[image: image1.png]4% Windows

I/O Prioritization in Windows Vista - 3

I/O Prioritization in Windows Vista

Recommendations for Application, Driver and Device Developers for Supporting I/O Prioritization in Windows Vista

May 10, 2006

Abstract

I/O prioritization improves the responsiveness of the system without significantly decreasing the throughput of the system. This paper provides information about support for I/O prioritization in the Microsoft® Windows® family of operating systems. It provides information and guidelines for application vendors, driver vendors, and storage device vendors to take advantage of I/O prioritization.

This information applies for the following operating systems:

Microsoft Windows Server® 2008

Microsoft Windows Vista®
Note: Detailed information about the functions described in this document is preliminary and subject to change. More details and usage patterns for the current functions and any new functions will be provided in the future. Future versions of this preview information will be provided in the Windows Driver Kit (WDK) and the Microsoft Platform SDK.

The current version of this paper is maintained on the Web at:

http://www.microsoft.com/whdc/driver/priorityio.mspx
References and resources discussed here are listed at the end of this paper.

Contents

3Introduction

3The I/O Prioritization Concept

3Throughput versus Responsiveness

4I/O Access Patterns

4Paging, Gather, and Flush Access Pattern

5Passive Access Pattern

5Streaming Access Pattern

6I/O Prioritization Strategies

6Hierarchy Prioritization Strategy

6Idle Prioritization Strategy

6Bandwidth-Reservation Strategy

7Implementing Prioritization in Applications

7Setting the Priority for Hierarchy and Idle

8Reserving Bandwidth for Streaming

9Implementing Prioritization in Drivers

10Driver Guidelines

10File System Filter Drivers

11MiniPort Drivers

11Device Guidelines

12Cached, Noncached, and Mapped File I/O

12Call to Action and Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, Win32, Windows, Windows Media, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

Over the past ten years, almost every critical component of the PC has gained significantly in its performance except for one component. The storage device has not seen the same performance gains as other PC components due to its mechanical nature. As a result, more and more PCs are becoming seriously I/O-constrained.

The Microsoft® Windows Vista® operating system implements new strategies for alleviating I/O bottlenecks within the PC. This paper describes the need for prioritization, describes the various strategies that Windows Vista uses to keep the PC responsive, and provides information and guidelines for application, driver, and storage device vendors to leverage these strategies.

This paper supplements the WinHEC 2006 presentation I/O Prioritization in Windows Vista. For availability of this presentation, see "Resources" at the end of this paper.

The I/O Prioritization Concept

As PC components become capable of faster processing, PC architecture has leveraged its advances to improve the system's work throughput capabilities while maintaining a balance among the many work items that a PC addresses simultaneously. The fundamental strategy for maintaining balance within a system is preemptive multithreading, in which the operating system provides the appearance of multiple tasks executing in parallel by allowing each task to have limited time slices on the CPU.

To keep the system balanced, threads are given priorities so that more critical threads are scheduled more frequently or given longer time slices. However, with today’s advanced systems, even low-priority background threads have the resources to create frequent and large I/O requests. These I/O requests are created without regard to priority. Consequently, threads create I/O without the context for when the I/O is needed, how critical the I/O is, and how the I/O will be used. The rest of this section explores the required context to properly prioritize I/O requests.

Throughput versus Responsiveness

The purpose of I/O prioritization is to improve system responsiveness without significantly decreasing overall throughput. PC advances have often focused on improving the performance of the CPU to improve the work-throughput capabilities of the PC. These advances have come in the form of faster intrachip buses, memory, and CPU cores. The latest advances have adopted the strategy of adding multiple CPU cores and multiple processing pipelines per core.

I/O devices have also focused on improvements to throughput. Storage devices have increased transport clock frequencies, rotational speeds, and areal density. However, the largest performance bottleneck for rotational media devices is armature seek time, which is often measured in milliseconds. Designers of Serial ATA hard drives have tried to avoid these slow seek times by introducing Native Command Queuing (NCQ), which enables the device to schedule I/O in a way that minimizes seek times.

Given the disparate throughput improvements for the components in the PC, it is easy to see how low-priority threads might be capable of flooding a storage device with I/O requests that starve the I/O requests of a higher-priority thread. Like the Windows thread scheduler, which is responsible for maintaining the balance among threads that are scheduled for the CPU, the I/O subsystem must take on the responsibility of maintaining the same kind of balance for I/O requests in the system.

For both thread scheduling and I/O scheduling, the balance is driven not only by the need to optimize of throughput, but by the need to ensure an acceptable level of responsiveness to the user. When optimizing for more than just throughput, throughput might be sacrificed in favor of quickly completing the I/O request for which a user is waiting.

When a user interacts with an application that accesses a file while other threads in the system are also creating I/O requests, the storage system might choose to service the system threads so the system can maintain a higher overall throughput.

When responsiveness is considered, the user’s I/O is given higher priority. This causes the application to be more responsive, even though overall I/O throughput might decrease. If the system thread’s I/O is serviced first at the expense of the application’s ability to make progress, the user perceives the system as slower, even though throughput is actually higher.

I/O Access Patterns

To ensure that throughput is not sacrificed more than is required to maintain responsiveness, I/O access patterns must be considered. The reasons for copying data from a storage device into memory can be categorized in a few simple scenarios.

1.
The operating system might copy in binary files to be executed, or it might copy in data that executable programs might need. An example would be launching Microsoft Windows Media® Player.

2.
An application might open a data file for use in its entirety. An example would be loading a Microsoft Word document so the user can edit the document.

3.
The file system might read in or write file system metadata when a file is created, deleted, moved, or otherwise modified. An example would be creating a new Word document.

4.
A background task might attempt to do work that is not time critical and should not interfere with the user’s foreground tasks. An example would be antivirus software that is scanning files in the background.

5.
An application might open a data file for use as a stream. An example would be playing a song in Windows Media Player.

Paging, Gather, and Flush Access Pattern

Most I/O access falls into the pattern of atomic load before use, or paging, gather, and flush. Scenarios 1, 2, and 3 fall into this category. The several variations of this scenario are fundamentally the same.

For example, a program that is to be executed must first be loaded into memory. For this to happen, a set of I/O must be completed as a group before execution can start. The system might use techniques to page out parts of an executable for the sake of limited system resources, but it does so by applying the atomic load before use rule to subsections (also called pages of the executable).

After a program is running, it often performs tasks on a data file. An example is Microsoft Word, which performs tasks on .doc files. Loading a data file involves another set of I/O that must be completed as a group before the user can modify the file. Saving the modified file back to the storage device involves yet another set of I/O that must be completed as a group. In this way, applications that load data files follow the atomic load before use pattern on their data files.

Finally when the file system updates its metadata because of actions that the user performs on the PC, the file system must also atomically read or write its metadata before it may proceed with other operations that depend on that metadata.

All of these scenarios follow the same access pattern. However, depending on the user’s focus at any given time, the urgency of each set of I/O operations might change. Additionally, I/O processing of threads may depend on each other and require some I/O to complete before other I/O can be started. File system I/O often finds itself in this situation. Improving the responsiveness of the system requires a method to ensure that I/O is completed in a certain order.

Passive Access Pattern

A variation on atomic load before use is an application that is working to accomplish a set of I/O operations, but "knows" that it is not the focus of the user and therefore should not interfere with the responsiveness of what the user is working on. Scenario 4, a background task doing non-time-critical work, falls into this category.

System processes that act in the background often find themselves in this role. A background defragmenter is an example of such a service. A defragmented storage device has better responsiveness than a fragmented storage device because it requires fewer expensive seeks to accomplish file reads and writes. However, it would be counterproductive to cause the user’s application to become less responsive due to the large number of I/O requests that the defragmenter is creating.

Passive access patterns are used by applications whose tasks are often considered noncritical maintenance. Primarily, this means that the applications are not expected to finish a task as soon as possible because their tasks are always ongoing. Such applications are not required to be responsive and must have a way to allow activities that require responsiveness to proceed unimpeded.

Streaming Access Pattern

The opposite of the atomic load before use pattern is the streaming I/O pattern. In this kind of access, the application does not require all of the I/O in a set to be completed before it can begin its task; it can begin processing data from the completed I/O in parallel with retrieving the next set of data. The application requires the I/O to be accomplished in a specific order, and it requires the process to be acceptably responsive, potentially within real-time limits. Scenario 5 falls into this category.

An example of an application that uses a streaming I/O access pattern is Windows Media Player. For this type of application, the purpose of the application is to progress through the I/O set. Additionally, many media applications can compensate for missing or dropped frames of data. For this reason, a storage device that puts forth a large effort to accomplish a read might be taking the worst course of action because it holds up all other I/O and causes glitches in the media playback.

I/O Prioritization Strategies

This section describes the I/O prioritization strategies that correspond to the access patterns that were described earlier in this paper.

Hierarchy Prioritization Strategy

The atomic transfer before use scenario that was described earlier in this paper can be addressed by a mechanism that marks an I/O set in a transfer for preferential treatment when the I/O set is being processed in a queue.

A hierarchy prioritization strategy effectively allows marked I/O to be sorted before it is processed. This strategy involves several levels of priority that can be associated with I/O requests and thus can be handled differently by drivers that see the requests. Windows Vista currently uses the following priorities: critical (memory manager only), high, normal, and low.

Before Windows Vista, all I/O was treated equally and can be thought of as being marked as normal priority. With hierarchy prioritization, I/O can be marked as high priority so that it is put at the front of the queue. This strategy can take on finer granularity, and other priorities such as low or critical can be added. In this strategy, I/O is processed as follows:

· All critical-priority I/O must be processed before any high-priority I/O.

· All high-priority I/O must be processed before any normal-priority I/O.

· All normal-priority I/O must be processed before any low-priority I/O.

· All low-priority I/O is processed after all higher priority I/O.

For a hierarchy prioritization strategy to work, all layers within the I/O subsystem must recognize and implement priority handling in the same way. If any layer in an I/O subsystem diverges in its handling of priority, including the hardware itself, the hierarchy prioritization strategy is at risk of being rendered ineffective. For more information, see "Device Guidelines" later in this paper.

Idle Prioritization Strategy

The non-time-critical I/O scenario that was described earlier in this paper can be addressed by a mechanism that marks the set of I/O in a transfer to yield to all other I/O when they are being processed in a queue. Idle prioritization effectively forces the marked I/O go to the end of the line.

The idle strategy marks an I/O as having no priority. All I/O that has a priority is processed before a no-priority I/O. When this strategy is combined with the hierarchy prioritization strategy, all of the hierarchy priorities are higher than the no‑priority I/O.

Because all prioritized I/O goes before no-priority I/O, there is a very real possibility that a very active I/O subsystem could starve the no-priority I/Os. This can be solved by adding a trickle-through timer that monitors the no-priority queue and processes at least one no-priority I/O per unit of time.

For an idle prioritization strategy to work, only one layer within the I/O subsystem must recognize and implement the idle strategy. After a no-priority I/O has been released from the no-priority queue, the I/O is treated as a normal-priority I/O.

Bandwidth-Reservation Strategy

The streaming scenario described earlier in this paper can be addressed by a mechanism that reserves bandwidth within the I/O subsystem for use by a thread that is creating I/O requests. A bandwidth-reservation strategy effectively gives a streaming application the ability to negotiate a minimum acceptable throughput for I/O that is being processed.

A bandwidth reservation is a request from an application for a certain amount of guaranteed throughput from the storage subsystem. Bandwidth reservations are extremely useful when an application needs a certain amount of data per period of time (such as streaming) or in other situations where the application might do bursts of I/O and require a real-time guarantee that the I/O will be completed in a timely fashion.

The bandwidth-reservation strategy uses frequency as its priority scheme. This allows applications to ask for time slices, such as three I/Os every 50 ms, within the I/O subsystem. When coupled with the hierarchy prioritization strategy, streaming I/O gets the same minimum number of I/Os per unit of time, independent of the mix of critical‑, high‑, normal‑, and low-priority I/Os that are occurring in the system at the same time.

For this strategy to work, only one layer within the I/O subsystem must recognize and implement the bandwidth reservation. Ideally, this layer should be as close as possible to the hardware. After an I/O has been released from the streaming queue, it is treated as a normal-priority I/O.

Implementing Prioritization in Applications

Applications can use several Microsoft Win32® functions to take advantage of I/O prioritization. This section gives a brief overview of the functions that are available and discusses some potential usage patterns. Developers should consider the following when adjusting application priorities:

· Whenever an application modifies its priority, it risks potential issues with priority inversion. If an application sets itself or a particular thread in the application to run at a very low priority while holding a shared resource, it can cause threads that are waiting on that resource with higher priority to block much longer than they should.

· Applications that use streaming should also be sensitive to causing starvation in other applications, although there is a hard limit on the amount of bandwidth that an application can reserve.

Setting the Priority for Hierarchy and Idle

An application can request a lower-than-normal priority for I/O that it issues to the system. This means that the requests that the I/O subsystem generates on the application's behalf contain the specified priority; at that point, the driver stack becomes responsible for deciding how to interpret the priority. Therefore, not all I/O requests that are issued with a low priority are, in fact, treated as such.

Most applications use the process priority functions such as SetPriorityClass to request a priority:

BOOL

WINAPI

SetPriorityClass(

 __in HANDLE hProcess,

 __in DWORD dwPriorityClass

);

SetPriorityClass sets the priority class of the target process. Before Windows Vista, this function had no options to control I/O priority. Starting with Windows Vista, a new background priority class has been added. Two values control this class: the first sets the mode of the process to background and the second returns it to its original priority.

The following call starts background mode for the current process:

result = SetPriorityClass(GetCurrentProcess(),

 PROCESS_MODE_BACKGROUND_BEGIN);

The following call exits background mode:

result = SetPriorityClass(GetCurrentProcess(),

 PROCESS_MODE_BACKGROUND_END);

While the target process is in background mode, its CPU, page, and I/O priorities are reduced. From an I/O perspective, each request that this process issues is marked with an idle priority hint (very low priority).

A similar function for threads, SetThreadPriority, can be used to cause only specific threads to run at low priority:

BOOL

WINAPI

SetThreadPriority(__in HANDLE hThread,

 __in int nPriority);

Finally, the SetFileInformationByHandle function can be used to associate a priority for I/O on a file-handle basis. In addition to the idle priority (very low), this function allows normal priority and low priority. Whether these priorities are supported and honored by the underlying drivers depends on their implementation (which is why they are referred as hints).

FILE_IO_PRIORITY_HINT_INFO priorityHint;

priorityHint.PriorityHint = IoPriorityHintLow;

result = SetFileInformationByHandle(hFile,

 FileIoPriorityHintInfo,

 &priorityHint,

 sizeof(PriorityHint));

Reserving Bandwidth for Streaming

Applications that stream a lot of data, such as audio and video, often require a certain percentage of the bandwidth of the underlying storage system to deliver content to the user without glitches.

The addition of bandwidth reservations, also known as scheduled file I/O (SFIO), to the I/O subsystem exposes a way for these applications to reserve a portion of the bandwidth of the disk for their usage.

Applications can use the GetFileBandwidthReservation and SetFileBandwidthReservation functions to work with bandwidth reservations:

BOOL

WINAPI

GetFileBandwidthReservation(

 __in HANDLE hFile,

 __out LPDWORD lpPeriodMilliseconds,

 __out LPDWORD lpBytesPerPeriod,

 __out LPBOOL pDiscardable,

 __out LPDWORD lpTransferSize,

 __out LPDWORD lpNumOutstandingRequests

);

BOOL

WINAPI

SetFileBandwidthReservation(

 __in HANDLE hFile,

 __in DWORD nPeriodMilliseconds,

 __in DWORD nBytesPerPeriod,

 __in BOOL bDiscardable,

 __out LPDWORD lpTransferSize,

 __out LPDWORD lpNumOutstandingRequests

);

An application that requires throughput of 200 bytes per second from the disk would make the following call:

result = SetFileBandwidthReservation(hFile,

 1000,

 200,

 FALSE,

 &transferSize,

 &outstandingRequests);

The values that are returned in transferSize and outstandingRequests tell the application the size and number of requests with which they should try to saturate the device to achieve the desired bandwidth.

Implementing Prioritization in Drivers

The I/O manager uses I/O request packets (IRPs) to send I/O requests. From a driver’s perspective, the priority of a request is always the priority that is stored in the IRP. When the I/O manager sets the priority in the IRP, it first checks the file object for which the IRP is targeted to see if it has a set priority. If so, the I/O manager uses that priority. Otherwise, it uses the priority from the thread.

For each IRP it issues—including service-generated IRPs such as those from NtReadFile, paging IRPs, IRPs that are allocated by using IoBuildAsynchronousFsdRequest, and so on—the I/O manager uses the Flags field of the IRP to set the priority of the request.

Drivers can use the IoGetIoPriorityHint and IoSetIoPriorityHint functions to work with IRPs and priority:

IO_PRIORITY_HINT

IoGetIoPriorityHint(

 __in PIRP Irp

);

NTSTATUS

IoSetIoPriorityHint(

 __in PIRP Irp,

 __in IO_PRIORITY_HINT PriorityHint

);

The PriorityHint parameter can be one of the following values:

typedef enum _IO_PRIORITY_HINT {

 IoPriorityVeryLow = 0,

 IoPriorityLow,

 IoPriorityNormal,

 IoPriorityHigh,

 IoPriorityCritical,

 MaxIoPriorityTypes

} IO_PRIORITY_HINT;

If the I/O priority for the thread, process, and file handle are all set at their default values, then IoPriorityNormal is used. Most I/O is expected to be issued with this priority level.

Note that the levels above IoPriorityNormal are reserved for system components and are not exposed to user-mode applications at the Win32 level.

Driver Guidelines

In general, for prioritization schemes to behave correctly, there must either be co-operation in the driver stack or, at the very least, minimal interference. It is highly recommended that I/O should be queued only at the lowest level (that is, by the disk driver). If it is absolutely necessary for some reason to queue I/O elsewhere, the driver should be careful to honor the priority of the requests.

File System Filter Drivers

Important

These guidelines are preliminary and apply only to legacy filter drivers. Guidelines for minifilters will differ because the filter manager will have logic that does some of the work.

If a filter driver allocates an IRP to perform some I/O by using IoAllocateIrp that is based on an IRP it is filtering, it should honor the priority of the original request. The filter driver can do this by using the IoSetIrpPriorityHint and IoGetIrpPriorityHint functions that were described earlier in this paper. This ensures that any additional work that is done as a result of the original operation does not change the intended behavior if the priority on the original request was not the default.

If a filter driver issues I/O on the same thread as the original IRP on a newly created handle by using any of the system services (such as ZwReadFile or ZwDeviceIoControlFile), the new requests get the thread’s priority. However, if a filter driver posts some work to a worker thread and issues the I/O on the new handle from that thread, the filter driver should take an additional step to ensure that the new requests maintain the same priority as the original IRP.

The easiest way to do this is to set the I/O priority of the new target file object by using ZwSetInformationFile with the FileIoPriorityHintInformation class as follows:

FILE_IO_PRIORITY_HINT_INFORMATION priorityHint;

priorityHint.PriorityHint = IoGetIoPriorityHint(originalIrp);

status = ZwSetInformationFile (handle,

 ioStatusBlock,

 FileIoPriorityHintInformation,

 sizeof(priorityHint),

 &priorityHint);

The original IRP might not always be available in the new thread, so the filter driver might have to pass the priority information around in some other fashion. After the priority has been set on the new file handle, all future requests on that handle pick up the correct priority no matter from which thread they are issued.

Generally, if a filter driver performs I/O in a user-mode service because of a filtered request (such as an A/V filter scanning a file on file open) and the request has an idle (IoPriorityVeryLow) priority, the filter driver should attempt to pass information to the service so that the service can adjust the priority to Background for the thread that issues the I/O. For more information, see “Implementing Prioritization in Applications” earlier in this paper.

MiniPort Drivers

Prioritization has been implemented in two of the Microsoft-supplied port drivers, USBstor and ATAport. The ATAport architecture uses a port/miniport architecture, so third-party miniports must participate in the prioritization strategies. USBstor does not use a port/miniport architecture.

Priority information is passed to the ATAport miniport drivers through the IDE_REQUEST_BLOCK structure. It includes priority, timeout value, and discardability, as described in "Device Guidelines" later in this paper.

The port driver layer implements the hierarchy and streaming prioritization strategies. ATA miniports that implement queuing should implement the hierarchy prioritization strategy as described earlier in this paper. Streaming I/O should be properly marked as discardable when it is sent to the storage device. No I/O should be retried within an ATA miniport.

The ATAport and USBstor implementation of the hierarchy prioritization strategy supports all four levels of hierarchy. The implementation of the streaming prioritization strategy allows up to 75 percent of bandwidth to be reserved.

The idle prioritization strategy is implemented at the class driver layer. At least one I/O per second is guaranteed in the Microsoft-supplied class driver implementation of the idle prioritization strategy. I/O from the streaming prioritization strategy and the idle prioritization strategy are both processed at normal priority, so no other special processing must be done in ATA miniports.

Device Guidelines

Storage devices that implement hardware queues can also participate in the I/O subsystem prioritization strategy. A device that implements hardware queues and does not consider I/O prioritization strategies can cause responsiveness problems by unknowingly working against the I/O subsystem.

To avoid counterproductive behavior, a device’s hardware queues must have a mechanism that allows the device to be sensitive to Windows I/O prioritization strategies. These mechanisms must incorporate aspects of Windows I/O prioritization to maintain harmony between the I/O subsystem and the hardware.

The mechanisms should include the following:

· The I/O priority value that the device should use to process the I/O that is consistent with hierarchy prioritization strategy being used by the rest of the Windows I/O subsystem.

· The concept of individual I/O timeouts, which represent the longest amount of time that the drive should attempt to retrieve data before giving up.

· The ability to mark an I/O as discardable so that the device knows it is preferable to cancel the I/O rather than spend large amounts of time on it.

The NCQ feature of the Serial ATA (SATA) protocol is an example of a hardware queue that could be extended to incorporate priority in a meaningful way. However, rather than proposing SATA NCQ Priority processing as a solidly defined I/O hierarchy strategy, strong momentum exists to make it only a recommendation for action. This makes the device responsible for trying to deliver a better quality of service for high-priority I/O while it balances overall throughput of outstanding NCQ commands with the shortest possible completion times on targeted I/O but does not provide the device with any context other than a general recommendation in the form of a priority value.

The current proposal is so general that actually no requirement exists for a drive to process high-priority I/O any differently than if the drive was not sensitive to the priority bit at all. Consequently, all NCQ drives can claim to support Priority NCQ without actually being required to deliver better quality of service for high-priority I/O. For Priority NCQ to become useful, requirements for processing behavior must be incorporated into the proposal. Those requirements must also include a timeout value and a discardable flag, as described in this paper.

Cached, Noncached, and Mapped File I/O

When implementing support for prioritization in applications and drivers, developers should be aware of the differences between cached and noncached I/O.

For noncached I/O, requests maintain the original priority that was set on them as they passed down the driver stack.

For cached I/O and mapped files, the cache manager and memory manager are also involved. Due to the internal implementation of these subsystems (for example, the sharing of thread and file object structures to track mapped files), the priority of the original request might be lost. Consequently, an application might issue low-priority or background I/O, but the memory manager might issue the I/O to the driver stack at a normal (or higher) priority.

Currently, cached reads and writes behave correctly when the thread is marked for low priority, but this problem can occur when only the specific file handle is marked. For mapped files, the read case works when the thread is marked for low priority; the write case and both cases with the per-file-handle priority can encounter this problem.

Call to Action and Resources

Application Developers

Use the proper prioritization for application I/O, as described in this paper.

Driver Developers

Take advantage of Windows I/O prioritization strategies and NCQ Priority.

Storage Device Manufacturers

Implement mechanisms in your devices that allow them to participate in I/O prioritization.

Support SATA NCQ requirements for well-defined IO processing behavior that include mechanisms for indicating timeouts and discardability.

Resources

IO Prioritization in Windows Vista [WinHEC presentation]
http://www.microsoft.com/whdc/device/storage/stor-drv.mspx
Storage – Architecture and Driver Support [WHDC Web site]
http://www.microsoft.com/whdc/device/storage/default.mspx
SATA-IO Specifications
http://www.sata-io.org

May 10, 2006
© 2006 Microsoft Corporation. All rights reserved.

[image: image1.png]