[image: image11.png]4% Windows

PREfast Step-by-Step - 2

PREfast Step-by-Step
April 18, 2007

Abstract

PREfast for Drivers is a static analysis tool that can detect certain kinds of source code errors that are not easily found by the typical compiler or by conventional testing. PREfast is an essential tool for enhancing the quality of both Microsoft® Windows® Driver Foundation (WDF) and Windows Driver Model (WDM) drivers. This paper provides an overview of PREfast, with details about how to run PREfast and how to analyze PREfast results.
This information applies for the following operating systems:

Windows Server® Code Name “Longhorn”

Windows Vista™

Microsoft Windows Server 2003

Microsoft Windows XP

Microsoft Windows 2000 (KMDF only)
The current version of this paper is maintained on the Web at:

http://www.microsoft.com/whdc/DevTools/tools/PREfast_steps.mspx

For comprehensive information about writing and testing WDF drivers, see Developing Drivers with the Windows Driver Foundation, by Penny Orwick and Guy Smith, available at http://www.microsoft.com/MSPress/books/10512.aspx.

Contents

3Introduction to PREfast

3How PREfast Works

4What PREfast Can Detect

5How to Use PREfast

5How to Specify the PREfast Analysis Mode

5How to Run PREfast

6How to Build the PREfast Examples

7How to Display PREfast Results

7PREfast Defect Log Viewer

11PREfast Defect Log Text Output

12Examples of PREfast Results

12Example 1: Uninitialized Variables and NULL Pointers

13Example 2: Implicit Order of Evaluation

13Example 3: Calling a Function at Incorrect IRQL

14Example 4: Valid Error Reported in the Wrong Place

16Example 5: Function Type Class Mismatch

17Example 6: Incorrect Enumerated Type

18Coding Practices that Improve PREfast Results

18Warnings that Indicate Common Causes of Noise and What to Do About Them

20How to Use Pragma Warning Directives to Suppress Noise

20How to Use Annotations to Eliminate Noise

21PREfast Best Practices

22Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, Visual Studio, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction to PREfast
PREfast for Drivers is a compile-time static verification tool that detects basic coding errors in C and C++ programs and specialized errors in driver code. PREfast for Drivers is available as a stand-alone tool in the Microsoft® Windows® Driver Kit (WDK).
PREfast can be extremely valuable as a driver development tool because it can find errors that are difficult to test and debug and it can identify assumptions that might not always be valid. You can use PREfast to analyze your code as soon as the code can be compiled—it does not have to be linked or run. This enables PREfast to find mistaken assumptions and errors early—before they propagate through the program—when errors are easier to fix and typically have less impact on the development schedule.
If you use Microsoft Visual Studio®, you may already have used PREfast. PREfast for Drivers includes a component that detects common basic coding errors in C and C++ programs (“PREfast”), and a specialized driver module that is designed to detect errors in kernel-mode driver code (that’s the “for Drivers” part). For simplicity, this paper refers to “PREfast for Drivers” as simply “PREfast.” The C/C++ Code Analysis tool in Visual Studio Team System, Team Edition for Developers, includes the same functionality as PREfast in the /analyze option, without the specialized driver functionality.
This paper provides an overview of PREfast, with details about how to run PREfast and how to analyze PREfast results. The examples shown in this paper are derived from Windows Driver Model (WDM) drivers; however, most PREfast rules and annotations also apply to Windows Driver Foundation (WDF) drivers.
Important PREfast for drivers is licensed only as a driver development tool. You should not use it to test user-mode applications.

How PREfast Works

PREfast intercepts the Build utility’s call to the regular compiler—cl.exe—and then runs an intercept compiler that analyzes the source code and creates a log file of error and warning messages. PREfast simulates execution of possible code paths on a function-by-function basis, including code paths that are rarely executed during runtime. It checks possible code paths against a set of rules that identify potential errors or bad coding practices, and it logs warnings for code that appears to break the rules.

For example, PREfast can identify uninitialized variables that might be used in subsequent code, such as a variable that is initialized inside a loop. If the loop is executed zero times, the variable remains uninitialized, which creates a potentially serious problem that should be corrected. If PREfast cannot exclude a code path in which this situation might occur, it issues a warning.
Annotations can provide PREfast with information about global state or work performed outside the function being analyzed that might affect a given code path. With more specific information about the intended use of an annotated function, PREfast can better determine whether a particular bug exists. For details, see PREfast Annotations in “Resources” at the end of this paper.

Note For better performance, PREfast limits the number of paths it checks to a default maximum. Use the /maxpaths command line option to increase the maximum number of paths PREfast can check.

What PREfast Can Detect

PREfast can detect several significant categories of potential errors in your code as soon as you can compile it, including the following:

· Memory
Potential memory leaks, dereferenced NULL pointers, access to uninitialized memory, excessive use of the kernel-mode stack, and improper use of pool tags.

· Resources
Failure to release resources such as locks, resources that a function holds when it should not, and resources that a function incorrectly fails to hold when it should.

· Function usage
Potentially incorrect usage of certain functions, function arguments that appear to be incorrect, possible argument type mismatches for functions that do not strictly check types, possible use of certain obsolete functions, and function calls at a potentially incorrect interrupt request (IRQL).

· Floating-point state
Failure to protect floating-point hardware state in a driver and attempting to restore floating-point state after saving it at a different IRQL.

· Precedence rules
Code that might not behave as the programmer intended because of the precedence rules of C.

· Kernel-mode coding practices
Coding practices that can cause errors, such as modifying an opaque memory descriptor list (MDL) structure, failing to examine the value of a variable set by a called function, using C runtime library string manipulation functions rather than the safe string functions that are defined in Ntstrsafe.h, and some misuses of pageable code segments.

· Driver-specific coding practices
Specific operations that are often a source of errors in kernel-mode drivers, such as copying a whole I/O request packet (IRP) without modifying members or saving a pointer to a string or structure argument instead of copying an argument in a DriverEntry routine.
Important PREfast is highly effective at detecting many errors that are difficult to find by other means, and it usually reports errors in a way that makes them easier to fix. This helps to free your test resources to concentrate on finding and fixing deeper, more significant bugs. However, PREfast does not find every possible error or even all possible instances of the errors it was designed to detect, so passing PREfast does not necessarily mean that your code is free of errors. Be sure to thoroughly test your code with all available tools, including Driver Verifier and Static Driver Verifier. For availability of these tools, see “Resources” at the end of this paper.
How to Use PREfast
You can use PREfast to analyze both kernel-mode drivers and other kernel-mode components. You can also use PREfast to analyze user-mode drivers. PREfast is installed with the WDK. You do not need to take any additional steps to install PREfast.
By default, PREfast analyzes code according to rules for kernel-mode drivers. To analyze a user-mode driver, set the analysis mode to __user_driver, as described in “How to Specify the PREfast Analysis Mode” later in this paper, or simply ignore any kernel-specific warnings.

This section provides a brief introduction to the PREfast command line and PREfast defect log viewer. If you are already familiar with using PREfast, you might prefer to skip this section.
Note Take full advantage of the compiler’s error-checking capabilities by compiling code with the /W4and /WX compiler switches, in addition to using PREfast. PREfast does not enable the /W4 switch, although there is some overlap between errors that /W4 detects and errors that PREfast detects. Most of these errors are uninitialized variables.
How to Specify the PREfast Analysis Mode
The PREfast analysis mode determines which set of rules PREfast uses when it analyzes code. The analysis-mode annotation that is defined in %wdk%\inc\ddk\driverspecs.h informs PREfast whether a particular body of code is user-mode or kernel-mode code and whether the code is actually a driver. This annotation applies to an entire source file.
The analysis mode can be one of the following annotations:
__kernel_driver

For kernel-mode driver code. This is the default analysis mode.

__kernel_code

For nondriver kernel-mode code.

__user_driver
For user-mode driver code.

__user_code

For nondriver user-mode code.

If the __kernel_driver analysis mode is incorrect for a particular driver, insert the appropriate analysis mode annotation in the source file or appropriate header file just after the relevant header is included and before any function bodies. Ntddk.h and Wdm.h include driverspecs.h, so this annotation can appear anywhere after Ntddk.h or Wdm.h is included.
How to Run PREfast

To run PREfast in a build environment window, type prefast, followed by your usual build command.
When you execute a prefast command, PREfast intercepts the call to the compiler, analyzes the code to be compiled, and writes the results of the analysis to a log file in XML format. PREfast operates separately on each function in the source code. It produces a single combined log for all of the files that are checked in a single run and eliminates duplicate errors and warnings that header files generate. PREfast then calls the regular compiler to produce the usual build output. The resulting object files are the same as those produced by your usual build command.
Tip PREfast is designed to analyze 32-bit code or 64-bit code for x64-based systems. When you run PREfast, the appropriate version of PREfast is specified by the WDK build environment. To analyze code for Itanium-based systems, either make a copy of the code and change it as necessary to build in an x64 build environment or use conditional compilation to compile it for the x64 architecture. Then run PREfast in an x64 build environment on the x64 architecture version.

To run PREfast

1.
Open a build environment window.

2.
Use the cd command to set the default directory as required to build your source code.
For example, if you are building a driver, you would set the default directory to one that contains a sources file or a dirs file.

3.
Type prefast build, followed by any Build utility parameters that are required to build your code, as shown in the following example:

prefast build -cZ

PREfast analyzes the code to be compiled and writes results of the analysis to the log file, which is stored as XML. The Defects.xml default log file is written to %wdk%\tools\pfd. To write the log file to another location, use the /LOG= switch with the prefast command.

How to Build the PREfast Examples

PREfast is installed with a directory of source code examples that contain deliberate errors to trigger various PREfast warnings. You can use the PREfast examples to validate your PREfast installation and to experiment with the PREfast defect log viewer. The \fail_driver subdirectory contains driver source code that illustrates driver-specific rules in more depth.

For comparison to code that triggers warnings, the Bounds‑examples.cpp example file contains several functions that do not contain errors and so do not trigger any PREfast warnings. Look in the source code for functions with “_ok” in the function name.
Tip Before you build or modify any WDK sample, copy the files to another directory and then work with the copies. This preserves the sample in its original form in case you need it.

To build the PREfast examples

1.
Open a build environment window.

2.
Make the PREfast Samples directory the default directory.
For example, if C:\winddk is the WDK installation directory and you want to build the examples for PREfast with driver-specific rules, type the following at the command prompt:

cd C:\winddk\tools\pfd\samples

3.
Type a prefast build command such as the following to build the examples:

prefast build -cZ

The command window output in Listing 1 shows the results of building PREfast samples. The errors reflect deliberate errors in the examples.
Listing 1 Building PREfast samples—Command window output

C:\WINDDK\tools\pfd\samples>prefast build -cZ

Microsoft (R) PREfast Version 8.0.xxxxx.

Copyright (C) Microsoft Corporation. All rights reserved.

BUILD: Compile and Link for x86

BUILD: Start time: Mon Dec 04 14:37:10 2006

BUILD: Examining c:\winddk\tools\pfd\samples directory for files to compile

 c:\winddk\tools\pfd\samples

BUILD: Compiling c:\winddk\tools\pfd\samples directory

_NT_TARGET_VERSION SET TO WINXP

Compiling - bounds-examples.cpp

Compiling - pft-example1.cpp

Compiling - pft-example2.cpp

Compiling - pft-example3.cpp

Compiling - precedence-examples.cpp

Compiling - hresult-examples.cpp

Compiling - drivers-examples.cpp

Compiling - bounds-examples.cpp

Compiling - pft-example1.cpp

Compiling - pft-example2.cpp

Compiling - pft-example3.cpp

Compiling - precedence-examples.cpp

Compiling - hresult-examples.cpp

Compiling - drivers-examples.cpp

Compiling - generating code...

Building Library - objchk_wxp_x86\i386\prefastexamples.lib

BUILD: Finish time: Mon Dec 04 14:37:19 2006

BUILD: Done

 16 files compiled

 1 library built

Removing duplicate defects from the log...

PREfast reported 31 defects during execution of the command.

Enter PREFAST LIST to list the defect log as text within the console.

Enter PREFAST VIEW to display the defect log user interface.
How to Display PREfast Results

You can display the results of the PREfast analysis in one of the following ways:

· To display the contents of the log file in the PREfast defect log viewer, use the prefast view command.

· To list the contents of the log file as text output in the build environment command window, use the prefast list command.

PREfast Defect Log Viewer

The PREfast defect log viewer provides a graphical user interface that you can use to review PREfast output, to filter output so you can show or hide particular messages, and to view annotated source code so you can see the analysis path that produced a given warning.
To display PREfast results in the PREfast defect log viewer

1.
Run PREfast on your source code, as described earlier in this section.

2.
In the command window, type the following:

prefast view

PREfast displays the PREfast defect log in a Message List screen.

Message List Screen

Figure 1 shows with the unfiltered PREfast results of building the examples in the Message List screen. The version number at the top of the screen indicates the version of PREfast that displays the log.

[image: image1.jpg]# PREfast Defect Log

| Description

Warning | Source Path

Source Location

In Function *

16
17
20
21
24
25
19
27

(PFD)Using uninitialized memory 'j*
(PFD)Using uninitialized memory ‘a’.
(PFD)Using uninitialized memory 'p*
(PFD)Dereferencing NULL pointer 'p*
(PFD)Dereferencing NULL pointer 'ps'.
(PFD)Dereferencing NULL pointer 'p1'.
(PFD)Leaking memory 'ps'.
(PFD)Leaking memory 'q"

Possible buffer overrun in call to 'fgets':
Buffer overrun due to number of charac.
Index '10' is out of valid index range '0...
Possible buffer overrun in call to strcpy.
Possible buffer overrun in call to 'strncp
Cast between semantically different int...
Cast between semantically different int...
Compiler-inserted cast between semant.
Implicit cast between semantically diffe.
Implicit cast between semantically diffe...
Implicit cast between semantically diffe...
(<non-zero constant> || <expression>
(<expression> || <non-zero constant>
(<non-zero constant> & <expression.
(<expression> && <non-zero constant.
Possibly incorrect order of operations: d...
(PFD)Buffer overrun while writing to 'b.
(PFD)Buffer overrun while writing to ‘ar...
Drivers must protect floating point hard...

6001
6001
6001
6011
6011
6011
6014
6014
6029
6057
6201
6204
6204
6214
6214
6216
6221
6225
6230
6235
6236
6239
6240
6269
6386
6386
28110

I

c:\wdkitools.
c:\wdkitools.
ci\wdkitools. .
ci\wdkitools. .
c:\wdkitools.
c:\wdkitools.
c:\wdkitools.
ci\wdkitools. .
ci\wdkitools. .
c:\wdkitools.
c:\wdkitools.
c:\wdkitools.
ci\wdkitools. ..
ci\wdkitools. .
c:\wdkitools.
c:\wdkitools.
c:\wdkitools.
ci\wdkitools. .
ci\wdkitools. .
c:\wdkitools.
c:\wdkitools.
c:\wdkitools.
ci\wdkitools. .
ci\wdkitools. .
c:\wdkitools.
c:\wdkitools.
ci\wdkitools...

pft-example1.
pft-example2.
pft-example2.
pft-example2.
pft-example2.
pft-example3.
pft-example2.
pft-example3.

bounds-examp...
bounds-examp.
bounds-examp.
bounds-examp.
bounds-examp...
hresult-examp...
hresult-examp.
hresult-examp.
hresult-examp.
hresult-examp...
hresult-examp...
precedence-ex.
precedence-ex.
precedence-ex.
precedence-ex...

pft-example2.

bounds-examp.
bounds-examp.
drivers-exampl...

test2
test

test

test

test

foo

test

bar

read_size
unicode_mis. |
constant_in.
unchecked
unchecked_.
test

test

test

test

test

test

test

test

test

test

test
unicode_mis..
constant_in...

drivers testl ~
b

Figure 1 PREfast Message List screen

In the Message List screen, you can:

· Click a column heading—Description, Warning, Source Location, or In Function—to sort on-screen messages.

· Double-click a message to open the View Annotated Source screen and display code for that message.

· Click the Filter button to display the filtered view, where you can choose from a list of predefined filters or show and hide individual messages.

View Annotated Source Screen

If you double-click a message in the Message List screen, the View Annotated Source screen appears, as shown in Figure 2. The View Annotated Source screen displays annotated source code for the error that triggered that message, with a few lines of code before and after, for context.
[image: image2.jpg]# PREfast Defect Log

View ... warning 6001 : (PFD)Using uninitialized memory J'.
File path: ¢-\wdkitools\pfd\samples\pft-example1.cpp
Function: test2

Line: 15

Goto...

PREfast analysis path begins

10 int i =
11 int 3, k

13 if (k) |
15 i

pft-exampled.cpp(15) : warning 6001: (PFD)Using uninitialized memory J'.
Found in function 'test2'

Path includes 5 statements on the following lines:

1011111315

Figure 2 PREfast View Annotated Source screen

In the View Annotated Source screen, you can:

· Click Prev or Next to display annotated source code for other messages, or click Msg List to return to the Message List screen.

· Under View, click Show Entire File to display annotated source code for the entire file that contains the error.

· Click the warning number to display PREfast documentation that describes the problem in detail.

· Under Go to:
Click Start of Function to go to the beginning of the function.

Click Start of Path to go to the beginning of the PREfast analysis path.

Click Warning Line to go to the line that triggered the warning.

Tip For detailed information about warnings, click the warning number. In the PREfast viewer, the text “warning nnnn” is a hyperlink to the PREfast for Drivers documentation in the WDK. For many warnings, the documentation provides significant insights about the precise nature of the warning and often suggests how to fix the problem. If you are unfamiliar with a particular warning number, read the documentation—it can save you a lot of time.
Message List Screen in Filter View
If you click Filter in the Message List screen, a list of messages that can be filtered appears above the list of messages that was generated by building your code, as shown in Figure 3.

[image: image3.emf]Predefined

filters

Message

filter pane

Filtered

results in

message list

Figure 3 PREfast Message List screen in filter view

In the Message List screen in filter view, you can:

· Choose from a list of predefined filters to show only the messages selected by that filter.

· In the message filter pane, clear the check box next to a message or select the message and click Invert to hide that message in the message list.

· Click Apply to update the message list so that it shows only messages that are selected in the message filter pane.

· Click the Filter button again to hide filters. The message list continues to show only messages that are selected in the message filter pane.

You can also double-click a message to display the View Annotated Code screen for that message, just as you can when filters are not visible.

Tips for Filtering PREfast Results

Filtering results does not prevent PREfast from finding errors—it simplifies the list of results in the PREfast viewer so you can work with them more effectively. After you fix the errors shown in the filtered results, you should always run PREfast again and change the way in which results are filtered, so you can see and fix other, less critical errors.
· Take advantage of predefined filters. The PREfast drivers_recommended filter displays messages for serious errors in both general-purpose code and driver code. These messages identify errors that tend to be genuine rather than messages that might not represent actual errors in code, which are often referred to as false positives or “noise.” The drivers_only filter displays messages only for errors that apply specifically to drivers. If you have a limited amount of time to fix errors that PREfast detects in your driver, use one of these predefined filters and concentrate on fixing the errors that they display.

· Hide individual messages if necessary. You might want to hide individual messages for several reasons: you or your development team might think that the risk associated with a message is acceptably low or the noise is unacceptably high, your product ship cycle might allow fixing only the most critical errors, or the messages simply might be irrelevant to your project.

For example, certain PREfast warnings that apply to kernel-mode drivers are also triggered by user-mode drivers. If you are testing a user-mode driver, you might want to hide kernel-mode driver messages such as the following:

Warning 28110: Drivers must protect floating point hardware state.
See use of float <expression>

Warning 28111: The IRQL where the floating point state was saved
does not match the current IRQL (for this restore operation)

Warning 28146: Kernel mode drivers should use ntstrsafe.h, not strsafe.h

To hide an individual message, clear its check box in the message filter pane as described in Figure 3, “PREfast Message List Screen in filtered view.”

PREfast Defect Log Text Output

You can use the prefast list command to display the contents of the PREfast defect log as text output in the build environment command window. This command is useful if you need only a short list of errors and do not need access to annotated source code—for example, to see the effect of fixing errors that PREfast found in a previous run. The prefast list output consists of the same information that is shown in the PREfast defect log viewer, in a form suitable for pasting into files or bug reports.
To display PREfast results as text output

1.
Run PREfast on your source code, as described earlier in this section.

2.
At the command prompt, type the following:

prefast list

PREfast displays the message list in the command window.

The example in Listing 2 shows text output for the first few messages from building the PREfast examples.
Listing 2 Building PREfast examples—prefast list command

C:\WINDDK\tools\pfd\samples>prefast list

--

Microsoft (R) PREfast Version 8.0.58804.

Copyright (C) Microsoft Corporation. All rights reserved.

--

Contents of defect log:

C:\Documents and Settings\<username>\ApplicationData\Microsoft\PFD\defects.xml

--

c:\winddk\tools\pfd\samples\bounds-examples.cpp

(45): warning 6029: Possible buffer overrun in call to 'fgets':

use of unchecked value 'line_length'

 FUNCTION: read_size (40)

c:\winddk\tools\pfd\samples\bounds-examples.cpp (54): warning 6057:

Buffer overrun due to number of characters/number of bytes mismatch

in call to 'wcsncpy'

 FUNCTION: unicode_misuse (51)

c:\winddk\tools\pfd\samples\bounds-examples.cpp (62): warning 6201:

Index '10' is out of valid index range '0' to '9' for possibly

stack allocated buffer 'arr'

 FUNCTION: constant_index (59)

c:\winddk\tools\pfd\samples\drivers-examples.cpp (23): warning 28125:

The function 'ProbeForRead' must be called from within a try/except

block: The requirement might be conditional.

 FUNCTION: drivers_test2 (21)

Examples of PREfast Results

This section shows a few simple code examples and describes solutions for common errors that PREfast can detect in source code. These examples are shown without source code annotations, so you can see what PREfast detects in unannotated code.

Example 1: Uninitialized Variables and NULL Pointers
The PREfast samples in the WDK have deliberate errors and follow bad coding practices to show how PREfast responds to errors and bad coding practices. The test function in %wdk%\tools\pfd\samples\pft-example2.cpp triggers several PREfast warnings related to uninitialized variables and NULL pointers. Although the errors in this example are easy to see just by reading the code, they illustrate errors that might be difficult to see in more complex code, where PREfast might help you find a bug.

Figure 4 shows the PREfast analysis path for one of the PREfast warnings related to the pointer variable p in a function named test. Statements in the analysis path are in bold type.

[image: image4.png]12 void test()
13 {

PREfast analysis path begins

14 it p, a;
15 sps, o

17 1'(f (@

19 p = 2a;
3

21 else
{

23 ps = (struct s*)malloc(sizeof(struct $));

28 ps = &c;

*p;

pft-example2.cpp(31) : warning 6011: Dereferencing NULL pointer 'p'.
Found in function 'test’

Path includes 8 statements on the following lines:

141415 15 17 23 26 31

32 a = (((ps)))->a;

34 return;
3

Figure 4 Example 1: Uninitialized variables and NULL pointers
This function declares several variables but does not initialize them, and the function fails to branch appropriately. In this particular code path, the test at line 17 fails because the a variable is not initialized, which is reported in another warning message that is not shown in Figure 4. Line 19 therefore fails to execute, leaving the p variable uninitialized.
Although p is tested at line 26, no code handles the case in which the test fails, so execution continues at line 31, which dereferences p and triggers a PREfast warning that p could be NULL. A NULL pointer can also trigger warnings about uninitialized variables, as it does for p in this function. To eliminate this warning, you would add logic to prevent dereferencing p if it happens to be NULL.

Example 2: Implicit Order of Evaluation
Code that relies on implicit order of evaluation can contain bugs that are difficult to find. PREfast detects cases where the implicit order of evaluation might produce results that are different from what the programmer intended.
Figure 5 shows a simple example.
[image: image5.png]10 int unclearIntent(int a, int b, int c)
fE

PREfast analysis path begins
12 if (@ &b == c) return 1;

pfdshbs7.c(12) : warning 6281: Incorrect order of operations: relational
operators have higher precedence than bitwise operators.

Found in function 'unclearintent'

12

13 return 0;
14 3

Figure 5 Example 2: Implicit order of evaluation
According to the rules of operator precedence in C, the (a & b == c) expression is interpreted as (a & (b == c)) because the == logical equals operator has higher precedence than bitwise AND (&). Therefore, this function compares b with c and then masks the result with a, which tests whether a is even or odd. If this is the intended result, the function is correct as written, but parentheses would help to make the programmer’s intention more clear, as would a comment in the code.

If the programmer intended to mask a with b and compare the result with c, the function is incorrect. Parentheses are required to force evaluation of the expression as ((a & b) == c).
Example 3: Calling a Function at Incorrect IRQL
The IRQL at which a driver function runs determines which kernel-mode functions it can call and whether it can access paged memory, use kernel-dispatcher objects, or take other actions that might cause a page fault. For example, some functions require that the caller be running at DISPATCH_LEVEL, whereas others cannot be called safely if the caller is running at any IRQL higher than PASSIVE_LEVEL.
Many of the DDI functions that drivers must call are affected by IRQL, sometimes in subtle ways. For example, if your driver sets a flag on the basis of a string and the flag is in a data structure that needs protected access, you might be tempted to write code that resembles the example shown in Figure 6. In this example, calling ExAcquireFastMutex resets the current IRQL to APC_LEVEL before acquiring the mutex. However, RtlCompareUnicodeString should be called at PASSIVE_LEVEL, so PREfast displays a warning.
[image: image6.png]11 void TsFlagSet(
12 IN PUNTCODE_STRING s)

13 {

PREfast analysis path begins

14 ExAcquireFastMutex(&mutex);

15

16 if (RtlCompareUnicodestring(s, &t, TRUE) == 0) {

IRQL.c{16) : warning 28121: The function 'RtiCompareUnicodeString' is not
permitted to be called at the current IRQ level. The current level is too high:
IRQL was last set to 1 at line 14. The level might have been inferred from the
function signature.
Found in function 'IsFlagSet'

Path includes 2 statements on the following lines:

14 16
17 MyGlobal.FlagTsSet = 1;
18 3
19
20 ExReleaseFastMutex(&mutex);

Figure 6 Example 3: Calling a function at incorrect IRQL
Note the “IRQL was last set to 1 on line 14” statement. It is easy to see this in a brief example, but this information might prove to be very important in a longer, more complex function body.

The solution is to move the RtlCompareUnicodeString call before ExAcquireFastMutex and then to test the result after acquiring the mutex. The corrected code would appear as shown in Listing 3.
Listing 3 Corrected code example that calls ExAcquireFastMutex at correct IRQL

void IsFlagSet(

 IN PUNICODE_STRING s)

{

 int tmp = 0;

 if (RtlCompareUnicodeString(s, &t, TRUE) == 0) {
 tmp = 1;

 }

 ExAcquireFastMutex(&mutex);

 if (tmp) {

 MyGlobal.FlagIsSet = 1;

 }

 ExReleaseFastMutex(&mutex);

}
Example 4: Valid Error Reported in the Wrong Place

PREfast often reports a valid error in one location that is actually caused by code in another location. Calling a function at an incorrect IRQL is a good example. When PREfast analyzes a code path, it attempts to infer the range of IRQL at which a function could be running and identify any inconsistencies, as this example shows. PREfast proceeds as if the programmer specifically intended each change to the IRQL. If the IRQL is incorrect for a subsequent function call, PREfast warns about the function call, and not about the earlier change in the IRQL.
Tip IRQL annotations such as __drv_requiresIRQL help PREfast to make more accurate inferences about the range of IRQLs at which a function should run. For details about IRQL annotations, see PREfast Annotations in “Resources” at the end of this paper.
For example, assume that a function named Y is intended to be called at DISPATCH_LEVEL. The Y function calls two DDI functions that have specific IRQL requirements: KeDelayExecutionThread must be called at APC_LEVEL, and KeReleaseSpinLockFromDpcLevel must be called at DISPATCH_LEVEL.
When PREfast starts to analyze the Y function, the call to KeAcquireSpinLockAtDpcLevel causes PREfast to assume that the code should be executing at DISPATCH_LEVEL and therefore to issue a warning that KeDelayExecutionThread is being called at an IRQL that is too high, as shown in Figure 7.
[image: image7.png]17
18
19

void v(void)
//This routine will be always called at DISPATCH_LEVEL

PREfast analysis path begins

LARGE_INTEGER STeepTime; .
KeAcqui respinLockAtDpclevel (@spinLock);

if(some_condition) {
//Driver performs I/0 to the hardware and decides
//to get a response or check the state.

KeDelayExecutionThread(KernelMode, FALSE, &SleepTime);
Xy.c(27) : warning 26123: The function KeDelayExecutionThread is not
permitted to be called at a high IRQ level. Prior function calls are
inconsistent with this constraint: It may be that the error is actually in
some prior call that limited the range. Minimum legal IRQL was last
set to 2 at line 21.

Found in function *Y"

Path includes 4 statements on the following lines:

20212327

1
§eRe1 easespinLockFrombpcLevel (&spinLock);

Figure 7 Example 4: Valid error reported in the wrong place
As PREfast continues to analyze the Y function, it now assumes that the code should be executing at APC_LEVEL because of the call to KeDelayExecutionThread. PREfast then encounters KeReleaseSpinLockFromDpcLevel, which must be called at DISPATCH_LEVEL, and so it issues the following warning that the function is being called at an IRQL that is too low:

[image: image8.png]xy.c(29) : warning 28122: The function
KefReleaseSpinLockFromDpcLevel is not permitted to be called at a
low IRQ level. Prior function calls are inconsistent with this
constraint: It may be that the error is actually in some prior call that
limited the range. Maximum legal IRQL was last set to 1 at line 27
Found in function *Y"

Path includes 5 statements on the following lines:

2021232729

To correct this situation, consider one of the following solutions in your code:

· If the wait time is short—less than a clock tick but more than a few instructions—call KeStallExecutionProcessor instead of KeDelayExecutionThread. Callers of KeStallExecutionProcessor can be running at any IRQL.

· Queue a timer object with a CustomTimerDpc or EvtTimerFunc routine that checks the hardware state.

Example 5: Function Type Class Mismatch
PREfast is more strict than the compiler when it attempts to match the assignments of callback functions to function pointers. It does this by giving each callback function a “type class.”

A type class in PREfast serves in the role of a type but goes beyond the concept of a type as defined by C and is not related to a class as defined by C++. When PREfast discovers either a type class mismatch or a function type that does not have a type class, it generates an error. PREfast also uses the type class to apply checks that are specific to a particular function type without incorrectly applying them to functions that simply happen to look like that function type.
Warning 28155 identifies a typical function type class error:

28155 - The function being assigned or passed should be a <class1> function. Add the declaration "<class1> <funcname1>" before the current first declaration of <funcname2>.

This warning indicates that an assignment to a pointer for a particular function pointer did not match the expected type. An example might be an attempt to assign a Cancel routine to a StartIo function pointer, which the C compiler allows but PREfast does not. Typically, the assignment is correct, but the function is not known to be of any specific function class.

Figure 8 shows an example of this error.

[image: image9.png]2124 void MyCancel(struct _DEVICE_OBJECT ¥DeviceObject,

2125 struct _IRP *Irp)
2126 {

2127 /e

2128}

3130 Irp->CancelRoutine = MyCancel;

fun.c(3130) : warning C26155: The function being assigned or passed
should be a DRIVER_CANCEL function: Add the declaration
'DRIVER_CANCEL MyCancel;' before the current first declaration of
MyCancel.

Found in function 'MyCancel

3130

Figure 8 Example 5: Function type class mismatch
To fix this error, you would add DRIVER_CANCEL MyCancel; before line 2124 to instruct PREfast that the MyCancel function is a cancel routine. This suppresses Warning 28155 and causes PREfast to check that the function meets the requirements of a cancel routine.
For details about annotations on function typedef declarations and function type classes, see PREfast Annotations in “Resources” at the end of this paper.
Example 6: Incorrect Enumerated Type
The C compiler’s type checking is not strict enough to detect an incorrect enumerated type. Unfortunately, using an incorrect enumerated type in driver code can cause problems that are difficult to find and solve. PREfast detects enumerated type mismatches in driver code and issues a warning about each mismatch. PREfast type mismatch warnings vary somewhat according to the function that is being analyzed, but all PREfast type mismatch warnings identify potential problems that should be investigated and fixed.
For example, a common error when calling the KeWaitXxx routines—KeWaitForSingleObject, KeWaitForMultipleObjects, and KeWaitForMutexObject—is to transpose the WaitReason and WaitMode parameters, which take enumerators of the KWAIT_REASON and KPROCESSOR_MODE types, respectively.
Figure 9 shows the PREfast warning for a call to KeWaitForSingleObject in which the WaitReason and WaitMode parameters are transposed.
[image: image10.png]2784

Status = KeWai tForSingleObject(&event,

kewait.c(2784) : warning 26139: The argument 'KernelMode' should
exactly match the type ‘enum _KWAIT_REASON': Some functions
permit limited arithmetic on the argument type, others do not. This
usually indicates that an enum formal was not passed a member of
the enum, but may be used for other types as well.

Found in function ‘PciDrvSendirpSynchronously'

2784

KerneTMode,
Executive,
FALSE,
NULL

Figure 9 Example 6: Incorrect enumerated type
PREfast issues the same warning for the argument Executive because it is not of the KPROCESSOR_MODE type.

The enumeration values most commonly passed in a KeWaitXxx call are KWAIT_REASON Executive and KPROCESSOR_MODE KernelMode. Both of these values evaluate to zero, so they are numerically interchangeable. If the driver code transposes them in the function call, a type mismatch occurs for each parameter but, without strict type checking, the mismatch is invisible to the compiler. If the values are Executive and KernelMode, the mismatch is also invisible to the system.

Problems arise when these parameters are transposed with enumeration values that are not numerically interchangeable, such as Executive and UserMode, thus causing the driver to wait in a mode that the programmer did not intend.
This example shows how PREfast can help to prevent a bug when it is used early in the development process. If the values that are incorrectly interchanged are nonzero, this coding error will appear as a bug at some time in testing. Some variations of this coding error can cause the bug to appear as a bug check in the kernel or in an unrelated driver, making the bug very difficult to recognize and especially difficult to find in your driver. PREfast detects this bug, which saves testing and debugging time that would be needed to find the problem. Fixing the bug takes only a moment because the PREfast warning is specific and flags the error close to where it occurs in your code.
Coding Practices that Improve PREfast Results

PREfast logs every error that it can find in your source code. If the code does not give PREfast any assurance that the code is safe, PREfast behaves as if the code is unsafe.
For example, suppose PREfast encounters a code path that dereferences a pointer. Could the pointer ever be NULL? If there is some reason to suspect that it could be—for example, if earlier code tests for NULL but subsequent code accesses the pointer in an unsafe manner, PREfast issues a warning about dereferencing a NULL pointer. If there is no reason to suspect that the pointer could ever be NULL, then PREfast does not issue a warning.
PREfast can miss some potential bugs due to faulty assumptions—these are often referred to as false negatives. Other PREfast warnings might not represent actual errors in code—these are often referred to as false positives or “noise.”
Do not dismiss false positives in PREfast results. They often flag assumptions about how the code will actually execute. For example, if a variable is initialized inside a loop, you might know that the loop could not be executed zero times or that the variable is safely initialized by some other function. However, the PREfast warning that this variable might be uninitialized identifies the assumption that the variable will always be safely initialized, which is valuable information.
Some noise is unavoidable and you might simply need to ignore it or suppress it. PREfast analyzes code on a function-by-function basis, so it has no information about global state or work that is performed outside the current function that might affect a given code path. For this reason, PREfast often reports false positives related to the following:

· Members of structures or other objects that are not simple variables.

These can mislead the more accurate tests for flow of control.

· Wrapper functions.

These can cause false positives for many kinds of warnings, such as memory leaks, resource leaks, NULL pointer dereferencing, uninitialized memory access, and incorrect argument types. Many of the problems with wrapper functions can be addressed with source code annotations.

This section describes techniques you can use to reduce noise and improve PREfast results.

Warnings that Indicate Common Causes of Noise and What to Do About Them
Minor changes to your code can help reduce noise caused by coding style. Although these changes might seem trivial, they can both suppress noise and help to make the code easier for other developers to maintain. In addition, PREfast often reports the same error repeatedly in slightly different contexts. Thus, a single code change can eliminate a number of warnings.
The following kinds of PREfast warnings often identify common causes of noise in PREfast results:
Warnings about uninitialized variables

Initialize variables when you declare them, whenever you can.
Warnings triggered by an explicit test for STATUS_SUCCESS

Replace explicit tests for STATUS_SUCCESS with the NT_SUCCESS macro, as shown in the following code fragment:

status = IoAttachDevice();

if (!NT_SUCCESS(res)) {

 //handle error

}

Multiple warnings that are triggered by a single error, such as multiple uses of the same NULL pointer
Fix the underlying error and then rerun PREfast to produce a shorter message list relatively quickly.
Warnings that identify assumptions
Make assumptions in your code explicit by using assertions such as an ASSERT macro or an __analysis_assume (expression) source code annotation. For example, if PREfast detects potential use of an uninitialized variable that you know is initialized safely elsewhere, add an assertion to confirm that the path in which the variable is left uninitialized is impossible and take advantage of the checked build’s notification if the assertion happens to fail.
See “How to: Specify Additional Code Information” on MSDN for details about __analysis_assume—online at http://go.microsoft.com/fwlink/?LinkId=80906.

Warnings that identify errors in the use of parentheses or other syntactic misuses
Add parentheses or otherwise modify the code to make your intentions explicit. Without these modifications, the code might not behave as you intend because of the precedence rules of C.
Warnings that a slight rearrangement of code can eliminate
For example, if a variable is initialized inside a loop that might be executed zero times, thus leaving the variable uninitialized, consider rewriting the code to initialize the variable outside the loop or restructuring the loop so that it is always executed at least once.
Warnings about potentially incorrect use of function pointers

Use function typedef declarations to identify system callback types. PREfast can take advantage of these declarations to check that function pointers are being used correctly, which both reduces noise and improves the accuracy of the analysis. See “Example 5: Function Type Class Mismatch” earlier in this paper for an example.
Important PREfast simply ignores inline assembler, so the use of inline assembler in your code can prevent PREfast from fully analyzing a code path and can cause both false positives and false negatives in PREfast results. The use of inline assembler also makes your code less portable to newer architectures that Windows supports.
To reduce the effects of inline assembler on PREfast results:
Use the utility functions provided by newer compilers. For example, use __debugbreak instead of __asm int 3. See your compiler documentation for details.
If you cannot avoid using inline assembler, place it in an __inline or __forceinline function so that PREfast can analyze the rest of the function more effectively.

How to Use Pragma Warning Directives to Suppress Noise

If you determine that a PREfast warning is a false positive or simply noise that does not need to be fixed, you can use a #pragma warning directive to suppress the PREfast warning. Unlike a filter that temporarily changes the results that appear in the PREfast defect log, a #pragma warning directive affects PREfast analysis of your code.

In the #pragma warning directive, use the PREfast warning number to identify the warning to suppress. You can use the (push) and (pop) statements to confine the effect of the directive to the line of code that is producing the false positive, as shown in the following example:

#pragma warning (push)

#pragma warning(disable:6001) // FLAG is always present in arr

 arr[i+1] = 0;

#pragma warning (pop)

 j++; // Warning 6001: Actual error

As an alternative to push and pop, you can use the suppress specifier to suppress the warning for the line of code—and only that line of code—that immediately follows the #pragma warning statement, as shown in the following example:

#pragma warning(suppress : 6001)

arr[i+1] = 0; // Warning 6001 is suppressed
j++; // Warning 6001 is reported

}

Remember that #pragma warning is a drastic measure because it changes your source code to prevent PREfast from reporting an error. Consider whether to simply ignore or filter the PREfast warning until a future version of PREfast can produce more accurate results.

If you do use #pragma warning to suppress a PREfast warning, be sure to add a comment in your code to explain why the warning is suppressed. When you install a new version of PREfast, disable all #pragma warning directives and run the new version on your code, to see if it fixes the problem.

See “Using a Pragma Warning Directive” in the WDK—online at http://go.microsoft.com/fwlink/?LinkId=80908.

How to Use Annotations to Eliminate Noise

Annotations can provide PREfast with information about global state or work performed outside the function being analyzed that might affect a given code path. With more specific information about the intended use of an annotated function, PREfast can better determine whether a particular bug exists. Annotations can greatly reduce the incidence of false positives and false negatives in PREfast results.

For example, you can use the _bcount(size) partial annotation to express the size of a buffer in bytes. The size parameter can be a number, but it is usually the name of some parameter in the function that is being annotated.

The memset function provides a good example of this, as shown in the following example:
void * memset(

 __out_bcount(s) char *p,

 __in int v,
 __in size_t s
);
In this example, __out_bcount(s) specifies that content of the memory at the p output parameter is set by the function and that the value of s is the number of bytes to be set. The information that this provides is something that “everyone” knows, but the compiler does not. Nothing in the C source code tells the compiler that p and s are related in this way. Only the annotation provides this information.
With this additional information, PREfast can check the implementation of memset to be sure it never accesses past the end of the buffer—that is, it never accesses more than s bytes into the buffer. PREfast also can often check that the value of p+s is within the declared bounds of the array when the function is called. In this case, the size is expressed in bytes because that is what memset expects.
PREfast supports both the general-purpose annotations defined in %wdk%\inc\api\Specstrings.h, which can be applied to both drivers and general kernel-mode and user-mode code, and the driver-specific annotations defined in %wdk%\inc\ddk\Driverspecs.h, which are specifically designed for use in kernel-mode drivers.
For details about using annotations to eliminate noise in PREfast results, see PREfast Annotations listed in “Resources” at the end of this paper.
PREfast Best Practices
Consider the following general best practices for integrating PREfast into your development cycle:

Set policies for integrating PREfast into your development practices.

Consider these ideas for integrating PREfast into your team’s development practices:
· Start running PREfast as soon as you get the first clean compile of each source file.

· Establish a policy for your development team about which PREfast warnings must be fixed, which warnings can be ignored, and which warnings the developer might choose to fix or not to fix.

· Establish a policy and comment conventions to record why particular warnings, such as false positives, were not fixed.

Use filtering to analyze PREfast results more efficiently.

Try these guidelines for which warnings to hide:
· At a minimum, fix all warnings that pass the drivers-all filter. These are particularly serious, low-noise warnings about errors that can affect system security.

· Filter PREfast results by hiding messages when the development team considers the risk that is associated with the warning to be acceptably low, when the noise associated with it is high, or when the product ship cycle permits fixing only the most critical errors.

Adopt coding practices that help reduce PREfast noise.

Some guidelines are related to overall practices for coding and commenting:
· Make minor changes to your code to reduce false positives that are caused by coding style.

· Instead of using inline assembler, use the utility functions that are provided with newer compilers.

If you cannot avoid using inline assembler, consider placing the code in an __inline function, so that PREfast can analyze the code more effectively. Use annotations on these functions.

· Wherever possible, initialize variables when you declare them.

· Identify programming assumptions in comments, and make these assumptions explicit with assertions.

· Use parentheses and other syntax to enforce order of evaluation, rather than relying on the precedence rules of C when those rules are not completely intuitive—that is, in the cases that PREfast warns about.

· Use the NT_SUCCESS macro instead of explicit tests for STATUS_SUCCESS.

· Start using annotations to provide PREfast with more specific information about your source code.

· Continue to use other driver testing and validation tools, such as Static Driver Verifier and Driver Verifier, in addition to PREfast.
Resources

PREfast on the WHDC Web site
http://www.microsoft.com/whdc/DevTools/tools/PREfast.mspx
Driver Verifier
http://www.microsoft.com/whdc/DevTools/tools/DrvVerifier.mspx

Static Driver Verifier
http://www.microsoft.com/whdc/devtools/tools/sdv.mspx
Windows Driver Kit (WDK)
http://www.microsoft.com/whdc/DevTools/ddk/default.mspx
Books

Developing Drivers with the Windows Driver Foundation, by Penny Orwick and Guy Smith

http://www.microsoft.com/MSPress/books/10512.aspx
White Papers
PREfast Annotations
http://www.microsoft.com/whdc/DevTools/tools/annotations.mspx

Samples in the WDK

Examples that trigger various PREfast warnings
%wdk%\tools\pfd\samples

Driver source code that illustrates driver-specific rules
%wdk%\tools\pfd\samples\fail_drivers
© 2007 Microsoft Corporation. All rights reserved.

[image: image11.png]