoft.com/whdc/driver/wdf/umdf-arch.mspx
Introduction to the Windows Driver Foundation
http://www.microsoft.com/whdc/driver/wdf/wdf-intro.mspx
Windows Driver Kit

http://www.microsoft.com/whdc/driver/WDK/aboutWDK.mspx
Driver Development Tools
Tools for Building Drivers (“Using the Build Utility”)

Tools for Software Tracing ("WPP Software Tracing" and "Software Tracing FAQ")

General Driver Development Information
Windows Driver Foundation (“Installing UMDF Drivers” in “User-Mode Driver Framework Design Guide”)
Device Installation (“INF File Sections and Directives” in “Reference”)

MSDN

Win32 and COM Development
Component Development (“Component Object Model (General)”)

Books
Windows Internals, Fourth Edition. Russinovich, Mark E., and David A. Solomon. Microsoft Press: 2005.
http://www.microsoft.com/MSPress/books/6710.asp

Version 0.5 May 7, 2006
© 2006 Microsoft Corporation. All rights reserved.

[image: image5.png]