[image: image1.png]4% Windows

Management of Hardware Resources in the Datacenter Using Embedded Web Services - 7

Management of Hardware Resources in the Datacenter Using Embedded Web Services

May 17, 2006

Abstract

This paper discusses emerging trends in system hardware architectures and the challenges in managing the hardware resources. The strategy of using web services protocol for managing heterogeneous environment is analyzed in the context of hardware management. The adoption of the WS-Management protocol by the hardware vendors is a critical element of the Microsoft Dynamic Systems Initiative (DSI).

An innovative approach of using an embedded Web Services stack developed by Microsoft Research (MSR) and Enterprise Management Division (EMD) is being made available to help original equipment manufacturer (OEM) partners in implementing the WS‑Management stack on embedded devices. The paper includes a technical overview of this approach and how to obtain it from Microsoft.

This information applies for the following operating systems:

Microsoft Windows Vista™

Microsoft Windows Server™ 2003 R2

The current version of this paper is maintained on the Web at:

http://www.microsoft.com/whdc/system/pnppwr/wsm/Mgmt_WS.mspx

References and resources discussed here are listed at the end of this paper.

Contents

3Introduction

3Industry Trends

4Challenges and Opportunities

4WS-Management Embedded Toolkit

6Features

7Interoperability with Other Web Services

7Licensing Model

Disclaimer

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows NT, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

This paper discusses emerging trends in system hardware architectures and the challenges in managing the hardware resources. The strategy of using web services protocol for managing heterogeneous environment is analyzed in the context of hardware management.

The adoption of the WS-Management protocol by the hardware vendors is a critical element of the Microsoft Dynamic Systems Initiative (DSI). An innovative approach of using an embedded Web Services stack developed by MSR and EMD is being made available to help our OEM partners in implementing the WS-Management standard on the embedded devices. The paper includes a technical overview of the currently available approach.

Industry Trends

In the context of enterprise hardware management, a few trends emerged in recent years that require rethinking of some of our strategies when it comes to working with OEMs and hardware vendors.

The idea of flexible compute resources has produced several approaches to optimizing the hardware use. One is partitioning of a single hardware system into a set of real machines that could maximize the use of hardware resources by the existing applications that are designed for operating on standalone systems. The other one is virtualization, or partitioning of a real machine into a set of virtual machines.

The idea of flexible storage and communication resources resulted in the possibility of sharing the external storage between machines using SAN, external SATA, or iSCSI connectivity channels. It also enabled shared network connections between real machines – shared use of external network switches and network adapters.

These powerful ideas in turn produced the trend in hardware management called out-of-band management (OOB). It simply reflects the need for a management access channel that exists before the operating system platform can be deployed, because in order to deploy it, the partitioned system must be first configured to assign the hardware resources to each partition.

The OOB channel has become a standard requirement for almost every computer system, addressing a variety of management scenarios:

· The blade systems are equipped with chassis management controllers (CMC) that support basic provisioning and monitoring capabilities.

· Rack systems come with the rack appliance controllers that manage power distribution to the servers.

· Virtual hosts require a special management partition to configure the virtual partitions for different workloads.

· Storage and switch controllers include service processors to remotely configure and monitor the shared use of these devices.

· Finally, the desktops and laptops include NIC-based management controllers to support discovery, asset tracking, remote diagnostics, and hardware alerting.

Challenges and Opportunities

OOB controllers perform a number of management functions that are critical for the success of the DSI initiative. That in turn requires a high level of standardization and compatibility with the management protocols that are natively supported in Microsoft Windows® operating systems. To drive standardization, we have defined the Web Services-based WS-management protocol as a replacement for various proprietary solutions and specialized protocols currently used by the hardware vendors in the OOB channel. This protocol has been recently ratified as a management standard. At the same time, the protocol has been included in Windows Server™ 2003 R2 and Windows Vista™. That means the management tools can access the standard hardware without deploying new protocol stacks.

In practice, management controllers are small embedded devices operating with very limited computing power, primarily because of the pricing pressure on the OEMs (often in the under $5 range for the OOB channel) and very limited power supply in the standby mode (based on FCC regulations). Although WS‑Management has been designed to allow for low footprint implementations, it still requires substantial optimization effort to make it work in such environment. So engineering difficulty is one of the factors that slow down OEM adoption.

It is critically important to facilitate adoption of WS-Management by the hardware vendors. The goal is to promote the standard implementations that are optimized for the Windows platform. In particular, that means full interoperability with the Windows implementation of the WS-Management stack and the use of the security profiles that take advantage of the Windows integrated security. Achieving this goal will result in several major benefits for the OEMs and IT customers:

· The toolkit interoperates with the native implementation of WS-Management in the Windows platform. So any tool built on Windows will be able to manage the standard hardware without deploying additional infrastructure components.

· The toolkit takes advantage of the Windows security infrastructure. The end users will see it as the significant advantage of purchasing the standard compliant hardware. For example, if the enterprise already has Active Directory deployed, there will no additional cost for securing the management access to hardware.

· Because Microsoft management tools are natively integrated with WS‑Management, the OEM investments in supporting the protocol in hardware will produce immediate value to the IT departments and will stimulate the process of upgrading to standardized hardware.

Given the constrained environment of many management controllers (for example, ARM processor with 256K flash and 50K RAM on the low end), hardware vendors use various embedded operating systems such as ThreadX, RTOS, OS9, Linux, and others. To help OEMs implement the WS-Management standard in such environments, Microsoft has created the WS-Management Embedded Toolkit. It includes highly optimized Web Services and a security stack ported to a number of embedded platforms.

WS-Management Embedded Toolkit

The WS-Management Embedded Toolkit is built on an embedded Web Service middleware that can run on various versions of Windows as well as on common low-cost microcontrollers. The entire stack, including real-time scheduler, transport protocols, application protocols, and crypto functions, has been demonstrated on a machine with 256K of flash ROM and 32K of RAM.

The toolkit supports a number of transport protocols such as TCP/IP, HTTP, UDP, and the SOAP stack, including WS-Management, Devices Profile, and the WS protocols they depend on (WS-Addressing, WS-Transfer, WS-Enumeration, WS-Eventing, WS-Policy, and so on). It has also been used as a research vehicle for trying the new Remote Shell Web Services Protocol, WS-RealTime, and touch-based trust.

The toolkit is implemented in an object-oriented, componentized way using C. The C language was used to maximize portability and minimize size. On many microcontrollers it is the only choice, and in all cases it is the most practical. The middleware itself can support other languages for application programming, including domain-specific languages that use XML syntax, for example, for expressing real-time requirements or scripting for robot control. This seems to be the best solution in embedded software: use C for fixed function and system support, while allowing extensions and flexible application programming in the most suitable language. The component design allows adding or removing features, depending on hardware capabilities and application requirements.

The Embedded Web Service middleware reduces duplicate code by using an interpreter approach for message processing. Rather than having specific code that knows how to parse or generate specific messages, the messages are described in a metadata table. A generic serializer and deserializer uses the metadata—essentially an extended schema—to convert XML automatically to native data and back. What this means, beside more reliable and compact code, is that it is very easy to add new protocols. Just add the schema to the XML metadata database to make the protocol available to applications. In order to reduce the required RAM size, the table is compiled offline into a compact representation that can be put into ROM or flash. It can also be extended at run-time, but it will use more RAM in that case.

XML in a message can represent either data or execution. Both are intrinsically supported by middleware. XML corresponding to data is converted to lists and structs, while execution is converted to continuation objects that can be executed in a thread context. Basically, the SoapAction corresponds to a method, and the rest of the Body corresponds to method parameters, that is, data. A continuation captures the execution state of a method but defers stack allocation until the method is actually executed.

The programming model is object oriented. For convenience, the objects are compatible with both C++ and COM. Header files, v-tables, and stub code are automatically generated from the XML metadata. So, in order to implement a new Web service, the application programmer defines it in the XML metadata and fills in the auto-generated stub code with actual functionality. All the details on SOAP processing, connections, scheduling, and execution are automatically handled by the middleware. Moreover, the middleware can optimize the execution for various platforms. For example, on Windows XP the continuations run on Windows threads. On an 8-bit microcontroller, the execution happens instead serially so as to avoid multiple stacks. To the extent the device is capable, it can run a real-time scheduler that allows precise time-based processing of Web Services, for example, for robotics.

The middleware uses many techniques to keep memory size low and energy consumption at a minimum. One such technique is to process all XML straight from the network buffers as data is being received. This avoids unnecessary copies, resulting in both lower CPU consumption and lower memory consumption. There is only one copy of the data, and the entire message does not need to be present at once. The middleware processes what it has, discards what it already processed, and picks up where it left off once it receives more data. The in-place zero-copy data processing saves RAM, while aggressive code sharing saves ROM.

Components capture functionality, which can be reused in multiple parts of the system. This means the same functionality needs to be present only once. Similar components also employ inheritance across components, where new related functionality can be added to objects while preserving the original functionality. Component initialization, client proxy objects (allows calling a remote object as if it were local), serialization, and discovery processing are represented by compact descriptors rather than code.

Generic code interprets the descriptors. This approach further avoids duplication of similar control code and makes the system more robust by having just one, well-tested implementation for any one functionality.

For WS-Management, the service is a component that is found in the namespace under “/wsman”. This component implements one method for each message in WS‑Transfer, WS-Enumeration, WS-Eventing, WS-Management, and certain CIM objects. A method is automatically called, with all the parameters translated, validated, and decrypted as a message comes in. The component tracks its own objects and state, and calls into drivers and other objects to implement actual management functions, such as reading sensors or reprogramming hardware. There is a simple client that can be used for remote management of other devices and computers. The client, like the server, is compatible with the standard and other WS-Management implementations.

Features

Basic Features

· Compiles on Windows for evaluation purposes. See “Interoperability with Other Web Services” later in this paper.

· Includes an optional thin, real-time firmware for running on microcontrollers without an operating system:

Physical memory manager

Real-time scheduler, threads

Device drivers

TCP/IP stack with AutoIP, DNS, multicast, time synchronization

DHCP client

· Automatic serialization and deserialization of SOAP messages.

· Aggressive code sharing to minimize footprint.

· Support for domain specific languages, with C# support in progress.

· Easy object oriented programming model for applications, client, and server.

· Scalable execution model that transparently optimizes for available memory.

· Zero-copy networking, in-place processing, and crypto.

· Implements WS-Device Profile, WS-Management, and standard protocols WS‑Addressing, WS-Transfer, WS-Enumeration, WS-Eventing, WS-Discovery, WS-Policy, and so on.

· Implements the experimental protocols WS-RemoteProcessing, WS-RealTime, and touch-based trust.

· Supports multiple encodings: SOAP over UDP, Compressed SOAP, and encryption.

· Convenient for experimenting with new protocols and modifications—for example, to build a reference platform for compatibility testing between the new version of the protocols and the existing Windows implementations.

· Research vehicle for sensor nets, real-time computing, robotics, medical devices, and managing the physical world.

Future Planned Enhancements

These enhancements are planned, but should not be construed as feature commitments for future Windows implementation:

· Kerberos and SSL support.

· More hardware and platforms.

· More rigorous and systematic testing for 24/7 operation, including stress, interoperability, coverage, model-based testing.

· Further optimizations for performance and size. This includes reducing the size of the network layer.

· Support secure lightweight transport (UDP based).

· Evolve touch-based trust and security system to datacenter provisioning.

· Further evolve compressed SOAP for low-bandwidth use.

· Assist customers in adaptation and special requirements.

Interoperability with Other Web Services

The toolkit has been tested for interoperability with Windows Communication Foundation, WS-Management service in Windows Vista and Windows Server 2003 R2, as well as the implementations of WS-Management from Intel, Sun, and Dell.

Licensing Model

The toolkit source is licensed to the OEMs for a one-time acquisition fee. Any changes the vendor decides to make in the code will be licensed back to Microsoft. This way, each case of adoption can potentially improve the implementation. The toolkit is available for evaluation and commercial use.

For questions related to this technology, contact:
wsmantk@microsoft.com.

WinHEC 2006 - May 15, 2006
© 2006 Microsoft Corporation. All rights reserved.

[image: image1.png]